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A B S T R A C T   

Background and objective: Pertussis (whooping cough), a respiratory tract infection, is a significant cause of 
morbidity and mortality in children. The classic presentation of pertussis includes paroxysmal coughs followed 
by a high-pitched intake of air that sounds like a whoop. Although these respiratory sounds can be useful in 
making a diagnosis in clinical practice, the distinction of these sounds by humans can be subjective. This work 
aims to objectively analyze these respiratory sounds using signal processing and deep learning techniques to 
detect pertussis in the pediatric population. 
Methods: Various time-frequency representations of the respiratory sound signals are formed and used as a direct 
input to convolutional neural networks, without the need for feature engineering. In particular, we consider the 
mel-spectrogram, wavelet scalogram, and cochleagram representations which reveal spectral characteristics at 
different frequencies. The method is evaluated on a dataset of 42 recordings, containing 542 respiratory sound 
events, from children with pertussis and non-pertussis. We use data augmentation to prevent model overfitting 
on the relatively small dataset and late fusion to combine the learning from the different time-frequency rep-
resentations for more informed predictions. 
Results: The proposed method achieves an accuracy of 90.48% (AUC = 0.9501) in distinguishing pertussis 
subjects from non-pertussis subjects, outperforming several baseline techniques. 
Conclusion: Our results suggest that detecting pertussis using automated respiratory sound analysis is feasible. It 
could potentially be implemented as a non-invasive screening tool, for example, in smartphones, to increase the 
diagnostic utility for this disease which may be used by parents/carers in the community.   

1. Introduction 

Pertussis, commonly known as whooping cough, is a respiratory tract 
infection caused by Bordetella pertussis coccobacillus. It spreads by air 
droplets and is highly contagious [18]. The number of pertussis cases has 
decreased since the development of a vaccine. However, neither im-
munization nor previous infection provide lifelong immunity to the 
disease [2]. There is a resurgence of pertussis infections which is 
attributed to waning immunity and bacteria mutation [23,34]. While 
pertussis affects all age groups, it is a significant cause of morbidity and 
mortality in young children [35], especially in developing countries, 
where access to timely diagnoses may not be available. 

Following an incubation period, the typical progression of pertussis 
is in three distinct stages: catarrhal phase, paroxysmal phase, and 

convalescent phase [18]. The catarrhal phase characteristics are similar 
to other upper respiratory tract infections. This is followed by the 
paroxysmal phase. Cough is one of the symptoms of pertussis and it 
increases in severity at this stage, developing into a paroxysmal or 
hacking cough followed by a high-pitched intake of air that sounds like a 
whoop, hence the name whooping cough [35]. The residual cough can 
persist for weeks to months in the convalescent phase. In severe cases in 
infants it can lead to respiratory failure and death [20]. 

People with pertussis are infectious for weeks but, if given appro-
priate antibiotic treatment, the infectious period and spread is reduced 
and may also prevent complications [4]. Early treatment of pertussis is, 
therefore, crucial for managing this disease. We posit that the parox-
ysmal coughing and whooping sounds can be useful for screening 
pertussis, especially in the pediatric population which remains the most 
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vulnerable age group. However, recognizing these respiratory sounds by 
parents/carers of the child can be unfeasible. In clinical practice, this is 
dependent on the skills and training of the clinicians. 

In this work, we aim to develop an objective computational method 
for detecting respiratory sound events associated with pertussis, that is, 
the hacking cough and whooping, for the pediatric population. If 
disseminated widely, for example, as a smartphone application, such an 
objective assessment tool could prove useful as a screening tool for 
parents/carers. It could also be useful in developing countries and 
remote communities which lack access to health facilities and clinicians. 

