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A B S T R A C T   

Fundus images have been widely used in routine examinations of ophthalmic diseases. For some diseases, the 
pathological changes mainly occur around the optic disc area; therefore, detection and segmentation of the optic 
disc are critical pre-processing steps in fundus image analysis. Current machine learning based optic disc seg-
mentation methods typically require manual segmentation of the optic disc for the supervised training. However, 
it is time consuming to annotate pixel-level optic disc masks and inevitably induces inter-subject variance. To 
address these limitations, we propose a weak label based Bayesian U-Net exploiting Hough transform based 
annotations to segment optic discs in fundus images. To achieve this, we build a probabilistic graphical model 
and explore a Bayesian approach with the state-of-the-art U-Net framework. To optimize the model, the 
expectation-maximization algorithm is used to estimate the optic disc mask and update the weights of the 
Bayesian U-Net, alternately. Our evaluation demonstrates strong performance of the proposed method compared 
to both fully- and weakly-supervised baselines.   

1. Introduction 

Retinal optic disc analysis in fundus imaging plays a pivotal role in 
identifying ophthalmic diseases [1–8]. The size, shape, depth and 
pathological changes of the optic disc are regarded as important index to 
judge retinopathy, such as glaucoma. As such, efficient optic disc seg-
mentation is an important preprocessing step that can be incorporated 
into many automatic systems for eye related disease screening. Rather 
than manually identifying the optic disc, efficient and automatic optic 
disc segmentation has drawn widespread research attention. 

Recent advances in deep learning substantially boost the perfor-
mance of optic disc segmentation. Albeit deep learning approaches 
demonstrated strong performance, they are highly dependent on the 
ground truth optic disc annotations needed for the fully-supervised 
learning. In real-life scenarios, fully-supervised training of optic disc 
segmentation is a complex task, due to its inherent reliance on a large- 
scale optic disc segmentation training data containing fundus images 
with pixel-wise annotations. However, manually producing pixel-wise 
annotation is time consuming and expensive, and may also induce 
inter-annotator variance. 

In addition to fully-supervised methods, Saha et al. proposed a 
weakly labeled multi-task learning method to segment vessels, lesions 

and optic disc concurrently [9]. Two datasets, one missing the vessel 
annotations and the other missing the lesion and optic disc annotations, 
were used for training, practically yielding a semi-supervised method 
using only partial ground truth annotation. Such partial annotations 
were created manually by domain experts, thus, rendering non-scalable. 
The limitations of fully-supervised and weakly labeled methods are 
evident; yet, a few weakly-supervised deep learning methods for optic 
disc segmentation, not relying on manually annotated pixel-level ground 
truth, have been proposed. Lu et al. proposed a weakly-supervised optic 
disc segmentation method using pseudo ground truth annotations [10]. 
They deployed a constrained CNN with image-level labels to produce a 
rough disc segmentation map and then refined the map by setting the 
area outside bounding box as a background. Pseudo ground truth maps 
were obtained by fusing these two disc segmentation maps and fed into a 
modified U-Net for the supervised learning. 

However, the pseudo ground truth masks derived from the image- 
level and bounding box labels may be unreliable. This is mainly due 
to the image and bounding box being weak labels, not necessarily 
allowing to properly recognize optic disc area from fundus images 
during pseudo mask generation. Hence, the derived pseudo ground truth 
masks may turn out inaccurate (Fig. 1(d)) and limit the disc segmenta-
tion performance. To address the shortcomings of the image-level and 
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bounding box labels, we exploit the Hough transform based label as the 
main pseudo ground truth mask for the disc segmentation task (visual 
comparison is shown in Fig. 1). The Hough transform is able to detect a 
circular mask that largely covers the optic disc area [11]. Although more 
accurate than the image-level and bounding box labels, the Hough 
transform based labels have two limitations: (i) they are less accurate 
than the manual expert-annotated labels, and (ii) some fundus images 
cannot be successfully labeled by the Hough transform. 

To alleviate these, in this work we propose a weak label based 
Bayesian U-Net built upon a novel probabilistic graphical model. To 
derive this model, the U-Net is represented as a Bayesian neural network 
by assigning priors to the network weights. Then, the derived Bayesian 
U-Net considers uncertainty during training. This benefits the subse-
quent inference stage, where a number of probability maps can be 
sampled from the trained Bayesian U-Net. Finally, the predictions are 
generated by averaging the probability maps. Compared to traditional 
networks having only one prediction, our approach generates multiple 
predictions and only highly probable pixels are included in the eventual 
mask. As a result, our Bayesian approach is demonstrated to be more 
robust and accurate than the non-Bayesian variant using the Hough 
transform. 

For some fundus images, the optic disc masks cannot be labeled, 
since they cannot be detected by the Hough transform. In this case, a 
latent variable and a new variable are introduced into the graphical 
model to represent the masks of the failed fundus images and bounding 
box label, respectively. The proposed graphical model contains both 
latent variables and network weights for estimation during training. The 
Expectation-Maximization (E-M) algorithm is applied to estimate the 
latent variable and optimize the network parameters alternately, until 
convergence. In each iteration, the network is learned at the M-step 
using the estimated optic disc mask from the E-step. In the next iteration, 
the bounding box label and the optimized network from the previous 
iteration ensure more accurate estimation of the optic disc mask for 
subsequent network learning. This way, all the images have the asso-
ciated pseudo masks for training – including those that the disc mask 
labeling failed, where the pseudo masks are estimated using the E-M 

algorithm. Experimental evaluation shows that the alternate learning 
results in a more robust training than the existing weakly-supervised 
optic disc segmentation methods. 

In summary, the motivations for designing such a Bayesian model are 
two-fold. First, our Bayesian model considers uncertainty of the network 
weights, which is harnessed to compute the predictive distribution of the 
optic disc segmentation task. It has been shown that predictions of 
Bayesian networks considering such an uncertainty are more accurate 
than those determinant predictions of ordinary non Bayesian networks 
[12–15]. In our case, it helps mitigate the inaccurate predictions by 
training weak labels which is obviously less accurate than manually 
annotated labels. Second, instead of applying variational methods to 
approximate Bayesian inference for neural networks [16,17], the 
dropout as a Bayesian approximation [12] is exploited here as a trac-
table approximation of our model. Dropout is exploited extensively in 
deep learning to avoid overfitting [18]. This is particularly useful in our 
scenario, since the training dataset can be small, which is likely to lead 
to overfitting. Moreover, the main contribution of our work refers to the 
proposed weak label based optic disc segmentation method that out-
performs the baseline weakly-supervised methods. The method does not 
rely on pixel-level annotations for training and can eliminate the need 
for manual annotations, thereby, having a high clinical applicability and 
paving the way to future applications in other medical image segmen-
tation tasks. 

