
September 19, 2018 11:21 ws-rv9x6-9x6 Book Title 11131-00a-preface page v

Preface

Shlomo Berkovsky1, Iván Cantador2 and Domonkos Tikk3

1CSIRO, Australia, 2Universidad Autónoma de Madrid, Spain,
3Gravity Research & Development, Hungary

shlomo.berkovsky@gmail.com, ivan.cantador@uam.es,

domonkos.tikk@yusp.com

Recommender systems are very popular nowadays, as both an academic

research field and services provided by numerous companies for e-commerce,

multimedia and Web content. Collaborative-based methods have been the

focus of recommender systems research for more than two decades, evolving

over time from neighbor-based methods to matrix factorization and deep

learning. During this time, thousands of papers have been published in

various conferences and journals, and the area has matured significantly.

Nevertheless, there is no single place that present an encompassing

and at the same time practical information on collaborative recommender

systems. Therefore, we envisage the “Collaborative Recommendations:

Algorithms, Practical Challenges, and Applications” book as a dedicated

reference on collaborative recommendations, which thoroughly discusses

recommendation algorithms, challenges related to their application on the

Web, existing recommender systems leveraging collaborative methods, and

future veins of work in this flourishing field, including contributions from

the academia and industry researchers alike.

The unique feature of the book is the special attention paid to tech-

nical details of collaborative recommenders. The book chapters include

details of algorithm implementations, elaborate on practical issues faced

when deploying these algorithms in large-scale systems, describe various

optimizations and decisions made, list parameters of the algorithms, and

so on. These details are usually not covered by academic papers, which

widen the gap between the academic works and their uptake by the indus-

try. We feel that this book makes an important step towards bridging this

v

September 19, 2018 11:21 ws-rv9x6-9x6 Book Title 11131-00a-preface page vi

vi Collaborative Recommendations

gap and providing a valuable point of reference for recommender systems

practitioners.

Hence, we believe that the broad coverage and the attention paid to the

practical aspects of collaborative recommendations are the main advantages

of this book over other existing publications. It is likely to be attractive not

only for researchers and students, but also for a broad range of practitioners

and information technology professionals, interested in incorporating rec-

ommendation technologies into their systems and services. We thus hope

the readers greatly benefit from learning about the algorithms and practical

aspects of collaborative recommender systems.

The book is partitioned into three parts, each including a number of

chapters written by experts in the respective areas of research and practice.

The content of the book is as follows.

• Part I: Algorithms overviews major algorithmic approaches ex-

ploited for collaborative recommendation purposes, namely collab-

orative filtering, matrix factorization, and deep learning. Next, it

presents principal directions aiming at enhancing collaborative rec-

ommenders through hybridization with content-based methods and

exploitation of contextual information, as well as ways to provide

collaborative recommendations targeting groups of users.

• Part II: Practical challenges surveys common issues to be

addressed when deploying a collaborative recommender system.

First, it analyzes existing types of user preferences and related

problems, such as user preference elicitation, sparsity, and cold

start. Second, it delves into topics related to the evaluation of

recommender systems, both in the offline and online paradigms,

and to recommendation biases and beyond-accuracy objectives. Fi-

nally, several chapters are dedicated to practical challenges, such

as scalability, distribution, robustness, and privacy in collaborative

recommenders.

• Part III: Applications elaborates on technical details, such as

data processing, algorithm selection and setting, and evaluation,

taking into consideration a number of real-life use cases; namely,

recommendations of TV shows, movies, music, contacts, job offers,

academic documents, online courses, food, and clothes. All these

chapters are characterized by their focus on practical issues, in-

cluding the deployment of the algorithms outlined in Part I and

the attention paid to the challenges discussed in Part II.

September 19, 2018 11:21 ws-rv9x6-9x6 Book Title 11131-00a-preface page vii

Preface vii

Part I is composed of six chapters, which are summarized next. In

Chapter 1, “Collaborative filtering for matrix completion and session-based

recommendation tasks,” Dietmar Jannach and Markus Zanker provide an

overview of the basics of collaborative filtering systems. They equally dis-

cuss the classical matrix completion problem formulation, which is used for

longer-term relevance predictions given a user-item rating matrix, and the

session-based recommendation scenarios, where the goal is to predict rele-

vant items given a user’s observed short-term behavior. The chapter par-

ticularly focuses on the traditional, yet still often used, neighborhood based

methods; describing the user- and item-based nearest neighbor algorithms.

The chapter addresses the entire life-cycle of algorithm development, and

discusses libraries, datasets, implementation aspects, as well as evaluation

issues.

In Chapter 2, “Matrix factorization for collaborative recommendations,”

Evgeny Frolov and Ivan Oseledets thoroughly discuss matrix factorization

(MF), one of the most successful and widely used collaborative filtering

techniques, applicable both for the explicit and implicit user feedback. The

authors first introduce the problem formulation of matrix factorization as

a dimensionality reduction technique. Then, they present singular-value

decomposition (SVD) based techniques, including PureSVD, emphasizing

practical aspects, like handling online updates. Some advanced MF meth-

ods are also discussed, including learning to rank and hybrid factorization

models. Finally, the chapter addresses practical aspects of implementa-

tion, such as parallel implementation of algorithms, and hyper-parameter

tuning, which both play a crucial role in the performance of a real-world

application of MF algorithms.

In Chapter 3, “Cutting-edge collaborative recommendation algorithms:

Deep learning,” Balázs Hidasi provides a detailed overview of recent ad-

vances in the application of deep learning to generate personalized recom-

mendations. The chapter starts with a short introduction to deep learning,

a complex neural network technology that already revolutionized complex

domains of machine learning, such as computer vision, natural language

processing, and speech recognition, and recently turned towards recom-

mender systems as well. After a short historical overview of deep learning

applications for recommender systems, four main lines of current research

are discussed in detail: learning item embeddings, deep collaborative filter-

ing, direct use of content, and session-based recommendations. The chapter

also gives a short guide for practitioners who would like to delve into the

topic, by discussing the most popular frameworks with their pros and cons,

September 19, 2018 11:21 ws-rv9x6-9x6 Book Title 11131-00a-preface page viii

viii Collaborative Recommendations

and providing hints on best practice for hyper-parameter optimization, and

scalability questions.

In Chapter 4, “Hybrid collaborative recommendations: Practical con-

siderations and tools to develop a recommender,” Michal Kompan, Peter

Gašpar, and Maria Bielikova overview hybrid collaborative recommender

systems, which aim to enhance collaborative filtering by exploiting addi-

tional information about ratings, such as content-based item features. The

chapter focuses on how these approaches are beneficial with respect to the

standard collaborative filtering techniques, and how they can be utilized to

solve main limitations of collaborative methods. Next, the chapter provides

examples of frameworks and libraries that implement existing recommen-

dation approaches, and a comprehensive list of available datasets (including

state-of-the-art results reported on these datasets). The evaluation process

of recommender systems is discussed, followed by examples of evaluation

frameworks. Finally, pros and cons of several hybrid approaches are sum-

marized with suggestions for practical implementations.

In Chapter 5, “Context-aware recommendations,” Yong Zheng and

Bamshad Mobasher provide a broad introduction to Context-Aware Rec-

ommender Systems (CARS). The chapter especially focuses on algorithmic

approaches for integrating context into the recommendation framework,

including approaches based on context selection and context-aware collab-

orative filtering. The chapter starts with clarifying the definition of context

— an often challenged topic in the field of recommender systems — and

gives a categorization of context types. The three main approaches, contex-

tual pre- and post-filtering, and contextual modeling, are then introduced.

Also, particular evaluation strategies for CARS, available datasets, and

open-source libraries are presented. Finally, the authors discuss a number

of lessons learned from practical applications.

In Chapter 6, “Group recommendations,” Ludovico Boratto and

Alexander Felfernig overview the area of group recommender systems,

which are designed to provide suggestions in scenarios, where instead of

a single user, a group of users is engaged. Group recommendation can be

naturally adopted in application scenarios that involve groups, e.g., sug-

gesting a restaurant to a group of people willing to dine together. This

area of recommender systems exhibits several additional aspects, compared

to those focused on single users, like preference acquisition, group model-

ing, group building, rating prediction for groups, helping group members to

achieve consensus, and explanation of recommendations. The chapter illus-

trates existing families of approaches to produce group recommendations,

September 19, 2018 11:21 ws-rv9x6-9x6 Book Title 11131-00a-preface page ix

Preface ix

showing the different high-level architectural representations of a system.

It then presents the strategies adopted in the literature to define groups.

Next, the authors discuss the group modeling task, aiming at creating a

unique representation of the preferences of a group, and illustrate how col-

laborative rating prediction algorithms are employed in group recommender

systems. Finally, a case-study is presented that compares the different fam-

ilies of approaches by employing a user-based collaborative approach.

Then, Part II contains the following seven chapters. In Chapter 7,

“User preference sources: Explicit vs. implicit feedback,” Paolo Cremonesi,

Franca Garzotto, and Maurizio Ferrari Dacrema present an exhaustive anal-

ysis of the two main types of user preferences a recommender system may

deal with; namely, explicit and implicit feedback. Regarding explicit prefer-

ences, the authors distinguish between numerical (rating-based) and cate-

gorical preferences, and discuss a number of issues to consider in the design

and deployment of a collaborative recommender, such as the used rating

scale (defined in terms of the ratings value granularity and labels), and the

differences in the users’ profile length, among others. With respect implicit

preferences, the authors focus on the available mechanisms to acquire and

process non-explicit user feedback coming from the users’ behavior in the

system, such as product purchases and views, music listening counts, and

unary and binary likes. A number of future research directions are finally

given.

In Chapter 8, “User preference elicitation, rating sparsity, and cold

start,” Mehdi Elahi, Matthias Braunhofer, Tural Gurbanov, and Francesco

Ricci address a particular task related to user preferences in recommender

systems: the elicitation of the users’ preferences. In this context, they dis-

cuss the well-known problems of sparsity, i.e., the very low density of the

user-item rating matrix, and cold start, i.e., the lack of insufficient volume

of ratings for users or items that are new or recent in the system. The au-

thors first survey the research literature on these topics, and then present

main algorithmic solutions, such as active learning, cross-domain recom-

mendations, exploiting implicit user feedback and item content-based in-

formation, and hybridization techniques. Next, as practical considerations,

existing software tools, popular datasets, and reported performance results

are provided. The chapter ends with a number of guidelines and future

work directions.

In Chapter 9, “Offline and online evaluation of recommendations,”

Alejandro Belloǵın and Alan Said overview some of the most popular

methodologies and metrics used to evaluate recommender systems. More

September 19, 2018 11:21 ws-rv9x6-9x6 Book Title 11131-00a-preface page x

x Collaborative Recommendations

specifically, the authors present algorithmic solutions to evaluate particu-

lar types of collaborative filtering methods, including social, context-aware,

and group-oriented recommendation approaches. They also provide a sum-

mary of available resources to conduct and compare recommender system

evaluations, namely APIs and software libraries, datasets, and past com-

petitions and challenges. For some of the cited software frameworks and

datasets, the authors report the achieved experimental results with several

metrics. Finally, they discuss practical considerations and outline future

directions around the evaluation of recommender systems.

In Chapter 10, “Recommendations biases and beyond-accuracy objec-

tives in collaborative filtering,” Pasquale Lops, Fedelucio Narducci, Cataldo

Musto, Marco De Gemmis, Cataldo Musto, Marco Polignano, and Giovanni

Semeraro pay attention to particular aspects for evaluating the perceived

quality and usefulness of recommendations. They first discuss the effect of

item popularity on the accuracy of personalized recommendations. Then,

they survey important dimensions beyond accuracy; namely, diversity, nov-

elty, and serendipity. Algorithmic solutions to deal with the popularity bias,

and increasing diversity, novelty, and serendipity in recommendation lists

are discussed. For these aspects, specialized evaluation resources are also

described. Finally, the chapter ends with related challenges and potential

future directions.

In Chapter 11, “Scalability and distribution of collaborative recom-

menders,” Evangelia Christakopoulou, Shaden Smith, Mohit Sharma, Alex

Richards, David Anastasiu, and George Karypis elaborate on the design

of recommender systems that can efficiently handle the huge, ever growing

amount of data by the means of modern parallel architectures. In particu-

lar, they first present several methods to scale k-nearest neighbor collabo-

rative filtering via parallel computing, by speeding the identification of user

neighborhood and the computation of item similarities. Next, they present

methods to scale up matrix and tensor factorization collaborative filter-

ing models, by parallelizing the Alternating Least Squares and Stochastic

Gradient Descent algorithms. In both cases, the authors also report ex-

perimental results on the well known MovieLens-10M dataset, showing the

runtimes and speedup achieved in comparison to serial implementations.

In Chapter 12, “Robustness and attacks on recommenders,” Neil J.

Hurley analyzes to what extent recommendation algorithms are affected

to the presence of corrupt data, which is injected to deliberately distort

the recommendation outputs for particular users and items. His analysis

focuses on the creation of fake identities and of user privacy preservation.

September 19, 2018 11:21 ws-rv9x6-9x6 Book Title 11131-00a-preface page xi

Preface xi

The author reviews research carried out since the early 2000s on robustness

attacks and practical defences, and introduces a new library for robustness

analysis incorporated into the RankSys recommender systems framework,

where major attacks proposed in the literature are implemented, and can

be tested against a range of recommendation algorithms.

In Chapter 13, “Privacy in collaborative recommenders,” Qiang Tang

focuses on the privacy issues associated with recommender systems. More

specifically, the author addresses the relationships between privacy, robust-

ness, and transparency. After defining and categorizing privacy concerns

in recommender systems, the author provides an analytical comparison of

existing privacy-preserving solutions, identifying their strengths and weak-

nesses. Then, he discusses research directions aimed at designing pragmatic

privacy-preserving recommender systems, which can also support other im-

portant properties, such as robustness and transparency.

Finally, Part III contains eight chapters, some of them written by re-

searchers working for leading companies in recommender systems technolo-

gies and services. In Chapter 14, “TV and movie recommendations: The

Comcast case,” Shahin Sefati, Jan Neumann, and Hassan Sayyadi present

the recommender system behind the Comcast X1 platform, which serves

personalized recommendations to nearly 30 million users. Since in any given

moment there are hundreds to thousands of entertainment choices available

on different devices (TV screen, computer, smart phone, tablet), the sys-

tem makes automatic personalized recommendations that help consumers

deal with the often overwhelming volume of choices they face. The chapter

reviews a number of developed algorithms and building blocks that power

the X1 recommender system. Next, a number of product features and how

the challenges associated with each feature are addressed. Further, several

offline and online metrics deployed for evaluation are discussed, and, finally,

some hints on the potential future developments for X1 recommender sys-

tem are given.

In Chapter 15, “Music recommendations,” Dietmar Jannach, Iman

Kamehkhosh, and Geoffray Bonnin survey the area of music recommender

systems. The chapter first presents main tasks and specific challenges in

music recommendations. It then discusses major algorithmic approaches,

such as implicit matrix factorization for item search and discovery, and hy-

brid methods for adaptive playlist generation, some of which are based on

sequence-aware recommendation techniques. Next, practical implementa-

tion challenges and evaluation issues of music recommender systems are

analyzed, considering both music-oriented and purpose-oriented quality

September 19, 2018 11:21 ws-rv9x6-9x6 Book Title 11131-00a-preface page xii

xii Collaborative Recommendations

criteria, describing performance assessment in real-world and academic en-

vironment settings, and surveying the evaluation protocols, metrics and

datasets followed in the literature. The chapter concludes with several

lessons learned and open issues.

In Chapter 16, “Contact recommendations in social networks,” Javier

Sanz-Cruzado and Pablo Castells focus on the confluence of recommender

systems and online social networks, to survey academic literature and indus-

try examples on recommending people to connect with in social networks.

After discussing the specifics of such a recommendation task, the chapter

overviews the existing algorithmic approaches for contact recommendation,

proposing a rich taxonomy, which includes neighborhood-based, matrix fac-

torization, path-based, and random walk methods, among others. Related

resources, such as datasets, APIs, and software libraries are also described.

Next, the authors overview practical aspects for building a contact recom-

mender system, such as the directionality of network edges, the scalability of

the algorithms, and the evaluation of generated recommendations. Finally,

the authors present and analyze results achieved in exhaustive experiments,

and conclude with future research directions.

In Chapter 17, “Job recommendations: The XING case,” Katja Nie-

mann, Daniel Kohlsdorf, and Fabian Abel present, using the XING case,

why people are interested in receiving job recommendations and what chal-

lenges real world job recommendation systems should solve to provide rel-

evant recommendations. People might be actively looking for a new job or

be waiting for a new job to find them, they might want to stay informed

about their own value on the job market or about the development of the

domain they are working in. Additionally, recruiters and companies aim

for the right people to see their job postings to find suitable candidates for

open positions. This chapter first introduces the professional social net-

work XING, and discusses the challenges it has to face when generating job

recommendations. Thereafter, the functionality of XING job recommender

system is presented, and it is also discussed how new features are evaluated

by XING using offline and online evaluation techniques. Finally, an insight

into XING’s recommender system architecture is given, which has to serve

thousands of requests per minute.

In Chapter 18, “Academic recommendations: The Mendeley case,”

Maya Hristakeva, Daniel Kershaw, Benjamin Pettit, Saúl Vargas, and

Kris Jack present the recommender system developed for Mendeley, El-

sevier’s editorial tool for managing and sharing research papers, where mil-

lions of users compiled personal libraries of relevant articles. The authors

September 19, 2018 11:21 ws-rv9x6-9x6 Book Title 11131-00a-preface page xiii

Preface xiii

first survey previous work on academic recommender systems, discussing

the sources of information commonly used, such as collaborative ratings,

content-based data (e.g., article texts, metadata, and social tags), and ci-

tation networks. The Mendeley recommender consists of a user-based col-

laborative filtering method that takes advantage of the implicit feedback in

the users’ libraries, which is complemented by content- and discipline-based

recommendations for new users. As explained in the chapter, the authors

observed that adding recommendations from the citation network did not

result in significant gains to either recommendation quality or coverage,

and expect to incorporate additional domain-specific feature to supplement

collaborative filtering. When describing the system, the authors provide a

number of practical considerations they took into account, such as recom-

mendation post-processing, time decays, impression discounting, and fresh

content provision. Then, they discuss important challenges they faced, such

as the recommender’s scalability, the scientific quality of the recommended

items, and the users’ privacy. They also describe the utilized resources,

and offline and online evaluations followed. To conclude, lessons learned

and future work directions are given.

In Chapter 19, “MoocRec.com: Massive Open Online Courses recom-

mender system,” Panagiotis Symeonidis and Dimitrios Malakoudis present

the recommender system of MoocRec.com, which aims to provide personal-

ized suggestions of online courses. The recommender is based on a matrix

factorization model that exploits heterogeneous data about user skills, de-

scriptions of job positions, and course topics. The system extracts such data

from external resources, namely EdX and Coursera MOOC websites, and

LinkedIn professional social network. In the chapter, the authors describe

the system architecture, some of its components, such as the Web crawler

and the data proccesser, and its underlying recommendation algorithms.

In Chapter 20, “Food recommendations”, Christoph Trattner and David

Elsweiler provide an extensive survey of food recommender systems, which

aim to suggest food that a user might want to eat and food that may help

them to nourish more healthily. They also describe certain specializations,

such as food recommender systems for groups of users. The authors ex-

amine which collaborative recommendation algorithms have been used in

the food domain, the ways the systems are typically evaluated, and the re-

sources available to those interested in building or studying recommender

systems in practice. Finally, they discuss a number of related challenges,

and offer some lessons learned from past research and potential future work

directions.

September 19, 2018 11:21 ws-rv9x6-9x6 Book Title 11131-00a-preface page xiv

xiv Collaborative Recommendations

In Chapter 21, “Clothing recommendations: The Zalando case,” An-

tonino Freno presents the recommender system developed by Zalando, one

of the most popular online fashion retails in Europe. Being an excellent

representative example of a large-scale on-line retail platform, the system

poses a number of challenges that go far beyond selecting the most accurate

recommendation algorithm. In particular, the author discusses problems

that usually arise from operational constraints, such as the adaptation to

novel use cases, the cost and complexity of system maintenance, the ca-

pability of reusing pre-existing signals, and integration of heterogeneous

data sources. Specifically, he explains how moving from a collaborative

filtering approach to a learning-to-rank model helped to effectively tackle

the above challenges, while improving the quality of the recommendations.

He also provides a description of the system architecture and algorithmic

approaches, and conducted experiments, by the means of both offline and

online evaluations.

We thank the authors of all the chapters for contributing the content of this

book and helping each other improve chapters through peer-reviewing. We

believe the readers will find this book valuable, informative, and thought-

provoking, and hope it will lead to further advancements in the area of

collaborative recommender systems.

Shlomo Berkovsky

Iván Cantador

Domonkos Tikk

October 25, 2018 13:52 ws-rv9x6-9x6 Book Title 11131-00b-toc page xv

Contents

Preface v

1. Collaborative Filtering: Matrix Completion and

Session-Based Recommendation Tasks 1

Dietmar Jannach and Markus Zanker

2. Matrix Factorization for Collaborative Recommendations 35

Evgeny Frolov and Ivan Oseledets

3. Cutting-Edge Collaborative Recommendation

Algorithms: Deep Learning 79

Balázs Hidasi

4. Hybrid Collaborative Recommendations: Practical

Considerations and Tools to Develop a Recommender 127

Michal Kompan, Peter Gašpar and Maria Bielikova

5. Context-Aware Recommendations 173

Yong Zheng and Bamshad Mobasher

6. Group Recommendations 203

Ludovico Boratto and Alexander Felfernig

xv

October 25, 2018 13:52 ws-rv9x6-9x6 Book Title 11131-00b-toc page xvi

xvi Collaborative Recommendations

7. User Preference Sources: Explicit vs. Implicit Feedback 233

Paolo Cremonesi, Franca Garzotto and

Maurizio Ferrari Dacrema

8. User Preference Elicitation, Rating Sparsity and Cold Start 253

Mehdi Elahi, Matthias Braunhofer, Tural Gurbanov

and Francesco Ricci

9. Offline and Online Evaluation of Recommendations 295

Alejandro Belloǵın and Alan Said

10. Recommendations Biases and Beyond-Accuracy

Objectives in Collaborative Filtering 329

Pasquale Lops, Fedelucio Narducci, Cataldo Musto,

Marco de Gemmis, Marco Polignano and

Giovanni Semeraro

11. Scalability and Distribution of Collaborative Recommenders 369

Evangelia Christakopoulou, Shaden Smith,

Mohit Sharma, Alex Richards, David Anastasiu and

George Karypis

12. Robustness and Attacks on Recommenders 405

Neil J. Hurley

13. Privacy in Collaborative Recommenders 431

Qiang Tang

14. TV and Movie Recommendations: The Comcast Case 465

Shahin Sefati, Jan Neumann and Hassan Sayyadi

15. Music Recommendations 481

Dietmar Jannach, Iman Kamehkhosh and Geoffray Bonnin

October 25, 2018 13:52 ws-rv9x6-9x6 Book Title 11131-00b-toc page xvii

Contents xvii

16. Contact Recommendations in Social Networks 519

Javier Sanz-Cruzado and Pablo Castells

17. Job Recommendations: The XING Case 571

Katja Niemann, Daniel Kohlsdorf and Fabian Abel

18. Academic Recommendations: The Mendeley Case 599

Maya Hristakeva, Daniel Kershaw, Benjamin Pettit,

Saúl Vargas and Kris Jack

19. MoocRec.com: Massive Open Online Courses

Recommender System 627

Panagiotis Symeonidis and Dimitrios Malakoudis

20. Food Recommendations 653

Christoph Trattner and David Elsweiler

21. Clothing Recommendations: The Zalando Case 687

Antonino Freno

Index 713

October 25, 2018 13:52 ws-rv9x6-9x6 Book Title 11131-00b-toc page xviii

October 23, 2018 8:39 ws-rv9x6-9x6 Book Title 11131-01 page 1

Chapter 1

Collaborative Filtering:

Matrix Completion and Session-Based

Recommendation Tasks

Dietmar Jannacha and Markus Zankerb

aAAU Klagenfurt, Austria, bFree University of Bozen-Bolzano, Italy

Email: dietmar.jannach@aau.at, markus.zanker@unibz.it

This chapter provides a self-contained overview on the basics of col-
laborative filtering recommender systems. It covers two main classes
of recommendation scenarios. In the classical matrix completion prob-
lem formulation, the task of an algorithm is to make longer-term rel-
evance predictions given a user-item rating matrix. In session-based
recommendation scenarios, the goal is to predict relevant items given a
user’s observed short-term behavior. From an algorithmic perspective,
the chapter particularly focuses on neighborhood-based methods, which
were proposed in the early days of collaborative filtering and which are
still relevant today. The chapter addresses the entire life-cycle of al-
gorithm development and also discusses libraries, datasets, and imple-
mentation aspects. Furthermore, it covers evaluation issues and reflects
on today’s research methodology in the field. Overall, the chapter shall
serve as a starting point for readers, providing pointers to more detailed
discussion of the various aspects regarding the design and evaluation of
collaborative filtering recommender systems.

1.1. Introduction

Collaborative filtering (CF) is the predominant technical approach in the

field of recommender systems in the academic literature (Jannach et al.,

2012). It is also utilized by large companies in productive use since clearly

more than 15 years, with the system of Amazon.com being one of the most

prominent early examples of wide-scale deployment (Linden et al., 2003).

The basic idea of this class of algorithms is to exploit the “wisdom of the

crowds” and to use patterns within the collective behavior of a larger user

community to determine suitable recommendations for an individual user

or in the context of a given reference item.

1

October 23, 2018 8:39 ws-rv9x6-9x6 Book Title 11131-01 page 2

2 D. Jannach and M. Zanker

In contrast to other possible approaches to determine recommendations,

collaborative filtering techniques do not rely on content features and meta-

data of the items when determining the relevance of a recommendable item

for a user like content-based or knowledge-based recommendation strategies

(Jannach et al., 2011). In its pure form1, collaborative-filtering relies solely

on a collection of explicit or implicit preference signals of users towards

items. Given the past preference signals of an individual user, the goal

is then to determine the (current) relevance of each recommendable item

by combining these individual signals with the preference patterns of the

community. The corresponding output of CF algorithms usually is either a

set of relevance predictions for each item or a ranked list of items.

1.1.1. Historical Background

Probably the first work that used the term collaborative filtering in today’s

meaning in the context of recommender systems was that of Goldberg et al.

(1992). In their Tapestry system, users of an experimental corporate email

system could define personal filters (using a special query language) for

incoming messages that referred to different features of emails, e.g., sender

or content. “Collaborative” filters were a special class of filters, which could

refer to so-called annotations by other users and one could therefore express

that only messages should be retained that were voted positively by other

users.

Soon afterwards different proposals were made of how to automate the

task of filtering (news) items based on personal preferences and the opinions

of other people. Among these proposals was the GroupLens system from

Resnick et al. (1994), which proposed the comparably simple heuristic that

users who shared similar preferences in the past can be exploited to predict

a relevance score (rating) for incoming netnews messages (i.e., a user’s

nearest neighbors). While during the past two decades hundreds of different

sophisticated algorithms were proposed for the rating prediction task, the

problem formalization and the basic heuristic underlying this early work

has influenced academic research in the field up to today.

1.1.2. Collaborative Filtering as a Matrix Completion Task

In Resnick et al. (1994), the recommendation problem is considered one

of matrix completion (or “matrix filling” as termed in the original work).
1A variety of additional types of data can be combined with CF approaches, e.g., data
that describes the users’s context or features of items. See also Chapter 4 of this book.

October 23, 2018 8:39 ws-rv9x6-9x6 Book Title 11131-01 page 3

Collaborative Filtering 3

The input is a matrix where rows and columns represent users and items,

respectively, and the cells of the matrix are the known preference statements

(ratings) for user-item pairs.

Table 1.1 shows an example matrix where five users (u1 to u5) rated

five items (i1 to i5). The recommendable items for user u1 are items i4

and i5 since we assume that the u1 already knows the other items. The

question is now if we should recommend i4 and i5 at all, and if so, in which

order the items should be recommended.

Table 1.1. User-item Rating
Matrix.

i1 i2 i3 i4 i5

u1 3 4 3 ? ?
u2 4 3 5

u3 1 3 1

u4 4 3 2 3
u5 3 3 2

While the ultimate computational task in many applications is to filter

and rank the items, many matrix completion approaches solve this indi-

rectly by estimating a relevance score (or, in this case, predicting a rating)

for each unknown entry in the cell. While the ranking is determined by

these scores, items that do not surpass a minimum threshold need to be

filtered.

Over the years, a huge variety of algorithmic approaches has been pro-

posed to accurately predict the missing matrix values, and many of the

more advanced ones will be discussed in Chapter 2 of this book. In this

chapter, we will mainly focus on early and comparably simple algorithms,

including the one proposed by Resnick et al. (1994), which is based on a

nearest-neighbor scheme.

Abstracting the recommendation problem to a matrix completion task

has different advantages from an academic perspective, as discussed in Jan-

nach and Adomavicius (2016). The computational task is very well defined

and the generic nature of the problem formulation allows researchers to

design algorithms that are not specific to a certain application domain.

Furthermore, different mathematical concepts for data analysis or noise

reduction, including principal component analysis or singular value de-

composition, can be directly applied on the given data. Finally, over the

years, a number of public datasets have become available and agreed-upon

October 23, 2018 8:39 ws-rv9x6-9x6 Book Title 11131-01 page 4

4 D. Jannach and M. Zanker

evaluation procedures were established in the community (see Section 1.4 in

this chapter). These developments, together with the Netflix prize compe-

tition2, geared research efforts on the basis of a matrix completion problem

formulation during the last decade. Therefore, most of the chapters in this

book will focus on these algorithmic approaches addressing this problem

formulation. Nonetheless, as pointed out, e.g., in Jannach et al. (2016b)

and Jannach and Adomavicius (2016), there are a number of aspects of

practical problems for which matrix completion is not the best problem ab-

straction. Consequently, we will discuss an alternative problem formulation

later in Section 1.1.4.

1.1.3. Basic Algorithms for Matrix Completion

In this section, we will review two basic collaborative filtering algorithms.

Both of them are called “memory-based” (in contrast to “model-based”

ones) because their recommendations are not based on learning an abstract

representation of the data in a pre-processing step. Instead, they load the

existing preference signals of the community into memory and implement

neighborhood-based strategies to determine suitable recommendations.

1.1.3.1. User-based Nearest-Neighbor Algorithms

This algorithm scheme, which is often referred to simply as “user-based

CF”, implements the general idea that users “who agreed in the past will

probably agree again” (Resnick et al., 1994). To make a relevance prediction

under that scheme, i.e., predicting the relevance of item i5 (called “target

item”) for user u1 (called the “active user”) in Table 1.1, two main steps

have to be done.

(1) Identify a set of N users who exhibit similar rating patterns as u1

(which are often called “neighbors” or “peers”) and for whom a

relevance signal for item i5 is known.

(2) Given this set of N similar users and their ratings for item i5,

combine their ratings to predict the relevance of i5 for u1.

Consider the following example. When looking at the rating matrix

in Table 1.1, we can see that users u2 and u4 have rated item i5, and

the question arises if their ratings for i5 would be good predictors for the

unknown rating of user u1. The basic assumption is if the ratings of user

2http://www.netflixprize.com

http://www.netflixprize.com

October 23, 2018 8:39 ws-rv9x6-9x6 Book Title 11131-01 page 5

Collaborative Filtering 5

u1 were highly similar to those of users u2 and u4 then these neighbor’s

ratings for i5 should be useful predictors. User u2 rated items i3 and i4

exactly like u1 and user u4 rated them similarly, but did not use identical

values.