1.1. Related work 

Detecting respiratory diseases using digital respiratory sounds, 
cough sounds, in particular, has generated interest recently such as in 
detecting childhood pneumonia [16], monitoring chronic obstructive 
pulmonary disease [9], and in detecting croup, which is common in 
children between the age of 6 months to 6 years and produces a 
distinctive barking cough [30]. Various signal processing and machine 
learning techniques have been proposed for the analysis and detection of 
cough sounds. Being a relatively new area of research, a number of 
techniques are inspired by other audio classification tasks such as speech 
recognition. One such measure is mel-frequency cepstral coefficients 
(MFCCs) [8]. MFCCs utilize mel-filters which are effective in revealing 
the perceptually significant characteristics of the speech spectrum in 
small time windows. Speech and cough share some similarities in the 
generation process and the physiology which could explain the wide-
spread use and effectiveness of MFCCs in cough sound analysis tasks [10, 
16,27,29,30,37]. 

It is a common practice to complement MFCCs with other techniques. 
In [10,16,29], various temporal and spectral analysis techniques are 
employed for this purpose. In addition, wavelet transformation is 
applied in [16] in analysis of cough sounds for detecting pneumonia. 
Wavelets are effective at the decomposition of non-stationary signals in 
both the time and frequency domains and, in [16], the focus is partic-
ularly on picking the crackle sounds in pneumonia coughs. 

Furthermore, the spectral information contained in cough sounds is 
more dominant in low frequencies than in high frequencies. The human 
auditory model offers a higher resolution for low frequencies than for 
high frequencies. In [30], this frequency selectivity property of the 
human cochlea is modeled using a gammatone filter to differentiate the 
barking cough sound of croup subjects from the cough sound of other 
respiratory diseases. A similar approach is also taken in [37]. 

Audio sound analysis, including cough sound analysis, is typically 
carried out in small time windows at different frequency localizations. 
These result in a high dimensional data which conventional classifica-
tion methods may be unable to handle. A common approach is to reduce 
this data size into a smaller feature set using statistical methods. With 
MFCCs, for example, the mean and standard deviation of the coefficients 
have been used [30]. Similarly, the slope of the wavelet coefficients is 
used as wavelet feature (WF) in [16]. In [30], the time-frequency rep-
resentation is formed using gammatone filters, referred to as 
gammatone-spectrogram or cochleagram, is divided into blocks and the 
second and third central moments are used as the cochleagram image 
features (CIF). In [16,29,30], feature extraction follows feature selection 
to further reduce the feature dimension and select the most dominant 
features for classification. 

The use of conventional feature engineering techniques inevitably 
leads to loss of some information which causes poor classification per-
formance and misdetection of respiratory diseases. More recently, these 
methods have been superseded by deep learning techniques due to their 
superior classification results. One such deep learning technique is 
convolutional neural network (CNN) [17]. CNN is originally an image 
classification technique which has the ability to learn distinguishing 
image characteristics directly from the raw image through various 
mathematical operations. In audio signal classification tasks, this 

arrangement is typically realized by transforming the signal into an 
image-like representation [21,32]. Time-frequency representation of 
audio signals is the most common approach for this purpose, such as the 
conventional spectrogram representation formed using short-time 
Fourier transform (STFT). 

1.2. Audio data and CNN for pertussis detection 

An overview of the proposed approach is given in Fig. 1. We take 
inspiration from conventional feature extraction techniques and the 
state of the art CNN for detecting pertussis using respiratory sounds. In 
particular, we represent the one-dimensional respiratory sound signals 
as two-dimensional time-frequency representations for classification 
using CNN. Our approach in forming the time-frequency representations 
is based on the feature extraction techniques from [16,29,30]. In 
particular, we use mel-filters, as used in computing MFCCs, to form 
mel-spectrogram; wavelet transform, as used in computing WF, to form 
wavelet scalogram, and gammatone filters, as used in computing CIF, to 
form cochleagram. 

Furthermore, different time-frequency representations reveal spec-
tral characteristics at different frequencies. In conventional machine 
learning, this information is combined, for example, using feature vector 
concatenation, to improve the classification performance. With CNN this 
can be achieved using late fusion whereby the outputs of CNN models 
trained on different representations are combined. This can be realized 
either by averaging the output scores [39] or using the output scores to 
train a secondary classifier [41]. In this work, we use late fusion to 
combine the CNN learning from different time-frequency representa-
tions, aiming to make more accurate predictions. 

