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Abstract
Medical practitioners need to understand the critical features of ECG beats to diagnose and identify cardiovascular condi-
tions accurately. This would be greatly facilitated by identifying the significant features of frequency components in tem-
poral ECG wave-forms using computational methods. In this study, we have proposed a novel ECG beat classifier based on 
a customized VGG16-based Convolution Neural Network (CNN) that uses the time-frequency representation of temporal 
ECG, and a method to identify the contribution of interpretable ECG frequencies when classifying based on the SHapley 
Additive exPlanations (SHAP) values. We applied our model to the MIT-BIH arrhythmia dataset to classify the ECG beats 
and to characterise of the beats frequencies. This model was evaluated with two advanced time-frequency analysis methods. 
Our results indicated that for 2-4 classes our proposed model achieves a classification accuracy of 100% and for 5 classes it 
achieves a classification accuracy of 99.90%. We have also tested the proposed model using premature ventricular contraction 
beats from the American Heart Association (AHA) database and normal beats from Lobachevsky University Electrocardi-
ography database (LUDB) and obtained a classification accuracy of 99.91% for the 5-classes case. In addition, SHAP value 
increased the interpretability of the ECG frequency features. Thus, this model could be applicable to the automation of the 
cardiovascular diagnosis system and could be used by clinicians.
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1 Introduction

In recent years, the incidence of cardiovascular diseases 
(CVDs) have greatly increased worldwide, with CVDs 
now a leading cause of death in many countries [1]. Elec-
trocardiograms (ECG) provide a non-invasive means of 
measuring the electrical activity of the heart and are com-
monly used to monitor and assess patient cardiac status. 
Unusual patterns of electrical activities in the heart occur 
with cardiac arrhythmia, and ECG can be used as part 
of the differential diagnosis process. Thus, for example, 
early detection of arrhythmia by analysis of ECG signals 
can greatly reduce the risk of death due to subsequent 
cardiac arrest.

Classification of normal and arrhythmia-associated 
ECG is an important goal to achieve better detection and 
proper identification of various CVDs. However, the small 
amplitude and duration of the ECG arrhythmia can make it 
challenging to classify using ECG data. Furthermore, vari-
ation in the normal ECG waveform of individual persons 
[2–5], the range of differences found in the patterns of 
ECG waveform associated with a particular CVD, and dif-
ficulties in distinguishing ECG waveform features seen in 
different patients with different CVDs make ECG rhythm 
classification challenging. The interpretation of the ECG 
and the management of the CVDs can be greatly improved 
with the assistance of computer-assisted diagnosis [6]. For 
this reason, there is great potential for deep learning-based 
computer-assisted tools to aid physicians in providing a 
better and more rapid diagnosis of arrhythmias. This can 
be achieved by developing such tools that can identify 
complex features in data, such as that seen in the beat 
characteristics of ECG signals.

In many studies [7–9], time-domain features of ECG 
signals, including RR intervals, QT segments, QRS com-
plexes, and other morphological features have been iden-
tified by analyzing time-domain ECG signals. Using the 
peaks in ECG waveforms, an automatic monitoring system 
for the detection of normal, supraventricular ectopic beats 
and ventricular ectopic beats has been developed [8]. A 
previous study [10] used a linear prediction method, which 
detected ventricular premature contraction (VPC) with a 
sensitivity of 92%. Time-domain features were used to 
classify normal, supra-ventricular ectopic beats (SVEB) 
and ventricular ectopic beats (VEB) by applying a Hid-
den Markov Model (HMM) on various ECG segments [9]. 
Particle swarm optimization has been applied to ECG mor-
phology and RR interval features to classify five types of 
arrhythmia beats, and this achieved an average accuracy 
of 93.27% [11]. Another study [12] addressed a six-class 
beats classification problem with an accuracy of 93.2% 
using the autoregressive model and generalized linear 

model classifier. Local fractal dimension has also been 
used to classify six types of ECG beats—atrial prema-
ture contraction (APC), left bundle branch block (LBBB), 
normal, paced beats, right bundle branch block (RBBB), 
and VPC—and classified with more than 97% sensitivity 
for normal, LBBB, RBBB, paced and VPC beats; more 
than 86% sensitivity for APC beats was seen [13]. Besides, 
Khazaee et al. [14] were able to classify five types of ECG 
beats (APC, LBBB, normal, RBBB, and VPC) with an 
accuracy of 93.97%. The ECG beats were classified with 
an accuracy of 96% using Hermite coefficients of ECG 
beats and neuro-fuzzy technique [15]. A Gaussian Mixture 
Model (GMM) has also been used to classify two types of 
abnormalities in the ECG and obtained accuracy greater 
than 94% [16]. In sum, a range of methods have been used 
to classify ECG beat data and have achieved good results, 
but with room for significant improvement.

The spectral domain of ECG signals offers another use-
ful representation of the signal. Its parameters can give 
a distinctive signal representation which can be utilized 
for improving diagnostic accuracy. Some arrhythmia may 
cause time-domain changes that are subtle but greatly 
affect the ECG spectrum, which makes ECG beats more 
clearly distinct. A six-class classification was performed 
by Daamouche et al. using wavelet transform and particle 
swarm optimization technique to classify APC, LBBB, 
normal, paced beats, RBBB, and VPC, and this achieved 
an accuracy of 88.84% [17]. Another study [18] found that 
SVM (among a number of classifiers tested) performed 
best with an accuracy of 95.6% to classify normal and 
abnormal beats in ECG using features obtained by apply-
ing wavelet and PCA on ECG. Many studies have applied 
pre-processing techniques, feature extraction, and classifi-
cation for ECG arrhythmia classification. In [19], Continu-
ous Wavelet Transform (CWT) has been compared with 
DWT in ECG arrhythmia classification using multilayer 
percetron (MLP) and SVM machine learning model, it has 
been found that CWT based classifier improved the testing 
performance. A mixture of expert approached has been 
used to classify Normal, SVEB, VEB, and fusion beats 
and reported an accuracy of 94% [20]. The RR interval and 
morphological features were used in this classification. 
The block-based neural network on Hermite transform 
coefficients and RR interval features have also been used 
to classify five types of ECG beats and obtained 96.6% 
of accuracy [21]. Morphological wavelet transformation 
and time interval-based features were used to classify five 
ECG beats and obtained 95.16% accuracy [22]. Principal 
Component Analysis of normal, right bundle branch block, 
left bundle branch block, atrial premature contraction and 
ventricular premature contraction types ECG samples 
were performed in order to classify them and obtained 
an accuracy of 98.11% [23]. The principal components of 
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bispectrum have been used to classify the same five types 
of ECG beats [24] and obtained an accuracy of 93.48%.