Now, when implementing the general idea of user-based collaborative

filtering in practice, two basic design choices have to be made.

a) How do we assess the similarity of two users?

b) How do we combine the ratings of the similar users?

To answer the first question, Resnick et al. (1994) proposed to use Pear-

son’s correlation coefficient as a measure to assess if users have similar

tastes. Given two users a and b, their similarity is computed as follows, see

also Jannach et al. (2011),

sim(a, b) =
Σp∈P (ra,p − ra)(rb,p − rb)√

Σp∈P (ra,p − ra)2
√

(rb,p − rb)2
(1.1)

where P is the set of items that were rated both by a and b, ra,p refers

to the known rating of user a for item p, and the symbol ra corresponds

to the average rating of user a. The resulting values range between −1

and +1, where a value +1 indicates that two users have identical tastes

and −1 expresses that users have opposite tastes. Values close to 0 are

indicators of no or only an insignificant correlation between tastes of two

users. One characteristic of the correlation coefficient worth noting is that

the measure accounts for different interpretations of the rating scale by two

users. Instead of comparing absolute rating values, it compares how a user’s

rating for an item deviated from the user’s average rating value.

With respect to the second question of how to combine the relevance

predictions given a set of similar users N , Resnick et al. (1994) proposed

to use the following function pred(a, p), to predict the rating of user a for

item p, see also Jannach et al. (2011).

pred(a, p) = ra +
Σb∈Nsim(a, b) ∗ (rb,p − rb)

Σb∈N |sim(a, b)|
(1.2)

The idea of this prediction function is to start with the average rating

of user a and then consider for each neighbor if item p has been rated

above or below the individual average rating. These rating signals of the

nearest neighbors are consequently weighted with the similarity between

users. Thus the ratings of more similar neighbors have a stronger influence

on the derived rating predictions.

October 23, 2018 8:39 ws-rv9x6-9x6 Book Title 11131-01 page 6

6 D. Jannach and M. Zanker

Different variations of the scheme proposed by Resnick et al. (1994) are

possible along the following dimensions.

• Similarity function: Several standard similarity measures have been

explored in the literature including cosine similarity, Spearman’s

rho, Jaccard index or Dice coefficient (Herlocker et al., 2004), where

the latter measures are only applicable in case the ratings are bi-

nary or unary. Furthermore, considering only the user’s deviation

from their average rating value for ordinal and continuous rating

scales accounts for a consistent under- or over-biasing. In addition,

the similarity function could also take the number of co-rated items

into account and e.g., apply significance weighting, where the sim-

ilarity of users with only few co-ratings is reduced (Breese et al.,

1998; Herlocker et al., 1999).

• Neighborhood formation: The most common strategies are to select

a fixed number of nearest neighbors or to include only those neigh-

bors above a specific similarity threshold. Alternatively, an adap-

tive neighborhood formation strategy can be implemented that, for

instance, could dynamically adjust the similarity threshold to keep

the number of nearest neighbors within a predefined range.

• Prediction function: Its task is to aggregate the ratings of neigh-

boring users depending on their similarities and additional charac-

teristics in order to predict a rating value. Besides the standard

weighted average like in Equation 1.2, also specific modifications of

the aggregation function were proposed, like adjusting the impor-

tance weight of controversial items with a high rating variance or

amplifying the importance of very similar users (i.e., those close to

the highest similarity) (Breese et al., 1998).

Which algorithm configuration works best in practice has to be deter-

mined empirically based on the specifics of the given application domain.

1.1.3.2. Item-based Nearest-Neighbor Algorithms

The idea of “Item-based CF” is closely related to the user-based variant

already discussed with the difference that we compute similarities between

items based on co-ratings by individual users. When we seek a prediction

for user u1 and an item i5, we do not scan the data for users that are similar

to u1 but for items that are similar to i5 and then aggregate the ratings u1

gave to these similar items.

October 23, 2018 8:39 ws-rv9x6-9x6 Book Title 11131-01 page 7

Collaborative Filtering 7

For instance, turning to our example in Table 1.1, we can compute

the similarity between those items that were rated by user u1 (i1, i2,

and i3) with item i5 and then again compute the prediction for i5 as a

similarity-weighted sum of the ratings for i1, i2, and i3. While user-based

and item-based CF are technically similar, in practice item-based CF has

some advantages over the user-based method, as discussed, e.g., by Linden

et al. (2003). Consider that there are on average more ratings (or, more

generally, preference signals) per item than there are per user. The similar-

ity computations are therefore often based on a larger number of common

ratings and the similarity models are therefore more stable. Note that in

the user-based case a few more ratings can lead to a largely different set of

neighbors. Given that item similarities have a tendency to be more stable,

Linden et al. (2003) proposed to pre-compute the item similarities in an

offline process to speed up the predictions at runtime. Their pre-processing

method is computationally expensive in theory, but scales well as there

are typically many more customers than catalogue items. Furthermore, for

customers who only purchase a few best-selling items, a sampling strategy

can be applied to reduce the computational effort.

1.1.4. Collaborative Filtering as Session-Based

Recommendation

So far, our discussion was limited to scenarios where the recommendation

problem is considered a matrix completion task and item relevance pre-

dictions are independent of the current usage context, users’ intents, or

recent observable behavior. However, in many practical applications users

can have different intents each time they visit, for instance, an e-commerce

site. Such short-term or ephemeral preferences are not explicitly covered in

the basic problem formulation and thus specific techniques have been devel-

oped to realize context-awareness of RS.3 In addition, visitors of commercial

websites may also not be logged in, which means that in such situations

no long-term preferences are known. However, individualized recommenda-

tions can be based on click-stream data of the current user session. While

several works exploit other types of preference signals than explicit ratings,

one of the main assumptions of standard collaborative filtering approaches

is still that there is only a single type of preference signal relating users

and items. Thus, advanced techniques capable of coping with multiple

3Context-aware recommenders use additional sources of information that describe the
user’s current situation and will be discussed in more detail in Chapter 5 of this book.

October 23, 2018 8:39 ws-rv9x6-9x6 Book Title 11131-01 page 8

8 D. Jannach and M. Zanker

different signal types or with multi-dimensional ratings are discussed in

later chapters. For instance, Jannach et al. (2018) provide a deeper discus-

sion of recommendation algorithms based on implicit feedback.

Next, we will sketch an alternative problem formulation for session-

based recommendation, where we are interested in recommendations that

suit the context of a specific user session. An in-depth discussion of

sequence-aware recommender systems and a more formal characterization

of the problem can be found in Quadrana et al. (2018).

1.1.4.1. Inputs and Outputs

The central input to a session-based recommender is an ordered or time-

stamped list of past user actions. User actions can have different types

(such as “item-view” or “purchase”) and are typically associated with one

of the items. The users themselves can be known, i.e. recognized returning

users, or anonymous. The (user, item, action) tuples can furthermore be

enhanced with additional attributes like user demographics or metadata

features. The central part of the inputs can be seen as a collection of

enriched clickstream data, which can be easily collected on web platforms.

A main difference to the matrix completion formulation is that we can

potentially observe multiple interactions of a user with the same item over

time.

The second part of the inputs is the context of an “active” session,

which consists of an ordered list of the user’s actions in the session for

which a recommendation is sought for. In the literature, sometimes a dif-

ferentiation between “session-based” and “session-aware” recommendations

is made (Quadrana et al., 2018). In “session-based” scenarios, no longer-

term user history is known, e.g., because we have to deal with anonymous

users. In “session-aware” scenarios, in contrast, also past sessions of the

active user might be known.

The output of a session-based recommender is an ordered lists of pre-

dicted next user actions, where these actions are usually related to items,

e.g., a list of items for which we predict a view event or a purchase event.

In the case of “next-basket predictions”, the predictions can also refer to an

entire set of items that are bought together. In the general form, the output

is however similar to that of a traditional “item-ranking” recommendation

setup.

October 23, 2018 8:39 ws-rv9x6-9x6 Book Title 11131-01 page 9

Collaborative Filtering 9

1.1.4.2. Goals and Computational Tasks

In contrast to the matrix-completion task, where the goal is usually to pre-

dict a context-independent relevance score based on past preference signals,

in session-based scenarios one has to also consider the short-term intents of

the user. The goal is therefore to determine a ranked list of items that are

relevant given the user’s actions in the current session. Since the relevance

of the items can largely depend on the users current contextual situation,

the computational task can therefore involve balancing the users’ long term

preferences and their short-term situation and goals. Figure 1.1 illustrates

the main idea of collaborative filtering as session-based recommendation.

….

? ? ?

Past
sessions of

the user
community

Past sessions of
the current user

Current
session

Fig. 1.1. General principle of collaborative filtering as session-based recommendation.
We are given a current user session containing actions of different types with the goal of

finding suitable recommendations for the session. Both, past sessions of the individual

user and the user community can be considered when determining the recommendations.
Different colors in the figure indicate different types of actions.

Besides the user’s intent, in session-based recommendation scenarios,

the intended purpose of the recommendations also influences the contextual

relevance of individual items. If, for instance, the goal of a recommender

is to show the user alternatives for a given product of interest, items that

are similar to those that the user has recently inspected are probably good

candidates. If, in contrast, the recommender should help the user find

accessories, a very different set of shop items becomes relevant. Finally,

also the repeated suggestion of items that are already known to the user can

be a task of for a session-based recommender, which can lead to additional

computations in order to select such items and to determine the best point

in time to make such recommendations.

October 23, 2018 8:39 ws-rv9x6-9x6 Book Title 11131-01 page 10

10 D. Jannach and M. Zanker

Overall, there is no unique concept of a “good” recommendation in

session-based recommendation scenarios, which also makes the evaluation of

such systems more complex in academic environments as there are domain-

dependent factors. With the matrix-completion problem formulation, on

the other hand, several important aspects of real-world recommendation

problems are not addressed at all, like short-term trends, the repeated

consumption of items, or the consideration of multiple interactions of a

user with an item over time.

1.1.5. A Nearest-Neighbor Algorithm for Session-Based

Recommendation

While user-based CF and item-based CF can be considered as “canonical”

approaches to the matrix completion problem that are popular baselines

for algorithm comparisons, no standard baseline algorithm (and evaluation

protocol) yet exists for session-based recommendation. Historically, typi-

cal technical approaches that consider the sequences of events in the rec-

ommendation process include works that rely on some form of sequential

pattern mining techniques (Mobasher et al., 2002), Markov models (Shani

et al., 2005), explicit user feedback (Zanker and Jessenitschnig, 2009b,a)

and, more recently, recurrent neural networks (Hidasi et al., 2016), see also

Chapter 3 of this book.

An alternative to attempting to mine sequence information from the

logs, which is often a computationally costly process, is to focus only on

co-occurrence patterns within the different user sessions. One of the most

visible examples of this approach in practice are Amazon’s “Customers who

bought . . . also bought” recommendations. Technically, these recommen-

dations can be implemented by considering pair-wise item co-occurrences

in past transactions to predict additional items for the current shopping

session.

This pairwise approach can be extended to a session-based nearest neigh-

bor algorithm. The idea is to take the elements of the current user session

and look for past sessions — including those by other users — who are

similar to this session. We then examine which other elements appeared

frequently within this set of “neighbor sessions”. These elements then fi-

nally represent our recommendation candidates. In Zanker and Jessen-

itschnig (2009b) this similarity computation is even designed as a stepwise

feature-combination approach, where the feedback categories representing

different types of user actions such as “view events”, “menu navigation”

October 23, 2018 8:39 ws-rv9x6-9x6 Book Title 11131-01 page 11

Collaborative Filtering 11

or explicit feedback are prioritized and low-priority feedback categories are

only exploited if not sufficient recommendation candidates can be identified

otherwise.

More formally, let s be the current user session, where a session is de-

fined as an ordered list of recorded user actions. Each list entry can be

a complex object describing, e.g., the respective item ID and the action

type, or simply a set of item IDs if only actions of one type (e.g., “view

events”) are considered. Given the set S of past sessions of all users and a

function sim(s1, s2) that returns a similarity score for two sessions s1 and

s2, compute the set N that contains those k sessions from S, which have

the highest similarity score according to the function sim.

The goal is now to compute a relevance score for each recommendable

item i for a given session s and a set of neighbor sessions N . We can

compute this score as follows, see also Bonnin and Jannach (2014).

scoreknn(i, s) = Σn∈Nsim(s, n)× 1n(i) (1.3)

where 1n(i) = 1 if session n contains item i and 0 otherwise. The final

list of recommendations is then determined as usual by sorting the recom-

mendable items in decreasing order of the relevance score.

Although this method does not take the order of the items within a ses-

sion into account, it turns out that it leads to competitive results, e.g., in the

domains of next-track music recommendation, next-item recommendation

in e-commerce, and next-task prediction in workflow modeling, see, e.g.,

Lerche et al. (2016); Jannach et al. (2016a, 2017); Jannach and Ludewig

(2017b); Ludewig and Jannach (2018).

Similar to the already mentioned user-based and item-based CF meth-

ods, different similarity functions can be applied for session-based recom-

mendation methods. Since we typically have to cope with binary or actually

unary data, i.e., an item appears or does not appear within a session, we can

apply, for instance, set-based similarity measures like the Jaccard index or

binary cosine similarity. Recently, different sequence-aware similarity func-

tions were explored in Ludewig and Jannach (2018). The obtained results

indicate that using such similarity functions in many cases further increase

the prediction accuracy of neighborhood-based models. As a result, these

comparably simple models often even outperform some of today’s sophisti-

cated deep learning based algorithms.

Finally, the number of neighbors is another parameter to be considered.

It depends on the application domain, where, for instance, for next-track

music recommendation reasonable values range from less than 10 neighbors

October 23, 2018 8:39 ws-rv9x6-9x6 Book Title 11131-01 page 12

12 D. Jannach and M. Zanker

up to hundreds of neighbors (Bonnin and Jannach, 2014; Jannach and

Ludewig, 2017b).

1.2. Recommendation Paradigms

In this section, we will first discuss the general pros and cons of the collab-

orative filtering recommendation paradigm — also in comparison to other

recommendation mechanisms — and will then focus on the specific advan-

tages and limitations of neighborhood-based methods.

1.2.1. Pros and Cons of Collaborative Filtering

1.2.1.1. Existing Recommender Systems Paradigms

Recommender systems are typically categorized into collaborative filtering

methods, as discussed in this book, content-based methods, knowledge-

based approaches, and hybrids that are different combinations of the afore-

mentioned paradigms (Jannach et al., 2011).

The idea of content-based methods is to estimate the preference of an

individual user towards the specific characteristics of items. In the movie

domain, for instance, a corresponding content-based user profile could com-

prise to which extent a user likes action movies or an actor/actress. Thus,

the profile itself is learned by analyzing the features of items that the user

liked or disliked in the past.

Knowledge-based approaches also consider item features, but are usually

based on explicit, formalized, and domain-dependent information about

which items are a good match for a given set of user preferences. These user

preferences are typically elicited in an interactive process and are specific

for a given recommendation problem instance. The logic of how to match

user preferences and items can, for example, be expressed in the forms of

logical rules, constraints, or utility functions.

1.2.1.2. Comparison of CF Methods with Other Paradigms

All of these methods have their advantages and limitations, which is why

various proposals to build hybrid systems were made over the years that

aim at overcoming the shortcomings of individual methods.

One main advantage of collaborative filtering methods is that no know-

ledge about the recommendable items is required. In many application

domains, including e-commerce, product catalogs can comprise tens of

October 23, 2018 8:39 ws-rv9x6-9x6 Book Title 11131-01 page 13

Collaborative Filtering 13

thousands of items, often leading to significant challenges in terms of prod-

uct data management for companies. This is particularly the case when

the online platform where the recommendation system is deployed is a big

market place.

Pure CF-based approaches and the corresponding algorithms can fur-

thermore be applied to a variety of domains and product categories. A

large number of different algorithms was proposed over the years and a

multitude of off-the-shelf implementations in different programming lan-

guages are publicly available. When compared to most knowledge-based

systems, CF-based methods (and content-based ones usually as well) can

learn over time when additional preference signals become available. In

many knowledge-based systems, in contrast, the underlying rules have to

be updated when new products with new features should be recommended.

On the downside, CF-based recommenders require the existence of a

large community of users in order to be able to identify patterns in their

preference relations and behavior. This requirement for a large and ide-

ally returning user community can be particularly challenging for smaller

e-commerce sites. The other main problem of CF-based systems is its lim-

ited capability of dealing with first-time users and novel items. For new or

cold-start users, no preference signals are initially available, making it im-

possible to find neighbors in the user-based CF approach described above.

Similar problems exist for new items that have been recently added to the

item database. A huge number of academic research papers made proposals

to deal with these aspects, e.g., by using initially an alternative recommen-

dation paradigm or to recommend mostly popular items to new users, see,

e.g., Bobadilla et al. (2012); Huang et al. (2004); Said et al. (2012a).

1.2.2. Pros and Cons of Nearest-Neighbor Methods

Nearest-neighbor methods in general have the advantage that they are easy

to understand, implement, debug, and maintain. More sophisticated algo-

rithms — as will be discussed in later chapters — can be challenging to

implement for a typical software engineer. Furthermore, debugging un-

expected outputs becomes challenging and significant engineering effort

is required to deploy such algorithms in a production environment. For

instance, the winning algorithms of the Netflix prize never made it into

production, partly due to the involved engineering efforts (Amatriain and

Basilico, 2012). In contrast to model-based approaches, which, e.g., rely

on learning a prediction function from historical data in an offline process,

October 23, 2018 8:39 ws-rv9x6-9x6 Book Title 11131-01 page 14

14 D. Jannach and M. Zanker

nearest-neighbor methods are able to immediately consider new preference

signals once they become available.

At least from an academic standpoint, the outputs of nearest-neighbor

methods are considered to be “easy to explain”, as done, e.g., in Herlocker

et al. (2000) and a number of ways of explaining recommendations based on

user-based CF methods were proposed in the literature. To which extent

these academic approaches are suited in practice, is, however, still a largely

open question.

Finally, nearest-neighbor methods are considered to lead to “reason-

ably good”“ recommendations in many domains. Many more sophisticated

algorithms exist which outperform nearest-neighbor methods in offline ex-

periments in terms of predictive accuracy measure. However, it is not clear

if these — often only slightly better — results can be actually noticed by

users or translate into business value for the provider.

The main challenge of nearest-neighbor methods often lies in their com-

putational complexity. When using a naive implementation, the required

computation times very soon exceed the narrow time frames of online rec-

ommendation scenarios. Obviously, one cannot scan thousands or even

millions of possible neighbors in real-time, whenever a new recommenda-

tion should be served to the user. Therefore, offline pre-processing, data-

sampling, or parallelization techniques have to be applied to ensure the

scalability of neighborhood-based methods, see, e.g., Jannach and Ludewig

(2017a).

1.3. Practical Implementation Considerations

Recommendation systems, and collaborative filtering in particular, are a

key application of data mining and machine learning at a large scale in in-

dustry. The research field of recommender systems is traditionally closely

linked to industry needs and application scenarios. Industry challenges

like the famous one million dollar Netflix Prize (Bell and Koren, 2007)

led to additional research momentum and the ACM conference series on

recommender systems, as a result, usually attracts a high share of industry

participants. Nevertheless, specific aspects of recommender system imple-

mentations traditionally only receive limited attention in academia as will

be discussed next.

Scalability Amazon is one of the earliest adopters of large-scale recom-

mendation techniques to personalize their customers’ shopping experience.

October 23, 2018 8:39 ws-rv9x6-9x6 Book Title 11131-01 page 15

Collaborative Filtering 15

Thus, in an early paper on item-based collaborative filtering employed at

Amazon (Linden et al., 2003), the focus was put on the scalability of this

neighborhood method and short response times. The importance of scala-

bility is, for instance, also stressed in a blog post from Netflix (Amatriain

and Basilico, 2012), where the strongest algorithms from the first progress

prize could be put to practice only with significant engineering effort since

they had to operate on 5 billion instead of 100 million ratings. Questions

of scalability will also be discussed in Chapter 11 of this book.

Freshness and Continuous Updates In addition to the ability to scale

to large amounts of data, also the freshness of the data and models is an

important aspect for real-world applications. In particular, for cold-start

users being able to continuously update the user model and the recom-

mendations based on the most recent user actions within milliseconds is an

important system requirement. The concept of a three-tier pipeline archi-

tecture consisting of offline, nearline and online tiers has been proposed for

this purpose (Amatriain and Basilico, 2012). The offline tier performs the

traditional batch processing to rebuild models at predefined intervals, the

nearline tier is responsible for incremental model updates that should be

very close to real-time. The online tier finally performs the actual filtering

of pre-computed recommendations based on the most recent user feedback

and general trends.

User Interface Francisco Martin, at that time CEO of the recommen-

dation service provider Strands, stated in his keynote at ACM RecSys 2009

that the user interface can be much more important than the recommen-

dation algorithm itself (Martin, 2009). Also Amatriain and Basilico (2015)

mention that the user interaction design is often disregarded in the litera-

ture, even though it can have a major impact in practical systems. A recent

survey of existing research on user interaction aspects of recommender sys-

tems can be found in Jugovac and Jannach (2017); aspects of user-centric

evaluation approaches for recommender systems are also discussed in depth

in Knijnenburg et al. (2012); Knijnenburg and Willemsen (2015); Pu et al.

(2011)

Data Integration When it comes to interacting with users, almost ev-

erything that is on display at a commercial site can in principle be subject

to personalization (Amatriain and Basilico, 2012). This, as a result, means

that multiple categories of data sources can be considered as a potential

October 23, 2018 8:39 ws-rv9x6-9x6 Book Title 11131-01 page 16

16 D. Jannach and M. Zanker

input to algorithms, which in turn leads to a need for engineering the most

appropriate features. In addition, it becomes more and more visible that

explicit item ratings, as used in the context of the Netflix prize, are not

the most helpful source to predict the users’ next actions, e.g., because

there can be a gap between what items users rate highly and which items

they actually consume. Therefore, many different types of implicit feed-

back signals about their behavior, transactions and social connections can

be exploited, as discussed in Jannach et al. (2018). A particular challenge

in that context is that there are not only various potential types of signals

but that there can be huge amounts of data to be processed. In Basilico

(2013), the author for example mentions that Netflix processes over 100

billion events per day.

Business metrics Finally, when it comes to assessing the quality or value

of the recommendation functionality, obviously the well-known RMSE has

to be seen as just one proxy measure for the recommendation quality, but in

reality more encompassing business metrics have to be used in practice. For

instance, click-through rates, choice time, user engagement, or low churn

rates are measured as success indicators in practical applications (Gomez-

Uribe and Hunt, 2015).

Frameworks and Libraries From an engineering perspective, substan-

tial progress was made in the last years and developers can today build

their solutions based on several industry-strength frameworks and infras-

tructures that were not around a decade ago. Examples of such frameworks

are the Apache PredictionIO ML server4 or the Tensorflow5 open source

library for numeric computations using data flow graphs that has been suc-

cessfully used for building deep learning and factorization-based algorithms.

From a more research oriented perspective, a variety of mature open-source

recommendation libraries on different language platforms are available to-

day as well, like LensKit (Ekstrand et al., 2011) for Java6, MyMediaLite

(Gantner et al., 2011) for the .NET platform7, different ML libraries such

as scikit-learn (Pedregosa et al., 2011) for Phyton or the rrecsys package

(Çoba et al., 2017a,b) for R8. Public datasets and libraries will be discussed

in more depth in Chapter 9 of this book.

4https://predictionio.incubator.apache.org
5https://www.tensorflow.org
6http://lenskit.org
7http://www.mymedialite.net
8https://cran.r-project.org/web/packages/rrecsys/index.html

October 23, 2018 8:39 ws-rv9x6-9x6 Book Title 11131-01 page 17

Collaborative Filtering 17

1.4. Practical Evaluation Considerations

In the following section, we will discuss common ways of evaluating collab-

orative filtering recommender systems. An in-depth discussion of practical

challenges of evaluating recommenders can be found in Chapter 9 of this

book.

1.4.1. General Considerations

Algorithmic approaches to build recommender systems, including collabo-

rative filtering based ones, can in general be evaluated in different ways.

The most informative way of assessing the effects of different recommenda-

tion strategies on users and the corresponding business value is to run A/B

tests using websites or applications that host recommender systems. In

this context, A/B testing corresponds to a randomized experiment, where

the users of the system are split into two or more groups and each group

is served by recommendations generated in different ways, i.e., usually the

groups see different recommendations or different forms of how the recom-

mendations are presented. At the end of the experiment period, one can

then compare the effects of the different strategies, e.g., in terms of the num-

ber of clicks on the recommended items or on sales. For instance, Zanker

(2012) compares two explanation strategies on a spa tourism platform or

chapter 8 in Jannach et al. (2011) compare recommendation.

While A/B tests are the most informative measurement instrument,

there are also pitfalls when designing these experiments and interpreting

their results. For instance, one has to make sure in advance to have a

large enough sample to ensure that any observed differences of method

A compared to method B are statistically significant. Also, there can be

unexpected or unconsidered periodical effects that might lead to distorted

results and wrong conclusions.

At the same time, one usually cannot run a virtually infinite number of

A/B tests in practice in order to evaluate hundreds of different algorithm

configurations. Therefore, companies might resort to cheaper offline tests

to determine those candidate configurations that most probably will lead

to good results in the production system (Gomez-Uribe and Hunt, 2015).

We discuss such offline evaluation procedures in the next section.

October 23, 2018 8:39 ws-rv9x6-9x6 Book Title 11131-01 page 18

18 D. Jannach and M. Zanker

1.4.2. Offline Evaluation

Since academic researchers usually cannot run experiments on real plat-

forms, they commonly use methodologies to compare algorithms based on

historical data. Academic research in collaborative filtering recommender

systems is therefore largely dominated by such offline experimental designs.

The methodology to evaluate collaborative filtering system is mainly

adopted from related research fields, in particular from the fields of infor-

mation retrieval and machine learning (Herlocker et al., 2004).

1.4.2.1. Protocols and Measures for Matrix Completion Problems

The most common procedure to evaluate recommenders is based on rating

datasets. Such rating datasets contain at most one explicit or implicit pref-

erence signal for a set of users and recommendable items and can thus be

considered as a typically very sparse rating matrix. The general approach

is then to split the data into a training and test part, and to predict the

preferences in the (held-out) test set based on the patterns that were iden-

tified in the training data. Usually, this process is repeated several times

in a cross-validation process.

Rating prediction accuracy In the matrix completion task, the goal

is to predict the held-out ratings and the quality of the recommendations

can, for instance, be measured in terms of the average deviation of the

predictions from the true (hidden) values. This measure is referred to as the

Mean Absolute Error (MAE). Particularly in the last decade, researchers

more often report the Root Mean Squared Error (RMSE), which penalizes

larger deviations stronger than smaller ones. Details of how to calculate

the measures mentioned in this section are provided, e.g., in Herlocker

et al. (2004). Many modern collaborative filtering algorithms that will be

discussed in later chapters of this book in fact try to minimize the squared

error based on an offline training phase.

Looking at results that are obtained for datasets that contain movie

ratings on a five-point scale, we can see that modern algorithms are able to

achieve MAE values slightly below 0.7 and RMSE values that are around

0.85. The absolute values reported in the literature can however not al-

ways be directly compared even when the same dataset is used, because

researchers often apply data-filtering procedures, e.g., to filter out inactive

users, or use different cross-validation configurations, which leads to larger

or smaller training sets, see also Said and Belloǵın (2014).

October 23, 2018 8:39 ws-rv9x6-9x6 Book Title 11131-01 page 19

Collaborative Filtering 19

Classification and ranking accuracy While rating prediction can be

considered a classical machine learning (function learning) task, it is more

“natural” to consider recommendation as a classification or ranking task.

Accordingly, the evaluation procedures and measures from this field can be

applied.

The probably most common approach according to the literature (Jan-

nach et al., 2012) is to measure and report precision and recall. Instead

of rating prediction, the task of the recommender is to compute a size-

restricted ranked list of recommended items for a given user. Usually, the

length of the recommendation lists and correspondingly the measurement

is limited to a top-10 or top-20 list of items.

The quality of such a recommendation list is then numerically quantified

by considering the amount and position of “relevant” items in the top-

ranked lists of all users of the test set. The precision measure counts how

many items in the top-n list are relevant. With recall, we measure how

many of the relevant items actually made it into the top-n list. Since there

is often a trade-off between precision and recall — longer list sizes will

lead to higher recall and lower precision — researchers often report the

F-measure, which is the harmonic mean of precision and recall.

The values that are reported for precision and recall, even for the same

dataset, vary strongly from research paper to research paper. The main

reason is that the absolute values depend on how one treats those items

in the ranked lists for which no “ground truth” is known, i.e., the items

for which no rating information existed in the test set. If these items with

unknown ground truth are removed from the recommendation lists before

determining precision and recall, the resulting values are usually very high

and above 70 to 90 percent. Otherwise, if the items without unknown

ground truth are kept in the list, precision and recall are usually below

10%. The low numbers for the latter case are not surprising, given that we

often have thousands of recommendable items but only know the ground

truth for a small subset of these items. Additional factors that influence

the absolute values of the measures are the chosen list size and the number

of cross-validation splits. In research works that are based on explicit (1-

to-5 star) rating datasets, the outcomes are furthermore influenced by the

choice of the threshold that is used to discriminate relevant from irrelevant

items. Some authors only consider items to be relevant that obtained 5-

stars, whereas others consider all items as relevant that have a rating that

is higher than the user’s average rating.

October 23, 2018 8:39 ws-rv9x6-9x6 Book Title 11131-01 page 20

20 D. Jannach and M. Zanker

Precision and recall do not account for the position of the relevant items

in the result set. Obviously, however, having a good matching proposition

at position 1 is favorable over having it at a later position. Researchers

therefore often use measures like the Mean Reciprocal Rank (MRR) that

also consider the position of the relevant elements. More details about this

and additional rank measures like NDCG or AUC etc. can be found in

Herlocker et al. (2004).

Beyond-accuracy measures In recent years, researchers investigated a

number of quality measures beyond prediction or ranking accuracy. Specif-

ically, the question of recommendation diversity was analysed in depth in

many works. Being able to produce a set of diverse recommendations is im-

portant in many application domains, since the recommendation of many

items that are very similar (e.g., movies of a certain series) can be of limited

value for the user. The diversity of a recommendation list can be quantified

in different ways, e.g., based on the pairwise similarity of the items in terms

of their features.

Other possibly desirable features of a recommendation algorithm can be

to not only recommending popular items or, more generally, not focusing

too much on a small set of items that is recommended to everyone. Fur-

thermore, depending on the application domain, it can be desirable that

the algorithm points the user to items outside of his or her usual taste. This

is often considered as quality factors like novelty and serendipity (Castells

et al., 2015).

In most cases, considering additional quality factors comes at the price

of reduced accuracy values. To be able to judge the quality of recommenda-

tions in many domains therefore requires an understanding of the specifics

of the domain and a corresponding algorithmic approach to balance the

often competing quality goals.

1.4.2.2. Protocols and Measures for Session-Based

Recommendation

When evaluating session-based algorithms offline, the general principles

apply as when evaluating based on rating datasets. The existing datasets,

which in this case contain user action logs instead of item ratings, have to

be split into training and test sets and the main computational task is to

predict the hidden actions.

October 23, 2018 8:39 ws-rv9x6-9x6 Book Title 11131-01 page 21

Collaborative Filtering 21

From the computational perspective this is however slightly different.

First, as described above, rating prediction is not meaningful in this setting

and our goal is usually to predict the next user action(s), e.g., the next item-

view event. Second, in session-based recommendation we are provided with

additional information about the user’s most recent actions, which have to

be considered in the computations.