The proposed approach is evaluated on a dataset of respiratory 
sounds from children with suspected or confirmed pertussis and other 
respiratory diseases. Collecting physiological data is time consuming, 
expensive, and may require patient cooperation, which can be difficult 
with children. However, a rapid rise in the use of digital technology has 
prompted researchers to collect self-reported data from the public. In a 
similar study [29], researchers composed a dataset of respiratory dis-
eases using online sources while researchers at Microsoft used web 
search queries of users with self-identified conditions [36]. More 
recently, researchers at the University of Cambridge collected COVID-19 
related sounds of users with self-reported disease status through a 
website and a smartphone application. In this work, we use a dataset of 
respiratory sounds collated from the YouTube online video sharing 
platform and reviewed by a clinician. 

In total, the dataset contains 42 recordings, each with multiple res-
piratory sounds. This makes it a relatively small dataset and CNN models 
trained on small datasets can be prone to overfitting. One method to 
reduce overfitting is mixup [40] which augments the dataset, mixing the 
features of different classes. It is a simple yet effective method with very 
low computational costs. In this work, we extend the mixup data 
augmentation technique to time-frequency representations of respira-
tory sounds. 

The rest of the paper is organized as follows. An overview of the 
dataset and the proposed method is given in Section 2. The experimental 
setup and results are provided in Section 3 and discussion of the results 
and conclusions are in Section 4. 

2. Methods 

2.1. Dataset 

The dataset used in this work was collated from YouTube. Various 
search terms were used to identify respiratory sound recordings from 
children with the following respiratory conditions: pertussis, asthma, 
bronchiolitis, croup, and pneumonia. The diagnosis of pertussis and 
other respiratory conditions in the videos was attributed by the infor-
mation provided in the title and/or description of the videos and later 
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checked by a clinician to assess the plausibility of the sounds and the 
reported diagnosis. 

The final dataset contained a total of 42 recordings, each with mul-
tiple respiratory sound events. The breakdown of disease classes for the 
recordings in the dataset is as follows: 21 pertussis, 2 asthma, 6 bron-
chiolitis, 12 croup, and 1 pneumonia (in total, 21 non-pertussis). The age 
and gender of the subjects were determined based on the information 
provided in the title and description of the videos and, if needed, by 
watching the video. While all the subjects were children, the age and 
gender could not be determined in some cases. A summary of the res-
piratory diseases, demographics, and breakdown of respiratory sound 
events in the dataset is provided in Table 1. 

All subjects had cough as a symptom with the average number of 
coughs in the pertussis group more than twice in the non-pertussis group 
despite the average recording duration for pertussis subjects being lower 
than for non-pertussis subjects. This could be attributed to the nature of 
the paroxysmal cough in pertussis – persistent hacking cough followed 
by a whoop. However, whooping is not always present in pertussis 
subjects. In this dataset, 16 of the 21 pertussis subjects were determined 
to have whoops with a total of 110 whooping episodes. 

An illustration of hacking cough signals followed by a whoop from a 
pertussis subject is given in Fig. 2. In this case, the subject has three rapid 
bursts of cough over a period of about 1 s, marked as 1–3. Looking at the 
amplitude of the signals, we observe that bulk of the air is expelled from 
the lungs of the subject in the first two coughs. The subject may be 
almost out of air at the time of the third cough which explains the 
significantly lower amplitude of the cough signal. There is an urgent 
need to breathe after that with the subject having a long gasp for air 
sounding like a whoop, marked as 4. 

Most, if not all, the recordings are believed to be captured using 
smartphone microphones. This means the recordings are likely coming 
from different manufacturers and models of smartphones making this a 
challenging and diverse data. Of the 42 recordings, 23 are recorded in a 
home environment, 2 in hospital, 2 in vehicle, 5 in an unknown indoor 
environment while the location of 10 recordings is unknown. The re-
cordings include various background noises and sound events such as 
people talking, TV or music playing, dog barking, noise from other 
household appliances, etc. The signal-to-noise ratio (SNR) in the pres-
ence of background noise is also diverse, estimated to be in the range of 
16 dB–44 dB. 