With the rise of deep learning techniques, a number of 
recent studies have used very deep networks for ECG beat 
classification, but many studies have not achieved 100% 
accuracy [20–31]. Acharya et al. [32] used a CNN algo-
rithm to develop a method to detect myocardial infarction 
and obtained an average 95.22% classification accuracy. In 
another study, Acharya et al. [31] implemented a classifier 
based on a 9-layer deep CNN and classified five different 
types of heartbeats with an accuracy of 94.03%. Sannino and 
Pietro [27] presented a deep learning-based ECG beats clas-
sifier and obtained an overall accuracy of 99.83%. Isin et al. 
[33] used deep learning to classify ECG beats and obtained 
an accuracy of 92%. A deep learning-based automated diag-
nosis system for detecting congestive heart failure has also 
been developed using an 11-layer deep CNN model [34] and 
obtained 98.97% accuracy and sensitivity of 98.87%. How-
ever, the frequency components that are responsible for ECG 
beat variability were not reported in any of these studies. 
Identification of the frequency components could be crucial 
in better CVD management.

In this study, an accurate and optimal classification tech-
nique for ECG arrhythmia beat detection is proposed and 
a novel approach to identify differentiable frequency com-
ponent features in ECG beats is also introduced. Our work 
offers two key contributions-

 (i) We proposed an adopted deep CNN, VGG16 [35], to 
classify 5 ECG beats using time-frequency represen-
tation of ECG signal. We evaluated the model with 
two advanced time-frequency representation tech-
niques, CWT and Hilbert-Huang transform (HHT), 
to identify the best time-frequency representation of 
ECG beats for the CNN model.

 (ii) We harnessed explainable deep learning approach 
to identify crucial spectral features in ECG beats. 
We measured the SHapley Additive exPlanations 
(SHAP) value in the input image of the CNN model 
to find those pixel values in the scalogram which 
contribute most to the very high classification accu-
racy and map significant pixel values (wavelet coeffi-
cient) in the input image to corresponding frequency 
components in ECG beats.

The proposed adopted CNN with CWT scalogram 
achieved classification accuracies of 100% on MIT-BIH 
arrhythmia database for 2–4 classes and 99.90% for 5 
classes. The American Heart Association (AHA) database 
and Lobachevsky University Electrocardiography database 
(LUDB) were also exploited for normal and ventricular 
contraction ECG beats, respectively, to test the proposed 
model and provided a classification accuracy of 99.91% 

for the 5-classes case. In addition, the SHAP-based identi-
fied spectral features in ECG show a considerably different 
band of frequencies in ECG beats that make them distinct 
to each other.
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Fig. 1  The schematic diagram of the proposed method
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2  Materials and methods

The details of the datasets used in this study and the over-
all processing steps are summarized in Fig. 1. The ECG is 
segmented into pieces that contain three beats. Each ECG 
beat segment is fixed to 2.4 s long. Two signal-to-image 
conversion approaches were applied to produce input for 
classification model. The continuous wavelet transform 
was applied to each ECG segment to obtain the scalo-
gram which represents the wavelet coefficient matrix of 
that segment. This scalogram was used as the input to 
the proposed classification model. Hilbert-huang tranform 
(HHT) was also applied to produce the model input in 
order to evaluate signal-to-image conversion approaches 
for the proposed classifier. An adopted deep learning 
model was trained using both the scalogram and HHT 
spectrum separately. The convolutional parts of the model 
extracted the feature map and classified the ECG segment 
into specific categories. Finally, we calculated the SHAP 
value to explain the significant frequency components in 
ECG beats. The classification results and SHAP-based sig-
nificant components information is provided to the doctor/
clinicians as report for patient treatment and management.

2.1  Database

In this study, the MIT-BIH arrhythmia database is used 
for the classification of the ECG arrhythmia and the detec-
tion of characteristic frequencies in ECG beats. The data-
base consists of 48 records of half-hour. Two channels 
have been used to record the ECG. The ECG signals were 
obtained from 47 subjects between 1975 and 1979 at the 
BIH Arrhythmia Laboratory [36]. The first lead is modi-
fied lead II (MLII) that is used for 45 recordings, and for 
the remaining recording, modified lead V5 is used. The 
pericardial lead (V1 for 40 of them, V2, V4, or V5 for the 
others) is used as the second lead. In this study, only the 
MLII lead has been used. We have selected five different 
ECG beats, namely, normal (N), left bundle branch block 
(L), right bundle branch block (R), paced beat (PB), and 
premature ventricular contractions (V) for classification 
and analysis.

2.2  Data prepossessing

The MIT-BIH arrhythmia dataset is band-pass filtered at 
0.1100 Hz and sampled at 360 Hz [37]. The annotation 
file in the MIT-BIH database contains information about 

the rhythms type and each individual heartbeat occurrence 
sample at the major local maxima. Thirty six files were 
chosen from the MIT-BIH arrhythmia database which con-
tains the beats to be studied.