2. Related work 

This section overviews related work on fully-supervised, weakly- 
supervised, and unsupervised methods for optic disc segmentation. 
Since there are very few works on weakly-supervised disc segmentation, 
we broaden the scope to weakly-supervised methods for medical images. 

2.1. Fully-supervised methods 

The existing fully-supervised methods can be broadly classified into 
two groups: traditional machine learning and deep learning based 

Fig. 1. Different weak labels for learning optic disc segmentation: (a) image-level label (semantic label) (b) bounding box label (c) Hough transform based label (d) 
pseudo masks (purple) generated by image-level and bounding box labels. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.) 

H. Xiong et al.                                                                                                                                                                                                                                   



Artificial Intelligence In Medicine 126 (2022) 102261

3

methods. Traditional approaches generally exploit brightness and 
morphological features to address the optic disc segmentation task. 
Youssif et al. proposed to identify the position of the optic disc based on 
the information of the blood vessels in fundus images [19]. Rather than 
identifying the position of the optic disc, Zou et al. utilized the 
morphology and eclipse fitting to extract the optic disc area [20]. Be-
sides these, several works aimed to detect the boundary of the optic disc. 
Considering the active contour, [21–23] applied level-set techniques to 
fit the contour to the optic disc boundaries. However, level-set based 
methods utilized deformable contours and, given that the optic disc is 
circular, [24–26] exploited circular based transformation techniques to 
detect the optic disc boundaries. In [27–29], image-level features were 
extracted to train classifiers and identify the optic disc area. Later on, 
[30,31] proposed superpixel based classification methods that extracted 
various hand-crafted, high-dimensional features for disc segmentation 
purposes. In general, the above works relied on a single fundus image to 
segment the optic disc. Alternatively, Abramoff et al. exploited stereo 
images surfacing disparity information, to distinguish the optic disc 
from image background [32]. However, the accuracy of such traditional 
machine learning methods was not sufficiently high, such that high 
segmentation accuracy could not be guaranteed, limiting their clinical 
applicability in practice. 

The accuracy of the optic disc segmentation has been upgraded using 
more recent deep learning methods. Several deep learning based seg-
mentation methods using U-Net [33–38] have been proposed. Here, 
[33,34] applied U-Net without much modifications to segment both the 
optic disc and optic cup for glaucoma detection. Likewise, [35] aimed to 
segment the optic disc and optic cup with a context extraction module 
extracting additional global information. Sevastopolsky et al. developed 
a cascaded network to segment the optic disc based on the U-Net 
network [37]. Fu et al. designed a U-shape like network with multi-scale 
input layer to achieve multiple-level receptive field sizes, which 
enhanced the accuracy of the segmentation [36]. The work in [38] in-
tegrated U-Net with an attention mechanism to consider channel de-
pendencies between different levels of features for optic disc 
segmentation. In addition to U-Net based methods, Tan et al. trained a 
CNN to perform optic disc segmentation [39] and Zilly et al. proposed an 
ensemble learning based method to extract the optic disc using a CNN 
architecture [40]. Without exception, all these deep learning based 
methods were fully-supervised and relied on pixel-level annotations of 
the optic disc for training, which rendered non-scalable. 

2.2. Unsupervised and weakly-supervised methods 

The appearance of the fundus image may vary significantly across 
datasets. As a result, the optic disc and cup segmentation method trained 
on one dataset may not generalize and perform poorly on images from 
another dataset. Hence, unsupervised domain adaptation is considered as 
an effective way to mitigate this issue [41–44]. Wang et al. proposed 
patch-based output space adversarial learning framework (pOSAL) to 
address the domain shift challenge across datasets [41]. They designed a 
novel morphology-aware segmentation loss and patch based training 
scheme to capture the segmentation details and ensure accuracy. In 
[42], they also proposed the boundary and entropy-driven adversarial 
learning aiming to improve the optic disc and cup segmentation, 
particularly in the ambiguous boundary regions. To further improve the 
generalization of CNNs in target domains, a follow-up work of Wang 
et al. developed a pool containing diversified domain knowledge from 
multiple datasets [43]. Such a pool enriched the image features that 
could be exploited for an accurate segmentation of images from new 
domains. Besides, generative adversarial networks (GAN) were exploi-
ted by Bian et al. to make the testing images look similar to the training 
images [44]. Following this, a network trained on training images was 
utilized to perform the optic disc and cup segmentation on transformed 
testing images. In addition to these, Norouzifard et al. proposed an 
improved chaotic ICA based on a traditional imperialist competitive 

algorithm (ICA), an unsupervised clustering algorithm for the optic disc 
and cup segmentation [45]. 

A small number of weakly-supervised methods have been deployed for 
medical image segmentation. Rajchl et al. proposed a deep cut for brain 
and lung segmentation, which exploited an iterative optimization based 
on Grab cut to obtain fake labels from bounding box labels for CNN 
training [46]. Likewise, Yang et al. exploited the bounding box labels for 
renal tumor segmentation [47]. Here, the fake labels were extracted by 
convolutional conditional random fields from the bounding boxes and 
were then used by CNNs for training. More recently, Kervadec et al. 
proposed to add a size constraint on the loss function so that the size of 
the generated fake labels could be constrained [48]. Their evaluation on 
cardiac image segmentation demonstrated that the performance of their 
weakly-supervised method was close to that of fully-supervised 
methods. In another weakly-supervised scenario, Rajchl et al. trained 
a fully convolutional network using super-pixel annotations to segment 
fetal MR images [49]. The super-pixel annotation refers to a set of pixels 
sharing a similar texture, color and brightness. Girum et al. utilized the 
pseudo-contour landmarks as weak labels for prostate and cardiac image 
segmentation [50]. Specifically, a deep generative neural network first 
modeled the prior-knowledge predictions using the pseudo-contour 
landmarks and then the predictions were refined by a fully convolu-
tional neural network. However, only a few approaches exploited 
weakly-supervised learning of the optic disc segmentation without 
manual, pixel-level annotation. To the best of our knowledge, the only 
work focusing on weakly-supervised learning of the optic disc segmen-
tation was [10], where, Lu et al. exploited image level and bounding box 
labels to generate pseudo ground truth masks for training. However, 
such weak labels were found to be unreliable and generated inaccurate 
pseudo masks for segmentation learning. Our work sets out to fill this 
gap and proposes a novel weak label based algorithm for the segmen-
tation of the optic disc. 