The audio data were retrieved in the MP3 coding format. The sam-
pling frequency of the original recording is not known but the retrieved 

audio files are sampled at 44.1 kHz. Inspecting the spectrogram of the 
audio files revealed that some recordings did not have any spectral in-
formation above 8 kHz. Hence, spectral analysis was limited to this 
frequency. The noise source generally varies from one signal to another 
and most noise types were present in the targeted 0–8 kHz frequency 
range, therefore, no specific noise filtering was performed. 

2.2. Time-frequency representations 

In the proposed method, we use time-frequency representations of 
respiratory signals as a direct input to the CNN. Three time-frequency 
representations are considered for this purpose: mel-spectrogram, 
wavelet scalogram, and cochleagram. In this work, a target time- 
frequency image size of 64 × 64 is used. 

In forming the mel-spectrogram, STFT is computed by dividing the 
respiratory signal into 64 frames with a 50% overlap and computing the 
Fourier transform as 

Fig. 1. An overview of the proposed approach in detecting pertussis using respiratory sound events and CNN.  

Table 1 
An overview of the dataset used in this work.  

Disease 
Group 

Number of 
Recordings 

Total Recording 
Duration (sec) 

Age 
Known 

Age Range (Mean) 
(Months) 

Gender Known 
(M:F) 

Total Number of 
Coughs (Range) 

Subjects with Whoops 
(Total Whoops) 

Pertussis 21 1261.23 15 1–84 (25.27 ± 24.35) 18 (8:10) 545 (3–100) 16 (110) 
Asthma 2 

1674.62 7 5–36 (18.36 ± 14.18) 16 (11:5) 257 (2–47) 0 (0) 
Bronchiolitis 6 
Croup 12 
Pneumonia 1  

Fig. 2. Plot of three hacking cough signals followed by an inspiratory whoop 
from a pertussis subject. 
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XF(k) =
∑N− 1

n=0
x(n)e− i2π

N kn (1)  

where N is the length of the frame, x(n) is the framed respiratory signal, 
and X(k) is the kth harmonic frequency. The log mel-filter bank energies 
are then computed as 

E(m) = log
∑
N
2 − 1

k=0
V(m)|X(k) |, m = 1, 2,…,M (2)  

where V(m) is the normalized filter response of the mel-filters, triangular 
filter banks equally spaced on the mel-scale [26]. The number of 
mel-filters M is set to 64 and this process is repeated for each of the 64 
frames resulting in a 64 × 64 mel-spectrogram. 

To form the wavelet scalogram, continuous wavelet transform is 
applied to the respiratory signal x(t) at scale e > 0 and position h as 

XW(e, h) =
1
̅̅̅
e

√

∫ ∞

− ∞
x(t)ψ

(
t − h

e

)

dt (3)  

where ψ is the mother wavelet (complex conjugate) [19]. The scale 
parameter is analogous to frequency in Fourier transform and is chosen 
such that the signal is decomposed into 64 components. The decom-
posed signal at each scale is divided into 64 windows, the absolute 
values of which are summed to determine the energy in each window 
and log of the energy values gives the wavelet scalogram. 

The frequency components of the cochleagram are based on the 
human auditory filters, modeled by a gammatone filter, the impulse 
response of which is given as 

g(t) = atj− 1e− 2πbtcos(2πfct + ϕ) (4)  

where a is the amplitude, t is the time, j is the filter order, fc is the center 
frequency of the filter, b is the bandwidth of the filter, and ϕ is the phase 
factor [28]. The relationship between the center frequency and the 
bandwidth of the filters in human hearing is described using the 
equivalent rectangular bandwidth (ERB) [28]. The implementation of 
the ERB filter model given in [11] was exploited. In forming the coch-
leagram, the respiratory signal was filtered using 64 gammatone filters, 
followed by the windowing process similar to wavelet scalogram. 