In Jannach et al. (2015b), the authors proposed a general evaluation

scheme for session-based recommendation. The overall idea is visualized

in Figure 1.2. In a first step, the sessions of each user are split into a

training and a test part, e.g., by considering the most recent 20% of the

sessions of a user as test sessions. The training data represents the inputs

for algorithms to learn long-term preference models. The sessions in the

test set are then evaluated individually according to the given prediction

task, which could be, e.g., to predict the purchase event in the session. To

avoid random effects, one can repeatedly apply the protocol using, e.g., a

random subsampling method.

Session 1 Session 2 Session 11 Session 12

V
ie

w
V

ie
w

V
ie

w

Sa
le

C
ar

t
V

ie
w

V
ie

w
V

ie
w

V
ie

w

W
is

h

C
ar

t
V

ie
w

V
ie

w
V

ie
w

V
ie

w

V
ie

w
C

ar
t

V
ie

w

Sa
le

C
ar

t
Sa

le

V
ie

w
C

ar
t

V
ie

w
Sa

le

V
ie

w… …

V
ie

w
C

ar
t

V
ie

w

Sa
le

C
ar

t
Sa

le

V
ie

w
C

ar
t

V
ie

w
Sa

le

V
ie

w

Recommendation model learned from
all user sessions

TRAINING
PHASE

TEST
PHASE

Per user training-test split

Session 11 Session 12

Revealed (p=1) Revealed (v=1) To predict

Fig. 1.2. Session-based evaluation protocol as proposed in (Jannach et al., 2015b).

The proposed protocol has two special parameters that can be set for

an evaluation. First, there is a parameter v that describes how many items

of the current session should be revealed to the algorithm when making

a prediction. By varying this parameter, one can measure how quickly

different algorithms are able to adapt their recommendations to the user’s

current goal. With the second parameter p, we can determine how many

sessions that precede the current user session should be revealed to the

session-based algorithm. By changing this parameter, we can test to which

extent algorithms are able to leverage the information in these sessions, e.g.,

by reminding users of items that they have inspected on previous days.

October 23, 2018 8:39 ws-rv9x6-9x6 Book Title 11131-01 page 22

22 D. Jannach and M. Zanker

While the protocol was designed for e-commerce scenarios, it is not lim-

ited to this domain. Furthermore, it can also be used in case of anonymous

sessions. In this case, the training and test datasets obviously cannot be

created per user and revealing previous sessions (by changing parameter p)

is not possible as well.

Accuracy measures In general, the same classification and ranking mea-

sures described above (e.g., precision, recall, and MRR) can be applied.

Depending on the chosen evaluation setup, sometimes only one item (the

immediate next user action) is the relevant one and precision and recall are

proportional in this case.

Since we have user actions of different types, it can furthermore be

meaningful to define new measures that assess an algorithm’s prediction

capabilities in different dimensions. In the ACM RecSys 2015 challenge9,

for example, the task was to first predict whether or not a user will make

a purchase in the current session, and if so, to predict which item will be

purchased. The evaluation measure used in the challenge correspondingly

considered both aspects. An in-depth discussion of evaluation aspects for

session-based recommenders can be found in Quadrana et al. (2018).

Beyond accuracy measures Depending on the domain, again other

quality factors like diversity, novelty, and serendipity can be relevant for

session-based recommendation scenarios. In some domains it can also be

important that the recommendations represent a good “continuation” for

the given session. This holds in particular when the problem is to find a

suitable next track to play in a music recommendation scenario. In this

application, it is typically desirable that the next played tracks are similar

to the last played ones, e.g., in terms of the tempo or mood. Also in the

music recommendation domain, it can furthermore be important that the

set of recommended tracks is coherent in itself and the transitions between

the individual tracks are smooth, see also Chapter 15 of this book. A deeper

discussion of beyond-accuracy measures can be found in Chapter 10.

1.4.2.3. Discussion

In this section, we reviewed basic and common approaches to evaluate rec-

ommendation algorithms in offline experiments. In the academic literature,

a rich variety of alternative evaluation measures and protocol variants, e.g.,

9http://2015.recsyschallenge.com

October 23, 2018 8:39 ws-rv9x6-9x6 Book Title 11131-01 page 23

Collaborative Filtering 23

to simulate cold-start situations, are used. However, even though the pro-

tocols and the measures are in principle well-defined, there are many subtle

differences that can have an impact on the absolute values that are mea-

sured. Comparing the results across different research papers is therefore

difficult, e.g., because different versions of precision and recall are used,

datasets are pre-processed, a number of different cross-validation runs are

made, or because different ways of splitting the data were applied.

The main problem when applying offline evaluation protocols however

often lies on the choice of the quality measure(s). Academic research is

mostly focused on prediction accuracy, but in many applications it might

not be clear that higher accuracy translates into practical (business) suc-

cess of the application. It is therefore important to find adequate measures

that are chosen in line with the purpose of the recommender system (Jan-

nach and Adomavicius, 2016) and which represent good proxies of the true

success measures (e.g., increased sales or customer retention), which often

cannot be directly measured in offline experiments.

1.4.3. The Role of User Studies

The aforementioned offline evaluation methodology is well-accepted in the

research community. Measuring the error in terms of RMSE or MAE when

assessing the rating prediction capability resembles the evaluation practice

in the field of machine learning, while the methodology for assessing the

classification and rank accuracy is borrowed from the field of information

retrieval. Nevertheless, more and more works are challenging the view that

algorithmic contributions may be solely evaluated based on offline experi-

ments (Konstan and Riedl, 2012; Jannach et al., 2016b) for several reasons.

First of all, recommendation techniques aim at helping users by avoid-

ing situations of information overload and by supporting them in decision-

making tasks. Moreover, in many situations recommendation functionality

should simply facilitate an enjoyable interaction of a user with an informa-

tion system. Thus, recommendation systems are about enhancing the user

experience and the ability of a system to accurately assess users’ preferences

and needs. Based on these assumptions, making correct predictions or pro-

viding many good recommendations is therefore an important component

in order to make users happy and to explain their satisfaction as has been

proposed by Knijnenburg et al. (2012). However, being able to select and

present items that are relevant for users is not the only component that

influences user satisfaction. Experimental user studies therefore play an

October 23, 2018 8:39 ws-rv9x6-9x6 Book Title 11131-01 page 24

24 D. Jannach and M. Zanker

important role in determining how different aspects of a recommender con-

tribute to user satisfaction and system usage (Knijnenburg and Willemsen,

2015).

In general, following the above-mentioned works, offline evaluations can

only help to assess a small part of the whole picture and therefore need

to be complemented with user studies. This is in particular important

since a number of recent works indicate that the quality perception or

business value of a recommender system does not necessarily correlate with

the accuracy measures commonly used in offline experiments (Garcin et al.,

2014; Jannach and Hegelich, 2009; Kirshenbaum et al., 2012; Cremonesi

et al., 2012).

The recent study of Rossetti et al. (2016), for instance, shows that an

algorithm ranking based on offline experiments can contradict the outcome

of ranking algorithms based on user feedback in an experimental user study,

where Precision@k was measured both offline and online. For these reasons,

industrial leaders often employ a development pipeline that involves three

steps: traditional offline experiments to identify failing approaches from the

very beginning; user studies to identify and better understand promising

candidates, and A/B testing in the field as the third step in the assessment

cycle.

Beyond this aforementioned pragmatic approach of employing user stud-

ies as an intermediate step before field tests, further developments of the

practice how user studies are conducted can be envisioned. Specifically,

since recommendation systems support decision making tasks, additional

mechanisms for measurement and feedback collection can be used in the

future. For example, the emerging field of NeuroIS10 employs sensors and

methodologies from neuroscience in order to more accurately understand

the cognitive processes of users when interacting with technology and infor-

mation systems. For instance, Rook et al. (2018) observed that users with

specific personality traits (such as an anxiety-related behavioral inhibition)

tend to be more engaged when confronted with proactive recommendations

and that the accuracy of provided recommendations moderates this effect,

i.e., inaccurate recommendations make them ruminate about them.

In many cases, user studies also have their limitations and the obtained

insights have to be interpreted with care. The common potential threats

to the validity of the obtained findings include the following. The par-

ticipant population, for example, which are often students, might not be

10See http://www.neurois.org/ for more information.

http://www.neurois.org/

October 23, 2018 8:39 ws-rv9x6-9x6 Book Title 11131-01 page 25

Collaborative Filtering 25

representative for the general user population or too small; often, also the

study participants do not face a true decision situation and, e.g., do not

actually make a real purchase. Questions about their behavioral intentions

(e.g., “willingness to buy”) might not reflect the findings that one would

obtain in a real shopping environment. Finally, some studies suggest that

there are familiarity biases in the user perception and that study partic-

ipants consider items as good recommendations when they already know

them (Jannach et al., 2015a; Kamehkhosh and Jannach, 2017).

1.4.4. Datasets

Public datasets are a key ingredient when performing academic research in

the field recommender systems. Such datasets, like the one from the Movie-

Lens (ML) movie rating and recommendation platform and from companies

like Netflix (Amatriain and Basilico, 2015), have led to significant algorith-

mic improvements in the fields over the years. In combination with public

libraries that implement various algorithms, they also led to a certain level

of reproducibility of the obtained research results (Ekstrand et al., 2011).

However, the availability of datasets also heavily biases the focus of research

contributions of the community (Jannach et al., 2012). The MovieLens rat-

ing datasets have been available for almost two decades (Harper and Kon-

stan, 2016) and have significantly contributed to the fact that collaborative

filtering has become the dominant recommendation paradigm in academia

and that movies are the most popular application domain investigated by

researchers. Table 1.2 shows the characteristics of a few popular datasets

from the movie domain.

Many other application domains for recommender systems beyond

movies have been investigated over the years as well. Often, these research

works are based on datasets that were published by companies in the con-

text of research challenges and competitions. A number of comparably pop-

ular datasets are summarized in Table 1.3, including data from the domains

of jokes, dating, music, or general e-commerce. Overall, the increasing

availability of data for different domains, different product categories and

different sources will in the future allow to further intensify research on

cross-domain recommendations (Cantador et al., 2015), on the combina-

tion of a variety of user feedback sources such as different categories of

implicit transaction traces (Zanker et al., 2007; Zanker and Jessenitschnig,

2009b) and on the enrichment of user preferences from social relationships.

October 23, 2018 8:39 ws-rv9x6-9x6 Book Title 11131-01 page 26

26 D. Jannach and M. Zanker

Table 1.2. Characteristics of popular movie datasets.

Dataset Users Items Ratings Scale

ML 20Ma 138,493 26,744 20,000,263 [0.5, 5]

ML Latest Smalla 671 9,066 100,004 [0.5, 5]

MovieLens Latesta 259,137 39,443 24,404,096 [0.5, 5]
ML 100Ka 943 1,682 100,000 [0.5, 5]

ML 1Ma 6,040 3,706 1,000,209 [0.5, 5]

ML 10Ma 69,878 10,677 10,000,054 [0.5, 5]
ML Tag Genomea 1,100 9,734 12,000,000 binary

MovieTweetings 2,014b 24,924 15,142 212,857 [1, 10]

FilmTrustc 1,508 2,071 35,497 [0.5, 4]
CiaoDvdc 7,375 99,746 278,483 [1, 5]

Douband 129,490 58,541 16,830,839 [1, 5]

Netflixe 480,189 17,770 100,480,507 [1, 5]

Remarks and links for download
a age, gender, occupation, zip, timestamp, free-text tags

http://grouplens.org/datasets/movielens
b https://github.com/sidooms/MovieTweetings/tree/master/recsyschallenge2014
c trust relationships among users

https://www.librec.net/datasets.html
d friendship relations among users

https://www.cse.cuhk.edu.hk/irwin.king.new/pub/data/douban
e dataset is officially retired, but still used in publications

1.5. Summary and Further Reading

Summary and Outlook This chapter provided an introduction on the

topic of collaborative filtering with a focus on neighborhood models, since

these comparably simple models even today often serve as the basis for

evaluating the more sophisticated methods that will be discussed in the

subsequent chapters.

Due to its introductory nature and the focus on the main underlying

problem of finding items that are relevant for user, many additional aca-

demic and practical aspects of collaborative filtering have not been ad-

dressed to a large extent. Additional topics and questions to consider when

designing a CF-based recommendation system include the following and a

number of them will be discussed in later chapters of the book.

• Historically, academic research has focused on the rating prediction

problem, which however seems to be of limited value in practice,

where the main goal is to determine item rankings based on implicit

feedback traces as discussed in Chapter 7 of this book. Session-

October 23, 2018 8:39 ws-rv9x6-9x6 Book Title 11131-01 page 27

Collaborative Filtering 27

Table 1.3. Characteristics of public datasets from different domains.

Dataset Domain Users Items Ratings Scale

Jester1a jokes 73,421 100 4,136,356 [-10, 10]

Jester2a jokes 59,132 140 1,761,439 [-10, 10]

Jester3a jokes 50,692 140 1,728,847 [-10, 10]
Book-Crossings

(BX)b
books 278,858 271,379 1,149,780 [1, 10]

ISL (Views-All)c cigars 1,260 142 18,434 unary
www.libimseti.czd dating 135,359 168,791 17,359,346 [1, 10]

Retailrockete e-commerce 1,407,580 unary

Scholar recsf academia 50 100,531
YOWg news 24 5,921 10,010 multidim.

Epinions (665K)h multiple 40,163 139,738 664,824 [1, 5]

Amazon reviewsi multiple 6,643,669 2,441,053 34,686,770 [0.5, 5]
last.fmj music 358,868 292,375 17,535,655 unary

OSDC k music 1,000,000

Remarks and links for download
a http://eigentaste.berkeley.edu/dataset
b unary, demographic

http://www2.informatik.uni-freiburg.de/˜cziegler/BX
c search & purchases

http://isl.ifit.uni-klu.ac.at
d gender http://www.occamslab.com/petricek/data
e user sessions

https://www.kaggle.com/retailrocket/ecommerce-dataset
f researcher interests

http://www.comp.nus.edu.sg/˜sugiyama/SchPaperRecData.html
g novelty, readability, etc.

https://users.soe.ucsc.edu/˜yiz/papers/data/YOWStudy
h trust relations

http://www.trustlet.org/epinions.html
i textual reviews

https://snap.stanford.edu/data/web-Amazon.html
j play counts, demographic

http://www.dtic.upf.edu/˜ocelma/MusicRecommendationDataset
k tags, artists, track info

https://labrosa.ee.columbia.edu/millionsong/pages/getting-dataset

based recommendations, as briefly discussed in this chapter, are an

important area for future research in a field which is still dominated

by research based on datasets where only one user-item interaction

was recorded.

• A general issue when performing offline experiments with historical

data in that context is the question how accurately collaborative

filtering can actually predict user tastes, given the inherent noise

October 23, 2018 8:39 ws-rv9x6-9x6 Book Title 11131-01 page 28

28 D. Jannach and M. Zanker

in the data. The discussion that algorithms cannot be accurate

beyond a specific point brought up the concept of a “magic barrier”

that is seen as a natural lower bound for all efforts to optimize an

algorithms’ accuracy (Said et al., 2012b).

• In many application domains, the effectiveness of a recommenda-

tion system can depend on whether the system is able to explain

the reasons for its recommendations (Tintarev and Masthoff, 2011;

Friedrich and Zanker, 2011; Nunes and Jannach, 2017), in partic-

ular when the goal is to design fair, accountable, and transparent

systems.

• When it comes to online choice situations and the decisions users

make (Chen et al., 2013) a myriad of different factors like position

biases, decoy and framing effects (Teppan and Zanker, 2015) or the

characteristics of the rating summary statistics (Çoba et al., 2018)

have been shown to measurably influence the choices users make,

which are mostly not (yet) considered in actual algorithms.

• From a research perspective, the reproducibility of the obtained

research results is still limited in many cases despite the existence

of public datasets and recommendation libraries (Ekstrand et al.,

2011; Said and Belloǵın, 2014; Beel et al., 2016; Çoba and Zanker,

2017). These topics will be discussed in Chapter 9.

• Finally, from a societal perspective, collaborative filtering mecha-

nisms could fracture the global village into tribes — a point that

was already raised in the original work of Resnick et al. (1994) —

and thus exhibit a certain tendency of reaffirming users in their be-

liefs and creating a filter bubble around them (Pariser, 2011). Such

societal implications were not discussed so far to a large extent in

the research community and represent another area where research

in the field has to go beyond computer science.

Further Reading There are several highly cited works on collaborative

filtering that are marking milestones of the topic like the early work on user-

based automated CF (Resnick et al., 1994) in an application domain (i.e.,

netnews) that was initially mainly addressed with content-based techniques.

The proposition of an item-based neighborhood (Sarwar et al., 2001) and its

adoption by Amazon (Linden et al., 2003) was another step into a direction

towards the wider adoption of CF techniques. This obviously necessitated

methodological questions about the evaluation of collaborative filtering sys-

tems as they had been addressed early in this seminal paper of Herlocker

October 23, 2018 8:39 ws-rv9x6-9x6 Book Title 11131-01 page 29

Collaborative Filtering 29

et al. (2004). Another important milestone for the development of the topic

was the Netflix challenge and the development of many variants of scalable

matrix factorization techniques, where the reader is, for instance, referred

to Koren and Bell (2015) and later chapters.

Another early seminal article of Herlocker et al. (2000) addresses issues

of algorithmic transparency and accountability by providing explanations,

i.e., additional information about the recommendations and how they were

derived. Later, due to the maturing of the field, a first introductory text-

book appeared Jannach et al. (2011) that provides a comprehensive ref-

erence on collaborative filtering and its relation to other recommendation

paradigms like content-based and knowledge-based techniques. Since then,

even more encompassing literature like the handbook on RS with chap-

ters on advancements in collaborative filtering algorithms (Koren and Bell,

2015) and their evaluation (Gunawardana and Shani, 2015) have been pub-

lished. Finally, a recent article challenges the traditional problem formu-

lation of collaborative filtering as a matrix completion task and advocates

to also consider the user interaction and the optimization of conversational

moves over time into the problem formulation (Jannach et al., 2016b).

References

Amatriain, X. and Basilico, J. (2012). Netflix recommendations: beyond the 5
stars (part 1), Netflix Tech Blog 6,
https://medium.com/netflix-techblog/

netflix-recommendations-beyond-the-5-stars-part-1-55838468f429.
Amatriain, X. and Basilico, J. (2015). Recommender systems in industry: A

netflix case study, in Recommender Systems Handbook, 2nd edn. (Springer),
pp. 385–419.

Basilico, J. (2013). Recommendation at Netflix Scale, Talk at the first Workshop
on Large Scale Recommendation Systems.

Beel, J., Breitinger, C., Langer, S., Lommatzsch, A., and Gipp, B. (2016). To-
wards reproducibility in recommender-systems research, User Modeling and
User-Adapted Interaction 26, 1, pp. 69–101.

Bell, R. M. and Koren, Y. (2007). Lessons from the Netflix prize challenge, ACM
SIGKDD Explorations Newsletter 9, 2, pp. 75–79.

Bobadilla, J., Ortega, F., Hernando, A., and Bernal, J. (2012). A collaborative
filtering approach to mitigate the new user cold start problem, Knowledge-
Based Systems 26, pp. 225–238.

Bonnin, G. and Jannach, D. (2014). Automated generation of music playlists:
Survey and experiments, Computing Surveys 47, 2, pp. 26:1–26:35.

https://medium.com/netflix-techblog/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429
https://medium.com/netflix-techblog/netflix-recommendations-beyond-the-5-stars-part-1-55838468f429

October 23, 2018 8:39 ws-rv9x6-9x6 Book Title 11131-01 page 30

30 D. Jannach and M. Zanker

Breese, J. S., Heckerman, D., and Kadie, C. (1998). Empirical analysis of predic-
tive algorithms for collaborative filtering, in Proceedings of the 14th Con-
ference on Uncertainty in Artificial Intelligence, pp. 43–52.

Cantador, I., Fernández-Tob́ıas, I., Berkovsky, S., and Cremonesi, P. (2015).
Cross-domain recommender systems, in Recommender Systems Handbook,
2nd edn. (Springer), pp. 919–959.

Castells, P., Hurley, N. J., and Vargas, S. (2015). Novelty and diversity in recom-
mender systems, in Recommender Systems Handbook, 2nd edn. (Springer),
pp. 881–918.

Chen, L., de Gemmis, M., Felfernig, A., Lops, P., Ricci, F., and Semeraro, G.
(2013). Human decision making and recommender systems, ACM Transac-
tions on Interactive Intelligent Systems (TiiS) 3, 3, p. 17.

Çoba, L., Symeonidis, P., and Zanker, M. (2017a). Reproducing and prototyping
recommender systems in R, in Proceedings of the 8th Italian Information
Retrieval Workshop, pp. 84–91.

Çoba, L., Symeonidis, P., and Zanker, M. (2017b). Visual analysis of recom-
mendation performance, in Proceedings of the 11th ACM Conference on
Recommender Systems, pp. 362–363.

Çoba, L. and Zanker, M. (2017). Replication and reproduction in recommender
systems research - evidence from a case-study with the rrecsys library, in
Proceedings 30th International Conference on Industrial Engineering and
Other Applications of Applied Intelligent Systems (IEA/AIE), pp. 305–314.

Çoba, L., Zanker, M., Rook, L., and Symeonidis, P. (2018). Exploring users’
perception of collaborative explanation styles, in Proceedings 20th IEEE
International Conference on Business Informatics (CBI).

Cremonesi, P., Garzotto, F., and Turrin, R. (2012). Investigating the persuasion
potential of recommender systems from a quality perspective: An empirical
study, Transactions on Interactive Intelligent Systems 2, 2, pp. 11:1–11:41.

Ekstrand, M. D., Ludwig, M., Konstan, J. A., and Riedl, J. T. (2011). Rethink-
ing the recommender research ecosystem: reproducibility, openness, and
LensKit, in Proceedings of the 5th ACM Conference on Recommender Sys-
tems, pp. 133–140.

Friedrich, G. and Zanker, M. (2011). A taxonomy for generating explanations in
recommender systems, AI Magazine 32, 3, pp. 90–98.

Gantner, Z., Rendle, S., Freudenthaler, C., and Schmidt-Thieme, L. (2011). My-
MediaLite: A free recommender system library, in Proceedings of the 5th
ACM Conference on Recommender Systems, pp. 305–308.

Garcin, F., Faltings, B., Donatsch, O., Alazzawi, A., Bruttin, C., and Huber,
A. (2014). Offline and online evaluation of news recommender systems at
swissinfo.ch, in Proceedings of the 8th ACM Conference on Recommender
Systems, pp. 169–176.

Goldberg, D., Nichols, D., Oki, B. M., and Terry, D. (1992). Using collaborative
filtering to weave an information tapestry, Communications of the ACM
35, 12, pp. 61–70.

October 23, 2018 8:39 ws-rv9x6-9x6 Book Title 11131-01 page 31

Collaborative Filtering 31

Gomez-Uribe, C. A. and Hunt, N. (2015). The Netflix recommender system: Al-
gorithms, business value, and innovation, Transactions on Management In-
formation Systems 6, 4, pp. 13:1–13:19.

Gunawardana, A. and Shani, G. (2015). Evaluating recommender systems, in
Recommender Systems Handbook, 2nd edn. (Springer), pp. 265–308.

Harper, F. M. and Konstan, J. A. (2016). The MovieLens datasets: History and
Context, ACM Transactions on Interactive Intelligent Systems 5, 4, p. 19.

Herlocker, J. L., Konstan, J. A., Borchers, A., and Riedl, J. (1999). An algo-
rithmic framework for performing collaborative filtering, in Proceedings of
the 22nd Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 230–237.

Herlocker, J. L., Konstan, J. A., and Riedl, J. (2000). Explaining collaborative
filtering recommendations, in Proceedings of the 2000 ACM Conference on
Computer Supported Cooperative Work, pp. 241–250.

Herlocker, J. L., Konstan, J. A., Terveen, L. G., and Riedl, J. T. (2004). Evalu-
ating collaborative filtering recommender systems, Transactions on Infor-
mation Systems 22, 1, pp. 5–53.

Hidasi, B., Karatzoglou, A., Baltrunas, L., and Tikk, D. (2016). Session-based
recommendations with recurrent neural networks, in Proc. ICLR ’16.

Huang, Z., Chen, H., and Zeng, D. (2004). Applying associative retrieval tech-
niques to alleviate the sparsity problem in collaborative filtering, ACM
Transactions on Information Systems 22, 1, pp. 116–142.

Jannach, D. and Adomavicius, G. (2016). Recommendations with a purpose, in
Proceedings of the 10th ACM Conference on Recommender Systems, pp. 7–
10.

Jannach, D. and Hegelich, K. (2009). A case study on the effectiveness of recom-
mendations in the mobile internet, in Proceedings of the 3rd ACM Confer-
ence on Recommender Systems, pp. 205–208.

Jannach, D., Jugovac, M., and Lerche, L. (2016a). Supporting the design of ma-
chine learning workflows with a recommendation system, ACM Transac-
tions on Interactive Intelligent Systems 6, 1.

Jannach, D., Lerche, L., and Jugovac, M. (2015a). Item familiarity as a possible
confounding factor in user-centric recommender systems evaluation, i-com
Journal of Interactive Media 14, 1, pp. 29–39.

Jannach, D., Lerche, L., Kamehkhosh, I., and Jugovac, M. (2015b). What rec-
ommenders recommend: an analysis of recommendation biases and possi-
ble countermeasures, User Modeling and User-Adapted Interaction 25, 5,
pp. 427–491.

Jannach, D., Lerche, L., and Zanker, M. (2018). Recommending based on im-
plicit feedback, in Social Information Access - Systems and Technologies
(Springer), pp. 510–569.

Jannach, D. and Ludewig, M. (2017a). Determining characteristics of successful
recommendations from log data - a case study, in Proceedings of the ACM
Symposium on Applied Computing (SAC), pp. 1643–1648.

October 23, 2018 8:39 ws-rv9x6-9x6 Book Title 11131-01 page 32

32 D. Jannach and M. Zanker

Jannach, D. and Ludewig, M. (2017b). When recurrent neural networks meet the
neighborhood for session-based recommendation, in Proceedings of the 11th
ACM Conference on Recommender Systems, pp. 306–310.

Jannach, D., Ludewig, M., and Lerche, L. (2017). Session-based item recom-
mendation in e-commerce: On short-term intents, reminders, trends, and
discounts, User-Modeling and User-Adapted Interaction 27, 3–5, pp. 351–
392.

Jannach, D., Resnick, P., Tuzhilin, A., and Zanker, M. (2016b). Recommender
systems — beyond matrix completion, Communications of the ACM 59,
11, pp. 94–102.

Jannach, D., Zanker, M., Felfernig, A., and Friedrich, G. (2011). Recommender
Systems – An Introduction (Cambridge University Press).

Jannach, D., Zanker, M., Ge, M., and Gröning, M. (2012). Recommender systems
in computer science and information systems - a landscape of research, in
Proceedings of the 13th International Conference on E-Commerce and Web
Technologies, pp. 76–87.

Jugovac, M. and Jannach, D. (2017). Interacting with recommenders - overview
and research directions, ACM Transactions on Intelligent Interactive Sys-
tems 7, p. 10.

Kamehkhosh, I. and Jannach, D. (2017). User perception of next-track music
recommendations, in Proceedings of the 25th Conference on User Modeling
Adaptation and Personalization, pp. 113–121.

Kirshenbaum, E., Forman, G., and Dugan, M. (2012). A live comparison of meth-
ods for personalized article recommendation at Forbes.com, in Proceedings
of the European Conference on Machine Learning and Principles and Prac-
tice of Knowledge Discovery in Databases, pp. 51–66.

Knijnenburg, B. P. and Willemsen, M. C. (2015). Evaluating recommender sys-
tems with user experiments, in Recommender Systems Handbook (Springer),
pp. 309–352.

Knijnenburg, B. P., Willemsen, M. C., Gantner, Z., Soncu, H., and Newell, C.
(2012). Explaining the user experience of recommender systems, User Mod-
eling and User-Adapted Interaction 22, 4-5, pp. 441–504.

Konstan, J. A. and Riedl, J. (2012). Recommender systems: from algorithms
to user experience, User Modeling and User-Adapted Interaction 22, 1,
pp. 101–123.

Koren, Y. and Bell, R. (2015). Advances in collaborative filtering, in Recom-
mender Systems Handbook, 2nd edn. (Springer), pp. 77–118.

Lerche, L., Jannach, D., and Ludewig, M. (2016). On the value of reminders
within e-commerce recommendations, in Proceedings of the 24th Conference
on User Modeling Adaptation and Personalization, pp. 27–25.

Linden, G., Smith, B., and York, J. (2003). Amazon.com recommendations: Item-
to-item collaborative filtering, IEEE Internet Computing 7, 1, pp. 76–80.

Ludewig, M. and Jannach, D. (2018). Evaluation of session-based recomme-
nation algorithms, arXiv:1803.09587 [cs.IR], https://arxiv.org/abs/
1803.09587.

http://arxiv.org/abs/1803.09587 [cs.IR]
https://arxiv.org/abs/1803.09587
https://arxiv.org/abs/1803.09587

October 23, 2018 8:39 ws-rv9x6-9x6 Book Title 11131-01 page 33

Collaborative Filtering 33

Martin, F. J. (2009). RecSys ’09 Industrial Keynote: Top 10 Lessons Learned
Developing, Deploying and Operating Real-world Recommender Systems,
in Proceedings of the 3rd ACM Conference on Recommender Systems, pp. 1–
2.

Mobasher, B., Dai, H., Luo, T., and Nakagawa, M. (2002). Using sequential and
non-sequential patterns in predictive web usage mining tasks, in Proceedings
of the 2002 IEEE International Conference on Data Mining, pp. 669–672.

Nunes, I. and Jannach, D. (2017). A systematic review and taxonomy of expla-
nations in decision support and recommender systems, User-Modeling and
User-Adapted Interaction 27, 3–5, pp. 393–444.

Pariser, E. (2011). The filter bubble: What the Internet is hiding from you (Pen-
guin UK).

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas,
J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay,
E. (2011). Scikit-learn: Machine learning in Python, Journal of Machine
Learning Research 12, pp. 2825–2830.

Pu, P., Chen, L., and Hu, R. (2011). A user-centric evaluation framework for
recommender systems, in Proceedings of the 5th ACM Conference on Rec-
ommender Systems, pp. 157–164.

Quadrana, M., Cremonesi, P., and Jannach, D. (2018). Sequence-aware recom-
mender systems, ACM Computing Surveys https://arxiv.org/abs/1802.

08452.
Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and Riedl, J. (1994). Grou-

plens: An open architecture for collaborative filtering of netnews, in Pro-
ceedings of the 1994 ACM Conference on Computer Supported Cooperative
Work, pp. 175–186.

Rook, L., Sabic, A., and Zanker, M. (2018). Reinforcement sensitivity and en-
gagement in proactive recommendations: Experimental evidence, in Infor-
mation Systems and Neuroscience - Gmunden Retreat on NeuroIS 2017,
pp. 9–15.

Rossetti, M., Stella, F., and Zanker, M. (2016). Contrasting offline and online
results when evaluating recommendation algorithms, in Proceedings of the
10th ACM Conference on Recommender Systems, pp. 31–34.

Said, A. and Belloǵın, A. (2014). Comparative recommender system evaluation:
Benchmarking recommendation frameworks, in Proceedings of the 8th ACM
Conference on Recommender Systems, pp. 129–136.

Said, A., Jain, B. J., and Albayrak, S. (2012a). Analyzing weighting schemes
in collaborative filtering: Cold start, post cold start and power users, in
Proceedings of the 27th Annual ACM Symposium on Applied Computing,
pp. 2035–2040.