3. Methods 

3.1. Notation 

Variables X ∈ RN×M and Y ∈ RN×M denote the training fundus images 
and optic disc masks, respectively. Here, we have N images and corre-
sponding masks of M pixels each. We use xn and yn to denote individual 
image and mask in X and Y, respectively. ynm ∈ {0,1} denotes the pixel 
label at position m in mask yn, where 1 represents optic disc and 0 – 
background. The testing images and their predicted mask are repre-
sented by x* and y*, respectively, and ω denotes the network weights. 

3.2. Preprocessing: Hough transform based labeling 

At the preprocessing stage, the optic disc mask y of an image x is 
labeled by the Hough transform [51]. Then, the labeled mask y is 
regarded as a pseudo ground truth mask for the optic disc segmentation 
learning. 

Given an image, image processing techniques, such as the Gaussian 
blur and image opening, are initially applied to obtain the region of 
interest (ROI) containing the brightest pixels in the image. Following 
this, the Canny edge detector is utilized to detect the edges within the 
ROI [52]. Evidently, the edges normally appear on the boundary of the 
optic disc. The detected edges are further broadened by image dilation, 
to make it visible and detectable with the Hough transform. As a 
consequence, the Hough transform can find the circular shape on the 
dilated edges. 

3.3. Bayesian U-Net 

We use U-Net [53] as the backbone of our method and derive its 
Bayesian variant, which takes the weight uncertainty of the U-Net into 
consideration. The network architecture of the Bayesian U-Net is shown 
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in Fig. 2. In the Bayesian U-Net, standard Gaussian prior is placed over 
the network weights ω, such that ω ~ p(ω). Then, the Bayesian U-Net is 
defined as: 

p(Y|X) =
∫

p(Y|X,ω)p(ω)dω

=

∫ ∏N

n=1
p(yn|xn,ω)p(ω)dω

=

∫ ∏N

n=1

∏M

m=1
p(ynm|xn,ω)p(ω)dω,

(1)  

where p(ynm|xn,ω) ∝ exp (fm(ynm|xn,ω)). Here, fm(ynm|xn,ω) is the 
output of the Bayesian U-Net at pixel m. 

After training the Bayesian U-Net, the optic disc mask y* of a testing 
image x* can be predicted by the trained Bayesian U-Net as follows: 

p(y*|x*,X, Y) =

∫

p(y*|x*,ω)p(ω|X, Y)dω. (2) 

Here, p(ω|X,Y) is the posterior of network weights ω, derived by: 

p(ω|X,Y) =
p(Y|X,ω)p(ω)

p(Y|X)
=

p(Y|X,ω)p(ω)
∫

p(Y|X,ω)p(ω)dω. (3) 

However, the integration 
∫

p(Y|X,ω)p(ω)dω in Eq. (3) is intractable. 
Hence, the prediction of Eq. (2) that relies on the posterior p(ω|X,Y), 
cannot be computed, and a variational distribution q(ω) is introduced to 
approximate the posterior p(ω|X,Y) and make Eq. (2) tractable. To make 
the distributions q(ω) and p(ω|X,Y) closer, the Kullback–Leibler (KL) 
divergence between q(ω) and p(ω|X,Y) is minimized as follows: 

(a) Training Stage

(b) Inference Stage

Fig. 2. (a) Training: Detailed architecture of the Bayesian U-Net (top left). Step 1: Generate pseudo ground truth masks of training images with the Hough transform. 
Step 2: Exclude images that cannot be labeled by the Hough transform. Images satisfying the following conditions were excluded: i) image cannot be detected by 
Hough transform at all, and ii) the detected Hough transform based labels substantially drift from the optic disc area. Step 3: Train the Bayesian U-Net with the 
detected images only. Step 4: Re-estimate the masks of the failed images at the E-Step and optimize the weights of the Bayesian U-Net using the E-M algorithm. (b) 
Inference: Given a testing image, 50 outputs (probability maps) are sampled directly from the Bayesian U-Net. The prediction is obtained by averaging these 50 
probability maps. The final prediction is converted to a binary mask by setting the probability threshold at 0.5. 
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KL(q(ω)‖p(ω|X,Y) )
= −

∫

q(ω)log
p(ω|X, Y)

q(ω) dω
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟

ELBOL (q(ω) )

. (4) 

In Eq. (4), L (q(ω)) is also referred to as evidence lower bound 
(ELBO). Then, the network parameters ω can be learned by optimizing 
the ELBO L (q(ω)): 

L (q(ω) )
=

∫

q(ω)log
p(Y|X,ω)p(ω)

q(ω)
dω + const. (5)  

3.3.1. Dropout as a Bayesian approximation 
The ELBO L (q(ω)) can be further factorized as: 

L (q(ω) ) =
∫

q(ω)logp(Y|X,ω)dω +

∫

q(ω)log
p(ω)

q(ω) dω + const.
(6) 

Since the first term in Eq. (6) is i.i.d, it can be re-written as: 

L (q(ω) ) =
∑N

n=1

∫

q(ω)logp(yn|xn,ω)dω − KL(q(ω)‖p(ω) ) + const.
(7) 

As per [12], L (q(ω)) (ELBO) can be approximated as a dropout U-Net 
with a penalty term. 

L (q(ω) ) =
∑N

n=1
logp(yn|xn, ω̂)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
U− Net with dropout

+ ‖ω‖2
⏟̅⏞⏞̅⏟
penalty

+ const.
(8) 

Note that ω refers to the whole network weights and ω̂ – to the 
remaining network weights after applying the dropout. 