Table 1  The datasets, class names, distribution of the number of beat 
segments in each dataset. The N, L, R, PB, and V beats are taken 
from 36 MIT-BIH files

Dataset Beat classes

N L R PB V

DB I 8691 8059 N/A N/A N/A
DB II 8691 8059 7235 N/A N/A
DB III 8691 8059 7235 7012 N/A
DB IV 8691 8059 7235 7012 7003

Fig. 2  a Box plot of the distribution of the duration of ECG segments 
that contains three consecutive beats. b ECG beats segmentation and 
its scalogram, c Hilbert-Huang spectrum
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2.2.1  Beat segmentation

In the segmentation of the beat, we used the annotation files 
as a reference. For beat segmentation, first, the local maxima 
of each heartbeat (R peaks for most cases) are extracted from 
the annotation files, and a fixed number of samples are speci-
fied before and after each R peak. The box plot shown in 
Fig. 2a depicts distribution of duration of ECG segments in 
seconds that contains three consecutive beats obtained from 
all the files that contain all the beats to be analysed. Since we 
want to include at least one beat before and one beat after R 
peaks of the analyzed beat for 2-dimensional time-frequency 
representation, we choose a total of 865 sample points ( 1.2 
s before and 1.2 s after R peaks). The choice of the window 
length of samples around the beats chosen is 2.4 s so that it 
contains approximately three cycles of cardiac activity. Total 
8691 N beats segments, 8059 L beat segments, 7235 R beat 
segments, 7012 PB beat segments, and 7003 V beat seg-
ments were collected from 36 MIT-BIH files which includes 
files names 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 
111, 114, 116, 118, 119, 124, 200, 201, 202, 203, 205, 207, 
208, 210, 212, 213, 214, 215, 217, 219, 221, 223, 228, 231, 
232, and 233. All of the records came from total 35 subjects; 
34 records from 34 individual subjects and two records (201 
and 202) from a single subject.

From the MIT BIH database, a total of 38000 beat seg-
ments were considered for analysis. Figure 3 shows the 
stacked bar plots of the number of beat segments of each 
type obtained from 36 files. Four different datasets were 
prepared using these beat segments. The first dataset (DB 
I) contains ECG beat segments from two categories: N and 

L. The second dataset (DB II) contains ECG beat segments 
from three categories: N, L, and R. The third dataset (DB 
III) contains ECG beat segments for the N, L, R, and PB 
ECG beat classes. The fourth dataset (DB IV) consists of 
ECG beat segments corresponding to five different catego-
ries: N, L, R, PB, and V. The distribution of the number of 
beat segments from each of the classes and the datasets are 
given in Table 1. In this study, the entire dataset (38000 beat 
segments) was randomly sub-sampled into training, valida-
tion, and testing. In total 8291, 7659, 6835, 6612, and 6603 
samples for N, L, R, PB, and V, respectively, beat segments 
were used for training the model. The remaining beat seg-
ments were used for testing and validation of the model. 
From the remaining beat segments 200 beat segments of 
each type are randomly selected to create a test set. There are 
a total of 1000 beat segments for validation and 1000 beat 
segments for testing of the model.

2.2.2  Continuous wavelet transform (CWT) for feature 
image preparation

Here, we present the feature image of ECG beats that we 
used for classification. The time-frequency representation of 
the ECG signal is produced using CWT for the classification.

The continuous wavelet transform has emerged as one of 
the most powerful tools for the high-resolution decomposi-
tion in the time-frequency plane of a signal. CWT is also a 
widely used method for the time-frequency analysis of a sig-
nal. It overcomes the limitations of Fourier transformation 
(FT), where no time information is available in the frequency 
domain representation. Wavelet transform is particularly 
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crucial due to its capacity to elucidate simultaneously local 
spectral and temporal information from a non-stationary sig-
nal. The wavelet transforms isolates the signal component to 
produce a time-frequency representation of the signal by using 
a variable-length window, and this is more accurate than the 
traditional short-time Fourier transform (STFT) where a slid-
ing time window of fixed length is used. Wavelet transform 
is a suitable choice for non-stationary signals, like ECG, and 
can be an alternative to the widely-used STFT. The lower 
frequency component in long duration signal and higher fre-
quency component in the shorter duration signal are also cap-
tured simultaneously because of the flexible temporal-spectral 
aspect of the transform, which enables a local-dependent spec-
tral analysis of individual signal components. We can decom-
pose the ECG signal onto a set of basis functions, which are 
termed wavelets. All the basic functions are derived from a 
prototype wavelet by dilations and scaling, and translations. In 
fact, in wavelet transform, the frequency is considered to be an 
alternative to scale, leading to a time-frequency representation 
of the time-domain signal.

The prototype wavelet, used in this study to take the wavelet 
transform of the ECG signal, is defined as

Then the CWT of a signal x(t) is defined as:

where a is the scaling parameter and b is the translation 
parameter.

Using Morlet wavelet base in obtaining wavelet coefficient 
matrix by continuous wavelet transform showed promising 
result in a study [38] to classify ECG arrhythmia using deep 
learning model. In this study, we have determined to use the 
Morlet wavelet basis function which is defined as:

We can obtain the characteristic frequency of the wavelet 
from the wavelet scale a. The spectral components f’s are 
inversely proportional to the scale a’s, i.e. f ∝ 1

a
 . The fre-

quency associated with a wavelet of arbitrary scale a is given 
by

where the constant fc is the characteristic frequency of 
the mother wavelet at a = 1 and b = 0 , fs is the sampling 

(1)�a,b(t) =

�
1√
a

�
�

�
t − b

a

�

(2)W� (a, b) = ⟨x,�a,b⟩ =
1√
�a� ∫

+∞

−∞

x(t)�
�
t − b

a

�

(3)�(t) = exp

(
−
t2

2

)
cos (5t)

(4)f =
fc ∗ fs

a

frequency of x(t), and f is the frequency of the wavelet at 
arbitrary scale a.