Said, A., Jain, B. J., Narr, S., Plumbaum, T., Albayrak, S., and Scheel, C.
(2012b). Estimating the magic barrier of recommender systems: a user
study, in Proceedings of the 35th ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 1061–1062.

https://arxiv.org/abs/1802.08452
https://arxiv.org/abs/1802.08452

October 23, 2018 8:39 ws-rv9x6-9x6 Book Title 11131-01 page 34

34 D. Jannach and M. Zanker

Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. (2001). Item-based collabora-
tive filtering recommendation algorithms, in Proceedings of the 10th Inter-
national Conference on World Wide Web, pp. 285–295.

Shani, G., Heckerman, D., and Brafman, R. I. (2005). An MDP-Based Recom-
mender System, The Journal of Machine Learning Research 6, pp. 1265–
1295.

Teppan, E. C. and Zanker, M. (2015). Decision biases in recommender systems,
Journal of Internet Commerce 14, 2, pp. 255–275.

Tintarev, N. and Masthoff, J. (2011). Designing and evaluating explanations for
recommender systems, Recommender Systems Handbook, pp. 479–510.

Zanker, M. (2012). The influence of knowledgeable explanations on users’ percep-
tion of a recommender system, in Proceedings of the 6th ACM Conference
on Recommender Systems (ACM), pp. 269–272.

Zanker, M. and Jessenitschnig, M. (2009a). Case-studies on exploiting explicit
customer requirements in recommender systems, User Modeling and User-
Adapted Interaction 19, 1-2, pp. 133–166.

Zanker, M. and Jessenitschnig, M. (2009b). Collaborative feature-combination
recommender exploiting explicit and implicit user feedback, in Proceedings
of the 2009 IEEE Conference on Commerce and Enterprise Computing,
pp. 49–56.

Zanker, M., Jessenitschnig, M., Jannach, D., and Gordea, S. (2007). Compar-
ing recommendation strategies in a commercial context, IEEE Intelligent
Systems 22, 3.

September 19, 2018 11:54 ws-rv9x6-9x6 Book Title 11131-02 page 35

Chapter 2

Matrix Factorization for Collaborative Recommendations

Evgeny Frolova and Ivan Oseledetsa,b

aSkolkovo Institute of Science and Technology, Nobel St. 3, Skolkovo
Innovation Center, 143025 Moscow, Russia

a,bInstitute of Numerical Mathematics of the Russian Academy of
Sciences, Gubkina St. 8, 119333 Moscow, Russia

evgeny.frolov@outlook.com

2.1. Introduction

Matrix factorization (MF) is one of the most successful and widely used

collaborative filtering (CF) techniques. One of the key advantages of MF

models is the ability to reduce an initial problem’s complexity and provide a

compact representation of interaction data generated from an observed col-

lective human behavior. With this approach users and items are embedded

as vectors in a lower dimensional space of latent features. This procedure is

known as a dimensionality reduction task. As the result, both user tastes

and relevant item characteristics can be described by a relatively small set

of parameters.

With this representation the relations between users and items follow

general linear algebra rules and vector arithmetic. Utility of a particular

item to a particular user can be simply estimated via a scalar product of

their vectors in the obtained lower dimensional latent feature space. This is

the key concept that connects various MF models presented in this chapter.

From the geometric point of view, the angle between user and item vectors

is smaller for relevant items and is larger for irrelevant ones (see [Koren

et al. (2009), Figure 2] for an illustration). This can be conveniently

35

September 19, 2018 11:54 ws-rv9x6-9x6 Book Title 11131-02 page 36

36 E. Frolov and I. Oseledets

expressed in terms of the cosine similarity measure and also used for build-

ing more efficient neighborhood-based models discussed in Chapter 1 (see

also [Adomavicius and Tuzhilin (2005)]).

Unlike the neighborhood-based techniques, MF is less susceptible to

the so called limited coverage problem [Desrosiers and Karypis (2011)].

For example, the lack of common preferences information for a pair of

users may lead to unreliable correlations in prediction mechanism for the

neighborhood models. In contrast, MF models build a more meaningful

conceptual description of user interests in terms of latent features, which to

a certain extent allows to alleviate that problem. A better expressiveness of

the MF models also makes them less sensitive to the data sparsity problem,

typically observed in many real applications.

As has been already stated, the concept of utility, is one of the key

ingredients of MF models. Its purpose is to adequately represent an unde-

termined decision making process driven by hidden motives behind a par-

ticular user choice. The decision making is indirectly observed via partially

available interactions data, expressed in the form of a feedback provided by

users to some (not all) items. The goal of any MF approach is, given that

data, to estimate the corresponding utility function fu, which will not only

agree with the observed part of user preferences but will also help to make

predictions on the unobserved part. Schematically, this can be denoted as

follows:

fu : User × Item→ Relevance Score, (2.1)

where User is a domain of all users, Item is a domain of all items and

Relevance Score is a measure of utility.

In the simplest case the Relevance Score can be directly related to the

user feedback. Consider a movie recommendation system, where users ex-

press how satisfied they are with a certain movie by providing an explicit

rating value on some likert scale. The problem of finding fu can then be

transformed into a well studied matrix completion problem, already men-

tioned in Chapter 1, which has become especially popular in the recom-

mender systems community after the famous Netflix Prize competition1.

Even though the rating values are subjective in their nature [Amatriain

et al. (2009a)], it is often neglected as the task of recovering the unknown

entries of the rating matrix enables a number of very practical and quite

efficient methods of solving the problem of recommendations. A consider-

able part of Sec. 2.4 is devoted to such methods not only because of their
1https://www.netflixprize.com

September 19, 2018 11:54 ws-rv9x6-9x6 Book Title 11131-02 page 37

Matrix Factorization for Collaborative Recommendations 37

popularity, but also as it helps to provide the necessary background for un-

derstanding of more elaborate models introduced in the later sections and

later chapters of the book.

Standard matrix completion, however, may not be the best choice in

the implicit case, where the feedback is not intentionally provided by users

and is collected via an indirect observation of their actions, such as clicks

on product web-pages, amount of product purchases, time spent reading a

product description, etc. Note, that the lack of feedback from a user for

a certain item does not immediately imply a negative preference, which

is true for both explicit and implicit cases. However, in the implicit case

the fact that a user has interacted with an item may not necessarily corre-

spond to a positive preference. Taking that into account requires a more

thoughtful problem formulation, which may lead to an alternative defini-

tion of the Relevance Score, abstracted away from the observable feedback

(see Sec. 2.4.3). Note that one of the corner cases of implicit feedback when

it simply denotes the fact of interaction is often referred as One-Class Col-

laborative Filtering (OCCF) [Pan et al. (2008); Verstrepen et al. (2017)].

In addition to that, in many practical applications it is often more

important to return an ordered list of correctly ranked recommendations,

rather than simply predict rating values. This is known as a top-n recom-

mendation problem, where n is the number of recommended items. At first

glance, this may seem like a trivial task: once the rating predictions are

available, one can simply select the items with the highest predicted score.

However, being able to accurately recover rating values does not necessar-

ily guarantee the best performance in terms of generating a ranked list of

the most relevant recommendations [Konstan and Riedl (2012)] (also see

Chapter 9). This opens the doors for the so called learning to rank models

with a substantially different objective (see Sec. 2.5.1), more coherent with

the task of top-n recommendations. Such models are typically not even

suitable for the completion task.

As the matrix completion models can be tuned and evaluated in terms

of the ranking problem as well, we will distinguish between the two major

types of recommendation tasks — the rating prediction and the top-n rec-

ommendation — and provide a view on factorization models through the

lense of this distinction where necessary.

September 19, 2018 11:54 ws-rv9x6-9x6 Book Title 11131-02 page 38

38 E. Frolov and I. Oseledets

2.2. Problem formulation

As has been already noted, the dimensionality reduction approach in rec-

ommender systems allows to describe any user preferences and any item

characteristics in terms of a small set of model parameters. Along with a

compact representation, it also helps to uncover non-trivial patterns within

the data and use them to generate meaningful recommendations. Generally

speaking, this can be achieved with the help of various methods, such as

neural networks, markov decision processes, latent dirichlet allocation and

some others. However, in this chapter we focus specifically on the matrix

factorization approach.

Let us start from the matrix completion case as it provides a good

illustration of some major concepts and serves as a ground for further im-

provements. Consider an imaginary scenario in which all known users of

some recommendation system have provided their preferences for all avail-

able items. This can be conveniently represented in the form of a complete

matrix of interactions A ∈ RM×N . The rows of the matrix correspond to

users and its columns correspond to items. Its elements would correspond

to some form of a feedback provided by users and this would represent a

snapshot of a real “noisy” data. The “noise” may have different nature. It

can be caused by variations in individuals’ behavior and their tastes or by

occasional changes in a context of an interaction, or it can be the result

of some other uncontrollable and mostly unpredictable factors. All of it

leads to a certain level of unavoidable randomness making the problem of

recommendations very complex.

Nevertheless, at a large scale the collective behavior may reveal some

regularities and exhibit some common patterns that could be potentially

described with a relatively small set of parameters. Therefore, while the

dimensionality reduction may lead to a loss of some information, it can still

help to uncover and generalize at least some of the hidden commonalities in

users’ behavior. With this assumption the observed data can be modelled

as:

A = R+ E,

where the matrix E denotes the “noise” and R is an approximate utility

matrix which accommodates the behavioral patterns and have a certain in-

ner structure. The task of building a recommendation model then translates

into the task of recovering R.

The solution to this problem in the case of a matrix factorization

September 19, 2018 11:54 ws-rv9x6-9x6 Book Title 11131-02 page 39

Matrix Factorization for Collaborative Recommendations 39

approach can be generally represented in the form of a matrix product:

R = PQT , (2.2)

where matrices P ∈ RM×r and Q ∈ RN×r represent users and items re-

spectively. Each row pTi of the matrix P reflects a preference vector of a

user i, described in terms of r latent features. In other words it gives a rep-

resentation of user i in the latent feature space. Similarly, each row qTj of

the matrix Q describes an association of item j with those latent features,

i.e. it gives a representation of an item in the latent feature space.

Vectors pi and qj are also called an embedding of users and items onto

the latent feature space. The utility function fu of an item j to a user i

is, therefore, represented by a scalar product pTi qj . The number of latent

features r is called the rank of an approximation. This number is typically

much smaller than the number of items or users. Such a representation of

a matrix as a product of two other matrices of smaller sizes is also called

a low rank approximation and the resulting matrix R is said to have a low

rank structure.

The final form of the matrices P and Q depends on the formulation of

a corresponding optimization problem described in terms of a specific loss

function L:

min
Θ
L (A,R(Θ)) , (2.3)

where Θ := {P,Q} is a set of model parameters and L penalizes devia-

tion of the model from the observations. Worth noting here, that the term

deviation should be treated in a broad sense. As we discussed in the intro-

duction, a particular form of the function L may go far beyond standard

matrix completion formulation (see Sec. 2.5.1).

Also recall, that in the majority of real systems the observed interactions

are typically very scarce and the vast amount of data is missing, which

makes the matrix A overly incomplete. Therefore, the optimization problem

described by Eq. (2.3) remains ambiguous unless we explicitly define how to

deal with the missing values of A or at least define in what sense a complete

matrix R approximates an incomplete matrix A. Due to this reason we

prefer to avoid the commonly used and intuitive notation A ≈ R.

We also note, that in some cases an additional processing of the data

may help to create a better representation of the observed user behavior and

potentially help to improve the quality of recommendations. As an example,

in a music recommendation service the logarithmic scaling of a listening

frequency (i.e. the number of times a user has listened to a track) may help

September 19, 2018 11:54 ws-rv9x6-9x6 Book Title 11131-02 page 40

40 E. Frolov and I. Oseledets

to generate more accurate recommendations comparing to a naive use of raw

counts data as a measure of utility. There is a number of transformation

techniques such as data centering and normalization, value binarization,

cutting by a threshold, tf-idf transformation and many others which may

help to build more accurate recommendation models.

Even in the systems with a fixed explicit feedback, such as a 5-star rating

scale, used in many movie recommendation services, a transformation of

that scale may improve recommendations. It has an intrinsic connection

to a subjective nature of a perceived utility of goods. For example, some

users may assign a rating value of 3 to a movie they believe is “OK”, i.e.

nothing special but still “watchable”, whilst for other users this can be a

way to indicate that the movie is completely uninteresting, a total waste

of time. In addition to that, some empirical studies show that even for a

single user the perceived “distance” between different ratings may vary and

the uniform rating scale from 1 to 5 used as a measure of a user enjoyment

may not be that accurate [Amatriain et al. (2009b)]. All of this, along with

the fact that the unobserved data is missing not at random (MNAR) [Steck

(2010); Schnabel et al. (2016)], may potentially introduce unintended biases

in both recommendation models and evaluation measures.

Both described aspects — the way missing data is handled and the

choice of a data preprocessing technique — create additional degrees of

freedom for a model construction. Sometimes it may directly affect an

optimization procedure and lead to very different factorization algorithms.

In other cases it may lead to several variations of the same method. In order

to explicitly signify the role of these degrees of freedom we will formulate

the optimization problem Eq. (2.3) not in terms of an approximation of the

matrix A, but rather as an approximation of some function of A:

min
Θ
L (T (A), R(Θ)) , (2.4)

where T (A) denotes a problem-dependent transformation of the data which

may include missing values imputation and/or various data preprocessing

steps. In the next sections we will cover some of the most famous factoriza-

tion models resulting from a combination of different data transformation

techniques, various loss functions and optimization algorithms.

2.3. SVD-based models

One of the first factorization algorithms used in the field of recommender

systems is the singular value decomposition (SVD) [Golub and Van Loan

September 19, 2018 11:54 ws-rv9x6-9x6 Book Title 11131-02 page 41

Matrix Factorization for Collaborative Recommendations 41

(2012)]. It has a straightforward relation to the latent semantic index-

ing/analysis (LSI/LSA) [Furnas et al. (1988); Deerwester et al. (1990)] and

principal component analysis (PCA). In fact, the SVD-based approach has

been adopted directly from the field of document retrieval [Ekstrand et al.

(2011)], which is not surprising. Indeed, the task of revealing words’ seman-

tics based on their occurrence in text documents is in some sense similar

to the task of finding alike items based on users’ consumption patterns.

The first SVD-based implementations in the recommender systems field

had an enabling role in a sense that it was used as an intermediate dimen-

sionality reduction step and in order to generate a final list of recommen-

dations its output was fed into a different algorithm based on, for example,

a neural network [Billsus and Pazzani (1998)] or a nearest neighbors ap-

proach [Sarwar et al. (2000)]. The authors of the latter work also used SVD

in a standalone regime (with a certain preliminary data normalization) for

the rating prediction task with a little to no improvement over the com-

peting CF algorithm. However, an even simpler SVD-based model, named

PureSVD [Cremonesi et al. (2010)], has been later demonstrated to outper-

form some state-of-the-art algorithms in terms of the top-n recommendation

task.

We find it necessary to also introduce here some formal definitions and

common results from linear algebra, which will help in further explanations.

Any complete matrix A ∈ RM×N can be represented in the form:

A = UΣV T ,

where U ∈ RM×M and V ∈ RN×N are orthogonal matrices, their columns

are called the left and the right singular vectors respectively; Σ ∈ RM×N
is a diagonal matrix with non-negative elements σ1 ≥ . . . ≥ σK on its

main diagonal called singular values; K = min(M,N) is a rank of SVD.

According to the Eckart-Young theorem [Eckart and Young (1936)], the

truncated SVD of rank r < K with σr+1, . . . , σK set to 0 gives the best

rank-r approximation of the matrix A.

2.3.1. PureSVD

Unfortunately, the result of the Eckart-Young theorem cannot be directly

applied in recommender systems settings as SVD is undefined for incom-

plete matrices. As a workaround the PureSVD model uses a simple impu-

tation technique: to replace the missing entries of A with zeroes. Hence,

an incomplete matrix A is transformed into a sparse matrix A0 with zero

values inplace of the unknown elements, i.e. T (A) = A0. The corresponding

September 19, 2018 11:54 ws-rv9x6-9x6 Book Title 11131-02 page 42

42 E. Frolov and I. Oseledets

loss function can then be expressed as

L(T (A), R) = ‖A0 −R‖2F , (2.5)

where ‖ · ‖F denotes the Frobenius norm. As the loss function is now well

defined, we can apply the Eckart-Young theorem to find a globally optimal

solution to the resulting optimization task defined by Eq. (2.4):

R = UrΣrV
T
r , (2.6)

where factor matrices Ur ∈ RM×r and Vr ∈ RN×r have orthonormal

columns and represent users and items in the reduced latent space with

r � min(M,N) distinct latent features. Square diagonal matrix Σr ∈ Rr×r
has r largest singular values on its main diagonal. Equation (2.6) can be

equivalently rewritten in the form of Eq. (2.2) simply by allowing P = UrΣ
β
r

and Q = VrΣ
1−β
r , where β is some real number in the interval [0, 1], typi-

cally assigned to 1/2 or 1.

As was noticed by the authors of the PureSVD model, the orthonor-

mality of columns of the factor matrices allows to rewrite Eq. (2.6) in a

more convenient form. Assuming that A0 = UΣV T is the full SVD of the

completed matrix, we have A0VrV
T
r = UΣV TVrV

T
r = UrΣrV

T
r . The last

equality is due to the fact that V TVr = [Ir 0]T , where Ir is the identity

matrix of size r and 0 denotes a matrix of all zeros with a conforming size.

From here it reads:

R = A0VrV
T
r . (2.7)

This induces a natural geometrical interpretation: once the right singular

vectors are determined, every row of the prediction matrix R can be com-

puted as an orthogonal projection of the corresponding user preferences onto

the latent feature space. Note, that this eliminates the need for the matrix

of user factors Ur, as it can be restored by the means of UrΣr = A0Vr. This

can be used to reduce both computational overhead and storage require-

ments of the model. From now on for brevity we will omit the subscript r

in the equations, always assuming a low-rank approximation.

Taking into account that in many practical cases a typical sparsity of

the matrix is higher than 99%, setting zeros inplace of the missing data

introduces a strong bias of the model prediction towards zero values. This

makes the model very bad from the matrix completion perspective and

totally unsuitable for the rating prediction task. Nevertheless, despite such

a bias, the PureSVD approach is known to serve as a strong baseline in the

top-n recommendation problem outperforming even more elaborate state-

of-the-art methods [Cremonesi et al. (2010); Lee et al. (2016)]. Of course,

September 19, 2018 11:54 ws-rv9x6-9x6 Book Title 11131-02 page 43

Matrix Factorization for Collaborative Recommendations 43

it does not imply that PureSVD is always an optimal choice. However, it

should be considered by beginner practitioners as a good starting model.

The truncated SVD can be computed with the help of an iterative Lanc-

zos procedure [Golub and Van Loan (2012)] which invokes a Krylov subspace

method and internally uses efficient bidiagonalization techniques supported

by a Gram-Schmidt orthogonalization process. The key benefit of such ap-

proach is that in order to find r leading singular vectors and corresponding

singular values it is only required to provide a rule of how to multiply an

interaction matrix by an arbitrary vector from the right and from the left.

More specifically, given the number of non-zero elements nnzA of the ma-

trix A that corresponds to the number of the observed interactions, the

overall computational complexity of the SVD algorithm can be estimated

as O(nnzA · r) +O((M +N) · r2) [Halko et al. (2011)], where the first term

corresponds to the complexity of a sparse matrix-vector product and the

second term is related to an internal orthogonalization process.

2.3.2. Biases and custom data transformation

It has been already noted that user feedback is intrinsically subjective.

One of the ways to partially address that subjectivity at least in the rating-

based systems is to introduce the concept of the so called user and item

bias. User bias captures a tendency of a user to systematically assign higher

(or lower) ratings depending on how critical the user is in comparison with

an average person. Likewise, item bias can be described as a tendency of

items to receive higher (or lower) ratings. In practice, it turns out that the

most part of an interaction “signal” (e.g. rating value) is accommodated

by these biases. This allows for even non-personalized recommendation

models, called baseline predictors, to demonstrate a fairly good prediction

quality in the rating prediction task [Koren et al. (2009)].

These biases can be estimated with the help of simple statistics such

as an average of user and item ratings calculated over the observed data

sample. It is also possible to use more sophisticated estimation methods,

e.g. averaging with value damping or even gradient-based optimization

[Ekstrand et al. (2011)]. An overall bias bij (i.e. baseline predictor) can be

expressed as a combination of all systematic biases2:

bij = µ+ ti + fj , (2.8)

2The notation we use here slightly differs from what can be commonly seen in the

literature — we assign different letters to user and item bias variables, as it helps to avoid
an ambiguity in mathematical formulations which involve matrix-vector operations.

September 19, 2018 11:54 ws-rv9x6-9x6 Book Title 11131-02 page 44

44 E. Frolov and I. Oseledets

where µ is a global bias constant (e.g. global average rating); ti denotes a

user bias or a tendency to give higher or lower ratings; in turn fj reflects an

item bias, its favouredness or in some sense quality (based on the opinions

of raters).

In the PureSVD model these biases can be used as a replacement for

the missing data, which therefore reduces the distortion introduced by a

straightforward zero-based imputation step and allows to partially address

the subjectivity of user preferences. In the simplest scenario one could use

Eq. (2.8) to replace the missing entries of A with the corresponding values

of the baseline predictor. In this case the transformation T of the data is

trivial. It is sufficient to simply subtract the bias values from the known

entries of A. The unknown values can then be set to 0, preserving the same

sparsity pattern as in A0. After the preprocessing is done the standard

PureSVD model is built on top of the centered data. When generating

recommendations the bias term should be added back to the predicted scores

of the model.

More elaborate data preprocessing techniques can also be supported

without sacrificing the computational efficiency. As an example, consider

the case when the missing elements of the rating matrix are first filled-

in with the values of item average ratings f ∈ RN and then the resulting

complete matrix is additionally normalized by subtracting user average rat-

ings t ∈ RM [Sarwar et al. (2000)]. The elements of the obtained centered

matrix T (A) = Â can be expressed as:{
âij = aij − ti if aij is known,

âij = fj − ti otherwise.

By construction, the complete matrix Â is likely to be dense. However, it

can be split into the sum of a sparse matrix Ā with two rank-1 terms (outer

products of vectors):

Â = Ā− teTN + eMfT , (2.9)

where eM , eN denote vectors of all ones of a conforming size and the ele-

ments of Ā are defined as follows:{
āij = aij − fj if aij is known,

āij = 0 otherwise.

Recall that in order to compute the truncated SVD it is only required to

provide a matrix-vector multiplication rule. Multiplying Eq. (2.9) by an

arbitrary vector v gives:

Âv = Āv − t〈eN ,v〉+ eM 〈f ,v〉, (2.10)

September 19, 2018 11:54 ws-rv9x6-9x6 Book Title 11131-02 page 45

Matrix Factorization for Collaborative Recommendations 45

where 〈· , ·〉 stands for the scalar product of two vectors. Note, that the first

term in Eq. (2.10) has the same computational complexity as in the origi-

nal PureSVD approach as the matrix Ā by construction follows the sparsity

pattern as A0. The last 2 terms are linear with respect to the number of

users and items, and therefore the added complexity is only O(M + N),

which is negligible as it is dominated by the complexity of the standard

Lanczos procedure. Moreover, there is clearly no need to explicitly form the

dense matrix Â to compute SVD, which allows to avoid unnecessary mem-

ory overhead. This technique can be further used for an iterative variant

of SVD [Kim and Yum (2005)] for achieving a much better performance in

terms of the rating prediction task.

2.3.3. Handling online updates

Many recommendation services aim to provide an instant engagement for

both known users and newcomers as well as quickly update the information

about new items in the assortment. In the modern online world with its

highly dynamic environment and an overwhelming amount of information

this requires the ability to generate recommendations instantly. This, how-

ever, would be impossible for large scale recommender systems if the only

way to accomplish that would be to recompute the whole model for every

new (or unrecognized) user or a newly introduced item.

One common technique designed to support an instant service is called

folding-in [Ekstrand et al. (2011)], which was initially proposed in the field

of information retrieval for the semantic document-term analysis [Furnas

et al. (1988)]. As long as at least one interaction with a new entity (i.e. user

or item) is observed, it allows to approximately update the corresponding

latent representation and quickly generate recommendations for this new

entity without the need for the whole model recomputation. Note, that

this setting is different from the so called cold start regime (see Chapter 8),

where no interactions are available.

One of the greatest advantages of the SVD-based approach is an analyt-

ical form of the folding-in, which unlike many other MF methods does not

require any additional optimization steps to calculate recommendations for

a new user who is not a part of the model yet. For illustration purposes we

will consider the new user scenario. New item scenario is trivially obtained

by analogy.

Assuming that the model is expressive enough, a new user can be rep-

resented with high accuracy as a combination of previously seen users.

September 19, 2018 11:54 ws-rv9x6-9x6 Book Title 11131-02 page 46

46 E. Frolov and I. Oseledets

Therefore, the preference vector a of the new user (with imputed zeroes

inplace of the unknowns) can be approximated as aT ≈ uTΣV T , where u

is unknown. Multiplying from the right the both parts of this equality by

V Σ−1 and using the orthonormality property V TV = I we obtain:

uT ≈ aTV Σ−1. (2.11)

This represents an approximate embedding of a new user to the latent

feature space. The formula can be further used to directly generate rec-

ommendations. By the virtue of Eq. (2.6) one could perform a reverse

operation and restore the corresponding new row for the matrix R, which

after transposing the result reads:

r ≈ V V Ta, (2.12)

where r is a vector of predicted relevance scores. Provided that there are

k items in the preference vector a, the overall complexity of generating

recommendations for a single user is O(Nkr), which is the result of the

chain of matrix-vector multiplications.

Similarly to Eq. (2.7), recommendations for a new user can be gener-

ated by the orthogonal projection of the user’s preferences onto the latent

feature space. This suggests, that Eq. (2.12) can be used to generate rec-

ommendations for both known and new users. All it requires is a list of user

preferences, even if it does not correspond to any particular known user. In

the latter case it gives an estimate of possible user preferences, implicitly

relying on the assumption that the learned model is expressive enough. In

turn, for the known users it corresponds to the exact prediction formula.

As a precaution remark, the folding-in approach is only approximate and

leads to the loss of orthogonality of factors. In the long run it accumulates

an error and once in a while it is advised to fully recalculate the model,

especially if a lot of new data is collected. Alternatively, incremental update

techniques can be employed in order to avoid expensive recomputations

[Berry et al. (1995); Zha and Zhang (2000); Brand (2002)].

2.3.4. The family of eigendecomposition algorithms

The PureSVD model can be viewed as a member of a broader family of

eigendecomposition algorithms. Consider an SVD-based approximation

Ã ≈ UΣV T for some complete matrix Ã with standardized data. The

corresponding correlation matrix ÃT Ã ≈ V Σ2V T would represent the well

known PCA with principal components given by ÃV = UΣ. The princi-

pal components can be then utilized to indicate similarity between users (or

September 19, 2018 11:54 ws-rv9x6-9x6 Book Title 11131-02 page 47

Matrix Factorization for Collaborative Recommendations 47

items in the transposed case) and build a neighborhood-based recommender

system.

This path was initially explored by the authors of the Eigentaste model

[Goldberg et al. (2001)] designed for the jokes recommendation system. The

authors selected a subset (called the gauge set) of the observed data, where

only items rated by all users were present. This has led to a complete dense

matrix of ratings A. The only transformation T (A) the authors used on top

of it was the standardization of rating values, allowing to build a Pearson

correlation matrix and apply classical PCA. The authors used the first 2

principal components and a clustering technique in this lower dimensional

space in order to group like-minded users. In every group (or cluster) the

rating for every non-gauge item was estimated as a mean value averaged

across those users of the group who has provided rating for this item. As

for the new users, they were requested to firstly provide ratings on the

gauge items. After that the ratings were projected to the lower dimensional

space allowing to assign the newcomers to the known clusters and generate

averaging-based recommendations similarly to the known users.

Note, that rating predictions generated by Eigentaste are not fully per-

sonalized as they are assigned to a whole cluster of users at once. Moreover,

the requirement of the dense gauge set can be fully satisfied only in spe-

cific environments with sufficiently large amount of user feedback and/or

relatively small number of items to interact with (which is exactly the case

with the jokes dataset used in the work). In many real-world settings with

very high sparsity of the data these can be difficult or even impossible to

guarantee. However, it turns out, that at least in the case of top-n rec-

ommendation task such restrictions can be alleviated. As shown by the

authors of the EIGENREC model [Nikolakopoulos et al. (2015)], as long

as the rating prediction is not one of the goals of a recommender system,

one could build a more flexible and more general approach following the

paradigm of PureSVD.

The authors make the following observation: PureSVD can be viewed as

an eigendecomposition of a scaled user-based or item-based cosine similarity

matrix. For instance, in an item-based case it solves an eigendecomposition

problem for the following matrix cross-product:

AT0 A0 ≡ DCD ≈ V Σ2V T , (2.13)

where the scaling matrix D ∈ RM×M is diagonal with diagonal elements

dii = ‖ai‖2 and ai denotes the ratings of the item i encoded within the

i-th column of the matrix A0. Each element cij of the symmetric matrix

September 19, 2018 11:54 ws-rv9x6-9x6 Book Title 11131-02 page 48

48 E. Frolov and I. Oseledets

C ∈ RM×M equals to the cosine similarity between item i and item j:

cij = cos(i, j) =
aTi aj
diidjj

. (2.14)

From here it follows, that by altering the scaling factors D and/or by

replacing C with some other inter-item proximity or correlation matrix S:

DCD → Dp S Dp,

one can obtain a new model with a different inner structure of the latent

space. Here p is some real number (the authors used values in the range

[-2, 2]) and S is a new proximity matrix, which can be based on Pearson

correlation, Jaccard index or many other similarity measures. The authors

emphasize, that in fact even the choice of a scaling factor may have a sig-

nificant impact on the quality of recommendations. This scaling allows to

control the sensitivity of the model to the popularity of items, and there-

fore to some extent mitigates the problem of unbalanced observation data

present in the majority of recommender systems.

Similarly to PureSVD the authors use the Lanczos procedure in order

to build an orthogonal basis. They propose their own parallel and highly

efficient implementation of it. Therefore, the EIGENREC approach allows

to preserve the benefits of PureSVD which include a good scalability and

a quick way to generate recommendations according to Eq. (2.12) for both

known and newly introduced users. The approach also gives more flexibility

comparing to the standard PureSVD model and unlike the Eigentaste model

allows to operate on the full assortment of items from the very beginning.

It provides an instrument for a more intricate tuning, potentially making

it suitable for a wider class of problems.

2.4. Weighted low-rank approximation

A straightforward data imputation is not the only way of dealing with

missing values. Alternatively, one could try to avoid making any strict

assumptions on the missing values and either ignore them completely or

introduce some confidence-based description of it. Indeed, the fact that

some interactions between users and items are unobserved does not imme-

diately suggest that these interactions will never happen. For example, a

user may never interact with an item simply due to inability to notice it

among many other similar items in a large assortment. On the other hand,

if a user consumes one item more often than another one, it may increase

our confidence that the item is more relevant or more interesting for a user.

September 19, 2018 11:54 ws-rv9x6-9x6 Book Title 11131-02 page 49

Matrix Factorization for Collaborative Recommendations 49

Hence, bringing the concept of a confidence-based weighting for both

observed and unobserved interactions into a factorization model may help

to create more accurate recommender systems. A common way to express

the corresponding loss function reads:

L (T (A), R) = ‖W ◦ (T (A)−R)‖2F , (2.15)

where W =
[√
wij
]

is a matrix of non-negative weights wij ≥ 0 and ◦
denotes Hadamard product, i.e. an elementwise multiplication between two

matrices. The weight values of W typically depend on the observed data

W = W (A). We take the square root of weights wij in order to conform

with an equivalent elementwise formulation of the loss function:

L (T (A), R) =
∑
i,j

wij(a
(T)
ij − rij)

2, (2.16)

where a
(T)
ij denotes an element of the matrix T (A) at the intersection of

the i-th row and j-th column.