3.3.2. Introducing latent variable for unknown masks 
Recall that some images may not be successfully labeled by the 

Hough transform. In these cases, variable Y denoting the optic disc mask 
becomes Y{l,u}. Specifically, Yl ∈ RO×M denotes the masks of training 
images that were successfully labeled by the Hough transform, while Yu 

∈ RP×M refers to the masks not detected by the Hough transform. O and P 
denote the number of detected and failed images (N = O + P), respec-
tively. Hence, Yu is the latent variable that needs to be estimated in the 
training. Likewise, X{l,u} are the training images of Yl and Yu, respec-
tively. With these, Eq. (1) becomes: 

p(Y|X) =
∫

p
(
Yl|Xl,ω

)
p(Yu|Xu,ω)p(ω)dω. (9) 

To estimate the unknown masks Yu, the bounding box labels Zu of the 
failed images Xu are introduced and the newly defined graphical model 
becomes: 

p(Y,Zu|X) =∫
p
(
Yl|Xl,ω

)
p(Yu|Xu,ω)p(Zu|Yu)p(ω)dω. (10) 

The predictive distribution becomes: 

p(y*|x*,Y,Zu,X) =
∫

p(y*|x*,ω)p(ω|Y, Zu,X)dω. (11) 

Likewise, a variational distribution q(ω) is introduced to approxi-
mate the posterior p(ω|Y,Zu,X). By repeating the steps from Eqs. (4)–(7), 
the KL divergence KL(q(ω)‖p(ω|Y,Zu,X)) between q(ω) and p(ω|Y,Zu,X) 
is derived. Then, the new ELBO L (q(ω),Zu) on the KL divergence 
becomes: 

L (q(ω) , Zu) =
∑P

n=1

∫

q(ω)logp
(
yu

n|x
u
n,ω

)
p
(
zu

n|y
u
n

)
dω+

∑O

n=1

∫

q(ω)logp
(
yl

n|x
l
n,ω

)
dω − KL(q(ω)‖p(ω) ) + const.

(12) 

Here, xn
{l,u}, yn

{l,u} and zn
u denote individual images and their own 

corresponding masks in X{l,u}, Y{l,u} and Zu. 
By applying the aforementioned dropout as a Bayesian approxima-

tion, we obtain: 

L (q(ω) , Zu) =
∑P

n=1
logp

(
yu

n|x
u
n, ω̂

)
p
(
zu

n|y
u
n

)
+

∑O

n=1
logp

(
yl

n|x
l
n, ω̂

)
+ ‖ω‖2 + const,

(13)  

where we have two unknown variables to learn: optic disc mask yn
u and 

network weights ω. 

3.4. Learning with expectation-maximization 

The Expectation-Maximization (E-M) algorithm (see Fig. 2, step 4) is 
applied to alternately estimate yn

u and ω in Eq. (13). Suppose ω′ is the 
previous estimation of network weights ω and L (q(ω),Zu) > L (q(ω′), 
Zu). Then, the expected complete-data log-likelihood Q (ω;ω′

) given ω′

is: 

Q (ω;ω′

) =
∑P

n=1

∑

yu
n

p
(
yu

n|x
u
n, z

u
n,ω

′)logp
(
yu

n|x
u
n, ω̂

)
+

∑O

n=1
logp

(
yl

n|x
l
n, ω̂

)
+ ‖ω‖2.

(14) 

By adopting a hard-EM approximation, we obtain: 

Q (ω;ω′

) ≈

∑P

n=1
logp

(
ŷu

n|x
u
n, ω̂

)
+
∑O

n=1
logp

(
yl

n|x
l
n, ω̂

)
+ ‖ω‖2,

(15)  

where ŷu
n is the optimal estimation of the disc mask. We proceed to the 

details of the E-step and M-step. 

3.4.1. E-step 
The E-Step aims to infer the optic disc mask ŷu

n using the posterior 
from Eq. (14), p(yn

u|xn
u,zn

u,ω′) ∝ p(yn
u|xn

u,ω′)p(zn
u|yn

u): 

ŷu
n = argmax

yu
n

logp
(
yu

n|x
u
n,ω′)p

(
zu

n|y
u
n

)

= argmax
yu

n

∑M

m=1
fm
(
yu

nm|x
u
n,ω

′)
+ logp

(
zu

n|y
u
n

)
.

(16) 

Here, fm
(
yu

nm|xu
n, ω̂

)
is the output of the Bayesian U-Net at pixel m. 

However, mask yn
u estimated only by p(yn

u|xn
u,ω′) may be noisy (see 

Fig. 3). Thus, p(zn
u|yn

u) is another term helping to remove the noise, is 
defined as: 

logp
(
zu

n|y
u
n

)
=

∑M

m=1
ϕ
(
yu

nm, z
u
n

)
, (17)  

where ϕ(ynm
u,zn

u) is defined as: 
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ϕ
(
yu

nm, zu
n

)
=

(
0 if mth pixel inside boundingbox
− 1 if mth pixel outside boundingbox

(18) 

Note that fm(ynm
u|xn

u,ω′) ∈ [0,1]. By combining Eqs. (16) and (18), 
we observe that the area inside the bounding box is the prediction of the 
Bayesian U-Net (fm(ynm

u|xn
u,ω′)), while the area outside bounding box is 

the background non optic disc area. Eventually, a clean mask estimation 
is generated by combining p(yn

u|xn
u,ω′) and p(zn

u|yn
u), as shown in 

Fig. 3. 

3.4.2. M-step 
In the M-step, the optimal estimation ŷu

n of the disc mask obtained by 
the E-Step is fed into Eq. (15) and combined with the masks yn

l labeled 
by the Hough transform, to optimize the model parameters ω. The E- 
steps and M-steps iterate until convergence. 

3.5. Inference 

For the predictions, the variational distribution q(ω) is utilized as a 
replacement for the posterior p(ω|Y,Zu,X) in Eq. (11), which becomes: 

p(y*|x*) =

∫

p(y*|x*,ω)q(ω)dω. (19) 

Using the Monte Carlo dropout [12], Eq. (19) is approximated as: 

p(y*|x*) ≈
1
T
∑T

t=1
p(y*|x*, ω̂t). (20) 

It can be seen that the final prediction is obtained by averaging the 
outputs sampled from the trained Bayesian U-Net. Likewise, ω̂t are the 
weights of the Bayesian U-Net in the tth sampling. In every sampling, ω̂t 

is different because the network weights ω are randomly dropped with 
dropout. The inference process is illustrated in Fig. 2(b). 

4. Experiments 

We evaluated the proposed method on three datasets using standard 
metrics, such as sensitivity, specificity, and IOU. We also qualitatively 
and quantitatively compared our method with the state-of-the-arts 
methods. Finally, we performed a series of ablation studies to evaluate 
the necessity and contribution of the key components of the proposed 
model. 