After calculating the characteristic frequency, a time-fre-
quency representation of the signal is obtained. The image 
form of the CWT time-frequency representation of the sig-
nal is called a scalogram. The scalograms were generated 
by performing CWT to all the segmented ECG beats. The 
segmented ECG beat and its corresponding scalogram are 
shown in Fig. 2b. The duration of the segmented ECG is 2.4 
s (1 s to 3.4 s); the x-axes of the scalogram corresponds to 
the same time duration as the segmented ECG. The x and y 
axes of the scalogram represent time and frequency infor-
mation of ECG, respectively, where the color represents the 
magnitude of the frequency components at that time point. 
The dark color represents the lower, and bright color repre-
sents the higher magnitude of the frequency.

2.3  Hilbert‑Huang transform for feature image 
preparation

We evaluated the classifier used in this study with the Hil-
ber-Huang transform spectrum. The Hilbert-Huang trans-
form (HHT) [39] has widely been used for non-stationary 
signal processing as a powerful time-frequency technique. 
The HHT performs a data adaptive decomposition to decom-
pose the signals into a set of nearly orthogonal components. 
The Hilbert-Huang spectrum is obtained by producing a 
time-frequency distribution of the signals.

HHT functions in two steps, namely, empirical mode 
decomposition (EMD) and Hilbert transform. The EMD 
decomposes a signal into a series of oscillatory modes called 
intrinsic mode function (IMF), and a residue. After applying 
EMD to a x(t), we have a collection of n number of IMFs 
denoted as ci and residue rn as-

After obtaining all the IMFs, we apply Hilbert transform to 
each IMF. This can be done by performing a convolution 
operation of the signal x(t) with the function h(t) = 1

�t
 , i.e.,

Now the analytic signal z(t) of x(t) can be defined by com-
bining x(t) and H(t) as

where

(5)x(t) =

n∑

i=1

ci + rn

(6)H(t) =
1

� ∫
+∞

−∞

x(�)

t − �
d�

(7)z(t) = x(t) + iH(t) = a(t)ei�(t)

(8)a(t) = [x2(t) + H2(t)]1∕2,�(t) = arctan(H(t)∕x(t))
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Here a(t) and �(t) are the instantaneous amplitude and the 
instantaneous phase of x(t), respectively.

According to the property of Hilbert transform if x(t) is 
monocomponent, then the instantaneous frequency �(t) of 
x(t) can be defined as-

The IMFs of x(t) generated applying EMD are monocompo-
nent. By calculating the instantaneous frequency and ampli-
tude of each IMF, x(t) can be expressed as follows

The signal x(t) can be represented by a three dimensional 
time-frequency plane using Eq. 10. This time-frequency 
representation of the signal is called the Hilbert-Huang 
spectrum.

The Hilbert-Huang spectrum of each of the segmented 
ECG signals is obtained to evaluate the performance of the 
beat classification model.

2.4  Convolutional neural network (CNN)

The CNNs are one of the most advanced forms of deep arti-
ficial neural network architectures specifically designed for 
3D image inputs. A CNN mainly consists of input layers, 
convolutional layers, activation layer, pooling layer, dense 
layer, and softmax (output) layer. There may be many hid-
den layers in the CNN, because of that, it is categorized as 
deep learning.

The input layer is associated with the input of the neural 
network. The input layer is a tensor of the dimensions of 
the input image. One of the critical layers is the convolu-
tional layer, which comprises with a set of kernels (filters). 
The convolutional layers carry out the convolutional opera-
tion taking data from the previous layer. The convolutional 

(9)�(t) =
d�(t)

dt

(10)x(t) =

n∑

k=1

ak(t)exp

(
i∫ �k(t)dt

)

operation is implemented by an inner product between the 
kernel and the image section that it covers. The computed 
convolutional operation produces a feature map, which is 
the response of the filter at every pixel location in the image. 
There are many such kernels in the convolutional layer, thus 
producing many 2D feature maps. After the completion of 
the convolution operations using the kernels, a stack of fea-
ture maps is produced, which are fed into the next layer. The 
activation function works in the activation layer. Rectified 
Linear Unit (ReLu) is the activation function usually used 
in the convolutional layer. The operation of this function is 
straightforward, it only remains a positive value the same but 
changes the negative input value to zero.

The pooling layer reduces the size of the feature map 
by downsampling the extracted features in the convolution 
layer. Two types of pooling layers, max pooling and average 
pooling, are widely used in many CNNs. The feature maps 
are segmented into non-overlapping squares in the pooling 
layer. In the max-pooling layer, the maximum values of the 
segments are taken, whereas, in the average pooling layer, 
the average values from the segments are computed, thus 
producing the reduced dimensional feature matrices. After 
the last process of pooling in the convolutional layers, the 
image is flattened and fed into a dense layer in the feed-
forward neural network. The dense (fully connected) layers 
are the artificial neural networks that take input from the 
previous convolutional layers of the networks. The activa-
tion function in this layer is also ReLu, except for the last 
layer activated with the softmax function. The dense layer 
combines all local features into global features to obtain the 
probability of each of the desired classes. The softmax acti-
vated the top layer of the model can decide on the image 
class. This layer is used to learn non-linear combinations in 
high-level feature coming from the previous dense layers.

Once the model of CNN is completed, it is ready to 
update the network weights using the training dataset. 
Since CNN has many parameters that need to be updated, 
it takes a considerable time to train, and graphical 

Fig. 4  The proposed classification model consists of VGG16 and customized classifier layers



154 Biomedical Engineering Letters (2021) 11:147–162

1 3

processing units (GPUs) are required for faster training. 
To avoid computational complexity, it is recommended to 
use a pre-trained model that showed a good performance 
on a related task. We can do this by transfer learning. The 
classifier parts of the model are customized in order to 
have better performance. Fine-tuning the model by initial-
izing the network weights with transfer learning provides 
a better model performance than the model being used 
without fine-tuning.