Illustrations of a cough signal and its mel-spectrogram, scalogram, 
and cochleagram representations are given in Fig. 3 with a frequency 
range of 0–8 kHz. 

2.3. CNN 

2.3.1. CNN architecture 
The architecture of the 2-D CNN is similar to the one presented in 

[31]. The input layer has a size of 64 × 64. The time-frequency repre-
sentations are normalized using zero mean and unit standard deviation 
in the input layer to remove the effect of subject variability. The clas-
sification network consists of five convolutional layers, each with a 3 × 3 
filter size. The number of filters in the first convolutional layer is NF =

48, with 2NF filters in the second layer, and 4NF filters in the remaining 

three layers. 
Each convolutional layer is followed by a batch normalization layer 

[12] and rectified linear unit (ReLU) [24]. These are followed by a max 
pooling layer [14] in all the layers, except for the fourth layer. Each max 
pooling layer has a pool size of 3 × 3 and a stride of 2 × 2. The final max 
pooling layer is followed by a dropout layer [33] with probability 0.2, a 
fully connected layer, and a softmax layer [3]. 

The number of pertussis labels in the training dataset is greater than 
that of non-pertussis labels. To account for this imbalance, weighted 
cross entropy loss was used in the classification layer. Given the pre-
diction scores Y and training targets T, the weighted cross entropy loss is 
computed as 

L = −
1
S

∑S

s=1

∑K

i=1
ciTsilog(Ysi) (5)  

where S is the number of observations, K is the number of classes, and c 
are the class weights. The final network, therefore, has a total of 24 
layers. 

The network was trained using adaptive moment estimation (Adam) 
[15] which uses the estimates of the first and second moments of the 
gradients to compute adaptive learning rate for the parameters. The first 
and second moment estimators for training iteration t are computed as 

m̂t =
mt

1 − βt
1

andv̂t =
vt

1 − βt
2
, (6)  

respectively, where β1 and β2 are the hyperparameters of the algorithm. 
The model weight w is then updated as 

wt = wt− 1 − η m̂t
̅̅̅̅
v̂t

√
+ ε

(7)  

where η is the step size and ε is a small scalar. 
The training parameters are set using a simple grid search. The initial 

learn rate is set to 0.003, mini batch size is 32, and the maximum 
number of epochs is 30. In addition, we use a learn rate drop factor of 
0.1, learn rate drop period of 10, and L2 regularization of 0.2. The model 
was implemented in MATLAB R2020b and trained on AWS using a single 
NVIDIA V100 Tensor Core GPU. The training stops after the maximum 
number of epochs is reached. 

2.3.2. Data augmentation 
As our training dataset is relatively small, we perform data 

augmentation using a modified version of mixup to prevent overfitting. 
Given a training dataset of time-frequency representations D, for every 
representation Ir belonging to class yr, additional representation Ĩr is 
created by mixing Ir with a randomly selected representation Is from 
another class ys, as 

Ĩr = λIr + (1 − λ)Is, ỹr = yr (8)  

where, λ = 0.5, Ir ∕= Is, and yr ∕= ys. We used this process to create a 
mixup time-frequency representation for each time-frequency image in 
D. The original dataset D and the mixup dataset D̃ are combined to train 

Fig. 3. Plot of (a) cough sound signal, (b) mel-spectrogram representation, (c) wavelet scalogram representation, and (d) cochleagram representation of this 
cough signal. 
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the CNN model. 

2.3.3. Late fusion 
Furthermore, the three time-frequency representations reveal spec-

tral characteristics at slightly different center frequencies and band-
widths; refer to Fig. 3(b)–(d). As such, a CNN trained on these time- 
frequency representations would learn unique information and 
combining the learnings from the CNNs has the potential to improve the 
classification performance. In this work, we use a late fusion approach 
for this purpose, as illustrated in Fig. 4. 