4.1. Data 

DRISHTI-GS [57]: DRISHTI-GS is a public dataset containing 50 
training images and 51 testing images. All the images were collected at 
the Aravind Eye Hospital, Madurai. The DRISHTI-GS subjects were 

40–80 years of age, with a similar number of males and females. The 
data acquisition protocol was centered on the optic disc, with a field-of- 
view of 30◦, saved in the PNG uncompressed image format, with the 
2045 × 1752 resolution. 

RIM-ONE [58]: RIM-ONE is a public dataset, which consists of 159 
images collected at the Hospital Universitario de Canarias. The number 
of male and female subjects is similar. All the images were captured by a 
non-mydriatic Kowa WX3D stereo fundus camera. The images were 
taken by centering on the optic nerve head, with a field-of-view of 34◦, 
then saved in the JPEG format, with the 2144 × 1424 resolution. 

REFUGE [59]: REFUGE is a public dataset containing 1200 anno-
tated fundus images, split into three subsets: 400 training images, 400 
validation images, and 400 testing images. The training images were 
captured by a Zeiss Visucam 500 fundus camera, with the resolution of 
2124 × 2056 pixels. The validation and testing images were captured by 
a Canon CR-2 device, with the 1634 × 1634 pixels resolution. These 
images correspond to Chinese patients only and they were collected at 
multiple hospitals and eye clinics. The number of male and female pa-
tients is similar. 

Before the experiments, all the images from the above three datasets 
were zero-padded to equalize their width and height, and then resized to 
the 640 × 640 resolution. 

4.2. Training and implementation 

The proposed model was trained in two phases. In the first phase, 
only images, the masks of which could be successfully identified by the 
Hough transform, were fed into the Bayesian U-Net for training. In the 
second phase, also the images, the masks of which could not be iden-
tified by the Hough transform were taken into account and used to train 
the model. The E-Step using the Bayesian U-Net trained in the first phase 
was deployed to estimate the optic disc masks for those images. Then, 
the M-Step optimized the Bayesian U-Net based on the complete training 
dataset, including the images estimated by the E-Step. 

For both training phases, we used mini batches of size 5. The learning 
rate of the stochastic gradient descent optimizer was 0.002 and the 
optimal dropout rate was 0.2. For all three datasets, the first and second 
training phases required no more than 300 and 30 epochs, respectively. 
The number of samples from the Bayesian U-Net used for inference was 
50.1 

4.3. Metrics and evaluation 

For disc segmentation evaluation purposes, we adopted accuracy 
(Acc), sensitivity (Sen), specificity (Spe), intersection-over-union (IOU), 
disc similarity coefficient (DSC), Hausdorff Distance (HD), and Average 
Surface Distance (ASD) metrics: 

Acc =
TP + TN

TP + TN + FP + FN
, Sen =

TP
TP + FN

,

Spe =
TN

TN + FP
, IOU =

TP
TP + FP + FN

,

DSC =
2 × TP

2 × TP + FP + FN
,

(21) 

Here, TP and FP refer to the true and false positives, while TN and FN 
– to the true and false negatives, respectively. We computed HD and ASD 
using existing Python library2 and code.3 These image-based metrics 
were computed on a pixel basis for each testing image. The values re-
ported below are averaged across all the testing images. 

Fig. 3. E-Step. In the E-Step, the estimation of the Bayesian U-Net may contain 
background noises. Hence, the bounding box label Zu is introduced to enforce 
the area outside the bounding box as non-optic disc area. 

1 The experiments were performed with one GPU. The computation time for 
one testing image was on average 2.26 s with a Tesla V100-SXM2-16GB.  

2 https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distan 
ce.directed_hausdorff.html.  

3 https://mlnotebook.github.io/post/surface-distance-function/. 
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We also used the receiver operating characteristic (ROC) curve to 
analyze the quality of the optic disc segmentation. In the ROC curve 
plots, the X and Y axes represent the FP and TP rate, respectively. Thus, 
top-left corner of the plot is an ideal point where the FP rate is 0 and the 
TP rate is 1. The area under the ROC curve (AUC) is another metric 
quantifying the performance of the optic disc segmentation. In general, 
larger AUC values mean a more accurate segmentation. 

For the small-sized DRISHTI-GS and RIM-ONE datasets, we utilized 
5-fold cross validation. As REFUGEE had already been split into training, 
validation, and testing subsets, we trained the models using the training 
set, and evaluated on the validation and testing sets. 

4.4. Results 

We evaluate the performance of our approach with respect to three 
aspects: (i) comparison with baseline methods, (ii) ablation study of the 
E-Step, and (iii) comparison with a non-Bayesian variant. 

4.4.1. Comparison with baseline methods 
We compared our method to four state-of-the-art baselines: fully- 

supervised AG-Net [54] and U-Net [53], weakly-supervised optic disc 
segmentation (WSODS) [10], weakly-supervised image segmentation 
(WSIS) [55], Global Constraint [56], and the Hough Transform. The 
results with respect to the seven metrics listed in Eq. (21) are given in 
Tables 1, 2 and 3. 

Table 1 
Performance comparison of our method and baselines (incl. two fully-supervised and four weakly-supervised methods) with the DRISHTI-GS dataset. (The best result is 
indicated in boldface)  

Segmentation Images Acc Sen Spe IOU DSC HD ASD 

Fully-supervised         
U-Net [53]  101  0.9982  0.9740  0.9988  0.9302  0.9632  3.2354  2.7083 
AG-Net [54]  101  0.9987  0.9771  0.9993  0.9515  0.9749  3.0747  1.2598 

Weakly-supervised         
Hough transform  101  0.9933  0.8998  0.9958  0.7780  0.8435  3.2639  34.6487 
WSODS [10]  101  0.9962  0.9759  0.9968  0.8744  0.9303  4.5725  4.9554 
WSIS [55]  101  0.9944  0.8873  0.9973  0.8099  0.8923  5.0390  8.9534 
Global constraint [56]  101  0.9935  0.9326  0.9951  0.7909  0.8814  5.9280  7.4616 

Proposed  101  0.9970  0.9831  0.9974  0.8951  0.9436  3.6149  3.3944  

Table 2 
Performance comparison of our method and baselines (incl. two fully-supervised and four weakly-supervised methods) with the RIM-ONE dataset. (The best result is 
indicated in boldface).  