One of the most popular choices of the weights is based on {0, 1} values

simply indicating the fact of interaction. The corresponding binary weight

matrix W is then defined by:{
wij = 1 if aij is known,

wij = 0 otherwise.
(2.17)

With this formulation, no data imputation is required as all missing el-

ements of the matrix A are simply ignored. More elaborate weighting

schemes are discussed in Sec. 2.4.3.

Typically, the number of users and items is very large while at the

same time the number of observed interactions between them is very small.

Therefore, the model obtained as a result of minimization of the loss func-

tion defined by Eq. (2.15) is likely to overfit and produce poor prediction

quality on the unobserved part of the data. In order to prevent this overfit-

ting additional constraints are typically imposed on the parameters of the

model. Most commonly, a simple regularization is used for that purpose

leading to the following regularized optimization objective:

J (Θ) = L(Θ) + Ω(Θ), (2.18)

where L(Θ) is defined by Eq. (2.15) (we omit the full notation of the input

arguments for brevity) and Ω(Θ) is some regularization function typically

expressed in terms of some vector or matrix norm. Many factorization mod-

els use a simple quadratic term, allowing to penalize an undesired growth

of the parameters’ values:

Ω(Θ) = λ(‖P‖2F + ‖Q‖2F), (2.19)

September 19, 2018 11:54 ws-rv9x6-9x6 Book Title 11131-02 page 50

50 E. Frolov and I. Oseledets

where λ > 0 is an additional model’s hyper-parameter called regularization

coefficient. In some cases a separate value is assigned to each factor matrix

for more granular tuning of the model, which sometimes helps to achieve

a better prediction quality. Altering the regularization function may also

help to induce a specific structure on the resulting latent space, e.g. one

could use l1 norm to obtain sparse latent factors. In some other cases, when

the data is strictly non-negative, imposing a non-negativity constraint on

the factors helps to avoid meaningless predictions and may also improve

generalization. In the case of binary input data it has a meaning of soft

clustering or “fuzzy membership” [Takács et al. (2008)].

2.4.1. Optimization techniques

A recommendation model is learned as a solution to the corresponding

optimization problem:

Θ∗ = argmin
Θ

J (Θ). (2.20)

This can no longer be directly solved with the help of classical SVD and

alternative optimization methods are required. Some of the most popular

options are gradient-based methods, especially the stochastic gradient de-

scent (SGD) [Bottou (2012)], and alternating minimization methods such

as alternating least squares (ALS) [Zhou et al. (2008)] and coordinate de-

scent (CD) [Yu et al. (2012)].

In general, these methods no longer guarantee global convergence

and, therefore, the optimization requires careful initialization and hyper-

parameters tuning. Nevertheless, the methods in practice exhibit fairly

good convergence behavior which makes them the main building blocks for

many recommender models. More advanced optimization techniques based

on Riemannian optimization [Vandereycken (2013)] also seem promising in

recommender systems settings, offering quick convergence and high scala-

bility in low-rank approximation tasks [Yan et al. (2015)].

2.4.1.1. Gradient-based techniques

The main idea of the gradient-based approach (also called batch gradient) is

to iteratively make steps in the direction that is opposite to the gradient of

the optimization objective. Each iteration step in its naive implementation

September 19, 2018 11:54 ws-rv9x6-9x6 Book Title 11131-02 page 51

Matrix Factorization for Collaborative Recommendations 51

is based on the following sequential update rule for the model parameters:
pi ← pi − η

∂J
∂pi

,

qj ← qj − η
∂J
∂qj

,

where η is a step size also called learning rate; its value can be a con-

stant real number determined empirically with cross-validation or, in more

advanced cases, depend on iterations.

The algorithm makes a full pass through all observations, called epoch,

in order to perform a full update of matrices P and Q. Iterations continue

until the maximum number of epochs is reached or a convergence criteria

is met. Note that finding the gradient at each iteration can be quite com-

putationally demanding and suffers from many redundant calculations. At

large scale this may lead to both slow convergence and high memory load.

A more efficient implementation, which is the essence of SGD, is to ap-

proximate a full gradient with the gradient computed over a single observa-

tion or a small group of them (called mini-batch). Such smaller updates are

easier to find at the cost of a less straightforward convergence. This allows

to sweep through the entire dataset in a single pass for the full update of

parameters and has a very low memory footprint. In the case of a single

observation update, the update rules are as follows:{
pi ← pi + η(eijqj − λpi),
qj ← qj + η(eijpi − λqj),

(2.21)

where eij = a
(T)
ij − rij measures how off is the prediction of the model at

the current step from the ground-truth.

The method strongly depends on initialization of its parameters, per-

formed at the beginning. A quite common practice is to use a normal

distribution with zero mean and small deviation. It is also advised to shuf-

fle the data prior to optimization in order to avoid unintended biases in the

resulting model. The overall complexity of the approach is O(nnzA · r).
Note that SGD is inherently incremental, which gives an “out-of-the-

box” equivalent of the folding-in technique for the model updates. For

example, in the case of a newly introduced user with at least a few known

preferences one can simply iterate over these preferences with the first line

of Eq. (2.21) until it converges. The other parameters related to items stay

fixed in that case. New items can be handled in a similar fashion.

September 19, 2018 11:54 ws-rv9x6-9x6 Book Title 11131-02 page 52

52 E. Frolov and I. Oseledets

2.4.1.2. Alternating minimization techniques

In turn, the ALS-based methods decompose the optimization task into the

sequence of the least squares problems. Note that while the optimization

problem defined by Eq. (2.20) is non-convex, it is bi-convex with respect to

its parameters. In other words, for fixed P it is convex in Q and for fixed

Q it is convex in P . Moreover, the optimization problem can be solved

independently for every row of P and Q. Therefore, one can iteratively

minimize the objective function by switching between user and item factors

and updating their rows as follows:
pi ← argmin

pi

J (Θ),

qj ← argmin
qj

J (Θ).
(2.22)

After each iteration the objective function is guaranteed not to increase.

However, unlike the unweighted case, there are no global guarantees for

convergence in general. In practice, the algorithm is reported to require

only around 10 or slightly more epochs to achieve a good approximation

[Bell and Koren (2007); Hu et al. (2008)].

In order to find the update rules for Eq. (2.22), it is convenient to

rewrite both L defined by Eq. (2.15) and Ω defined by Eq. (2.19) in the

row-wise and column-wise forms, corresponding to pi and qj respectively.

For example, in the user-wise case it reads:

J (Θ) =
∑
i

(ai −Qpi)
T
W (i) (ai −Qpi) + λ

∑
i

pTi pi + λ‖Q‖2F , (2.23)

where W (i) = diag{wi1, wi2, . . . , wiN} is a diagonal matrix of weights and

ai is the i-th row of the matrix T (A), i.e. it represents the preference vector

of user i with respect to all items. After finding the derivative ∂J / ∂pi and

setting it to zero one arrives at the following equation for pi:(
QTW (i)Q+ λI

)
pi = QTW (i)ai. (2.24)

This gives a standard linear system of equations with the r × r symmetric

positive definite matrix
(
QTW (i)Q+ λI

)
. Direct solution of the system

can be found in O(r3) time, for example, by the means of Cholesky decom-

position. The resulting expression for the pi update reads:

pi ←
(
QTW (i)Q+ λI

)−1

QTW (i)ai. (2.25)

September 19, 2018 11:54 ws-rv9x6-9x6 Book Title 11131-02 page 53

Matrix Factorization for Collaborative Recommendations 53

Due to the symmetry of the objective function, in order to find an update

rule for qj one can simply replace Q,W (i) and ai with their corresponding

counterparts:

qj ←
(
PT W̄ (j)P + λI

)−1

PT W̄ (j)āj , (2.26)

where W̄ (j) = diag{w1j , w2j , . . . , wMj} and āj denotes the j-th column of

the matrix T (A), i.e. the preference vector of all users against item j.

At each epoch the algorithm updates all rows of the matrices P and Q,

which can be done in parallel. As in the SGD case, the iteration process

repeats until either the number of epochs exceeds some threshold value

or the objective function ceases to decrease (with respect to a predefined

tolerance). The overall complexity of the algorithm is estimated as O(nnzA·
r2 + (M +N)r3) [Pilászy et al. (2010)].

Note, that the same update rules can also be used to calculate approx-

imate predictions for the new entities. Indeed, as every update is just the

solution of the corresponding least squares problem, one can replace ai or

āj with the preference vector of a newly introduced user or item respec-

tively. This technique is similar to the folding-in update used in PureSVD.

Another important consideration is that the time, required to solve

Eq. (2.24), can be further reduced with additional computational tricks.

For example, the straightforward application of the Sherman-Woodbury-

Morrison formula gives an analytic expression for incremental calculations

of the matrix inverse at each iteration. This, however, may not always

provide a considerable speed-up and highly depends on the data sparsity

[Pilászy et al. (2010)].

Alternatively, instead of the direct approach one could use iterative lin-

ear system solvers in order to find an approximate solution. A worth noting

candidate is the conjugate gradient (CG) method [Golub and Van Loan

(2012)], which is closely related to the Lanczos process and similarly re-

quires only matrix-vector multiplications for performing the task. The

method allows to reduce the complexity of the matrix inverse computa-

tion to O(r) instead of O(r3) as in the original approach. It gives a decent

trade-off between the accuracy of each individual update and the overall

convergence speed [Takács et al. (2011)] and works quite well in practice3.

3Its open-source implementation available at https://github.com/benfred/implicit is
shown to provide a remarkable speedup almost without the drop in quality.

September 19, 2018 11:54 ws-rv9x6-9x6 Book Title 11131-02 page 54

54 E. Frolov and I. Oseledets

2.4.1.3. Coordinate descent

Another iterative approach for performing the optimization task is to em-

ploy the (block) coordinate descent method (CD) [Bertsekas (1999), Sec-

tion 2.7]. In the context of the low-rank approximation of complete matrices

it was explored in [Cichocki and Phan (2009)], where the authors addition-

ally consider nonnegativity constraints. A few efficient variations of the

method were also proposed for the missing value estimation in the recom-

mender systems with explicit feedback [Bell et al. (2007); Pilászy et al.

(2010); Yu et al. (2012)]. Recently, several efficient implementations were

also proposed for the OCCF case [Yu et al. (2017); Bayer et al. (2017)].

Generally, instead of the bulk update of latent feature matrices per-

formed in ALS, CD successively updates either blocks of variables (e.g.

rows or columns of the factor matrices) or simply a single variable. Such

formulation leads to a convex optimization and avoids computation of a

matrix inverse. For example, by declaring the result of an update in the

variable pik as θ one arrives at the following optimization subproblem:

f(θ) =
∑
ij

wij
(
aij −

(
pTi qj − pikqjk

)
− θqjk

)2
+ λθ2, (2.27)

where f(θ) is a univariate quadratic function. Its optimum value is then

given by:

θ∗ =

∑
j wij

(
aij − pTi qj + pikqjk

)
qjk

λ+
∑
j wijq

2
jk

. (2.28)

Similar expression can be obtained for updates in the matrix Q. This ap-

proach also offers a trade-off. The algorithm may require more epochs

to converge, however, each iteration within every epoch becomes much

cheaper. Despite being less popular than ALS and SGD, CD offers a com-

petitive quality of recommendations with a number of computational ad-

vantages [Yu et al. (2012)].

2.4.2. Biased matrix factorization

As was already noted in Sec. 2.3.2, the rating prediction quality can be

improved with the concept of biases, which absorb a significant part of the

feedback signal. A similar data transformation procedure with manually

crafted biases can be applied for the weighted MF problem as well. How-

ever, unlike the SVD-based case, the weighted formulation of the problem

is more flexible and allows to declare bias variables as additional model

parameters [Paterek (2007); Koren et al. (2009)].

September 19, 2018 11:54 ws-rv9x6-9x6 Book Title 11131-02 page 55

Matrix Factorization for Collaborative Recommendations 55

With this approach, the predicted value of the rating rij assigned by

user i to item j is modelled as follows:

rij = µ+ ti + fj + pTi qj , (2.29)

where all bias variables {ti} and {fj} are learned along with other model

parameters, i.e. Θ = {t,f , P,Q}. The global average µ is usually pre-

estimated based on the known values of ratings. One may conveniently

rewrite the prediction formula in a compact matrix form, following the

outer product rule similarly to Eq. (2.9):

R = µE + P̄ Q̄T ,

where the block matrices P̄ = [t eM P] and Q̄ = [eN f Q] have a particular

form of the first two columns comprised by the bias vectors and vectors of

all ones; E = eMeTN is an M ×N matrix of all ones.

Clearly, shifting the data values by µ would give similar to Eq. (2.2)

form. However, the bias terms increase an overall rank of the solution

by 2. Moreover, the result does not correspond to an arbitrary unbiased

MF model of rank r + 2 due to a certain structure of the first 2 columns

in the factor matrices. In some sense biases can be viewed as a specific

constraint on the factors, which is used to reflect the core assumption about

the underlying rating mechanism.

The SGD-based variation of this matrix factorization approach became

popular after it was published in the famous blog post4 by Simon Funk,

when he attended the Netflix Prize competition. Due to that, sometimes

this algorithm is also called FunkSVD. It has become an internal part of

many other MF algorithms. The full update rule, including additional bias

updates, reads:
pi ← pi + η(eijqj − λpi),
qj ← qj + η(eijpi − λqj),
ti ← ti + η(eij − λti),
fj ← fj + η(eij − λfj).

As a practical remark, such a representation via the bias terms also

allows to quickly estimate the rating values for previously unobserved items

or users with no associated ratings. In that case it falls back to the baseline

value contained in the corresponding bias term and there is no contribution

of the factorization part. This estimate can be further improved after at

least one rating value is provided into the system with the incremental

approach similarly to the unbiased MF case.
4http://sifter.org/simon/journal/20061211.html

September 19, 2018 11:54 ws-rv9x6-9x6 Book Title 11131-02 page 56

56 E. Frolov and I. Oseledets

2.4.3. Confidence-based models

Another important example of the weighted matrix factorization approach

is based on a more flexible treatment of both observed and unobserved

interactions. Consider the case, where users exhibit different behavior de-

pending on how much they like a particular item. For example, when a

user plays a particular sound track several times while skipping some other

track just after listening to the first 10 seconds, this would be a clear indi-

cation that the first track is more interesting for the user. In other words,

our confidence that the user enjoys the music is higher in the case of the

first track. Likewise, the fact that user has never played some track does

not immediately suggest that the track is not interesting — the user may

be simply unaware of it. However, our confidence in the relevance of the

track is lower in this case.

In order to account for such an uncertainty it seems reasonable to as-

sociate some confidence measure with every possible interaction. Instead

of simply ignoring the missing data and assigning constant weights to the

known interactions as in Eq. (2.17) we would like to change the weights of

interactions depending on various conditions and to treat both observed and

unobserved data in a more thorough way. The general form of a confidence-

based loss function is slightly different from Eq. (2.15):

L (T (A), R) = ‖W (A) ◦ (S −R)‖2F . (2.30)

where the binary matrix S ∈ BM×N with elements{
sij = 1, if aij is known,

sij = 0, otherwise
(2.31)

indicates whether a particular interaction has occurred. The weights matrix

W = [
√
wij] encodes a confidence in the observed feedback and directly

depends on the values of A.

Note that this approach is not designed to predict an exact rating value.

It rather focuses on the prediction of a probability of a certain event taking

into account an additional information, be it a rating value, a browsing

behavior or any other form of an explicit or implicit feedback that allows

to quantify the corresponding confidence level. A particular choice of the

confidence measure may significantly impact the performance of a recom-

mendation model. A few different techniques were proposed independently

by several research groups [Hu et al. (2008); Pan et al. (2008)]. The sub-

stantial difference in the proposed models is in the way the weighting is

applied.

September 19, 2018 11:54 ws-rv9x6-9x6 Book Title 11131-02 page 57

Matrix Factorization for Collaborative Recommendations 57

The authors of the so called Weighted Regularized Matrix Factorization

model (WRMF) [Hu et al. (2008)], sometimes also called implicit ALS or

iALS, propose to assign constant weight of 1 to the unobserved interactions,

and increase the weight for any observed interaction proportionally to a

satisfaction of a user with an item estimated from the expressed feedback:

wij = 1 + αg
(
a

(T)
ij

)
,

where α is an empirically determined coefficient of proportionality. The

estimation function g is the most subjective part of the model and may

vary depending on the domain of application and the type of available

data. The authors give a few examples of it based on linear g(x) = x

and logarithmic g(x) = log(1 + x
ε) approximation (with an extra tuning

parameter ε), which work well in practice.

The authors propose to use ALS optimization as it allows to efficiently

handle computations with complete matrices S and W . The general form

of the solution stays the same as in standard ALS:{
pi ←

(
QTW (i)Q+ λI

)−1
QTW (i)si,

qj ←
(
PT W̄ (j)P + λI

)−1
PT W̄ (j)s̄j ,

(2.32)

where W (i) = diag{wi1, wi2, . . . , wiN}, W̄ (j) = diag{w1j , w2j , . . . , wMj}; si
is a binary preference vector of user i with respect to all items, and s̄j is

a binary preference vector of all users against item j. The authors came

up with an elegant computational trick which allows to avoid redundant

computations making the algorithm highly scalable.

Alternatively, the authors of the second approach, referred to as weighted

ALS or wALS [Pan et al. (2008)], propose to assign the constant weight

value of 1 for all known observations and in contrast to WRMF use alternate

weighting schemes for the unobserved part. The weighting scheme can be

based either on small constant values in the range [0, 1] or on some data

aggregation which takes into account popularity effects. For example, in the

user oriented approach the weights for the unobserved data are proportional

to the number of ratings provided by user. The rationale behind is that

the higher is the number of ratings provided by user, the more likely it is

that the remaining non-rated items are irrelevant for that user. Likewise,

in the item oriented case the lower popularity of an item would increase the

corresponding weights for negative (unobserved) interactions.

September 19, 2018 11:54 ws-rv9x6-9x6 Book Title 11131-02 page 58

58 E. Frolov and I. Oseledets

2.4.4. Combined latent representations

A high level intuition behind latent features is often provided in terms of

the ability to capture intrinsic item properties as well as user motivation

and interests. Latent features are often treated as indicators of some user

tastes and items’ affinity to them. However, in practice, it can be quite

difficult to directly map a single real feature to its latent representation

[Takács et al. (2007)]. It is more likely that each latent feature will instead

characterize some tangled combination of various aspects.

Moreover, the number of these aspects can be large and they may have

a complicated, multifaceted nature making it hard to interpret them by a

virtue of standard parametrization. On the other hand, this information

may play an important role in the decision making process. Ignoring it

may not only limit the expressiveness of a recommendation model, but also

hinder its ability to uncover valuable implicit relations within the observed

data.

One of the ways to improve sensitivity of a model to a multi-aspect

input is to explicitly impose an aspect-based structure on the latent repre-

sentation of users and items. As an example, consider an online retail shop

where customers tend to purchase only a few items and rarely provide an

explicit feedback. This would lead to a very sparse interaction matrix and

make the decision making process obscure for a recommendation model.

Meanwhile, it is typically possible to collect additional information such

as what pages users visit during their search for a product, what informa-

tion they look for, what products they consider together, etc. Including

such information into a model allows to increase an understanding of user

interests, and therefore help to create a better prediction model. With the

flexibility of a weighted matrix factorization this can be achieved directly

by adjusting the optimization objective.

One of the earliest examples of such approach is the NSVD model [Pa-

terek (2007)], where every user is characterized by a combination of items

he or he interacted with. It can be especially helpful in the case of extreme

sparsity and the lack of any side information, giving a more “smooth” rep-

resentation of the data. The author of the model proposed 2 variations of

such representation: based on binary vectors (simply denoting the fact of

interaction) and based on latent features of items. In the latter case the

solution can be sought in the following form:

R = SQQT (2.33)

where S is a sparse matrix of aggregation coefficients with binary elements

September 19, 2018 11:54 ws-rv9x6-9x6 Book Title 11131-02 page 59

Matrix Factorization for Collaborative Recommendations 59

defined simialrly to Eq. (2.31). Here we omit biases as they can be trivially

added.

The matrix product SQ in Eq. (2.33) gives an aggregated representation

of every user via the latent features of consumed items. As a result, the

contribution into the prediction score is defined by all the actions taken by

the user, independently of the user-assigned rating values. Note that the

model has a reduced number of parameters which can be especially suitable

in the systems with very large amount of users and may potentially help

to avoid a certain redundancy. It also has inspired further research in

this direction and has led to more elaborate models such as SVD++ and

Asymmetric-SVD [Koren (2008)]. Later it was shown to be a special case

of the more general models, namely SVDFeature [Chen et al. (2011)] and

Factorization Machines [Rendle (2010)].

In the SVD++ model, which turned out to provide results superior to

Asymmetric-SVD, the latent features of users are not replaced, but rather

are augmented with an additional information about multiple aspects of

user-item interactions in the following way:

R = (P + S̄L)QT , (2.34)

where L represents an independent of Q latent subspace, which is used

to build neighborhoods of items rated together by the same user. The

sparse aggregation matrix S̄ has the same sparsity pattern as S. In con-

trast to NSVD, its values are not binary and are row-normalized, so that

the norm of every row would be equal to 1, i.e. S̄ = D−1S, where

D = diag{‖s1‖2, ‖s2‖2, . . . , ‖sM‖2} and si is an i-th row of S. Such nor-

malization prevents susceptibility of the model to popularity of items and

to contribution of very active raters.

Note that multiple types of feedback can be easily incorporated into the

model simply by adding more aggregation terms, i.e. P + S̄1L1 + S̄2L2 +

. . ., corresponding to different types of feedback (e.g. purchase activity,

browsing history, etc.). The key drawback of such approach is an increased

number of parameters, which makes the model more difficult to train and

prone to overfitting.

Equation (2.34) can be reformulated as R = (XP̄)QT , where X = [I S̄]

and P̄T = [PTLT] are block matrices of aggregation coefficients and joint

latent features respectively. Up until now we have used coefficients matrix

X to combine items rated by the same user. However, it can also be used

to reflect any sort of additional information which helps better describe the

observed interactions. For example, instead of (or along with) indicating

September 19, 2018 11:54 ws-rv9x6-9x6 Book Title 11131-02 page 60

60 E. Frolov and I. Oseledets

the rated-together items, it can be used to encode relevant user attributes

and group users with respect to these attributes. The matrix P̄ will be

extended with the corresponding embeddings of these attributes onto the

latent feature space similarly to how it was performed for items with the

matrix L.

The same reasoning can be applied with respect to the matrix Q which

can be replaced with an aggregated view on different item properties and

the item-related interaction aspects. The most general formulation of such

representation can be compactly described as:

R = XP (Y Q)T , (2.35)

where the block matrices PT = [PT1 PT2 . . .] and QT = [QT1 Q
T
2 . . .] now

represent various user-based, item-based and mutual aspects of the observed

interactions. Sparse coefficient matrices X = [X1X2 . . .] and Y = [Y1 Y2 . . .]

with the corresponding block structure allow to aggregate various latent

vectors to represent every interaction from a multi-aspect perspective. This

aggregated model is known as SVDFeature [Chen et al. (2011)]. Due to

its ability to take side information into account it can be considered as

a representative of the so called hybrid approach (see Sec. 2.5.2 and also

Chapter 4).

There is one nuance that is worth noting here. The authors of the

model propose to represent the global bias as a weighted sum of global

biases calculated with respect to different aspects. It is more convenient to

demonstrate it with an equivalent to Eq. (2.35) elementwise formulation,

now including all bias terms:

rij = b0 + tTxi + fTyj + xTi PQ
Tyj , (2.36)

where b0 =
∑
g∈G γgµg is a global bias aggregated over the group of aspects

denoted by G with individual weight coefficients γg and bias values µg.

Note that the bilinear form of Eq. (2.36) can be viewed as a special case

of a polynomial expansion:

r(z) = b0 + bTz + zTHz + . . . (2.37)

The connection to the SVDFeature model can be seen with the following

substitution: bT = [tT fT] and zT = [xT yT], where xT and yT are some

rows of the matrices X and Y . The coefficients vector z now encodes the

full information about an interaction between some user and some item

with respect to all related aspects5, as was discussed previously. Hence,
5In the case of categorical data, e.g. user or item id, user gender, movie genre, etc., this

method of building a sparse representation of the multidimensional input data is called
one hot encoding.

September 19, 2018 11:54 ws-rv9x6-9x6 Book Title 11131-02 page 61

Matrix Factorization for Collaborative Recommendations 61

the quadratic term zTHz with symmetric positive semi-definite matrix H

allows to account for an interplay between any entities and any aspects

in their contribution to the final prediction score. Note that H subsumes

matrices P and Q in a certain way and the parameters of the model are

described as Θ = {b0, b, H}.
Such a generalization leads to the next hybrid approach and a popular

machine learning algorithm, namely Factorization Machines (FM) [Rendle

(2010)], which has been proven to perform well in recommender systems.

The author of the model notes that the matrix H should have a low-rank

structure in order to deal with the sparsity problem and increase the ex-

pressiveness of the model:

H = V V T

where V embeds all users, items and the corresponding side information

onto the lower dimensional latent feature space. In addition to that, all

self-influence terms (i.e. x2
i) are excluded and the symmetry of the model

(i.e. the equivalent contribution of both xixj and xjxi interplay terms) is

taken into account, which produces the following relevance score function:

r(z) = b0 +
∑
i

bizi +
∑
i

∑
j=i+1

〈vi,vj〉zizj . (2.38)

The task of generating recommendations, therefore, boils down to solving

the polynomial regression problem given the observation data.

Note that unlike SVDFeature or SVD++ the model allows to take into

account additional interaction factors, e.g. it allows to include a “within-

class” influence — an influence of entities and aspects of the same type on

each other within a single observation. Indeed, indices i, j in zizj term may

belong to 2 different items or 2 different features describing the same item.

Depending on the problem, such extra interactions can be meaningless or

undesirable. In order to control which interactions are allowed in the model

one can replace zizj with δijzizj , where binary variable δij would indicate

whether the corresponding interaction is allowed. Clearly, FM can be re-

duced to any of the previously discussed models by a proper choice of the

model parameters and indicator coefficients. A popular variation of FM

that uses this technique to separate the latent space for various groups of

features is called Field-Aware FM (FFM) [Juan et al. (2016)].

FM models also have a close connection to a higher order approach based

on Pairwise Interaction Tensor Factorization (PITF) model [Rendle and

Schmidt-Thieme (2010)]. Unlike matrix-based models, PITF uses an array

with 3 dimensions, called a 3rd order tensor, to encode pairwise relations

September 19, 2018 11:54 ws-rv9x6-9x6 Book Title 11131-02 page 62

62 E. Frolov and I. Oseledets

between users, items and additional interaction aspects (tags). The model

uses 2 independent latent feature spaces for tags: one for user-tag and

another one for item-tag relations respectively. The PITF model per se is a

member of a broader family of tensor-based methods, which allow to model

n-ary relations (ternary, quaternary, etc.) not only in a pairwise but in a

mutual way.

The topic of tensor methods in recommender systems deserves a sepa-

rate discussion and we refer the reader to [Frolov and Oseledets (2017)] for

a comprehensive overview. Worth noting here that tensor-based methods

are often used for context-aware recommender systems, covered in details

in Chapter 5. There are also several direct extensions of the FM idea to

higher order cases, e.g. Tensor Machines [Yang and Gittens (2015)], Higher

Order FM [Blondel et al. (2016)], Exponential Machines [Novikov et al.

(2016)].

2.4.5. Remark on connection with SVD

As can be seen, there are some matrix factorization methods that have

SVD acronym in their names. This may lead to a certain confusion, that

should be avoided. Strictly speaking, most of these methods, like FunkSVD,

SVD++, SVDFeature and their derivatives have very little in common with

a mathematical formulation of SVD. Unlike conventional SVD, these meth-

ods do not build a space of singular vectors and do not compute singular

values. Most of them do not preserve the orthogonality property. Weighted

matrix factorization approach is designed specifically to work with incom-

plete matrices, often ignoring unknown entries or treating them not in the

same way as in PureSVD. They form a separate family of methods with

different optimization objectives and more flexible tuning. However, due

to historical reasons, they are still sometimes are referenced as SVD-based

methods.

As a matter of fact, it is, of course, possible to orthogonalize latent fac-

tors in Eq. (2.2) and get an equivalent to Eq. (2.6) form with orthonormal

basis. This can be achieved by the virtue of the QR decomposition applied

to both P and Q matrices (in order to get singular values as well one would

have to additionally apply SVD to the product of the low dimensional up-

per triangular matrices resulted from the QR decomposition). Nevertheless,

whenever the optimization objective Eq. (2.18) includes specific constraints

other than simple quadratic regularization and the loss function is consid-

erably different from Eq. (2.15), performing orthogonalization potentially

September 19, 2018 11:54 ws-rv9x6-9x6 Book Title 11131-02 page 63

Matrix Factorization for Collaborative Recommendations 63

leads to a loss of structure in the latent feature space imposed by those

special conditions.

Also note that a simple regularization constraint similar to Eq. (2.19)

can be added for SVD factors as well. Optimization of the corresponding

loss function defined by Eq. (2.5) with this added constraint can be per-

formed without the need to switch to general matrix factorization frame-

work. The solution to such optimization problem, known as quadratically

regularized PCA, has the same analytical form as the standard SVD and

preserves its properties [Udell et al. (2016)]. There is also a connection of

the latter to an iterative SVD-based approach called softImpute suitable

for the rating prediction task [Hastie et al. (2015)].

2.5. Advanced methods

There is an overwhelming amount of factorization models that implement

sophisticated modifications to standard MF formulation in order to address

various problems. To name a few, the models may include the concept of

metric learning [Hsieh et al. (2017)] for better latent representation, impose

additional locality constraints [Chen et al. (2017)], rely on a more flexible

probabilistic inference [Mnih and Salakhutdinov (2008); Salakhutdinov and

Mnih (2008)], use kernel methods to capture non-linear effects [Rendle and

Schmidt-Thieme (2008)], etc. A complete analysis of such a variety of meth-

ods falls beyond the scope of this chapter. We, however, briefly describe a

few particular examples to illustrate how one can modify the components

of standard problem formulation, given by Eq. (2.18), in order to obtain a

new model with desired properties.

2.5.1. Learning to rank

One of the main concerns with the standard formulation of matrix factor-

ization problems is that it is especially suitable for the rating prediction

task, however, one can argue that this may not be the best choice for top-

n recommendations, where the correct ranking of recommended items is

more important than any particular prediction score. It turns out that

there is a formal way to address this issue with the help of the learning to

rank approach [Liu et al. (2009)]. Covering this broad topic would proba-

bly require a separate chapter in the book, so we will focus just on a few

representative techniques that fit well into the general problem formula-

tion of MF. In order to do that, let us consider three general categories

September 19, 2018 11:54 ws-rv9x6-9x6 Book Title 11131-02 page 64

64 E. Frolov and I. Oseledets

of optimization objectives, which lead to different ranking mechanisms in

recommender systems: pointwise, pairwise and listwise [Chapelle and Wu

(2010)].

Pointwise objective directly depends on a pointwise loss function be-

tween the observations and the predicted values. This is the simplest

case, which corresponds to previously discussed optimization problems, e.g.

Eq. (2.5) or Eq. (2.15), and is not designed for the ranking task. Nev-

ertheless, like in the case with PureSVD, which is formulated as a ma-

trix completion problem and yet can be tuned to provide reasonably good

precision-recall scores, it is also possible to empirically find a set of model

hyper-parameters, which improve the ranking of recommendations. How-

ever, it is unlikely to get a significant improvement in this case.