Each of the three CNNs, trained on mel-spectrogram, wavelet 
scalogram, and cochleagram, outputs a probability score p1, p2, and p3, 
respectively, for each validation sample. These probability scores are 
concatenated into a feature vector [p1, p2, p3]. These feature vectors are 
used to train a secondary classifier, in this case a support vector machine 
(SVM) [6] with radial basis function (RBF) kernel. The same training and 
validation procedure, as with CNN, is repeated to make the final pre-
diction for each validation sample. 

2.4. Evaluation metrics 

Performance of the methods is evaluated using sensitivity (Sen), 
specificity (Spe), accuracy (Acc), and the area under the curve (AUC) of 
the receiver operating characteristic (ROC) curve given as follows: 

Sen =
TP

TP + FN
, Spe =

TN
TN + FP

, (9)  

Acc =
TP + TN

TP + FN + TN + FP
, (10)  

and 

AUC =

∫ 1

0
f (x)dx, (11)  

where TP, FP, TN, and FN are the number of true positives, false posi-
tives, true negatives, and false negatives, respectively, and f(x) is the 
ROC function curve. We computed the AUC using trapezoidal 
approximation. 

In similar to [30], the performance is evaluated at the cough and 
subject levels. At the cough level, the aim is to correctly predict the class 
of each cough as pertussis or non-pertussis using the posterior proba-
bility of the classification models. The uth cough from the vth sub-
ject/recording is classified as pertussis if the posterior probability is 
greater than or equal to t1, that is, 

Cu
v =

{
1, p ≥ t1
0, p < t1

(12)  

where u ∈ Z : u ∈ [1, Uv], Uv is the total number of coughs for the vth 

subject, v ∈ Z : v ∈ [1, V], and V is the total number of subjects. The 

optimal cut-off point on the ROC curve t1 is chosen at the intersection of 
cough level sensitivity and specificity. 

At the subject level, the classification of the coughs is used to 
determine if the recording belongs to a subject with pertussis or non- 
pertussis as 

Rv =

{
1, qv ≥ t2
0, qv < t2

(13)  

where qv = 1
/Uv

∑Uv
u=1 Cu

v and the optimal cut-off point t2 is chosen at the 

intersection of subject level sensitivity and specificity. 

3. Experimental evaluation 

3.1. Experimental setup 

In this work, we use a stratified 7-fold cross-validation which we 
found to give a good compromise between the number of training and 
validation samples in each fold. As such, 3 pertussis and 3 non-pertussis 
recordings are used for validating the model and the remaining re-
cordings are used for training the model, in each fold. The respiratory 
sounds from a recording/subject are present either in the training or 
validation dataset, but not in both. 

The number of respiratory sounds per recording varies from 2 to 138. 
When using all the available respiratory sounds, the model naturally 
tends to fit to the recordings with more respiratory sounds. This means 
that even though the cough classification results improve, this does not 
necessarily translate to a better subject classification as the model may 
not be adequately learning the inter-subject variability. To address this, 
we varied the maximum number of respiratory sounds per subject to be 
used in training with a value of 20 yielding the best performance in 
subject classification. As such, the dataset used in all the experiments 
contains 343 respiratory sound events from pertussis subjects and 199 
events from non-pertussis subjects, a total of 542 events. 

We present the evaluation results in Section 3.2 and 3.3. 

3.2. Baseline method and results 

The baseline features experimented with in this work are mel- 
frequency cepstral coefficients (MFCC), wavelet features (WF), and 
cochleagram image features (CIF), and their combined feature set. To 
compute MFCCs, the respiratory signal is divided into frames of 1024 
points with 50% overlap. After applying Fourier transform, 20 mel-filter 
bank energies are computed in each frame followed by discrete cosine 
transform [13] to obtain the MFCCs. The first and second derivatives of 
the coefficients are also computed [38]. The final 120 dimensional 
MFCC feature vector is the mean and standard deviation of the 20 co-
efficients and the derivatives across all frames. 