Segmentation Images Acc Sen Spe IOU DSC HD ASD 

Fully-supervised         
U-Net [53]  159  0.9965  0.9482  0.9982  0.9008  0.9455  4.1203  4.5952 
AG-Net [54]  159  0.9963  0.9470  0.9981  0.8936  0.9422  4.1015  3.6140 

Weakly-supervised         
Hough transform  159  0.9857  0.8746  0.9899  0.6797  0.7845  5.0342  14.8896 
WSODS [10]  159  0.9866  0.9847  0.9868  0.7031  0.8215  5.7206  12.6978 
WSIS [55]  159  0.9871  0.8218  0.9906  0.6744  0.8008  6.7603  13.8021 
Global constraint [56]  159  0.9882  0.8880  0.9916  0.7159  0.8275  6.0823  9.7739 

Proposed  159  0.9916  0.9735  0.9923  0.7831  0.8756  4.9929  8.8861  

Table 3 
Performance comparison of our method and baselines (incl. two fully-supervised and four weakly-supervised methods) with the REFUGEE validation and test datasets. 
(The best result is indicated in boldface).  

Segmentation Dataset Images Acc Sen Spe IOU DSC HD ASD 

Fully-supervised          
U-Net [53] Validation  400  0.9975  0.9001  0.9992  0.8611  0.9235  3.7664  11.1502 

Test  400  0.9977  0.9227  0.9990  0.8712  0.9290  3.8932  13.4530 
AG-Net [54] Validation  400  0.9970  0.9650  0.9976  0.8463  0.9110  3.9116  11.4670 

Test  400  0.9968  0.9747  0.9972  0.8355  0.9036  3.8708  9.2733 
Weakly-supervised          

Hough transform Validation  400  0.9905  0.9310  0.9914  0.6224  0.7544  5.3554  15.1709 
Test  400  0.9904  0.9496  0.9910  0.6203  0.7549  5.4413  12.9623 

WSODS [10] Validation  400  0.9954  0.9222  0.9968  0.7754  0.8696  4.8411  11.9440 
Test  400  0.9953  0.9344  0.9964  0.7711  0.8643  4.8166  11.2019 

WSIS [55] Validation  400  0.9945  0.8931  0.9964  0.7339  0.8333  5.2291  12.5056 
Test  400  0.9943  0.9102  0.9957  0.7206  0.8277  5.4567  12.4187 

Global constraint [56] Validation  400  0.9936  0.8585  0.9958  0.6897  0.8077  5.5624  12.6585 
Test  400  0.9933  0.8797  0.9951  0.6829  0.8044  5.6899  14.9573 

Proposed Validation  400  0.9967  0.9652  0.9973  0.8289  0.9034  4.0429  7.3427 
Test  400  0.9965  0.9727  0.9969  0.8185  0.8963  4.0494  6.9535  
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We observe that our method outperforms the Hough transform, the 
weakly supervised WSODS, WSIS and Global Constraint with respect to 
all the metrics on the REFUGEE dataset, all but HD on DRISHTI-GS, and 
all but Sen on RIM-ONE. Recall that the Hough transform may fail to 
label optic disc masks in the fundus images, which dramatically lowers 
its performance. In addition, WSODS requires a rough disc segmentation 
as a pseudo ground truth for training, which leads to a lower perfor-
mance than our method. In similar to pseudo ground truth, the bounding 
box labels utilized by WSIS and Global Constraint are not reliable for 
learning the segmentation task and thus result in inferior performance to 
our method. The superiority of our model over these methods lies in the 

following factors: 1) our Hough Transform based labels are more accu-
rate than the bounding box labels and pseudo ground truths (compari-
sons are shown in Fig. 1). As can be seen in Fig. 1, a Hough Transform 
based label is a circular mask that conforms to the shape of the optic 
disc; 2) Despite being more reliable, Hough Transform labels are more 
noisy and less accurate than the ground truth, and thus tend to introduce 
uncertainty in the segmentation learning. Our Bayesian U-Net considers 
such an uncertainty by making U-Net a probabilistic model, from which 
several segmentation probability maps can be sampled at the inference 
stage. The final segmentation is generated by averaging these proba-
bility maps and is shown to be more accurate than those produced by 

Fig. 4. ROC curves (solid lines) of all the compared methods with AUC values ± standard deviation on (a) DRISHTI-GS, (b) RIM-ONE, (c) REFUGEE Validation and 
(d) REFUGEE Test datasets. The dashed lines refer to the upper and lower bounds of the confidence interval. 
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weakly supervised methods. However, the performance of our method is 
inferior to the benchmarked fully-supervised AG-Net and U-Net 
methods, i.e., our method generally achieved lower Acc, Spe, IOU, DSC 
and higher HD, ASD scores than the fully-supervised methods. The ROC 
curves of these methods are shown in Fig. 4, where our method achieves 
an AUC of 0.9896, 0.9827, 0.9806 and 0.9843 on the DRISHTI-GS, RIM- 
ONE and REFUGEE Validation/Test datasets, respectively. It can be seen 
that the ROC curves of our method are above the ROC curves of the 
Hough Transform, WSODS, WSIS, and Global Constraint methods, 
except for the RIM-ONE dataset. 

Fig. 5 exemplifies the results of six disc segmentations across the 
evaluated methods. As can be seen, the segmentation produced by our 
method is more accurate than that of the weakly-supervised WSODS, 
WSIS, Global Constraint and Hough Transform, and visually similar to 
that of the fully-supervised methods. Notably, unlike weakly-supervised 
methods, the fully-supervised methods require annotations of the optic 
discs as an input. Such annotations are produced by human experts, 
imposing a strong constraint on practical disc segmentation applica-
tions. In practice, many clinical tasks require the cropped rectangular 
disc region rather than the exact disc for examination by a clinician. 
Hence, despite being inferior to the fully-supervised methods, our weak 
label based method may meet practical needs, while not requiring the 

expensive manual annotation. 
We also report the results of a t-test comparing our method with the 

other weakly-supervised methods: WSODS, WSIS, Global Constraint and 
Hough Transform. Here, the t-test is a two-sided test for the null hy-
pothesis that 2 independent samples have identical average (expected) 
values. We assess statistical significance with respect to ASD. The other 
metrics evaluate performance on the whole mask, for which the central 
areas of the optic disc are relatively easy to predict (see examples in 

Fig. 5. Comparison of the proposed method with six baseline methods on two DRISHTI-GS, two RIM-ONE and two REFUGEE images (top to bottom). The red and 
green contours indicate the boundaries of the ground truth and predicted optic discs. The second column illustrates the enlarged ROI. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 4 
p-Values produced by a t-test comparing our method vs. four weakly-supervised 
methods with the DRISHTI-GS, RIM-ONE and REFUGEE datasets. (N.S. refers to 
not significant).   