The customized classification model consists of VGG16 
architecture used in this study is shown in Fig.  4. The 
VGG16 is a convolutional neural network (CNN) consists 
of 16 layers to classify a 224 x 224 input image. The custom-
ized classifier layers possess five fully-connected layers, the 
last of which is a softmax layer that provides the probability 
of each input to belong to a beat class. The first FC layer in 
the dense layers of the adopted CNN is consisted of 256 relu 
activated nodes. The second FC layer is consisted of 512 relu 
activeted nodes. The third FC layer is a dropout layer with 
a 50% dropout. The last layer provides the class probability 
of each input sample. The weights of the VGG16 parts of 
the model are initialized using transfer learning and the rest 
of the model, the dense layers, are randomly initialized. The 
whole model is now fine-tuned using the training datasets to 
get the optimized weights of the networks in order to obtain 
desired performance.

The input of the VGG16 is the segmented ECG beats 
images. In the first convolutional layer, 64 kernels were used 
with a very small receptive field (3 × 3 filter size) for feature 
extraction from the input images. The convolution stride size 
is 1 pixel. The input image size of the VGG16 is 224 × 224 
RGB. In order to preserve the spatial resolution after convo-
lution, the spatial padding of the convolution input layer is 
fixed to 1 pixel for 3 × 3 filter size. Max-pooling operation 
functions over a 2 × 2 pixel window, with a 2-pixel stride 
size.

2.5  Performance metrics

The performance metrics of sensitivity (Se), Specificity (Sp), 
Area Under the ROC curve (ROC), and Accuracy (Acc) are 
used to evaluate the ECG beats classifier. Sensitivity is a 
measure of the proportion of true positive beats to the total 
of true positive (TP) and false negative (FN) beats. Math-
ematically, sensitivity (Se) can be defined as:

Specificity (Sp) is defined as the proportion of true negative 
(TN) beats and to total of true negative (TN) and false posi-
tive (FP) beats. Mathematically, specificity can be defined 
as:

(11)Se =
TP

TP + FN

The accuracy (Acc) is defined as:

The ROC curve is drawn using sensitivity and specificity and 
the model performance is determined using the Area under 
the ROC curve (AUC). Here we use the micro averaging 
metric for AUC calculation.

Higher values of Se, Sp, Acc, and AUC  indicate a better 
model.

2.6  Gradient based method for explaining 
important features

The black-box nature of CNN makes it difficult to explain 
the significance of input features that lead to high classi-
fication performance. A model interpretation method was 
used to reveal the importance of the features based on the 
model prediction results. The main objective of the interpre-
tation process is to measure the SHAP (SHapley Additive 
exPlanations) [40] of the input features. Consider a set of N 
features Q and a function f ′ determines the outcome of the 
model when feature subset S ⊆ Q is used. The SHAP values 
are determined by quantifying the total contribution of each 
feature to the result f � (Q) of the model when all features 
are considered. For a given feature j, Shapley value can be 
computed as-

where �j is the contribution of feature j to the model pre-
diction and it can be interpreted as its’ average marginal 
contribution.

Model interpretation approaches that are commonly used 
for CNN can be divided into two major groups. The first 
method is the gradient-based approach where the gradient 
is calculated using backpropagation, and the contribution 
score of input features for the target class is measured from 
this gradient. The second is the additive attribution method, 
which allows a description of the complex model by con-
structing a simpler model by alternative means. A gradient-
based approach has been used in this study, discussed below.

The SHAP value for the feature in the input layer of the 
VGG16 model was calculated using the expected gradi-
ents [41]. Expected gradients are an improved version of 
integrated gradients [42], which use a small selection of 
hyperparameters. Integrated gradient attempts to explain the 
difference between the current prediction of the model and 
the model prediction with a given baseline input. In order 

(12)Sp =
TN

TN + FP

(13)Acc =
TN + TP

TN + FN + FP + TP

(14)𝜙j =
∑

S⊆Q�{j}

|S|!(|Q| − |S| − 1)!

|Q|! [f
�

(S ∪ {j}) − f
�

(S)]
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to represent any uninformative reference information, the 
baseline input is used. Sometimes, the baseline input choice 
is made arbitrarily. However, the expected gradients model 
avoids using an arbitrary baseline and chooses baseline by 
integrating the value of the feature over a dataset.

The integrated gradient value of a feature i for a given 
model h is defined as:

where t and t′ are the target and baseline inputs, respectively, 
and

In order to avoid specifying t′ , the expected gradient (ExG) 
value for the feature i is defined as:

where D is the underlying data distribution. Since integrat-
ing over the training distribution is difficult, the integral is 
defined in expectation:

where

Finally, the expected based formula takes the sample t from 
the training dataset and � from U(0, 1). It computes the 
expected value for each t and calculate the average overall 
drawn samples.

3  Results

The model training platform consisted of a gaming laptop 
computer with Intel(R) Core (TM) i7-7700HQ (2.80 GHz, 
2808 Mhz, 4 Cores and 8 Logical processors) CPU, and a 
GPU of NVIDIA GeForce GTX 1060 6GB GPU and 16 GB 
of memory, running on a Windows 10 64-bit system. The 
experiments were conducted using the Matlab and Python 
programming languages. The software tools used in this 
study included Python 3.5, CUDA 9.0, and Matlab R2018a. 
The classification and explanation experiments were imple-
mented using the Keras [43] library.

Accuracy and loss plots at each epoch of model training 
and validation with training and validation scalograms, 

(15)IntGradi
(
t, t
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�

i

)
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respectively, are shown in Fig. 5. For the first few epochs 
of training and validation, the accuracy is slightly lower 
than that of the next epochs. The blue and red curves reach 
a final accuracy of 100% after 21 epochs and 3 epochs, 
respectively, and show the benefits of using the VGG16 
CNN based classifier in the classification.