Pairwise objective depends on a pairwise comparison of the predicted

values and penalizes those cases where their ordering does not correspond

to the ordering of observations. The total loss in that case may take the

following (or similar) form:

L(A,R) =
∑
i

∑
j,j′:aij>aij′

l(rij − rij′),

where l(x1−x2) is a pairwise loss function that decreases with the increase

of the difference x1 − x2 (e.g. sigmoid function) and rij is the predicted

score. It allows to smoothly approximate an indicator function I(x1 > x2).

One of the most popular examples of the pairwise optimization is

Bayesian Personalized Ranking (BPR) technique [Rendle et al. (2009)],

which optimizes a smooth version of AUC with the help of SGD. Another

variation of the pairwise approach is Weighted Approximate-Rank Pairwise

(WARP) [Weston et al. (2011); Hong et al. (2013)], which implements an

efficient iterative sampling procedure for negative examples. Alternatively,

the authors of RankALS [Takács and Tikk (2012)] propose a modification

of the WRMF model for the pairwise objective and propose an ALS-based

optimization procedure.

Listwise objective optimizes the predicted ordering over entire lists of

items at once. The corresponding listwise loss function can be schematically

expressed as l({aij}, {rij}). It penalizes the deviation of the predicted

ranking of a given list of items from the ground truth ranking based on

observations. This approach is considered to be the most suitable for the

top-n recommendation task as it allows to directly optimize listwise metrics,

e.g. mean average precision (MAP), normalized discounted cumulative gain

(NDCG) or mean reciprocal rank (MRR) (see Chapter 9). The listwise

September 19, 2018 11:54 ws-rv9x6-9x6 Book Title 11131-02 page 65

Matrix Factorization for Collaborative Recommendations 65

approach follows a similar trick of a smooth approximation of the ranking

metrics. For example, the reciprocal rank RRij of an item j recommended

to a user i can be approximated by:

RRij ≈
1

1 + e−rij
.

A few remarkable examples of this approach are CoFiRank [Weimer et al.

(2008)], which implements a convex upper bound approximation of NDCG,

and CLiMF [Shi et al. (2012b)], which instead optimizes a lower bound of

a smooth reciprocal rank.

Worth noting here, that although both pairwise and listwise algorithms

are likely to improve the quality of predicted ranking of elements, they

are typically harder to implement and may require additional heuristics to

reduce the computational complexity [Shi et al. (2012a)].

2.5.2. Hybrid factorization models

For a detailed overview of hybrid recommender systems we refer the reader

to Chapter 4. Here we consider a particular category of hybrid systems,

which extend standard MF approach with the ability to incorporate ad-

ditional content data, i.e. side information about users and/or items. We

have already described two methods from this category, namely FM and

SVDFeature. Below are a few more examples based on a customization of

the objective function.

One of the most straightforward ways to incorporate side knowledge is

to impose additional constraints on the latent feature space via regulariza-

tion. This can be effectively achieved with the help of collective MF [Singh

and Gordon (2008)]. In its simplest variant, also known as coupled MF,

the corresponding loss function can be formulated as follows [Fang and Si

(2011)]:

L(A,Θ) =
∥∥W ◦ (A− PQT)∥∥2

F
+ α

(
‖F − PWF ‖2F + ‖G−QWG‖2F

)
,

where Θ = {P,Q,WF ,WG} represents model parameters, matrices F and

G encode side information, i.e. user attributes and item characteristics,

and α controls the contribution of the side information into the resulting

model.

There are also several variations of the coupled factorization tech-

nique, where parametrization of the content matrices F,G is replaced with

parametrization of the content-based similarity between users and items

September 19, 2018 11:54 ws-rv9x6-9x6 Book Title 11131-02 page 66

66 E. Frolov and I. Oseledets

Table 2.1. Comparison of low-rank approximation algorithms for explicit feedback

data.

Algorithm Overall complexity Update complexity Sensitivity Optimality

SVDa O
(
nnzA · r + (M + N)r2

)
O (nnza · r) Stable Global

ALS O
(
nnzA · r2 + (M + N)r3

)
O

(
nnza · r + r3

)
Stable Local

CD O (nnzA · r) O (nnza · r) Stable Local

SGD O (nnzA · r) O (nnza · r) Sensitive Local

aFor both standard and randomized implementations [Halko et al. (2011)].

[Shi et al. (2010); Barjasteh et al. (2015)]. The authors of the Local Col-

lective Embeddings (LCE) model [Saveski and Mantrach (2014)] propose

to add a locality constraint, so that the entities, which are close to each

other in terms of real features, remain close to each other in the latent fea-

ture space. The authors use the model to specifically address the cold-start

problem.

There are many more techniques that either directly embed content in-

formation into the latent space [Pilászy and Tikk (2009); Roy and Guntuku

(2016)] or add new regularization terms to enforce feature-based proximity

properties [Nguyen and Zhu (2013)]. It is also possible to use similar ap-

proach to incorporate contextual information [Liang et al. (2016)], which

leads to context-aware models (see Chapter 5).

2.6. Practical aspects

There are many practical aspects that make particular algorithms more

suitable in certain environments depending on the desired balance between

technical and business requirements. For example, achieving the highest

quality of recommendations with a state-of-the-art method may require a

lot of computational resources or depend on a complex setup which is hard

to maintain and support in production. In such cases a simpler approach

with a more straightforward configuration and flexible tuning may become

more favorable and help to find a better trade-off between a solution’s

complexity and the recommendations quality. The latter point is especially

crucial when latent factors are used to build neighborhood-based models.

In large scale setting an exact search of neighbors may take a prohibitively

long time and has to be replaced with approximate solutions (see [Bachrach

et al. (2014)] and also Chapter 11).

A thorough technical analysis of different algorithms is a non-trivial

task and depends on various aspects. One of the most crucial ones is the

September 19, 2018 11:54 ws-rv9x6-9x6 Book Title 11131-02 page 67

Matrix Factorization for Collaborative Recommendations 67

scalability question, which includes an overall time complexity, memory

and storage requirements, online updates support, parallelization efficiency

in shared- and distributed-memory environments. Other aspects include

stability of an algorithm and its convergence guarantees. General differ-

ences between the main algorithms discussed in this chapter are provided

in Table 2.1. Note that unlike ALS and SVD, standard implementations

of SGD and CD are inapplicable for OCCF problems, as their complexity

becomes proportional to the total size of the rating matrix.

From the parallelization viewpoint, multi-core shared-memory systems

are typically more preferred than distributed shared-nothing environments

with multiple computational nodes. This allows to avoid the between-

node communication and system state synchronization costs induced by

hardware I/O capabilities and specific software implementations.

Moreover, a wide class of large-scale problems can be tackled in the

shared-memory settings with the help of an up-to-date hardware [Hidasi

and Tikk (2016)] and appropriate data preprocessing (e.g. cleansing, sub-

sampling). For example, modern cloud computing services provide in-

stances for memory-intensive applications with several terabytes of physical

memory onboard, which may help to cover the needs in many practical

cases. Therefore, as a rule of thumb, distributed setups should be avoided

unless the data and/or model parameters do not fit into a single machine’s

memory [Amatriain and Agarwal (2016)].

2.6.1. Parallel SGD

As has been noted, the SGD algorithm is inherently sequential. Model’s

parameters are updated after every single learning step and parallelization

of the algorithm becomes a challenging task. Within such computational

environment various architectural choices on the data and model sharing, on

data-accessing and data-passing strategies may have a dramatic impact on

the algorithm’s performance [Zhang and Ré (2014); Sallinen et al. (2016)].

A straightforward implementation of SGD in shared-memory environ-

ment directly leads to overwriting conflicts when, for example, several par-

allel workers operate on the ratings of the same user/item and, therefore,

modify the same vector of user/item latent features. As a result, some of

the standard techniques for SGD parallelization, such as Hogwild! [Recht

et al. (2011)], may not be suitable for the matrix factorization case, unless

the data is extremely sparse. As a lock-free algorithm, Hogwild! does not

restrict parallel overwrites and it’s performance is highly influenced by the

September 19, 2018 11:54 ws-rv9x6-9x6 Book Title 11131-02 page 68

68 E. Frolov and I. Oseledets

data imbalance. Latent features of very popular items or very active users

are likely to be updated and recomputed more frequently than latent fea-

tures of entities with fewer ratings. In practice, this may result in a slower

convergence and a degradation of an overall performance of the approach.

In turn, in the distributed case the synchronization of updated param-

eters of SGD between computational nodes may easily become the main

bottleneck of computations. The described problems has led to many

different approaches, which achieve certain trade-off’s between effective

communications and state synchronization, use various data partitioning

techniques, implement elaborate locking strategies and rely on aggressive

caching. Some of the approaches are only suitable for shared-memory sys-

tems [Zhuang et al. (2013); Pan et al. (2016)], others are designed for dis-

tributed systems [Gemulla et al. (2011); Schelter et al. (2014)] and some

support both regimes [Yun et al. (2014)]. More details on technical imple-

mentation and analysis are provided in Chapter 11.

2.6.2. Parallel ALS

In contrast to SGD, parallel implementation of the standard ALS algo-

rithm for weighted matrix factorization is much more straightforward as

latent feature vectors for any user or item can be updated independently

at each epoch. It is often said that the algorithm is embarrassingly parallel.

However, at large scale and in the distributed settings the task may become

more involved and IO intensive [Yu et al. (2012)], requiring elaborate data

partitioning and parameters’ synchronization [Das et al. (2017); Schelter

et al. (2013)].

As an example, if factor matrices are too large to fit into a single ma-

chine’s memory than one have to distribute rows of factor matrices P and

Q across nodes and properly coordinate the between-node communications

to ensure a consistent global state. The interactions data may also be dis-

tributed so that all interactions related to a single item or to a single user

belong to the same computational node [Zhou et al. (2008)]. As this would

require switching between columns and rows of the ratings matrix, which is

typically stored in the compressed sparse row/column formats (CSR/CSC),

two distributed copies of the data are used: a column-wise copy for item-

related interactions and a row-wise copy for user-related interactions. This

allows to avoid redundant computations and reduce the intensity of data

transfer.

Nevertheless, communication overhead of the ALS in that case can still

September 19, 2018 11:54 ws-rv9x6-9x6 Book Title 11131-02 page 69

Matrix Factorization for Collaborative Recommendations 69

be considerable due to random access to the latent feature matrices and may

not play well with widely accepted distributed data processing paradigms,

such as map-reduce [Hidasi and Tikk (2016)]. Alternatively, in the shared-

memory settings both ALS and iALS can be implemented very efficiently.

iALS — high-performant computing in shared-memory [Gates et al. (2015)]

2.6.3. Parallel CD

The CD method can be considered as an attempt to combine the advantages

of both ALS and SGD methods. It performs alternating optimization sim-

ilar to ALS and consists of a more lightweight iteration steps. The authors

of cyclic CD approach (CCD++) [Yu et al. (2012)] demonstrate that the

method can be relatively easy adapted for both multi-core and distributed

environments.

Similarly to [Bell et al. (2007); Cichocki and Phan (2009)], in CCD++

the standard row-wise updating scheme is replaced with the column-wise

scheme, where the same component of the latent space is updated for all

users or items at once. Basically, the CCD++ approach transforms the

optimization problem into a sequence of local rank-1 subproblems, where

the columns of latent feature matrices are alternatively updated and each

alternating step is distributed across several parallel workers. The authors

also note that repeating several alternating update cycles within a single

subproblem allows to achieve better results.

Implementation of the algorithm is straightforward in the shared-

memory settings. In distributed environment it requires additional syn-

chronization of column factors after a complete rank-1 update. However,

the authors estimate an overall communication overhead of the approach

to be not significantly larger than in the case of popular distributed SGD

algorithm [Gemulla et al. (2011)]. Moreover, it provides a more stable

convergence. As demonstrated by the authors the approach shows favor-

able performance and scales well in both distributed and shared-memory

environments.

2.6.4. Parallel SVD

As has been previously discussed, computation of SVD relies on the Lanczos

procedure, which requires only matrix-vector products and can be made

very efficient with the help of broadly available linear algebra kernels, such

as Intel MKL or ARPACK. Internally, the computations are performed

by calling highly optimized BLAS/LAPACK routines, tuned for a better

September 19, 2018 11:54 ws-rv9x6-9x6 Book Title 11131-02 page 70

70 E. Frolov and I. Oseledets

utilization of hardware capabilities on the shared memory devices.

Implementation of the algorithm in the distributed setup is typically

achieved via the distribution of the Gram matrix-vector product (assuming

A is a tall matrix):

(ATA)v =
∑
i

ai(ai
Tv).

After gathering the result one can use a linear algebra kernel locally to

compute the top leading right singular vectors V by the virtue of an eigen-

decomposition of the Gram matrix. After that the matrix-matrix product

AV can also be obtained in a distributed manner. The result is then col-

lected and fed into the standard SVD to finally get the leading left singular

vectors U and the corresponding singular values Σ. The main bottlenecks of

the process are parallel data reads and communication overheads incurred

by the matrix products. As has been demonstrated in [Gittens et al. (2016)]

the scaling is very sensitive to implementation details of the distributed cal-

culations and requires a careful investigation to achieve a better scalability.

One of the ways to achieve a better performance in both shared-memory

and distributed setups is to replace exact SVD with its approximate variant,

such as Randomized SVD [Halko et al. (2011)]. A higher computational

efficiency of the algorithm comes at the cost of a less accurate result. This,

however, is not a stopper as the exact rating prediction is not the main

focus of the majority of recommender systems. Moreover, the quality of

approximation can be improved by a higher rank. We refer the reader to

Chapter 11 for further details.

2.6.5. Hyper-parameters tuning

Due to differences in convergence properties, the methods discussed above

require various levels of involvement during the model selection process.

Some of the methods are less demanding with respect to the hyper-

parameters’ choice, others exhibit more sensitive behavior (see Sensitivity

column in Table 2.1).

Apparently, SVD can be treated as the most convenient method in this

regard. Indeed, it only requires to tune a single parameter — the rank of the

decomposition [Cremonesi et al. (2010)]. Moreover, due to the optimality

of the algorithm, once the PureSVD model is computed for some rank

value r, one can immediately obtain a model of any rank r′ < r simply by

truncating the factor matrices to the first r′ components and without any

extra computations.

September 19, 2018 11:54 ws-rv9x6-9x6 Book Title 11131-02 page 71

Matrix Factorization for Collaborative Recommendations 71

Both CD and ALS depend on at least one extra parameter related to

regularization. However, the choice of its value in some reasonable range

does not significantly affect the quality of the resulting model and the ini-

tialization may play a more important role due to potential abundance of

local minima. However, WRMF methods introduce additional parameters

related to the weighting scheme and require a careful tuning.

Lastly, SGD-based methods are the most sensitive to both initialization

and hyper-parameters tuning. This is especially true for the learning rate

[Zhuang et al. (2013)] and many practical implementations employ addi-

tional adaptive techniques [Bottou (2012)] to automatically select a more

appropriate value depending on the convergence pattern and the distance

from a minimum.

2.7. Conclusion

This chapter gives an overview of the most popular and widely spread

matrix factorization techniques used in collaborative filtering models. It

provides the key concepts related to the problem formulation, learning

methods, tuning of models and their practical applications. Due to an

outstanding composability of the MF approach it allows to address a great

number of problems and challenges arising in recommender systems that

go far beyond simple rating prediction task.

MF methods allow to naturally incorporate additional sources of infor-

mation and impose specific constraints on the latent feature space, offering

more meaningful interpretations and a better quality of recommendations.

The algorithms offer various trade-offs between simplicity, computational

efficiency, flexibility in tuning, online scenarios support and quality of rec-

ommendations. This remains up to a practitioner to validate the choice of a

particular model based on a domain of application, available infrastructure

and business requirements.

Even though we have tried to cover the major aspects of building MF

models, the topic itself is very broad and evolving. New factorization mod-

els as well as more efficient modifications of the old ones are constantly be-

ing developed and successfully implemented in various application domains.

Therefore, the material presented here should be treated more as a starting

point for further research and exploration, rather than as a universal collec-

tion of techniques and methods, suitable for solving any recommendation

problem. The next chapters of the book provide a greater level of details

on many particular CF topics, which also include valuable examples for the

MF approach.

September 19, 2018 11:54 ws-rv9x6-9x6 Book Title 11131-02 page 72

72 E. Frolov and I. Oseledets

References

Adomavicius, G. and Tuzhilin, A. (2005). Toward the next generation of recom-
mender systems: A survey of the state-of-the-art and possible extensions,
IEEE transactions on knowledge and data engineering 17, 6, pp. 734–749.

Amatriain, X. and Agarwal, D. (2016). Tutorial: Lessons learned from building
real-life recommender systems, in Proceedings of the 10th ACM Conference
on Recommender Systems (ACM), pp. 433–433.

Amatriain, X., Pujol, J. M. and Oliver, N. (2009a). I like it... i like it not: Evaluat-
ing user ratings noise in recommender systems, in International Conference
on User Modeling, Adaptation, and Personalization (Springer), pp. 247–
258.

Amatriain, X., Pujol, J. M. and Oliver, N. (2009b). I like it... i like it not: Evaluat-
ing user ratings noise in recommender systems, in International Conference
on User Modeling, Adaptation, and Personalization (Springer), pp. 247–
258.

Bachrach, Y., Finkelstein, Y., Gilad-Bachrach, R., Katzir, L., Koenigstein, N.,
Nice, N. and Paquet, U. (2014). Speeding up the xbox recommender system
using a euclidean transformation for inner-product spaces, in Proceedings of
the 8th ACM Conference on Recommender systems (ACM), pp. 257–264.

Barjasteh, I., Forsati, R., Masrour, F., Esfahanian, A.-H. and Radha, H. (2015).
Cold-start item and user recommendation with decoupled completion and
transduction, in Proceedings of the 9th ACM Conference on Recommender
Systems (ACM), pp. 91–98.

Bayer, I., He, X., Kanagal, B. and Rendle, S. (2017). A generic coordinate descent
framework for learning from implicit feedback, in Proceedings of the 26th
International Conference on World Wide Web (International World Wide
Web Conferences Steering Committee), pp. 1341–1350.

Bell, R., Koren, Y. and Volinsky, C. (2007). Modeling relationships at multiple
scales to improve accuracy of large recommender systems, in Proceedings of
the 13th ACM SIGKDD international conference on Knowledge discovery
and data mining (ACM), pp. 95–104.

Bell, R. M. and Koren, Y. (2007). Scalable collaborative filtering with jointly
derived neighborhood interpolation weights, in Data Mining, 2007. ICDM
2007. Seventh IEEE International Conference on (IEEE), pp. 43–52.

Berry, M. W., Dumais, S. T. and O’Brien, G. W. (1995). Using linear algebra for
intelligent information retrieval, SIAM review 37, 4, pp. 573–595.

Bertsekas, D. P. (1999). Nonlinear programming (Athena scientific Belmont).
Billsus, D. and Pazzani, M. J. (1998). Learning collaborative information filters,

in Icml, Vol. 98, pp. 46–54.
Blondel, M., Fujino, A., Ueda, N. and Ishihata, M. (2016). Higher-order factor-

ization machines, in Advances in Neural Information Processing Systems,
pp. 3351–3359.

Bottou, L. (2012). Stochastic gradient descent tricks, in Neural networks: Tricks
of the trade (Springer), pp. 421–436.

September 19, 2018 11:54 ws-rv9x6-9x6 Book Title 11131-02 page 73

Matrix Factorization for Collaborative Recommendations 73

Brand, M. (2002). Incremental singular value decomposition of uncertain data
with missing values, Computer Vision ECCV 2002, pp. 707–720.

Chapelle, O. and Wu, M. (2010). Gradient descent optimization of smoothed
information retrieval metrics, Information retrieval 13, 3, pp. 216–235.

Chen, T., Zheng, Z., Lu, Q., Zhang, W. and Yu, Y. (2011). Feature-based matrix
factorization, arXiv preprint arXiv:1109.2271.

Chen, Y., Zhao, X. and de Rijke, M. (2017). Top-n recommendation with high-
dimensional side information via locality preserving projection, in Proceed-
ings of the 40th International ACM SIGIR Conference on Research and
Development in Information Retrieval (ACM), pp. 985–988.

Cichocki, A. and Phan, A.-H. (2009). Fast local algorithms for large scale nonneg-
ative matrix and tensor factorizations, IEICE transactions on fundamentals
of electronics, communications and computer sciences 92, 3, pp. 708–721.

Cremonesi, P., Koren, Y. and Turrin, R. (2010). Performance of recommender
algorithms on top-n recommendation tasks, in Proceedings of the fourth
ACM conference on Recommender systems, pp. 39–46.

Das, A., Upadhyaya, I., Meng, X. and Talwalkar, A. (2017). Collaborative filter-
ing as a case-study for model parallelism on bulk synchronous systems, in
Proceedings of the 2017 ACM on Conference on Information and Knowledge
Management, CIKM ’17 (ACM, New York, NY, USA), pp. 969–977.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K. and Harshman,
R. (1990). Indexing by latent semantic analysis, Journal of the American
society for information science 41, 6, p. 391.

Desrosiers, C. and Karypis, G. (2011). A comprehensive survey of neighborhood-
based recommendation methods, in Recommender systems handbook
(Springer), pp. 107–144.

Eckart, C. and Young, G. (1936). The approximation of one matrix by another
of lower rank, Psychometrika 1, 3, pp. 211–218.

Ekstrand, M. D., Riedl, J. T., Konstan, J. A. et al. (2011). Collaborative filter-
ing recommender systems, Foundations and Trends R© in Human–Computer
Interaction 4, 2, pp. 81–173.

Fang, Y. and Si, L. (2011). Matrix co-factorization for recommendation with rich
side information and implicit feedback, in Proceedings of the 2nd Interna-
tional Workshop on Information Heterogeneity and Fusion in Recommender
Systems (ACM), pp. 65–69.

Frolov, E. and Oseledets, I. (2017). Tensor methods and recommender systems,
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 7,
3.

Furnas, G. W., Deerwester, S., Dumais, S. T., Landauer, T. K., Harshman, R. A.,
Streeter, L. A. and Lochbaum, K. E. (1988). Information retrieval using a
singular value decomposition model of latent semantic structure, in Proceed-
ings of the 11th annual international ACM SIGIR conference on Research
and development in information retrieval (ACM), pp. 465–480.

Gates, M., Anzt, H., Kurzak, J. and Dongarra, J. (2015). Accelerating collabora-
tive filtering using concepts from high performance computing, in Big Data
(Big Data), 2015 IEEE International Conference on (IEEE), pp. 667–676.

September 19, 2018 11:54 ws-rv9x6-9x6 Book Title 11131-02 page 74

74 E. Frolov and I. Oseledets

Gemulla, R., Nijkamp, E., Haas, P. J. and Sismanis, Y. (2011). Large-scale matrix
factorization with distributed stochastic gradient descent, in Proceedings of
the 17th ACM SIGKDD international conference on Knowledge discovery
and data mining (ACM), pp. 69–77.

Gittens, A., Devarakonda, A., Racah, E., Ringenburg, M., Gerhardt, L., Kot-
talam, J., Liu, J., Maschhoff, K., Canon, S., Chhugani, J. et al. (2016).
Matrix factorizations at scale: A comparison of scientific data analytics in
spark and c+ mpi using three case studies, in Big Data (Big Data), 2016
IEEE International Conference on (IEEE), pp. 204–213.

Goldberg, K., Roeder, T., Gupta, D. and Perkins, C. (2001). Eigentaste: A
constant time collaborative filtering algorithm, Information Retrieval 4, 2,
pp. 133–151.

Golub, G. H. and Van Loan, C. F. (2012). Matrix computations, 4th edn. (The
Johns Hopkins University Press).

Halko, N., Martinsson, P.-G. and Tropp, J. A. (2011). Finding structure with
randomness: Probabilistic algorithms for constructing approximate matrix
decompositions, SIAM review 53, 2, pp. 217–288.

Hastie, T., Mazumder, R., Lee, J. D. and Zadeh, R. (2015). Matrix completion
and low-rank svd via fast alternating least squares, Journal of Machine
Learning Research 16, pp. 3367–3402.

Hidasi, B. and Tikk, D. (2016). Speeding up als learning via approximate methods
for context-aware recommendations, Knowledge and Information Systems
47, 1, pp. 131–155.

Hong, L., Doumith, A. S. and Davison, B. D. (2013). Co-factorization machines:
modeling user interests and predicting individual decisions in twitter, in
Proceedings of the sixth ACM international conference on Web search and
data mining (ACM), pp. 557–566.

Hsieh, C.-K., Yang, L., Cui, Y., Lin, T.-Y., Belongie, S. and Estrin, D. (2017).
Collaborative metric learning, in Proceedings of the 26th International Con-
ference on World Wide Web (International World Wide Web Conferences
Steering Committee), pp. 193–201.

Hu, Y., Koren, Y. and Volinsky, C. (2008). Collaborative filtering for implicit
feedback datasets, in Data Mining, 2008. ICDM’08. Eighth IEEE Interna-
tional Conference on (IEEE), pp. 263–272.

Juan, Y., Zhuang, Y., Chin, W.-S. and Lin, C.-J. (2016). Field-aware factorization
machines for ctr prediction, in Proceedings of the 10th ACM Conference on
Recommender Systems (ACM), pp. 43–50.

Kim, D. and Yum, B.-J. (2005). Collaborative filtering based on iterative principal
component analysis, Expert Systems with Applications 28, 4, pp. 823–830.

Konstan, J. A. and Riedl, J. (2012). Recommender systems: from algorithms
to user experience, User modeling and user-adapted interaction 22, 1-2,
pp. 101–123.

Koren, Y. (2008). Factorization meets the neighborhood: a multifaceted col-
laborative filtering model, in Proceedings of the 14th ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining (ACM),
pp. 426–434.

September 19, 2018 11:54 ws-rv9x6-9x6 Book Title 11131-02 page 75

Matrix Factorization for Collaborative Recommendations 75

Koren, Y., Bell, R. and Volinsky, C. (2009). Matrix factorization techniques for
recommender systems, Computer 42, 8.

Lee, J., Lee, D., Lee, Y.-C., Hwang, W.-S. and Kim, S.-W. (2016). Improving the
accuracy of top-n recommendation using a preference model, Information
Sciences 348, pp. 290–304.

Liang, D., Altosaar, J., Charlin, L. and Blei, D. M. (2016). Factorization
meets the item embedding: Regularizing matrix factorization with item
co-occurrence, in Proceedings of the 10th ACM conference on recommender
systems (ACM), pp. 59–66.

Liu, T.-Y. et al. (2009). Learning to rank for information retrieval, Foundations
and Trends R© in Information Retrieval 3, 3, pp. 225–331.

Mnih, A. and Salakhutdinov, R. R. (2008). Probabilistic matrix factorization, in
Advances in neural information processing systems, pp. 1257–1264.

Nguyen, J. and Zhu, M. (2013). Content-boosted matrix factorization tech-
niques for recommender systems, Statistical Analysis and Data Mining 6,
4, pp. 286–301.

Nikolakopoulos, A. N., Kalantzis, V. and Garofalakis, J. D. (2015). Eigenrec: An
efficient and scalable latent factor family for top-n recommendation, arXiv
preprint arXiv:1511.06033.

Novikov, A., Trofimov, M. and Oseledets, I. (2016). Exponential machines, arXiv
preprint arXiv:1605.03795.

Pan, R., Zhou, Y., Cao, B., Liu, N. N., Lukose, R., Scholz, M. and Yang, Q.
(2008). One-class collaborative filtering, in Data Mining, 2008. ICDM’08.
Eighth IEEE International Conference on (IEEE), pp. 502–511.

Pan, X., Lam, M., Tu, S., Papailiopoulos, D., Zhang, C., Jordan, M. I., Ramchan-
dran, K. and Ré, C. (2016). Cyclades: Conflict-free asynchronous machine
learning, in Advances in Neural Information Processing Systems, pp. 2568–
2576.

Paterek, A. (2007). Improving regularized singular value decomposition for col-
laborative filtering, in Proceedings of KDD cup and workshop, Vol. 2007,
pp. 5–8.

Pilászy, I. and Tikk, D. (2009). Recommending new movies: even a few ratings are
more valuable than metadata, in Proceedings of the third ACM conference
on Recommender systems (ACM), pp. 93–100.

Pilászy, I., Zibriczky, D. and Tikk, D. (2010). Fast als-based matrix factorization
for explicit and implicit feedback datasets, in Proceedings of the fourth ACM
conference on Recommender systems (ACM), pp. 71–78.

Recht, B., Re, C., Wright, S. and Niu, F. (2011). Hogwild: A lock-free approach to
parallelizing stochastic gradient descent, in Advances in neural information
processing systems, pp. 693–701.

Rendle, S. (2010). Factorization machines, in Data Mining (ICDM), 2010 IEEE
10th International Conference on (IEEE), pp. 995–1000.

Rendle, S., Freudenthaler, C., Gantner, Z. and Schmidt-Thieme, L. (2009). Bpr:
Bayesian personalized ranking from implicit feedback, in Proceedings of
the twenty-fifth conference on uncertainty in artificial intelligence (AUAI
Press), pp. 452–461.

September 19, 2018 11:54 ws-rv9x6-9x6 Book Title 11131-02 page 76

76 E. Frolov and I. Oseledets

Rendle, S. and Schmidt-Thieme, L. (2008). Online-updating regularized kernel
matrix factorization models for large-scale recommender systems, in Pro-
ceedings of the 2008 ACM conference on Recommender systems (ACM),
pp. 251–258.

Rendle, S. and Schmidt-Thieme, L. (2010). Pairwise interaction tensor factoriza-
tion for personalized tag recommendation, in Proceedings of the third ACM
international conference on Web search and data mining (ACM), pp. 81–90.

Roy, S. and Guntuku, S. C. (2016). Latent factor representations for cold-start
video recommendation, in Proceedings of the 10th ACM Conference on Rec-
ommender Systems (ACM), pp. 99–106.

Salakhutdinov, R. and Mnih, A. (2008). Bayesian probabilistic matrix factoriza-
tion using markov chain monte carlo, in Proceedings of the 25th interna-
tional conference on Machine learning (ACM), pp. 880–887.

Sallinen, S., Satish, N., Smelyanskiy, M., Sury, S. S. and Ré, C. (2016). High per-
formance parallel stochastic gradient descent in shared memory, in Parallel
and Distributed Processing Symposium, 2016 IEEE International (IEEE),
pp. 873–882.

Sarwar, B., Karypis, G., Konstan, J. and Riedl, J. (2000). Application of di-
mensionality reduction in recommender system-a case study, Tech. rep.,
Minnesota Univ Minneapolis Dept of Computer Science.

Saveski, M. and Mantrach, A. (2014). Item cold-start recommendations: learning
local collective embeddings, in Proceedings of the 8th ACM Conference on
Recommender systems (ACM), pp. 89–96.

Schelter, S., Boden, C., Schenck, M., Alexandrov, A. and Markl, V. (2013).
Distributed matrix factorization with mapreduce using a series of broadcast-
joins, in Proceedings of the 7th ACM conference on Recommender systems
(ACM), pp. 281–284.

Schelter, S., Satuluri, V. and Zadeh, R. (2014). Factorbird-a parameter server ap-
proach to distributed matrix factorization, arXiv preprint arXiv:1411.0602.

Schnabel, T., Swaminathan, A., Singh, A., Chandak, N. and Joachims, T. (2016).
Recommendations as treatments: Debiasing learning and evaluation, arXiv
preprint arXiv:1602.05352.

Shi, Y., Karatzoglou, A., Baltrunas, L., Larson, M., Hanjalic, A. and Oliver, N.
(2012a). Tfmap: optimizing map for top-n context-aware recommendation,
in Proceedings of the 35th international ACM SIGIR conference on Research
and development in information retrieval (ACM), pp. 155–164.