DRISHTI-GS RIM-ONE REFUGEE 

Validation Test 

Ours vs Hough transform  0.0097 0.0060  <0.001  <0.001 
Ours vs WSODS  0.0448 <0.001  <0.001  <0.001 
Ours vs WSIS  0.0024 <0.001  <0.001  <0.001 
Ours vs global constraint  <0.001 N.S.  <0.001  <0.001  
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Fig. 5). Therefore, evaluating using the whole mask cannot clearly 
illustrate the differences between the methods. In contrast, the ASD 
metric better demonstrates the differences by comparing the outermost 
contours of two masks. As can be seen in Table 4, all the p-values but 
ours vs global constraint on RIM-ONE are smaller than the significance 
level 0.05, which indicates that our findings are statistically significant, 
reliable and, not due to chance. 

4.4.2. Ablation study 
To demonstrate how the E-Step of the E-M algorithm affects the disc 

segmentation performance, we designed two scenarios. We denote the 
subset of images, for which the mask was successfully identified by the 
Hough Transform as detected, while the images, for which the mask was 
not identified – as failed. In the first M-Stepd scenario, the Bayesian U- 
Net is trained with the detected images only. In the second M-Stepd+f 
scenario, in addition to the images, where the mask was detected, also 
the failed images are used for training the Bayesian U-Net. Note that in 
both scenarios, the Bayesian U-Net is trained and optimized directly, 
without the E-step. In DRISHTI-GS, for 87 images the mask was suc-
cessfully detected and for 14 images this failed; while in RIM-ONE there 
were 144 and 15 detected and failed images, respectively; lastly, 

REFUGEE contained 389 detected and 11 failed images. 
We evaluate the performance of our approach with the above two 

scenarios. The results obtained for the DRISHTI-GS, RIM-ONE and 
REFUGEE datasets are reported in Table 5. All the metrics of our model, 
trained with both the E- and M-steps are better than those without the E- 
step for DRISHTI-GS and RIM-ONE. For REFUGEE, Acc, Sen, IOU, DSC 
and HD of the proposed model trained with E- and M-steps are better 
than their counterparts without them. The reason might be that E-step 
accurately estimates the segmentation masks of the images. Following 
this, the re-estimated masks augment the training data and enhance the 
segmentation accuracy. The ROC curves of our approach are shown in 
Fig. 6. The AUC values on DRISHTI-GS, RIM-ONE and REFUGEE Vali-
dation/Test datasets are 0.9896, 0.9827, 0.9806 and 0.9843, respec-
tively, all higher than those of M-Stepd and M-Stepd+f. In addition, Fig. 7 
exemplifies the segmentation results of these methods. As can be seen, 
our method with both the E- and M-Steps produces more accurate 
predictions. 

4.4.3. Bayesian vs. non Bayesian 
The Bayesian variant of U-Net differs from the traditional U-Net 

because a prior that is put on the network weights, thus, the objective 

Table 5 
Ablation study comparing the performance of training with/without the E-Step on the DRISHTI-GS, RIM-ONE, and REFUGEE datasets. The detected column denotes 
the number of images, for which the mask was successfully detected by the Hough Transform, while failed refers to the number of images, for which the mask was not 
detected. (The best result is indicated in boldface).  

(a) Evaluation on DRISHTI-GS dataset  

Detected (n = 87) Failed (n = 14) E-step M-step Metrics 

Acc Sen Spe IOU DSC HD ASD 

M-stepd ✓   ✓  0.9968  0.9759  0.9974  0.8864  0.9384  3.7830  5.3997 
M-stepd+f ✓ ✓  ✓  0.9967  0.9714  0.9974  0.8830  0.9365  3.8672  4.0233 
Proposed ✓ ✓ ✓ ✓  0.9970  0.9831  0.9974  0.8951  0.9436  3.6149  3.3944   

(b) Evaluation on RIM-ONE dataset  

Detected (n = 144) Failed (n = 15) E-step M-step Metrics 

Acc Sen Spe IOU DSC HD ASD 

M-stepd ✓   ✓  0.9914  0.9675  0.9923  0.7803  0.8729  5.0672  9.5819 
M-stepd+f ✓ ✓  ✓  0.9909  0.9651  0.9919  0.7691  0.8666  5.1595  9.5397 
Proposed ✓ ✓ ✓ ✓  0.9916  0.9735  0.9923  0.7831  0.8756  4.9929  8.8861   

(c) Evaluation on REFUGEE dataset  

Database Detected (n = 389) Failed (n = 11) E-step M-step Metrics 

Acc Sen Spe IOU DSC HD ASD 

M-stepd Validation ✓   ✓  0.9962  0.9639  0.9969  0.8094  0.8908  4.1894  7.7410 
Test ✓   ✓  0.9958  0.9727  0.9962  0.7938  0.8797  4.1962  10.2126 

M-stepd+f Validation ✓ ✓  ✓  0.9965  0.9455  0.9975  0.8199  0.8975  4.1783  6.5323 
Test ✓ ✓  ✓  0.9964  0.9613  0.9971  0.8125  0.8932  4.1655  6.9445 

Proposed Validation ✓ ✓ ✓ ✓  0.9967  0.9652  0.9973  0.8289  0.9034  4.0429  7.3427 
Test ✓ ✓ ✓ ✓  0.9965  0.9727  0.9969  0.8185  0.8963  4.0494  6.9535  
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function is defined differently. As described in previous section, we 
approximate the objective function using dropout, which has been 
shown to be able to model uncertainty, such as in the Bayesian models 
[12]. Hence, the study of the Bayesian vs. Non-Bayesian U-Net is 
equivalent to the study of Dropout U-Net vs. U-Net without dropout 
(traditional U-Net). 

As shown in Table 6 and Fig. 6, U-Net without dropout (traditional U- 
Net) is inferior to the Dropout U-Net (Bayesian U-Net) across most 
metrics. It is also evident in Fig. 7 that the Non-Bayesian traditional U- 
Net predicts less accurate masks than the Bayesian one. The latter 

enhances the segmentation accuracy due to the fact that the dropout 
itself reduces overfitting in the training. 