Table 2 shows test accuracy for all the test datasets 
using VGG16 without any modification and transfer learn-
ing, VGG16 without any modification and fine-tuning, 
modified VGG16 and fine-tuning. In order to compare the 
CWT scalogram with the HHT spectrum in deep learning 
based arrhythmia detection, the test results were obtained 
for both imaging techniques. The original VGG16 with 
transfer learning only and HHT spectrum showed a clas-
sification accuracy of 95.75%, 89%, 81.38%, and 72.70% 
for DB I, DB II, DB III, and DB IV, respectively. The 
accuracy trends to reduce with the increase in the number 
of test classes in the data sets. The VGG16 with original 
classifier and CWT scalogram presented a sensitivity of 
100%, specificity of 100%, accuracy of 100% and AUC of 
100% with test data of DB I and DB II. However, with test 
data of DB III and DB IV, which contains 4 and 5 classes 
of beats, respectively, the original classifier with scalo-
gram shows relatively less accuracy than with the test data 
of DB I and DB II. For DB III, a sensitivity of 96.63%, 
specificity of 98.88%, accuracy of 96.63% and AUC of 
97.75% was achieved. For DB IV, it presented a sensitivity 
of 95.10%, specificity of 98.78%, accuracy of 95.10% and 
AUC of 96.94%. For original VGG16 and transfer learn-
ing CWT scalogram showed better performance than the 
HHT spectrum.

A classifier model with fine-tuned VGG16 with original 
FC layers was also evaluated for both scalogram and HHT 

Fig. 5  Classification accuracy and loss while training and validat-
ing the classifier using scalograms. The blue, red, green, and purple 
curves show training accuracy, validation accuracy, training loss, and 
validation loss, respectively. (Color figure online)
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spectrum. In this case, the CWT scalogram showed better 
performance than the HHT spectrum, details in Table 2.

In order to analyze the performance of the proposed clas-
sifier (fine-tuned VGG16 with customized FC layers), the 
test results were obtained for all the datasets with the CWT 
scalogram and HHT spectrum. For all the four test datasets, 
the classifier shows very high performance with the CWT 
scalogram. The sensitivity and specificity values tested for 
DB I, DB II, and DB III datasets are 100% and the accuracy 
is very high, 100%, in all the three cases. The classifier has 
an AUC of 100% for the DB I, DB II, and DB III datasets. 
For DB IV, the customized fine-tuned model with the CWT 
scalogram showed an accuracy of 99.90% with an AUC of 
99.94%. The same model is also evaluated for the HHT spec-
trum. For all the cases, the CWT scalogram overperformed 
the HHT spectrum. It can also be observed that the proposed 
model is basically better than the model with the original 
VGG16 according to the accuracy of the classification. The 
ROC curves of the proposed model tested on the test datasets 
consisted of the CWT scalogram are shown in Fig. 6. The 
AUC for prediction of classes (N, L) from dataset I, classes 
(N, L, R) from dataset II, and classes (N, L, R, PB) from 

dataset III was 100%, and for classes (N, L, R, PB, V) from 
dataset IV was 99.9%. The confusion matrix is also used to 
show the classification results of the model. Figure 7 gives 
the confusion matrix showing the classification performance 
of the proposed classifier using test datasets of scalograms. 
The test dataset consists of 200 ECG beat segments for each 
type. The results indicate that the model can successfully 
separate the ECG beats.

We also obtained classification results using the pre-
trained weight of fine-tuned modified VGG16 and CWT 
scalogram to understand whether the classification perfor-
mance was affected by different input dimensions of ECG 
beat segments. We observed that for the input ECG segment 
dimension of 2.2, 2.3, 2.4, 2.5 s the test results remained the 
same, see Table 3. This indicates the proposed model can 
also classify ECG beat segments of slightly different dimen-
sions very accurately.

We also evaluated the proposed CWT-based fine-tuned 
model performance using ECG beats collected from the 
American Heart Association (AHA) Ventricular Arrhythmia 
ECG Database [44] and the Lobachevsky University Elec-
trocardiography Database [45]. We used a total of 228 PVC 

Fig. 6  Receiver operating characteristic (ROC) curves of customized 
VGG16 based CNN model tested on the various test ECG arrhythmia 
datasets. The ROC curves show the performance of the classifier for 

classifying ECG beats. The model presents the micro averaged AUC 
of 1.00 for the DB I, DB II, DB III test data and 0.999 for the DB IV 
test set
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(V type) beats obtained from the ‘0001’ and ‘0201’ files of 
the AHA database. The original ECG signals from the first 
channel were resampled to 360 Hz to keep the consistency 
of the classifier’s input before obtaining the scalogram. We 
collected 1431 normal (N) ECG beats from the lead ii from 
the Lobachevsky University Electrocardiography Database, 
which was also resampled to 360 Hz before obtaining the 
scalogram. The proposed CWT based fine-tuned model was 

Fig. 7  Confusion matrix of the beats classification for the proposed 
model in this study. 200 beats for each type of beat were considered 
in this experiment

Table 2  Experimental results 
obtained with test dataset using 
VGG16 with original classifier 
layers in [35] and transfer 
learning, fine-tuned VGG16 
with original classifier layers, 
and fine-tuned VGG16 with 
proposed customized classifier 
layers

Bold texts indicate significant results

VGG16 model and training method Imaging method Dataset Acc (%) Se (%) Sp (%) AUC (%)

Transfer learning only HHT Dataset I 95.75 95.75 95.75 95.75
Dataset II 89 89 94.5 91.75
Dataset III 81.38 81.38 93.79 87.58
Dataset IV 72.70 72.70 93.17 82.93

CWT Dataset I 100 100 100 100
Dataset II 100 100 100 100
Dataset III 96.63 96.63 98.88 97.75
Dataset IV 95.10 95.10 98.78 96.94

Fine-tuning with original FC layers HHT Dataset I 99.25 99.25 99.25 99.3
Dataset II 97.83 97.83 98.92 98.38
Dataset III 96.25 96.25 98.75 97.5
Dataset IV 95.70 95.70 98.93 97.3