Shi, Y., Karatzoglou, A., Baltrunas, L., Larson, M., Oliver, N. and Hanjalic,
A. (2012b). Climf: learning to maximize reciprocal rank with collabora-
tive less-is-more filtering, in Proceedings of the sixth ACM conference on
Recommender systems (ACM), pp. 139–146.

Shi, Y., Larson, M. and Hanjalic, A. (2010). Mining mood-specific movie simi-
larity with matrix factorization for context-aware recommendation, in Pro-
ceedings of the workshop on context-aware movie recommendation (ACM),
pp. 34–40.

Singh, A. P. and Gordon, G. J. (2008). Relational learning via collective ma-
trix factorization, in Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining (ACM), pp. 650–658.

September 19, 2018 11:54 ws-rv9x6-9x6 Book Title 11131-02 page 77

Matrix Factorization for Collaborative Recommendations 77

Steck, H. (2010). Training and testing of recommender systems on data missing
not at random, in Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining (ACM), pp. 713–722.

Takács, G., Pilászy, I., Németh, B. and Tikk, D. (2007). Major components of the
gravity recommendation system, ACM SIGKDD Explorations Newsletter 9,
2, pp. 80–83.

Takács, G., Pilászy, I., Németh, B. and Tikk, D. (2008). Investigation of various
matrix factorization methods for large recommender systems, in Proceedings
of the 2nd KDD Workshop on Large-Scale Recommender Systems and the
Netflix Prize Competition (ACM), p. 6.

Takács, G., Pilászy, I. and Tikk, D. (2011). Applications of the conjugate gradient
method for implicit feedback collaborative filtering, in Proceedings of the
fifth ACM conference on Recommender systems (ACM), pp. 297–300.

Takács, G. and Tikk, D. (2012). Alternating least squares for personalized rank-
ing, in Proceedings of the sixth ACM conference on Recommender systems
(ACM), pp. 83–90.

Udell, M., Horn, C., Zadeh, R., Boyd, S. et al. (2016). Generalized low rank
models, Foundations and Trends R© in Machine Learning 9, 1, pp. 1–118.

Vandereycken, B. (2013). Low-rank matrix completion by riemannian optimiza-
tion, SIAM Journal on Optimization 23, 2, pp. 1214–1236.

Verstrepen, K., Bhaduriy, K., Cule, B. and Goethals, B. (2017). Collaborative fil-
tering for binary, positiveonly data, ACM SIGKDD Explorations Newsletter
19, 1, pp. 1–21.

Weimer, M., Karatzoglou, A., Le, Q. V. and Smola, A. J. (2008). Cofi rank-
maximum margin matrix factorization for collaborative ranking, in Ad-
vances in neural information processing systems, pp. 1593–1600.

Weston, J., Bengio, S. and Usunier, N. (2011). Wsabie: Scaling up to large
vocabulary image annotation, in IJCAI, Vol. 11, pp. 2764–2770.

Yan, Y., Tan, M., Tsang, I. W., Yang, Y., Zhang, C. and Shi, Q. (2015). Scal-
able maximum margin matrix factorization by active riemannian subspace
search, in IJCAI, pp. 3988–3994.

Yang, J. and Gittens, A. (2015). Tensor machines for learning target-specific
polynomial features, arXiv preprint arXiv:1504.01697.

Yu, H.-F., Bilenko, M. and Lin, C.-J. (2017). Selection of negative samples for one-
class matrix factorization, in Proceedings of the 2017 SIAM International
Conference on Data Mining (SIAM), pp. 363–371.

Yu, H.-F., Hsieh, C.-J., Si, S. and Dhillon, I. (2012). Scalable coordinate de-
scent approaches to parallel matrix factorization for recommender systems,
in Proceedings of the 2012 IEEE 12th International Conference on Data
Mining, ICDM ’12 (IEEE), pp. 765–774.

Yun, H., Yu, H.-F., Hsieh, C.-J., Vishwanathan, S. and Dhillon, I. (2014). Nomad:
Non-locking, stochastic multi-machine algorithm for asynchronous and de-
centralized matrix completion, Proceedings of the VLDB Endowment 7, 11,
pp. 975–986.

Zha, H. and Zhang, Z. (2000). Matrices with low-rank-plus-shift structure: partial
svd and latent semantic indexing, SIAM Journal on Matrix Analysis and
Applications 21, 2, pp. 522–536.

September 19, 2018 11:54 ws-rv9x6-9x6 Book Title 11131-02 page 78

78 E. Frolov and I. Oseledets

Zhang, C. and Ré, C. (2014). Dimmwitted: A study of main-memory statistical
analytics, Proceedings of the VLDB Endowment 7, 12, pp. 1283–1294.

Zhou, Y., Wilkinson, D., Schreiber, R. and Pan, R. (2008). Large-scale paral-
lel collaborative filtering for the netflix prize, Lecture Notes in Computer
Science 5034, pp. 337–348.

Zhuang, Y., Chin, W.-S., Juan, Y.-C. and Lin, C.-J. (2013). A fast parallel sgd
for matrix factorization in shared memory systems, in Proceedings of the
7th ACM conference on Recommender systems (ACM), pp. 249–256.

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 79

Chapter 3

Cutting-Edge Collaborative Recommendation Algorithms:

Deep Learning

Balázs Hidasi

Gravity R&D
Budapest, Hungary

balazs.hidasi@gravityrd.com

After achieving great performance on complex domains, such as com-
puter vision, natural language processing, speech recognition, reinforce-
ment learning, etc., recommender systems research also turned towards
deep learning recently. Although the recsys community was a late
adopter and has been only focusing on deep learning since late 2015 /
early 2016, it has already became one of the most promising and thus
highly popular topic within the research community. Deep learning has
the potential to revolutionize the field, just as it did with other domains.
The aim of this chapter is to overview recent advances in the intersection
of deep learning and recommender systems.

This chapter gives a short introduction to deep learning. However,
the in-depth discussion of deep learning and its recent advances is outside
of the scope of this book. Therefore, we refer the interested readers to
deep learning books, such as [Goodfellow et al. (2016)]. The chapter
also contains a short review on the history of deep learning methods in
recommenders and then discusses the four main lines of current research
in deep learning based recommender algorithms. As the field is evolving
rapidly, the chapter focuses on the main research directions and seminal
works instead of listing lots of algorithms. We mostly focus on algorithms
working on implicit feedback, due to its high relevancy to practitioners.
Finally, the chapter ends with a short guide for practitioner who would
like to delve into this topic.

3.1. Introduction to deep learning

Deep learning is a subclass of machine learning algorithms in which data

is processed through several non-linear layers, organized in complex and

usually deep structures, where each layer learns a representation of the

79

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 80

80 B. Hidasi

data; building on the representation learned by layers lower in the hierarchy.

Lower layers learn basic, higher levels more abstract representations. For

example, with image input lower layers learn to detect lines and edges;

and higher levels recognize objects or object groups. Deep models are

generally neural networks and deep learning is often referred to as the

second resurgence (or third golden era) of neural networks. Deep models

are modular in nature, therefore they can easily deal with heterogenous

data.

3.1.1. Neuron and neural networks

The basic building block of neural networks is the artificial neuron. This

unit is inspired by neurons of the human brain, yet it is but a rough ab-

straction of that. An artificial neuron has multiple inputs and one output.

If the weighted sum of its inputs is over a certain threshold, the neuron

fires, i.e. it emits a positive value. Otherwise it is deactivated (emits zero

or a negative value). The neuron is capable of executing a very basic form

of pattern recognition: it is activated for certain inputs and it is inactive

for others. The input weights determine for which input the neuron acti-

vates. The inputs are weighted by these weights. In order to keep the unit

differentiable, thresholding is replaced by an activation function. There are

different activation functions. Originally sigmoid or sigmoid like functions

were used. These later were replaced by functions that suit deep networks

better. The output of a neuron can be expressed as:

y = f

(
n∑

i=1

wixi + b

)
. (3.1)

Neural networks are neurons connected to each other. Neurons can

be connected to each other in many different ways. The most common

architectures are the feedforward, recurrent and convolutional networks.

Here we introduce the feedforward network. Recurrent neural networks will

be introduced in Section 3.6.1. Convolutional networks are not discussed

in detail, but are mentioned throughout the chapter.

In feedforward neural networks, neurons are organized in subsequent

feedforward layers. The output of every neuron from the k-th layer is

connected to the the input of every neuron in the subsequent, (k + 1)-th

layer. There are no connections between the neurons of the same layer.

The first layer of the network is the input layer. Here the values are set

to whatever we want the network to process. The final layer is the output

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 81

Cutting-Edge Collaborative Recommendation Algorithms: Deep Learning 81

�(.)�����
	

�
�
+

��

��

��

�

��

��

��

��

ℎ��

ℎ��

ℎ��

ℎ��

ℎ��

Fig. 3.1. Artificial neuron (left) and feedforward network composed of artificial neurons
(right).

layer. The values produced by this layer are the final output of the network.

Layers between the input and the output layers are called hidden layers.

The input is propagated through the layers of the network until it

reaches the last layer. This is called the forward pass. A neural network

with n hidden layer can be described as follows (using vector notation).

h(k) =

{
x k = 0 //input layer

fk
(
W (k)h(k−1) + b

)
= fk

(
s(k)

)
k > 0

y = h(n+1) //output layer

(3.2)

where x is the input of the network, h(k) is the output of the k-th hidden

layer, fk is the activation function of layer k (applied elementwise to each

neuron in the layer) and W (k) is the weight matrix between the (k − 1)-th

and k-th layers. y is the output of the network.

The training of the network is done by setting the weights. There are

multiple ways to do this, with gradient descent being the most widely used

approach. For learning with gradient descent, we need to define a loss

between the output of the network and its target. The gradient of this loss

w.r.t. every weight is computed and weights are updated in the negative

gradient direction to lower the loss. The update can be done efficiently by

propagating the error back through the network as:

∂L

∂W (k)
=
(
h(k−1)

)T (
d(k) ◦ f ′k

(
s(k)

))

d(k) =

∂L
∂y k = n+ 1

d(k) =
(
W (k+1)

)T (
d(k+1) ◦ f ′k+1

(
s(k+1)

))
k ≤ n

(3.3)

where L is the loss and d(k) is the propagated error in the k-th layer.

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 82

82 B. Hidasi

���

��

��

��

��

ℎ�
�

ℎ�
�

ℎ�
�

ℎ�
�

ℎ�
� ���

��

��

���

��

��

��

��

ℎ�
�

ℎ�
�

ℎ�
�

ℎ�
�

ℎ�
� ���

��

��

���

��

��

��

��

ℎ�
�

ℎ�
�

ℎ�
�

ℎ�
�

ℎ�
� ���

��

��

	�,�
� 	�,�

� 	�,�
�

Fig. 3.2. Backpropagation: propagating the error backwards through the network to
compute the gradient of the loss w.r.t. each weight.

Feedforward networks with at least one hidden layer are universal ap-

proximators [Hornik et al. (1989)], meaning that if they are large enough

they can approximate any function with arbitrarily small error. Unfortu-

nately, generally no tight bounds are known for what it means to be large

enough. However, it was shown that the number of neurons required for

good approximations is much lower if more hidden layers are used, i.e. if the

network is deep1. Deep networks are much more expressive than shallow

ones, thus they can be used more effectively for machine learning problems

in practice.

3.1.2. Techniques for easier training of deep networks

The idea of training deep neural networks has been around since the 1980s.

But their widespread application started only in the 2010s. There are sev-

eral reasons for this. Besides being computationally expensive and thus re-

quiring modern hardware, and only showing their advantages when trained

on large enough databases — both of which became available only recently

— training deep networks was considered to be hard. However, thanks

to research breakthroughs from the early 2010s, most of the typical prob-

lems were alleviated, thus training of deep networks became more robust.

Therefore a wider audience of researchers and engineers are now able to

apply deep learning for various tasks. Below we highlight some of the most

important techniques.

Activation functions: Although, there are other methods as well, the

training of neural networks is usually done by stochastic gradient descent.

The gradient of the loss w.r.t. the weights of the network is computed and

weights are modified in the directions of the negative gradient to lower the

loss. This can be done efficiently by propagating the prediction error back

1More accurately: for certain families of functions there exists a K number, so that if

the network has at least K layers, the number of required neurons is polynomial in the
size input and exponential otherwise.

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 83

Cutting-Edge Collaborative Recommendation Algorithms: Deep Learning 83

Table 3.1. Properties of common activation functions.

Activation f(x) f ′(x) Parameters

Sigmoid f(x) = 1
1+e−x

f ′(x) = f(x)(1− f(x)) –

ReLU f(x) = max (x, 0) f ′(x) =

{
1, x ≥ 0

0, x < 0
–

Leaky ReLU f(x) =

{
x, x ≥ 0

αx, x < 0
f ′(x) =

{
1, x ≥ 0

α, x < 0
0 < α < 1

ELU f(x) =

{
x, x ≥ 0

α (ex − 1) , x < 0
f ′(x) =

{
1, x ≥ 0

f(x) + α, x < 0
α > 0

SELU f(x) = λ

{
x, x ≥ 0

α (ex − 1) , x < 0
f ′(x) = λ

{
1, x ≥ 0

f(x) + α, x < 0

α > 0

λ > 1

through the network. During this propagation each unit that is inbetween

the output and the weight multiplies the gradient by the derivative of its

activation function. The classic activation functions were sigmoid-like func-

tions. The derivative of the sigmoid is f(x) (1− f(x)), which is (a) close

to zero if the absolute value of x is large; (b) and its maximum (without

scaling) is below 1. Multiplying the error with small numbers coming from

the derivative of the activation function makes the gradient disappear after

passing through a few layers, thus weights of the lower layers will not be

updated and become useless. This is called the vanishing gradient problem.

This issue is solved with the introduction of new activations functions. The

Rectified Linear Unit (ReLU) [Nair and Hinton (2010)] is a piecewise linear

function which returns x if x ≥ 0 and 0 otherwise. While ReLU solves the

vanishing gradient problem, it can burn out, i.e. it can stuck in its zero

state. The Leaky ReLU [Maas et al. (2013)] solves this issue, by returning

αx if x < 0, where 0 < α < 1 is a parameter, but this comes at the cost

of having a non noise-robust deactivation state. This problem is alleviated

by the Exponential Linear Unit (ELU) [Clevert et al. (2015)]. This ac-

tivation function can be enhanced further by scaling (Scaled ELU, SELU

[Klambauer et al. (2017)]), which also has self-normalizing properties. The

properties of the aforementioned activation functions is summarized in Ta-

ble 3.1, activations and their derivatives are shown on Figure 3.3.

Dropout regularization: Deep neural network models have large ca-

pacity, which makes them susceptible for overfitting. Therefore it is cru-

cial to use some form of regularization in neural models. Unfortunately,

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 84

84 B. Hidasi

4 3 2 1 0 1 2 3 4
x

2

1

0

1

2

3

4

f(x
)

sigmoid
ReLU
Leaky ReLU
ELU

4 3 2 1 0 1 2 3 4
x

0.0

0.2

0.4

0.6

0.8

1.0

f'(
x)

sigmoid
ReLU
Leaky ReLU
ELU

Fig. 3.3. Activation functions (left) and their derivatives (right).

the classic `2 regularization turned out to be not that efficient, thus other

heuristics, such as limiting the activations of neurons were needed. Reg-

ularizing neural networks was tedious and was considered hard. Dropout

[Srivastava et al. (2014)] is a simple regularization technique that works

really well in practice. During training, in each pass — i.e. forward and

backward propagation — a fraction of the neurons is randomly disabled.

The selected neurons are completely dropped from the network for the dura-

tion of the whole pass. In order for the average activations to be unchanged,

the activation of the remaining units are scaled up. (E.g. if we randomly

drop 50% of the neurons, activations are multiplied by 2 for the remain-

ing units.) Using dropout results in training slightly different networks that

share their weights in each update step. The trained model is thus basically

an ensemble of several networks. It is also assumed that due to randomly

dropped units, each individual neuron learns a useful representation of the

data, because it can not rely on other neurons being there. This effectively

lowers model capacity and forces neurons to ignore observational noise in

the training data.

Mini-batch training: As we already mentioned, the most common

training method of neural networks is gradient descent, i.e. updating

weights in the direction of the negative gradient of the loss. The two ex-

treme ends of gradient descent is batch- and stochastic gradient descent

(SGD). With batch gradient descent, all data points are propagated for-

ward in the network first, then weights are updated based on the gra-

dient of the average loss. This results in less frequent updates, but the

error gradients are representative of the training data and computations

are easily parallelizable. On the other hand, with the stochastic gradient

method, the weight update is based on the gradient of the loss of only one

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 85

Cutting-Edge Collaborative Recommendation Algorithms: Deep Learning 85

(randomly selected) data point. This way, the updates are very frequent,

but the gradients are noisy (not representative of the full training set) and

parallelization of the training is not trivial. SGD usually converges faster

than batch gradient. Mini-batch training is in between these two extremes

and combines the advantages of both worlds. In mini-batch training, each

update is based on the gradient of the average loss of several — few tens to

few hundreds — (randomly selected) data points. The resulting gradients

are less noisy than those of SGD and their computations can be parel-

lelized, but updates are more frequent than with batch gradient. While it

is somewhat counterintuitive, noisy gradients are also not necessarily bad

for training. Small amount of noise on the updates serves as a regular-

izer during training, lowering the overfitting of the model. Without update

noise and large enough model capacity, the network can be trained to fit

the training data perfectly (including the observational noise) and does not

generalize well. Of course, too much update noise slows down the learning

and results in a suboptimal model. The size of the mini-batch can be used

to control the amount of update noise indirectly. Smaller mini-batches tend

to introduce more noise to the updates. Smaller mini-batches (few tens of

examples) perform better for most tasks, but the optimal mini-batch size

is primarily dependent on the data.

Adaptive learning rates: Gradient descent methods have their short-

comings. They can easily get stuck in narrow valleys or saddle points of

the error surface and they are very sensitive to the choice of the learning

rate parameter. Getting stuck can be handled by using momentum with

SGD, i.e. having the direction (and size) of the previous update influence

the current update. Selecting a good learning rate is more problematic.

Large learning rates can make the training diverge. On the other hand

small steps are slowing it down. Moreover, larger steps are beneficial dur-

ing the beginning of the training, while the network is still far from the

optimal configuration; but as it gets closer to the optimum later during

training, smaller learning rates are more appropriate. The standard way

of handling this problem was to use heuristics based learning rate sched-

ules, e.g. halving the learning rate after every N updates; or utilizing a

separate validation set and lowering the learning rate when the validation

error not decreases. These heuristics are still sensitive to the choice of the

initial learning rate and do not consider that certain parameters are not

updated with the same frequency. If a weight is updated more frequently

than another, it is effectively ahead in the training process and probably

requires smaller updates. Adaptive learning rate methods aim to solve the

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 86

86 B. Hidasi

aforementioned issues. They collect aggregated information on the updates

of every model parameter and use those to scale the learning rate per weight

according to what is optimal, based on different aspects of the estimated

curvature. Adagrad [Duchi et al. (2011)] is the simplest method, scaling

back learning rates with the square root of the summed square of gradients

in the training so far. This results in constantly decreasing learning rates,

but the schedule is different per model parameter. RMSProp [Tieleman and

Hinton (2012)] is a similar method, but with a decay parameter. Adadelta

[Zeiler (2012)] and Adam [Kingma and Ba (2014)] are more complex, yet

popular adaptive learning methods based on estimation of the curvature.

Table 3.2 shows how these methods compute the step size (η is the learning

rate parameter, Lt is the loss during the t-th update). Adaptive learning

methods are not too sensitive to the initial learning rate and make the

training more robust. The downside is that additional memory is required

for the accumulated gradient information whose size is in the order of the

number of weights. Recently it was also shown [Wilson et al. (2017)] that

on certain (artificial) dataset that popular adaptive learning methods con-

verge to a point with arbitrarily high error. It is to be seen how this affects

training on real data, but for the time being, adaptive learning methods

still seem to perform better than standard SGD in practice.

Table 3.2. Adaptive learning methods (η is the learning rate parameter, Lt is the loss

during the t-th update).

Method Accumulators Step size Parameters

Adagrad Gt = Gt−1 + (∇L)2 η√
Gt+ε

0 < η

RMSProp Gt = γGt−1 + (1− γ)(∇L)2 η√
Gt+ε

0 <η

0 <γ < 1

Adadelta

Gt = γGt−1 + (1− γ)(∇L)2

∆t = γ∆t−1 + (1− γ)

(√
∆t−1 + ε√
Gt−1 + ε

∇Lt

)2
√

∆t−1+ε
√
Gt+ε

0 < γ < 1

Adam
Mt = β1Mt−1 + (1− β1)∇Lt
Vt = β2Vt−1 + (1− β2)(∇Lt)2

η
Mt

1−βt1√
Vt

1−βt2
+ε

0 <β1 < 1

0 <β2 < 1

0 <η

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 87

Cutting-Edge Collaborative Recommendation Algorithms: Deep Learning 87

3.2. Deep learning for recommender systems

3.2.1. Brief history of deep learning in recommender

systems

Neural networks were used for the rating prediction task during the Netflix

Prize. [Salakhutdinov et al. (2007)] utilized Restricted Boltzmann Ma-

chines for the task and [Paterek (2007)] formalized asymmetric matrix

factorization as a simple neural network. Between 2009 and 2015, neu-

ral models for recommendations were few and far between, even though

deep learning in general started to gain a lot of attention even in 2012.

Near the end of 2015, few papers applying deep learning for recommenda-

tions were published, signaling the beginning of the deep learning era for

recommenders. The deep learning boom in RecSys started in 2016 with

several papers continuing the exploration of the topic. The Deep Learn-

ing for Recommender Systems (DLRS) workshop series [Karatzoglou et al.

(2016); Hidasi et al. (2017)] also started in that year, giving a boost to the

research of the field. By the end of 2016, four main research directions have

formed, which will be discussed in this chapter:

• Learning item embeddings,

• Deep collaborative filtering,

• Using content features in recommenders,

• Session-based recommendations with recurrent neural networks.

The trend continued in 2017, and now having multiple deep learning

recommender system papers at top tier conferences is not rare. Since the

this field is very young — most of the papers were published after 2015

— we expect significant contributions to come in the near future as well.

This chapter discusses the state of the field and concentrates on papers

published before September 2017; with the exception of Section 3.6.4, which

is about the very recently formed research direction on deep generative

models for recommendations. We focus on the practically important top-

N recommendation task and networks that address this task. Since there

is now a forming consensus in the recsys community to move away from

rating prediction — due to its uselessness for the practical case of top-

N recommendations [Cremonesi et al. (2010)] — deep learning models for

rating prediction won’t be discussed in this chapter.

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 88

88 B. Hidasi

3.2.2. Advantages and drawbacks

Deep learning has a lot of potential for recommender systems.

• Feature extraction: Deep learning methods are great feature ex-

tractors and can easily deal with unstructured data, such as image,

audio, video or text. Therefore it is possible to use content directly

in hybrid recommender algorithms instead of metadata.

• Modularity: Deep networks are modular, the output of a network

can be easily put onto the input of another. This allows not just

for replacing older feature extractors by the newest state-of-the-

art ones, but it also makes it easy to deal with heterogeneous and

multimodal data.

• Sequence processing: Certain networks — such as RNNs and

certain types of CNNs — can deal with sequential data very well.

This is especially useful in recommender systems, where the main

source of information is the user history. It is also easier to do

dynamic behaviour modeling and to follow the changes in the users’

interest over time.

• Complex models: The complex models of deep neural networks

can capture the nuances in user behaviour better than simple mod-

els, such as matrix factorization. Therefore they can produce both

better user and item representations and better recommendations

overall.

However, using deep learning comes at a cost. The complex models

require lot of computational power. Training times can be expected to

increase even with GPU support and parallelization. These models are

completely black box, therefore explainability is low, but this is also true

for matrix factorization models. Due to modularity, inexperienced engi-

neers/researchers can quickly put together a very complex network, which

can have subtle bugs, that might not become apparent immediately. Also,

these very big networks can become unscalable if one is not careful enough

during the planning phase. While these issues can be averted by careful

planning, seeing that scalability is often dismissed or misunderstood in rec-

ommender systems research (not just in the deep learning branch), one

should be cautious, before implementing a recommender network found in

the literature. Due to writing very efficient code requires lot of work and

strong programming skills, deep learning algorithms are generally written in

deep learning frameworks. While these frameworks are really well written,

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 89

Cutting-Edge Collaborative Recommendation Algorithms: Deep Learning 89

they can still impose bottlenecks on the performance of the algorithm.

Also, the productivization of such research code and its integration into a

live recommender system is currently not straightforward.

3.3. Learning item embeddings

Item embeddings (or representations) are better known for recommender

system experts as (latent) item feature vectors. Irrespective of the name, it

is a vector assigned to each item in a latent feature space in such a way that

the vectors of similar items are close to each other, and those of dissimilar

items are further away. Item embeddings in themselves can be used to

compute item similarities and to perform item-to-item recommendations

(i.e. related products). They can be also used as input of other algorithms.

This task is by no means new to the recommendation domain.

For example, matrix factorization also learns item and user representa-

tions/embeddings in a latent space. However, we will discuss a different

approach that is based on the word2vec algorithm, which was originally

used in natural language processing (NLP) for learning word embeddings.

3.3.1. Word2vec

Word2vec [Mikolov et al. (2013a)] is simple shallow neural model for learn-

ing word embeddings. Even though the model is shallow it is considered

to be part of the “deep learning” toolkit. There are two different word2vec

models, the Continuous Bag Of Words (CBOW) and the skip-gram model.

Both of these models build upon the same data, but use it in different ways.

The data is generated from natural text. A sliding window is used to pro-

cess the text. In the middle of the sliding window is the actual or target

word, while the previous and next T words are called context (words).

At the beginning of the training, each word is assigned with a random

embedding vector. These vectors are modified during training in order to

minimize the loss of the network.

CBOW model: The CBOW model uses the context words to predict

the target word. The embedding vectors of the context words are averaged

and the resulting context vector is put into a classifier whose desired output

is the ID of the target word. The classifier uses the softmax transformation

on its scores and cross-entropy to compute the loss. See the architecture

on Figure 3.4.

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 90

90 B. Hidasi

E E E E

���� ���� ���� ����

word(t-2) word(t-1) word(t+2)word(t+1)

Classifier

word(t)

averaging

E

��

word(t)

word(t-1) word(t+2)word(t+1)

Classifier

word(t-2)

Fig. 3.4. The CBOW (left) and skip-gram (right) word2vec models.

Skip-gram model: The skip-gram model works in the opposite direc-

tion as the CBOW. It uses the embedding of the target word as an input of

a multilabel classifier to predict the words of the context (see Figure 3.4).

The classifier has the same structure as the one in the CBOW model. A

variation of the skip-gram model moves away from the multilabel classifi-

cation and uses a randomly selected word from the context as the desired

output.

If the vocabulary is big, learning (for both CBOW and skip-gram) can

become slow, because the algorithm requires to compute scores for all words

in every step. This problem can be alleviated by using hierarchical softmax

instead of the softmax transformation, that does not require the computa-

tion of all scores; or by sampling a few negative words to each target word

and using the softmax on this sample only [Mikolov et al. (2013b)].

3.3.1.1. Paragraph2vec

The CBOW model was extended to learn paragraph or document embed-

dings besides word embeddings. Here, the ID of the document is also part

of the context (besides the context words). The documents are also as-

signed with embedding vectors that is averaged with the embeddings of the

context words to compute the input of the classifier (see Figure 3.5).

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 91

Cutting-Edge Collaborative Recommendation Algorithms: Deep Learning 91

E E E E

���� ���� ���� ����

word(t-2) word(t-1) word(t+2)word(t+1)

Classifier

word(t)

averaging

P

paragraph ID

��

Fig. 3.5. The paragraph2vec model.

3.3.2. Prod2vec

Models from NLP are often adapted for the recommendation task. This is

no different for word2vec. [Grbovic et al. (2015)] proposed to use the skip-

gram word2vec model to learn item embeddings and coined the method

prod2vec2. Words are replaced by items and documents with user histories.

The underlying algorithm remains the same, but we learn item embeddings

instead of word embeddings. The same authors also propose to use para-

graph2vec to learn user representations simultaneously, by replacing the

paragraph ID with the user ID.

The prod2vec model was later extended to handle multimodal infor-

mation in order to learn item embeddings of higher quality. [Vasile et al.

(2016)] utilizes item metadata besides the item ID. The input of the net-

work is an item ID and the accompanying metadata. The output is the

context items and metadata (i.e. other items from the user history and

their accompanying metadata). The loss of the network is the combina-

tion of losses of different prediction tasks, performed simultaneously (see

Figure 3.6):

• From the actual item predict the item context.

• From the actual item predict the metadata context.

• From the actual metadata predict the actual item.

• From the actual metadata predict the item context.

• From the actual metadata predict the metadata context.

2Later, the same idea was also published by different authors under the name of item2vec
[Barkan and Koenigstein (2016)].

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 92

92 B. Hidasi

I

��

item(t)

item(t-1) item(t+2)meta(t+1)

Classifier

meta(t-1)

M

��

meta(t)

Classifier Classifier Classifier Classifier

item(t)

Fig. 3.6. The meta-prod2vec model.

The model was later further extended to consider other aspects of the item,

such as the product image in [Nedelec et al. (2017)].

3.4. Deep collaborative filtering

It is straightforward to apply deep learning for collaborative filtering. Even

the popular matrix factorization model can be represented as a very simple

neural network. The input of this simple network is the one-hot encoded

user ID3. The input-to-hidden weight matrix is the user feature matrix,

thus the hidden layer is the user feature vector. The activation function

of the hidden layer is the identity function. The hidden-to-output weight

matrix is the item feature matrix and the output is the preference of the

user over the items.

Several methods approach modeling from the perspective of making

this simple model more neural network like. The MV-DNN model keeps

the dot product model between user and item features, but runs both the

user and item features through several non-linear layers. The MV in the

name stands for multi-view, so the model is capable of handling multiple

domains at once, by having a separate subnets for items from all domain

(Figure 3.7, left).

The implicit CF-NADE model [Zheng et al. (2016)] adds non-linearities

after both the hidden layer and the output. Following the classic work of

[Hu et al. (2008)], implicit feedback is separated into a preference value (1 if

the user has any events on the items, 0 otherwise) and a confidence/weight

3Since the model is symmetrical, this can be done the other way around, i.e. inputting
the item ID and getting the preference of all users on this item on the output.

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 93

Cutting-Edge Collaborative Recommendation Algorithms: Deep Learning 93

item user

preferences

field1 field2 field3

Embedding

Hidden layer

Hidden layer

User history

Positive

feedback

Negative

feedback
Confidences

One hot vector

Hidden layer

preferences

Target item

Fig. 3.7. Left: MV-DNN, center: CF-NADE, right: PNN.

value (αsupp(u,i) + 1, α� 1). The confidence is used to upweight positive

feedback during the computation of the hidden state, and to increase the

importance of the loss on items corresponding to positive feedback. The

network takes a subset of the user’s item on its input and predicts one other

item from the user’s history (Figure 3.7, center).

The Product Neural Network (PNN) [Qu et al. (2016)] is a deep ver-

sion of the well-known Factorization Machine (FM) [Rendle (2012)]. First,

the categorical features are embedded and the cross-products of these em-

beddings are computed. This cross product is fed to additional non-linear

layers. The network is used for CTR prediction, thus its output is a single

number, but modifying it for preference prediction would also be trivial

(Figure 3.7, right).

There are many other methods (e.g. models that also consider the evo-

lution of the user and/or item features, such as [Song et al. (2016); Dai

et al. (2016)]), as deep collaborative filtering was one of the most popular

research lines in the last few years. These are not discussed in detail here.

Instead we introduce an important subclass of deep CF models that build

on denoising autoencoders.