To compute WF [16], a time-scale representation or scalogram is 
formed, in similar to the procedure described in Section 2.2 but with an 
output size of 64 × 12. The final 768 dimensional feature vector is the 
slope between the energy values in the 12 windows in each time axis. 
The cochleagram representation described in Section 2.2 is used to 
compute the CIF [30]. The cochleagram is divided into 8 blocks along 
the time and frequency axis, and second and third central moments are 
computed in each of the 64 blocks to form a 128 dimensional feature 
vector. 

Following feature extraction, the significance of the features is 
determined using training data in each fold with one-way analysis of 
variance (ANOVA) and t-test. One-way ANOVA and t-test determine if 
there is a significant difference between the mean of the two groups, 
pertussis and non-pertussis. The significance of each feature dimension 
is given by the p-value in the range [0,1] where a p-value close to 0 in-
dicates high significance and a p-value close to 1 indicates low signifi-
cance. In similar to [1,30], various p-value thresholds are applied in the 
range [0,1] and feature dimensions with p-value below this threshold 

Fig. 4. Late fusion by pooling the CNN outputs for a combined prediction 
using SVM. 
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are used for training and validation. The baseline classifiers used in this 
work are logistic regression (LR) [7], Naïve Bayes (NB) [22], and SVM 
with RBF kernel, as seen to be popular in cough sound classification 
tasks [16,30,37]. 

Results for pertussis and non-pertussis classification at cough and 
subject level using the baseline methods are given in Table 2. While we 
experimented with both the feature selection methods and several p- 
value thresholds, only the best results are presented here. In general, the 
best baseline results for the cough and subject classifications are ach-
ieved by SVM. At the cough level, the best accuracy for a single feature 
set is in the range of 64.39%–69.93% and the best AUC is in the range of 
0.6585 to 0.7242. With a cough level accuracy of 69.93% 
(AUC = 0.7242) and a subject level accuracy of 83.33% (AUC = 0.8787), 
the best classification performance using single feature set is with MFCC 
and SVM. The combined feature set yields mixed performance. At the 
cough level, it could not improve on the MFCC-SVM results. The accu-
racy improves at subject level to 85.71% but with a lower AUC of 
0.8141. 

3.3. Results using proposed method 

The classification results for time-frequency image classification 
using CNN and late fusion are given in Table 3. Target time-frequency 
image size of 64 × 64 is used as higher dimensional images increased 
computational overheads but did not improve the classification results. 
In late fusion, the output of the individual CNNs trained on the three 
time-frequency representations is combined for classification using SVM 
and evaluated in 7-fold cross validation. 

All three time-frequency representation classification using CNN 
achieve accuracy greater than 71% and AUC greater than 0.77 in cough 
classification. This is substantially higher than the results using a single 
baseline feature set or the combined MFCC + WF + CIF. With a sensi-
tivity of 72.30%, specificity of 71.86%, accuracy of 72.14%, and AUC of 
0.7962, the best results in cough classification are achieved using mel- 
spectrogram-CNN, while the accuracy and AUC scores of cochlea-
grams and scalograms are close. Mel-spectrograms also produce the best 
subject level classification results: sensitivity of 90.48%, specificity of 
80.95%, accuracy of 85.71%, and AUC of 0.9172. The combination of 
cochleagram and CNN also achieves an accuracy of 85.71% for subject 
level classification but with a lower AUC. 

With late fusion, the cough level sensitivity, specificity, and accuracy 
improve to 73.18%, 72.86%, and 73.06%, respectively, but with a lower 
AUC of 0.7640. In addition, the subject classification results improve 
with a sensitivity of 95.24%, specificity of 85.71%, accuracy of 90.48%, 
and AUC of 0.9501. These are the best overall results in detecting 
pertussis and non-pertussis subjects. Using the Wilson method [25], the 
95% confidence interval for sensitivity is 77.33%–99.15% and for 
specificity 71.09%–97.35%. In addition, the classification accuracy is 
90% at SNR below 25 dB, 86.96% at SNR of 25 dB–35 dB, and 100% over 

35 dB which indicates better classification accuracy when the noise level 
is low, as can be expected. 