CWT Dataset I 100 100 100 100
Dataset II 100 100 100 100
Dataset III 99.50 99.50 99.83 99.67
Dataset IV 98 98 99.5 98.75

Fine-tuning with proposed cus-
tomized FC layers

HHT Dataset I 100 100 100 100
Dataset II 97.83 97.83 98.92 98.38
Dataset III 97 97 99 98
Dataset IV 96.70 96.70 99.17 97

CWT Dataset I 100 100 100 100
Dataset II 100 100 100 100
Dataset III 100 100 100 100
Dataset IV 99.90 99.90 99.98 99.94

Table 3  Classification results obtained using pretrained weight of 
fine-tuned VGG16 with proposed customized classifier layers and 
CWT scalogram. The model was tested with the scalogram prepared 
with ECG beat-segments of various lengths

Beat segments 
length (s)

Acc (%) AUC Se (%) Sp (%)

2 99.2 0.995 99.2 99.8
2.1 99.8 0.9988 99.8 99.95
2.2 99.9 0.9994 99.9 99.98
2.3 99.9 0.9994 99.9 99.98
2.4 99.9 0.9994 99.9 99.98
2.5 99.9 0.9994 99.9 99.98
2.6 99.3 0.9956 99.3 99.83
2.7 97.2 0.9825 97.2 99.3
2.8 93.5 0.9594 93.5 98.34
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tested with the new test set consisted of 1431, 200, 200, 200, 
and 228 samples for N, L, R, PB, and V beat types, respec-
tively. An accuracy of 99.91%, F1 Macro of 99.90%, F1 
Micro of 99.91%, sensitivity/recall of 99.83%, a specificity 
of 99.95%, ROC macro 99.89%, and ROC micro of 99.94% 
were obtained from the proposed model.

The contributions of the frequency components in ECG 
beats for classification are described as the SHAP value of 
the input image. Figure 8 shows the SHAP value on the 
scalogram, where the red colors on the time-frequency rep-
resentation of the ECG signal indicate their positive contri-
butions for being correctly separated from other beats. The 
figure shows that the 5–15 Hz frequency band is the most 
important for Left Bundle Branch Block beat (L), which 
can be considered as the distinguishable feature of it from 
the other ECG beats. For Right Bundle Branch Block beat 
(R), a small frequency band, 10 Hz to 14 Hz, is significant 
for classification. A vast range of frequency bands, 4 Hz to 
100 Hz, in Paced Beat (PB) ECG arrhythmia is an important 
feature. A very lower band frequency, 2 Hz to 8 Hz, is the 
crucial frequency feature in Premature Ventricular Contrac-
tion (V) ECG beat.

Both the obtained beat classification results and the infor-
mation about the characteristics frequency components in 
ECG beat can be used to produce test reports for patient 
treatment and managements.

4  Discussion

In this paper, the CWT feature of five classes of ECG beats 
collected from the MIT-BIH arrhythmia database was clas-
sified in order to measure the performance of the proposed 
deep CNN based classifier. The model also evaluated with 
the HHT feature of the same ECG arrhythmia. Later, we 
measured the SHAP value of the scalogram features to 
obtain the significant frequency components in the ECG 
beats which resulted in the highest classification accuracy. 
The observed frequency bands in the ECG may have some 
practical applications including monitoring the development 
of cardiac disease and monitoring the effectiveness of ongo-
ing treatment.

Understanding the critical features of ECG beats in the 
frequency domain can be helpful for a deeper understanding 
of cardiac arrhythmias and their classification. Arrhythmia 
classification has shaped a center of consideration for aca-
demia and medical practitioners.

In this work, CWT is considered as the time-frequency 
representation (scalogram) of the ECG signal. Due to the 
non-stationary and non-linear nature of the ECG signal 
Morlet wavelet function has been used in this study. In the 
wavelet transform domain, the latent dynamics in frequency 
components of the ECG signal were more apparent than the 
standard time domain. We also evaluated the proposed clas-
sifier with spectral images of ECG beat segments obtained 
from the HHT, a modern signal-to-image conversion tech-
nique. The CWT scalogram over-performed the HHT spec-
trum in all the cases. Our proposed model coupled with 
scalogram demonstrated an accuracy of 100%, sensitivity 
of 100%, specificity of 100% and AUC of 100% for all the 
test cases of the datasets DB I, DB II, and DB III, and accu-
racy of 99.90%, sensitivity of 99.90%, specificity of 99.98% 
and AUC of 99.94% for the test cases of the DB IV dataset; 
thus, the model can be used as a powerful tool for assisting 
medical practitioners to diagnosis ECG arrhythmia.

We compared the classification accuracy obtained at pre-
vious studies to see the power of VGG16 and CWT scalo-
gram in ECG beats classification. The proposed method, 
VGG16 based CNN with customized classifier layers model, 
showed superior performance compared to other studies that 
categorized similar beats from the same dataset, see Table 4.

To improve the two-class arrhythmia classification accu-
racy, several machine and deep learning techniques like 
CNN, neural network, deep belief network have been used 
[22, 25, 27, 28]. Our proposed technique shows higher clas-
sification accuracy compared to those previous studies. The 
over performances of the proposed technique can be attrib-
uted to the appropriate deep learning model and CWT scalo-
gram time-frequency input features which perfectly capture 
distinguishing frequency components in ECG beats.

In order to classify normal (N), left bundle branch block 
(L), and right bundle branch block (R) beats, some studies 
[30, 46] employed multilayer probabilistic neural network 
(MPNN) and PSO-CNN with the discrete wavelet transform 
(DWT), and R peak and QRS complex features. Our pro-
posed model coupled with scalogram obtained at least 0.56% 
improved classification accuracy than the existing studied 
methods. In the case of four and five class classification, 
the customized VGG16 coupled with CWT scalogram input 
shows better classification than previous studies [30, 50]. 
All of these comparisons of the proposed technique with 
previous studies show the suitability of using the proposed 
model and CWT scalogram images for automated ECG beats 
classification.