We also compare the calculation time between the Bayesian and 
Non-Bayesian U-Nets (shown in Table 7). As can be seen, the Bayesian U- 
Net takes longer to predict one image, on average. This is primarily 
because Bayesian U-Net is a probabilistic model; it samples at the 
inference stage to generate the segmentation result, which takes longer 
than simply predicting the result from an ordinary network like the Non- 
Bayesian U-Net. However, practical clinical applications do not require 
the segmentation to be done in real time and the average calculation 

Fig. 6. Ablation study ROC curves (solid lines) of all the compared methods with AUC values ± standard deviation on (a) DRISHTI-GS, (b) RIM-ONE, (c) REFUGEE 
Validation and (d) REFUGEE Test datasets. The dashed lines refer to the upper and lower bounds of the confidence interval. 
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Fig. 7. Comparison of different variants of the proposed method on two DRISHTI-GS, two RIM-ONE and two REFUGEE images (top to bottom). The red and green 
contours indicate the boundaries of the ground truth and predicted optic discs. The second column illustrates the enlarged ROI. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.) 

Table 6 
Ablation study comparing the performance of the Bayesian and non-Bayesian U-Nets on the DRISHTI-GS, RIM-ONE, and REFUGEE datasets. (The best result is 
indicated in boldface).  

(a) Evaluation on DRISHTI-GS dataset  

Acc Sen Spe IOU DSC HD ASD 

U-Net  0.9967  0.9786  0.9972  0.8870  0.9389  3.8311  4.4243 
Bayesian U-Net  0.9970  0.9831  0.9974  0.8951  0.9436  3.6149  3.3944   

(b) Evaluation on RIM-ONE dataset  

Acc Sen Spe IOU DSC HD ASD 

U-Net  0.9912  0.9502  0.9928  0.7751  0.8702  5.2735  8.9966 
Bayesian U-Net  0.9916  0.9735  0.9923  0.7831  0.8756  4.9929  8.8861   

(c) Evaluation on REFUGEE dataset  

Database Acc Sen Spe IOU DSC HD ASD 

U-Net Validation  0.9960  0.9561  0.9968  0.7984  0.8846  4.5228  11.1744 
Test  0.9957  0.9658  0.9962  0.7847  0.8749  4.5635  13.1779 

Bayesian U-Net Validation  0.9967  0.9652  0.9973  0.8289  0.9034  4.0429  7.3427 
Test  0.9965  0.9727  0.9969  0.8185  0.8963  4.0494  6.9535  
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time under 2 s across the four datasets is sufficiently fast. Therefore, the 
longer calculation time of the Bayesian U-Net is traded off by its higher 
segmentation accuracy. 

5. Discussion 

Optic disc segmentation is a vital process for screening of eye dis-
eases. Therefore, it is extensively used in clinical practice and attracts 
numerous research attempts. The existing methods primarily focus on 
fully- and semi-supervised learning of the optic disc segmentation. For 
these methods, pixel-level annotations are required for training pur-
poses. However, obtaining pixel-level annotations necessitates manual 
annotation, which is time consuming and renders non-scalable in 
practice. 

Since fully- and semi-supervised methods require laborious pixel- 
level annotations, it is worth turning the attention to weakly- 
supervised learning of the optic disc segmentation. To the best of our 
knowledge, the work of Lu et al. is so far the only one focusing on the 
weakly-supervised segmentation of optic disc [10]. There, the learning 
of optic disc segmentation relied on weak labels, such as image-level and 
bounding box labels. Compared to pixel-level annotations, such weak 
labels are easier to annotate and obtain. Instead of annotating the 
bounding box labels for all images, our proposed weak label based 
approach exploits the Hough transform based labels as pseudo masks for 
most training images. For a small number of images that cannot be 
detected by the Hough transform, we annotate the bounding box label to 
estimate the pseudo masks. Evidently, our approach further reduces 
annotation time. Besides, by exploiting dropout as a Bayesian approxi-
mation, our Bayesian network does not have more weights to learn than 
the ordinary U-Net. As such, the training is effective and the predictions 
at the inference stage are fast. The evaluation on three public datasets 
proves that our method is superior to several baseline methods. 

It is important to note that at this stage, our approach is unable to 
segment the optic cup. This is mainly due to the fact that the optic cup 
and the optic disc areas share similar textures, color, and brightness. 
Thus, the Hough transform cannot accurately detect the optic cup area 
and generate the labels used by our method for the optic cup segmen-
tation. To address this issue, the semi-supervised learning exploiting 
partial ground truth optic cup masks offer a solid alternative. Likewise, 
these ground truth masks may be used by our model in the first training 
phase. In the second training phase, the images that do not have masks 
can be re-estimated by E-M algorithm. Then, all the masks, including the 
ground truth and re-estimated ones, can be utilized for the optic cup 
segmentation learning. In the future, we intend to improve our model so 
that it can simultaneously segment the optic disc and the optic cup. 

6. Conclusions 

In this work, we proposed and evaluated a weak label based Bayesian 
U-Net to segment the optic disc in fundus images. Notably, our method 
does not rely on manually annotated optic disc masks, but only requires 
the Hough transform based annotations. This method has the potential 
to considerably reduce the time required for annotating optic disc masks 
and simplifies the segmentation pipeline. Our method was shown to 
outperform baseline weakly-supervised methods, although it was infe-
rior to two fully-supervised baselines. However, analysis of several 

sample segmentations showed that the performance of the proposed 
method may be sufficient for practical clinical needs. We also report an 
ablation study and evaluation of a non-Bayesian variant of the method. 

The segmentation accuracy achieved by our approach is still inferior 
to the models trained with ground truth labels manually annotated by 
experts. Despite this, our method demonstrates high accuracy that can 
satisfy clinical needs when screening eye diseases. The state-of-the-art 
screening tools often leverage deep learning models, such as CNN. 
Rather than the exact optic disc area, these models take as an input the 
ROI containing the optic disc area. The segmentation of the optic disc 
generated by our model is accurate enough to crop such an ROI for eye 
disease screening. As a probabilistic variant of U-Net, the proposed 
method has a strong potential to be used in other medical image seg-
mentation tasks, which we intend to explore in the future. 
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