4. Discussion and conclusions 

The dataset used in this work has been recorded in natural envi-
ronments with SNR as low as 16 dB. The recordings are believed to be 
made using smartphones of different manufacturers and models and the 
training and validation procedure followed in this work is subject in-
dependent. All these increase the difficulty and complexity of the task. 
Despite these constraints, our method is empirically shown to achieve 
strong classification performance at the cough and particularly subject 
levels. In addition, while earlier works looked at the problem of respi-
ratory sound-based pertussis detection using conventional feature en-
gineering and machine learning methods [27,29], our proposed 
time-frequency representations, CNN, and late fusion approach forgoes 
the need for feature engineering and outperforms several conventional 
methods. These demonstrate the robustness of the proposed approach 
against the diversity of recording environments, background noises, and 
recording devices, and against conventional classification methods. 

Our work has some limitations. Further analysis of our results shows 
that 3 out of the 4 misclassifications for the best classification model are 
in children aged 6 months or less. This could be because the lungs and 
airway muscles of children are in different developmental stages at 
different age groups. This may cause variations in the cough sound, 
especially in infancy [5]. Age group specific models may help overcome 
this problem, however, how exactly the sound is affected by age or the 
adequacy of specific cut-off point to establish age groups remain un-
clear. In addition, in this work we have only 42 subjects of which the age 
of only 22 subjects is known. The relatively small dataset makes this 
difficult. Furthermore, the non-pertussis group in the dataset is 
comprised of a number of different respiratory diseases of which 
pneumonia and asthma have only 1 and 2 recordings, respectively. Also, 
the dataset does not include other types of childhood respiratory dis-
eases or comorbidities which would be present in complex cases. While 
our dataset is still larger than those of [27,29], the availability of an even 
larger and complex data with age-defined groups would help us develop 
more generalizable models. Moreover, Bordetella parapertussis causes a 
similar clinical picture to Bordetella pertussis but tends to be milder and 
of a shorter duration. However, we were not able to verify the diagnosis 
of pertussis using confirmed microbiology and relied on physician 
interpretation as the gold standard. We hope to collect clinically verified 
data in future prospective studies. 
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Table 2 
Results using baseline methods.  

Feature Set Classifier Cough Classification Results Subject Classification Results   

Sen (%) Spe (%) Acc (%) AUC Sen (%) Spe (%) Acc (%) AUC 

MFCC 
LR 63.85 63.82 63.84 0.6659 85.71 80.95 83.33 0.7880 
NB 60.06 59.80 59.96 0.6422 71.43 66.67 69.05 0.6859 
SVM 69.97 69.85 69.93 0.7242 85.71 80.95 83.33 0.8787 

WF 
LR 56.85 56.78 56.83 0.5977 80.95 71.43 76.19 0.7800 
NB 65.89 63.32 64.94 0.6585 85.71 71.43 78.57 0.7029 
SVM 62.39 62.31 62.36 0.6525 85.71 80.95 83.33 0.8435 

CIF 
LR 60.06 59.80 59.96 0.6288 80.95 71.43 76.19 0.7789 
NB 60.93 60.80 60.89 0.6428 76.19 71.43 73.81 0.7721 
SVM 64.43 64.32 64.39 0.6588 85.71 80.95 83.33 0.8129 

MFCC + WT + CIF 
LR 60.06 59.80 59.96 0.6340 85.71 76.19 80.95 0.8061 
NB 63.56 63.32 63.47 0.6829 76.19 71.43 73.81 0.7120 
SVM 62.39 62.31 62.36 0.6703 90.48 80.95 85.71 0.8141  
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Results using the proposed method.  

Input Classifier Cough Classification Results Subject Classification Results   

Sen (%) Spe (%) Acc (%) AUC Sen (%) Spe (%) Acc (%) AUC 

Mel-Spectrogram CNN 72.30 71.86 72.14 0.7962 90.48 80.95 85.71 0.9172 
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