Fig. 8  SHAP values and frequency mapping in the time domain 
ECG. The beat on the top-left corner shows left bundle branch block 
beat (L) and its significant frequency contents based on the SHAP 
value in CWT-based scalogram. Bottom-left corner beat is a right 
bundle branch block beat (R) in which 10 Hz to 14 Hz frequency 
band is the key feature. On the top-right corner, paced beat (PB) 
shows 4 Hz to 100 Hz frequencies are notable. On the bottom-right 
corner, premature ventricular contraction (V) beat has very small 
range of frequency range, 2 Hz to 8 Hz, which resulted in high clas-
sification accuracy; thus distinct feature than other beats

◂
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The time-frequency power distribution over the frequen-
cies is changed in the ECG arrhythmia beats [51–53]. The 
high frequency and power in the Ischemic cardiomyopathy 
ECG signal QRS complex are discovered [54]. We used 
SHAP to identify and visualize the wavelet coefficient in 
the scalogram and mapped that coefficient to the frequency 
in the ECG beats. We have found that the frequency com-
ponents between 5 Hz and 18 Hz in the QRS complex of 
the previous beat of the left bundle block beat (L), between 
5 Hz and 15 Hz in the QRS complex of L type arrhythmia 
beat, and between 5 Hz and 15 Hz in the QRS complex 
of next beat are significant. In the L type beats, we have 
found a lower band of the frequencies responsible for dif-
ferentiating them from other beats. Similarly, for the right 
bundle branch block beat (R) lower band frequencies are 
responsible for differentiating them from other beats. A very 
small range of frequencies, from 10 Hz to 14 Hz, are most 
significant in the R beats. Immediately before and after the 
R beat, 5 Hz to 16 Hz frequencies are notable frequency 
features. In the premature ventricular contraction (V) beats, 
a very lower frequency band 2 Hz to 8 Hz, played a positive 
role for achieving excellent classification performance, thus 
frequency band of 2 Hz to 8 Hz in V beat is significant. In 
contrast to other beats, Paced Beat (PB) showed a frequency 
band with a very high range, 4 Hz to 100 Hz, responsible for 
the achieved classification accuracy.

The notable key features of this study are as follows: 1) 
it uses a single operation in the preprocessing stage, signal-
to-image conversion which reduces preprocessing time and 
efforts. 2) the proposed CNN-based model shows very prom-
inent results in ECG beat classification 3) The novel idea of 
using SHAP to identify frequency features in ECG beats.

Although we used the ECG dataset that is collected from 
35 subjects, the main limitation of this study lies in not using 
different databases. Training the same proposed model with 
various databases, the statistical significance of character-
istics frequency components in ECG beats need to be per-
formed. However, based on the obtained results of this study, 
the proposed systems can be used in either stand-alone or 
cloud based automated ECG arrhythmia detection systems 
for cardiovascular disease diagnosis, patient treatment and 
managements.

5  Conclusion

In this paper, we have proposed an adopted VGG16-based 
CNN using the time-frequency representation of the ECG 
signal for cardiac arrhythmia classification. We have also 
identified frequency features in ECG that resulted in high 
classification accuracy. The results show 100% accuracy 

Table 4  The classification performance comparison of proposed methodology with some very recently published deep learning based existing 
methods

Bold texts indicate significant results

Types of ECG beats Literature Feature Classifiers Se (%) Sp (%) Acc (%)

2 (VT, VF) Acharya et al. [25] Time domain feature CNN 95.32 91.04 93.18
2 Saninno et al. [27] RR intervals Deep learning 99.52
2 (N, V) Inan et al. [22] WT and timing interval Neural Network 95.16
2 Mathew et al. [28] simple features Deep belief network 95.57
2 (N, L) OUR STUDY CWT t-f representation VGG16 CNN 100 100 100
3 (Normal, R, PB) Isin et al. [33] R-T interval CNN 92
3 (N, L, R) Rai et al. [46] Discrete Wavelet Transform 

(DWT)
Multilayer Probabilistic 

Neural Network (MPNN)
99.01 99.53 99.07

3 (AF, A.Flut., VF) Acharya et al. [29] Time domain CNN 98.09-99.13 81.44–93.13 92.5–94.9
3 (N, L, R) Jambukia et al. [30] R peak and QRS complex PSO-FFNN 99.41
3 (N, L, R) OUR STUDY CWT t-f representation VGG16 CNN 100 100 100
4 Gler et al. [47] DWT coefficients NN 97.78 96.94
4 Taji et al. [48] time domain restricted Boltzman Machine 73.1–100 75–99.5
4 (N, L, R, PB) Jambukia et al. [30] R peak and QRS complex PSO-FFNN 98.68
4 Wu et al. [38] CWT based image CNN 97.56 99.19 97.56
4 (N, L, R, PB) OUR STUDY CWT t-f representation VGG16 CNN 100 100 100
5 Kiranyaz et al. [49] time domain CNN 64.4-95.9 98.1–99.5 96.6–99
5 Acharya et al. [31] time domain CNN 96.01 91.64 93.47
5 (N, L, R, V, A) Oh et al. [50] time domain CNN and LSTM 97.50 98.70 98.10
5 (N, L, R, PB, V) OUR STUDY CWT t-f representation VGG16 CNN 99.90 99.98 99.90
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for two, three, and four class beat classification cases, and 
99.90% for five class case. The VGG16-based CNN has 
proven to be effective and useful for heartbeat classifica-
tion. We found that certain frequency components in the 
ECG were discriminative and helped the classifier distin-
guish between the ECG beats. In some beats low frequen-
cies were responsible for different classification from other 
beats while in others it was higher frequency components 
that mainly determined the between-beat differences. Thus 
this CNN model could be useful for the diagnosis of the 
cardiovascular conditions and could be used by the health 
practitioners and clinicians.
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