3.4.1. Autoencoder based approaches

The autoencoder is a neural model with one hidden layer. The expected

output of the network is the same as its input. The autoencoder learns a

(compressed) representation of the data in its hidden layer. This in itself

can be already used for lossy compression. However, when compression is

not the main task and thus learning the identity mapping is less useful,

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 94

94 B. Hidasi

Data

Corrupted input

Hidden layer

Reconstructed output

Data

Fig. 3.8. Denoising autoencoder.

the generalization capabilities of the network can be increased by feeding it

with noisy data and expecting it to restore the original data on its output

(see Figure 3.8). This network is called the Denoising Autoencoder (DAE)

[Vincent et al. (2008)]. During training, the network is fed with corrupted

data. Corrupting the data can take different forms, e.g. white noise can

be added to it, or randomly selected coordinates can be set to zero, etc.

The task of the network is to denoise this data and reconstruct the uncor-

rupted data on its output. Both DAE and standard autoencoders can be

made deep, by stacking multiple networks on the top of each other. DAE

works better on real life data, due to its generalization and noise filtering

capabilities.

Recommenders based on the denoising autoencoder model are fed with

corrupted user histories during training. The user’s history is transformed

into a vector of ones and zeros for items the user did and did not consume,

respectively. Then some of the ones are randomly set to zero. The network

is requested to restore the original vector. For implicit data, the two most

well known DAE based recommenders are Collaborative Deep Learning

(CDL) [Wang et al. (2015)] and Collaborative Deep Autoencoder (CDAE)

[Wu et al. (2016)].

CDL uses tags and item metadata instead of the item ID. Working on

the metadata space has the advantage of being resistant to the item cold-

start problem. These vectors are also denser than item based ones, which

suits the training process of the DAE better. The underlying network is

the Bayesian variation of the stacked denoising autoencoder.

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 95

Cutting-Edge Collaborative Recommendation Algorithms: Deep Learning 95

CDAE works on item IDs and uses the standard DAE, but extends the

input with a user node and the hidden layer with a bias node.

3.5. Direct use of content

Even though generally collaborative filtering (CF) has the best performance

for recommendations ([Pilászy and Tikk (2009)]) it also has its weaknesses.

The most well known is the cold-start problem, as CF can not recommend

for new users or recommend new items. Therefore, practical recommenders

usually use hybrid algorithms. These have a CF core and auxiliary parts

based on other data for when CF is not applicable. The most common

approach is to use the combination of CF and content-based filtering (CBF).

There are different ways to extend CF algorithms with CBF (also see

Chapter 4). Common techniques include:

• Weighting: The CF and CBF algorithms predict preferences sep-

arately and their predictions are then weighted to produce the final

scores. This is a very basic solution and often suboptimal, because

the scales and distributions of the scores of the two methods differ

significantly.

• Cascading: The CF algorithm is used for prediction, when it can

give (sensible) predictions and the CBF is used otherwise. Even

though this is a simple approach, it is surprisingly effective in prac-

tice.

• Initializing: The features extracted from the content can be used

to initialize item features. E.g. factorizing the item–metadata ma-

trix and using the item features in a standard user–item matrix

factorization as starting values of the item matrix. See e.g. [Hidasi

and Tikk (2013)].

• Joint training: There is a single item representation that is part

of two jointly trained optimization problems. E.g. factorize the

user–item and the item–metadata matrices simultaneously and re-

strict item features to be the same in both factorizations, see [Singh

and Gordon (2008)].

• Regularizing: Add a term to the loss function on the difference

between the content features and the item feature vectors computed

by the CF part. Content features are either pretrained or learned

simultaneously. This way the item features are regularized to be

close to their content-based counterparts, thus the model can work

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 96

96 B. Hidasi

fairly well with new items, that only have content features. Can

be viewed as the relaxed version of joint training, because content

a behaviour based item features do not have to be the same, but

should be close. See e.g. [Hu et al. (2012)].

• Mapping content: Build a separate model that maps the content

to latent features produced by CF. New items then can be instantly

assigned with a feature vector and can be recommended. See e.g.

[Van den Oord et al. (2013)].

Despite of its name, CBF traditionally does not work with the content

directly, but rather utilizes the item metadata. The reason for not using

content is that automatically extracting features from images, video, audio

and sometimes even from text is challenging, while manual feature selection

is tedious, domain specific and often suboptimal.

Deep learning methods greatly improved upon how we can handle un-

structured data, such as content. Convolutional Neural Networks (CNN)

can extract high level features from images and videos or any image-like

data automatically; Recurrent Neural Networks (RNN) can summarize

natural text and can deal with any kind of sequential data. All of the

approaches mentioned above can work without any modifications with pre-

trained content features instead of metadata based features. Moreover, due

to the modularity of deep models, it is very easy to use heterogenous, multi-

modal data, i.e. different aspects of the items, in the same model. Content

features can be pretrained (with optional fine tuning during training) or

the entire network can be trained end-to-end.

In the rest of this section we describe one model for using image, music

and text data, respectively.

Product images: [He and McAuley (2016)] uses visual features from

a pretrained CNN to extend the behaviour based item feature vector (i.e.

the visual and behaviour based item feature vectors are concatenated).

Beforehand, the high dimensionality of the visual feature vector is reduced

by multiplying it with a separate weight matrix. The preference model

consists of the dot product of the (full) item feature vector and the user

feature vector, an item bias and visual biases. All but the visual features

are learned. Learning is performed using the BPR algorithm [Rendle et al.

(2009)]. See Figure 3.9.

Music recommenders: In order to overcome the item cold-start prob-

lem, [Van den Oord et al. (2013)] uses deep convolutional networks to pre-

dict latent item features. First, matrix factorization is performed on non

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 97

Cutting-Edge Collaborative Recommendation Algorithms: Deep Learning 97

Pretrained

CNN

Image

ID

BPR User features

Biases

Preferences

Fig. 3.9. The visual BPR model using pretrained visual features for fashion recommen-
dation.

cold-start items. Then a CNN is trained on the time-frequency represen-

tation of the songs. The target of this network is the item feature vectors

from the matrix factorization. This way, when a new song becomes avail-

able in the system, it can be immediately assigned with a feature vector

based on its content; and this feature vector is in the same latent space as

the end result of the factorization. See Figure 3.10.

Pretrained

MF

ID

CNN
Audio

Fig. 3.10. Matching content to pretrained item features to overcome item cold-start.

Textual content: The content of scientific articles is processed word-

by-word by a two layered recurrent neural network in [Bansal et al. (2016)].

The hidden states of the RNN are averaged and result in the feature vector

of the processed text. The item feature vector is the sum of the text vector

and and a behaviour based item feature vector (i.e. embedding of the ID).

The item feature vector then is used to predict which users would like the

item as well as what tags would suite the item well. The whole model

is trained end-to-end, i.e. the parameters of the text processing part are

learned at the same time as other parts of the model. See Figure 3.11

3.6. Session-based recommendations

The traditional recommendation setup assumes easily identifiable users who

have long histories of interactions with the items; and this history encodes

the static or slowly changing preferences of the user. This is the classic item-

to-user recommendation scenario, where collaborative filtering methods,

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 98

98 B. Hidasi

Mean pooling

ℎ�
�

ℎ�
�

ℎ�
�

ℎ�
�

ℎ�
�

ℎ�
� +

IDword1 word2 word3

User feature

vectors

Tag feature

vectors

P
re

fe
re

n
ce

s
Ta

g
s

Fig. 3.11. Text processing with recurrent model to enhance recommendations.

such as matrix factorization, shine. This setup is mostly accurate for do-

mains, such as movie or book recommendations, where the basis of con-

suming an item is heavily preference based and where the identification of

the users can be done in a sensible way. However, the domains of recom-

mender systems are much more diverse and there exist several application

areas where these assumptions are not valid. In some domains, user iden-

tification is not trivial. For example, YouTube like OTT video services

generally do not require the users to log in. While there are other ways

for user identification, the lack of well defined user accounts makes it less

reliable, because the user can use multiple devices to access the service and

the same device can be used by multiple users. There are domains where

the majority of the users actively try to avoid identification, e.g. on adult

content sites.

Even if we have a more or less reliable way of user identification, treating

all of a user’s events as a consistent history that signals global preferences of

the user is oftentimes incorrect. This is especially true when the service has

an item catalog of very diverse items accommodating for different uses, and

if either (a) consuming an item does not entail huge commitment; or (b)

choosing an item is primarily need-based as opposed to preference-based.

For example, OTT video services are often used in different ways by the

same user in different sessions: e.g. listening to music during work, watching

cartoons with their kids on weekends, watching videos in a certain topic

that is actually interesting for the user, etc. Users of e-commerce stores

of electronic devices, household appliances, etc. are usually looking for a

certain kind of product that they need at that time. If a user is looking for

a fridge, they won’t be interested in televisions and the next time they come

back looking for televisions, their past preferences over fridges will be of

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 99

Cutting-Edge Collaborative Recommendation Algorithms: Deep Learning 99

little importance to determine the best product to recommend4. The same

holds for classified sites and online marketplaces. The common denominator

of these three examples is that the user history is composed of distinct, very

loosely connected sub histories. This results in a permanent user cold-start

problem, where the recommender can not rely on past information when the

user starts a new session. Most of the applications of recommenders fall into

these “non-traditional” categories and not into domains where long term

consistent user histories are available. But even in the classical domains,

user-based approaches have their shortcomings. (1) They do not account

for user intent, e.g. if the user wants to buy something for himself, or wants

to buy someone else a present or just browses. (2) The user history is only

consistent w.r.t. interactions signaling higher commitment (e.g. purchase,

watching a full movie), but the amount of other interactions (e.g. viewing

a product page) is much larger and much more erratic and it is often the

only type of information available for lots of users.

To accommodate for the aforementioned challenges, the recommender

system needs to quickly adapt to the actual intent of the user, thus it

should be able to update its internal model after each user action and

refine the recommendation content as the session progresses. The topic

of session-based recommenders revels around this problem. Session-based

recommendation is not just a single task, as there are multiple ways to

approach the problem and the task should be selected to match the actual

needs of the domain.

The two most prevalent tasks of session-based recommendations are

next click prediction and intent prediction. The former aims to predict

the next item in the session given the previous one, while the goal of the

latter is to guess the user’s intent in the actual session, given the session

(e.g. the user wants to buy something, or just browses). A session is a

sequence of events in close proximity, produced by the same user. If no

explicit session identifier is available, it is common practice to assume the

session’s end if the time between two consecutive events of the user is above

a threshold. Many session-based algorithms only use the items of the events

— similarly to most user-based collaborative filtering algorithms — but

there are algorithms capable of utilizing additional information of the events

(e.g. time, context) or the items (e.g. metadata).

4Some information on the user’s preferences can be derived from past sessions on global

preference parameters — from more trivial things like price range to hidden connections
unrevealed by transfer learning — but this is also beyond the scope of classic methods.

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 100

100 B. Hidasi

Session-based recommendation was addressed even before the advent

of deep learning, but papers on this topics were few and far between and

methods did not work well in the pure session-based scenario, due to the

complexity of the topic and classic methods being unable to deal with

sequences appropriately. Therefore, in practice the de facto solution for this

problem was the traditional item-to-item recommendation [Linden et al.

(2003)], in which items are recommended based on their similarity to or

co-occurrences with the item of the user’s last event while the rest of the

session is ignored. While this approach works fairly well, this solution is

heavily non-personalized (each user gets the same items on a given item

page). It is also less accurate, since it does not consider earlier events

from the session. Deep learning revitalized session-based recommendations

by applying Recurrent Neural Networks (RNNs) — the de facto neural

network family for dealing with sequences — for session data.

3.6.1. Recurrent Neural Networks

RNNs are for modeling sequential data. The key difference between a re-

current and a feedforward layer is the existence of an internal hidden state,

which serves as the summary of the processed sequence. The hidden state

is the function of the actual input and the previous value of the hidden

state. The hidden state in the vanilla RNN is computed as:

ht = f (Wxt + Uht−1 + b) (3.4)

here f(·) is the activation function (usually tanh or logistic sigmoid). Re-

current layers are trained using backpropagation through time (BPTT)

[Williams and Zipser (1995)]: a sequence is propagated forward through

the RNN for T steps and the gradient w.r.t. the weights is computed con-

sidering all T steps. Another way to think about this is that the RNN is

unrolled for T steps and the resulting network is trained with backpropaga-

tion, but the weights between the layers are shared (see Figure 3.12). The

RNN layer by itself is a deep architecture, but multiple RNN layers can be

used after one another to process the data.

RNNs have a vast and quickly expanding literature and discussing all

aspects is beyond the scope of this book. Here we only briefly discuss the

gated RNNs and some of the common architectures.

The traditional RNNs suffer from the vanishing and exploding gradi-

ent problem. The reason of vanishing/exploding gradients in RNNs is due

to the recursion in their structure. Thus it is present for non-saturating

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 101

Cutting-Edge Collaborative Recommendation Algorithms: Deep Learning 101

��
ℎ���

��

�()

+

ℎ�

Δ ��

�
�

�()+

ℎ�����

�
�

�()+

ℎ���

�
�

�()+

ℎ���

����

…
unroll

Fig. 3.12. Unrolling an RNN unit.

activation functions as well, unlike the vanishing gradient problem of feed-

forward networks mentioned in Section 3.1.2.

The gradient w.r.t. the first input of the sequence (x1) can be computed

as5:

∂ht
∂x1

=
∂ht
∂ht−1

· ∂ht−1
∂ht−2

· · · ∂h2
∂h1

∂h1
∂x1

=
(
U t−1W

)T
(3.5)

Depending on the spectral norm of U :

• ||U ||2 < 1 → The effect of x1 on ht is negligible if t � 1. The

network quickly forgets and the hidden state is determined by only

the few most recent inputs (vanishing gradients).

• ||U ||2 > 1→ Minor changes (e.g. noise) in x1 significantly changes

ht if t � 1. The weight updates will be large and the network

becomes unstable (exploding gradients).

There are different ways to overcome this problem:

• Gradient clipping: Define a threshold and if the gradient exceeds

this anywhere, scale back the gradient so that its maximal value

equals to the threshold value. This solves the exploding gradient

problem, but dos not address the vanishing gradient, so the network

still forgets quickly.

• Unitary RNNs: Make sure that the spectral norm of U is 1, so

gradients will never vanish nor explode. This can be done by using

unitary matrices for U . However, weight updates ruin the unitary

property and restoring it after each update is costly and can also

slow down convergence. Therefore it is better to compose U as

5For the sake of clarity it is assumed that f is the identity function. The same can be
shown for other activation functions.

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 102

102 B. Hidasi

the product of parameterized simple unitary matrices and update

these parameters directly [Arjovsky et al. (2016)].

• Gated RNNs: The key idea behind gated RNNs is to compose

the hidden state as the sum of the previous hidden state and a

difference (delta) which depends on the input and the previous

hidden state (as opposed to computing the new value directly):

ht = ht−1 + ∆ht = ht−1 + f(xt, ht−1). This in itself solves the

vanishing gradient, but makes the network unable to forget. To

overcome this and to solve the exploding gradient, gates are intro-

duced to compute the information flow. There are different variants

of this idea with the Long Short Term Memory (LSTM) [Hochre-

iter and Schmidhuber (1997)] and the Gated Recurrent Unit (GRU)

[Cho et al. (2014)] being the two most well known.

3.6.1.1. Long Short Term Memory

The LSTM [Hochreiter and Schmidhuber (1997)] is the first and most well

known of the gated RNNs. Here, the hidden state is decomposed into two:

(1) a memory cell (ct), which serves as an intermediate representation (state

updates are done here); and (2) a hidden state. The hidden state’s value

is read from the memory cell, masked by the output gate. This decouples

the computations of the gates from the internal state representation (i.e.

the output gate can break the information flow, without having to reset

the state representation). The LSTM has three gates. Each gate is the

function of the actual input and the previous hidden state and their value

is always between 0 and 1.

• Input gate: Controls what portion of the delta is added to the

memory cell. If it is zero, the current input will not contribute to

the memory cell (and to the hidden state).

• Forget gate: Controls how much of the previous memory cell is

kept. If it is zero, the network completely forgets the previously

accumulated knowledge of the sequence.

• Output gate: Controls, how much of the memory cell’s value is

written into the hidden state.

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 103

Cutting-Edge Collaborative Recommendation Algorithms: Deep Learning 103

�

ℎ

��

ℎ�

+

+

i

f

o

ℎ

r

z

+
��

ℎ�

Fig. 3.13. Gated units: LSTM (left) and GRU (right).

The LSTM model (also see Figure 3.13):

it = σ (Wixt + Uiht−1 + bi)

ft = σ (Wfxt + Ufht−1 + bf)

ot = σ (Woxt + Uoht−1 + bo)

ct = ft ◦ ct−1 + it ◦ tanh (Wcxt + Ucht−1 + bc)

ht = ot ◦ tanh (ct)

(3.6)

3.6.1.2. Gated Recurrent Unit

GRU [Cho et al. (2014)] is a simpler gated RNN, in which there is no

memory cell, the input and forget gates are merged into an update gate

(zt), and the information flow is broken by a reset gate (rt) (instead of the

output gate and separating the state representation from the hidden state).

It is reported to perform similarly to the LSTM. The GRU model (also see

Figure 3.13):

rt = σ (Wrxt + Urht−1 + br)

zt = σ (Wzxt + Uzht−1 + bz)

ht = zt ◦ ht−1 + (1− zt) ◦ tanh (Whxt + Uh(rt ◦ ht−1) + bh)

(3.7)

3.6.1.3. Common architectures with RNNs

The RNN layer can be used in different architectures and in different ways,

depending on the task. The most basic approach is to put a feedforward

layer on the top of the RNN layer to perform prediction (e.g. classification)

from the value of the hidden state. But even in this simple case we can

decide the timing of the prediction (e.g. do we want to predict in each step

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 104

104 B. Hidasi

ℎ� ℎ� ℎ�

�� �� ��

�

ℎ� ℎ� ℎ�

�

�� �� ��

ℎ� ℎ� ℎ�

�� �� ��

�� �� ��
ℎ�
� ℎ�

� ℎ�
�

�� �� ��

�� �� ��

ℎ�
� ℎ�

� ℎ�
�

	

	 	 	�� ��0

Encoder

D
e
c
o
d
e
r

Fig. 3.14. RNN architectures corresponding to common tasks: sequence to value (top

left), sequence generation (top right), next symbol prediction (bottom left), sequence to
sequence learning (bottom right).

or only at the end of the sequence, etc.). See the most common tasks and

the appropriate RNN architecture below and on Figure 3.14:

• Sequence to value: Assign a value/label to a sequence after it is

processed in its entirety. E.g. time series classification, document

classification.

• Sequence generation: Starting from a single input generate a

sequence, i.e. decode the input into a sequence. E.g. image caption

generation.

• Next symbol prediction: Predict the next symbol/value in the

sequence after processing the actual input. E.g. next video frame

prediction, next click prediction.

• Sequence to sequence learning: Given a sequence, generate

another sequence. The difference to next symbol prediction is that

the output sequence is generated after the input sequence is fully

processed and not simultaneously. While it is possible to do this

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 105

Cutting-Edge Collaborative Recommendation Algorithms: Deep Learning 105

with one RNN, it is more efficient to use an encoder-decoder ar-

chitecture [Sutskever et al. (2014)] in which one RNN encodes the

input sequence by processing it and another RNN uses this code to

seed the output generation. The performance of such architectures

can be improved by using attention mechanisms [Mnih et al. (2014)]

which allows the decoder to look at the hidden state’s value of the

input network at all time steps at once. E.g. machine translation.

3.6.2. The GRU4Rec algorithm

The GRU4Rec algorithm [Hidasi et al. (2015); Hidasi and Karatzoglou

(2017)] is a GRU based network adapted to the recommendation domain6.

Sessions here are represented as sequences of item IDs. The input of the

network is the actual item ID in the session and the task is to predict the

next item of the session (next click prediction). Items IDs are represented

by one-hot vectors. The network architecture consists of one or more GRU

layers preceded by an optional embedding layer and followed by a feedfor-

ward layer that predicts the likelihood of each item to be the next in the

session (see Figure 3.15).

G
R

U
 la

y
e

r

O
n

e
-h

o
t v

e
cto

r

W
e

ig
h

te
d

 o
u

tp
u

t

S
co

re
s o

n
 ite

m
s

f()

O
n

e
-h

o
t v

e
cto

r

Ite
m

ID
 (n

e
x
t)

Ite
m

ID

Fig. 3.15. Schematic of GRU4Rec.

While GRUs are excellent when it comes to dealing with sequences, the

recommendation domain has several properties which need to be accounted

for when designing an algorithm. One such speciality is session length: it

both varies greatly (from 2 to several hundreds) and short sessions are very

6Code available: https://github.com/hidasib/GRU4Rec

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 106

106 B. Hidasi

common. In fact, sessions with 1 or 2 events are the most common in

practice in many domains. This makes the use of sequence by sequence

training and the BPTT algorithm hard. Also, the number of items (which

correspond to the number of inputs and outputs of the network) can easily

be in the millions (or at least several hundreds of thousands). Predicting

for all items in each training step takes a lot of time; and due to another

speciality of the domain, it is unacceptable for recommender algorithms to

train for days, because they need to be retrained frequently to be able to

handle new items and users.

Session-parallel mini-batches: Instead of using the BPTT algorithm

on each session separately, GRU4Rec does one step updates on mini-batches

assembled from multiple sessions. Since multiple steps are computed at once

(one step for each mini-batch), multiple hidden states are needed to follow

each example. At the start of the training the mini-batch is composed from

the items of the first events of the first M sessions (M is the mini-batch

size) and the desired outputs are the items of the next events of the same

sessions. After the gradient update, the mini-batch is now composed of the

items of the second events of the sessions and the desired outputs are tied

to the third events. This continues until one or more of the sessions has no

more events. When this happens, the corresponding hidden state is reset

to zero and the next available session is put in the place of the completed

session in the mini-batch, starting from its first event (see Figure 3.16).

This training procedure fits data with high variance in session length well.

Alternatively, the algorithm can learn from 2D mini-batches, i.e. batches

of sequences, and update using the BPTT algorithm with T > 1. In this

version, padding is used to fill up shorter sequences to T + 1 length. The

accuracy of this methods is the same, but session-parallel mini-batching is

faster.

��,� ��,� ��,� ��,�

��,� ��,� ��,�

��,� ��,� ��,� ��,� ��,� ��,�

��,� ��,�

��,� ��,� ��,�

Session1

Session2

Session3

Session4

Session5

��,� ��,� ��,�

��,� ��,�

��,� ��,� ��,� ��,� ��,�

��,�

��,� ��,�

Input

Target

…

��,� ��,� ��,�

��,� ��,�

��,� ��,� ��,� ��,� ��,�

��,�

��,� ��,�

…

�� �� �	

��
�
��

�
��
�
��

�
��
�
��

�
��
�
�	

�

��
�
��

�
��
�
��

�
��
�
��

�
��
�
�	

�

��
�
��

�
��
�
��

�
��
�
��

�
��
�
�	

�

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0

TargetPredictions

Fig. 3.16. Left: Session parallel mini-batches. The circled boxes form a mini-batch.
Right: Mini-batch based sampling. Predictions are computed for the non-grey items

only.

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 107

Cutting-Edge Collaborative Recommendation Algorithms: Deep Learning 107

Mini-batch based sampling: The size of the item catalog in a rec-

ommender system in practice is usually in the hundreds of thousands, and

it is not uncommon to see item catalogs of several millions of items. During

training, GRU4Rec does a prediction step in the order of the number of

events in the training data. If it were to predict for all items in each step,

the training would scale with the product of the number of events and items,

which would result in poor scalability and slow training times in practical

systems. To overcome this issue, GRU4Rec does not predict for all items,

but only for the target items and for several other items (negative samples).

This significantly speeds up training process at the cost of only approximat-

ing the loss. However, this is a widespread approach for many algorithms

in both recommenders and other domains. GRU4Rec introduces a very ef-

ficient sampling mechanism by using the items of the desired outputs of the

other mini-batch examples as the negative items for the given mini-batch

example7 (see Figure 3.16). This step can be implemented very efficiently

on GPU and it doesn’t require additional sampling. These two properties

make this step very fast. Another advantageous property is that the sam-

pling procedure samples negative items proportionally to their popularity.

Popularity-based negative sampling is often better than uniform sampling

due to (a) learning the item representations of more common items quicker;

(b) capturing less of the popularity bias.

Additional sampling: Even though mini-batch based sampling is ef-

ficient in terms of computations, its drawback is tying sample size to the

mini-batch size. Generally, lower mini-batch sizes are better for training,

due to the gradient noise serving as an efficient regularization method. On

the other hand, larger sample size allows for better approximation of the

loss and better gradient updates. Therefore the v2 version of GRU4Rec

[Hidasi and Karatzoglou (2017)] introduced additional sampling that adds

shared negative samples to each example of the mini-batch. These addi-

tional samples are sampled in proportion to their support on the power of

α (0 ≤ α ≤ 1). By setting α, sampling can be balanced between uniform

and popularity-based sampling. The optimal value depends on the dataset,

but is usually around 0.58. Mini-batch and additional sampling together

can both quickly learn good item representations for popular items in the

beginning of the training and fit for long tail items at the end of the training.

7E.g. M = 3 and the desired outputs in a step are item 4, 7 and 9. The target for the
first example is item 4 with negative examples item 7 and 9; the target for the second
example is item 7, with item 4 and 9 as negative examples and so on.
8If the mini-batch samples are ignored, the optimal value goes up to around 1 and the

overall accuracy drops.

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 108

108 B. Hidasi

Loss functions: Different loss functions were proposed for the algo-

rithm, see the selection below. All losses are listwise ranking losses (over

the target items and the negative samples) based on pointwise or pairwise

scores. Currently, the BPR-max is deemed to be the best of the losses

for most datasets as it results in slightly more accurate models than cross-

entropy [Hidasi and Karatzoglou (2017)].

• Cross-entropy: Standard categorical cross-entropy between the

predicted distribution and the target one-hot vector, preceded by

the softmax transformation of the scores. While cross-entropy is

pointwise in itself, the combination with the softmax transforma-

tion results in a listwise ranking. Originally reported to be unsta-

ble, but was fixed in later versions. Performs similarly to BPR and

TOP1 when only a few negative samples are used, but is superior

to them when additional samples are used as well.

Lxe = − log si = − log
eri∑N
j=1 e

rj
(3.8)

• BPR: The average BPR loss [Rendle et al. (2009)] between the

target item and the negative samples. On some datasets performs

better than the TOP1 loss.

Lbpr = − 1

NS

NS∑
j=1

log σ(ri − rj) (3.9)

• TOP1: A heuristic loss of two parts: the first part pushes the score

of the target item above that of the negative samples; the second

part regularizes the score of the negative items.

Ltop1 =
1

NS

NS∑
j=1

σ(rj − ri) + σ(r2j) (3.10)

• BPR-max: Introduced in the second version of the algorithm, BPR-

max combines the benefits of pairwise losses, the softmax transfor-

mation and score regularization. [Hidasi and Karatzoglou (2017)]

concluded that the BPR and TOP1 losses are unsuitable when the

number of negative examples is high, due to the gradient vanishing

when the score of the target item is around the score of the top

∼ 10% of the negative samples. With many samples, this results

in the training stopping before the target item is put to the top of

the list. The solution is to weight the BPR losses with the softmax

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 109

Cutting-Edge Collaborative Recommendation Algorithms: Deep Learning 109

score of the negative samples, thus ignoring samples whose score

is much lower than that of the targets, which solves the vanish-

ing gradient problem. The loss also includes a score regularization

term similarly to the TOP1 loss, as it was found to be beneficial

during training.

Lbpr−max = − log

NS∑
j=1

sjσ(ri − rj) + λ

NS∑
j=1

sjr
2
j (3.11)

• TOP1-max: The softmax weighted version of the TOP1 loss. In-

ferior to the BPR-max loss.

Ltop1−max =

NS∑
j=1

sj
(
σ(rj − ri) + λσ(r2j)

)
(3.12)

Constrained embeddings: Adding an embedding layer before the

first GRU layer has been reported to slightly decrease the accuracy of the

network. This is only counterintuitive for the first sight. The reason — yet

again — is the large number of items, of which some are very rarely visited

during training. Both the embedding and the output weight matrix are

item representations, but they are learned separately from each other. Thus

input and output representations can become slightly incompatible. The

easiest solution is to have a shared weight matrix instead of two separate

ones, or in other words: constrain the embedding matrix on the output

weight matrix (see Figure 3.17). This results in unified item representations,

which makes easier for the network to learn proper representations quicker

and thus converge better.

3.6.3. Extending the model

Since its inception, the original idea was extended in different directions

to accommodate for various data and recommendation tasks. Below we

shortly introduce the most notable extensions.

p-RNN for multimodal data: One way to improve the accuracy of

the model is to use multimodal data. Instead of just relying to the item

ID, we can make use of its image (e.g. thumbnail of a video) and textual

item description. The parallel RNN (p-RNN) [Hidasi et al. (2016)] is an

architecture for such multimodal data, where each view of the input is

processed by a separate subnet. The subnets are then merged on their

hidden states (see Figure 3.18). Training is done via alternating training,

i.e. each subnet trains while the others are fixed.

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 110

110 B. Hidasi

GRU layer

� �

�()

ℎ�

��

	

��

GRU layer

� �

�()

ℎ�

��

	

��

�

��

GRU layer

� �

�()

ℎ�

��

	

��

� �

��

Fig. 3.17. GRU4Rec without embedding (left), with embedding (center), and with con-

strained embedding (right).

Image feature vector

GRU layer

One-hot vector

ItemID (next)

GRU layer

One-hot vector

ItemID

Weighted output

Target

�()

Scores on items

Text feature vector

GRU layer

Fig. 3.18. The parallel RNN architecture.

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 111

Cutting-Edge Collaborative Recommendation Algorithms: Deep Learning 111

Contextualization: Contextual information can help increasing the

accuracy and adaptivity of recommender systems, therefore extending the

model to be able to handle context is an important step. However, the naive

inclusion of the context in GRU does not benefit the model. [Smirnova

and Vasile (2017)] proposed different ways to include the context and they

created an architecture that performs really well. It uses the context of the

actual item on the input by concatenating the context embedding with the

item embedding. The context of the next item9 is also used in the model:

the hidden state of the network is multiplied by the context embedding in

elementwise fashion. The authors also introduce a structure coined “context

wrapper” which is used to allow context-aware transitions of the hidden

state in the network by replacing GRU equations (3.7) with the following:

rt = σ ((Wrxt + Urht−1) ◦ (Vrct) + br)

zt = σ ((Wzxt + Uzht−1) ◦ (Vzct) + bz)

ht = zt ◦ ht−1 + (1− zt) ◦ tanh ((Whxt + Uh(rt ◦ ht−1)) ◦ (Vhct) + bh)
(3.13)

Personalization: Even though the sessions of the users are disjoint,

in certain domains, earlier sessions may contain information on the sub-

sequent sessions of the user. E.g. two users with similar lifestyle will gen-

erate similar sessions in the same order. [Quadrana et al. (2017)] proposed

to personalize session-based recommendations by predicting the initial hid-

den state of the session based RNN based on previous sessions of the user.

The proposed architecture is a hierarchical RNN, in which session-based

predictions are done by the standard GRU4Rec and another RNN is used

on the sequence of sessions of the user to predict the initial hidden state of

the session-based RNN (see Figure 3.19). By doing so, recommendations

become personalized and adapted to the user from the start of the session,

while this usually takes a few steps for the original algorithm.

Intent prediction: The focus of this line of research so far has been

next click prediction. This is appropriate for certain domains where the

goal is to keep the user there by recommending more relevant content —

like news or video recommendations. In other domains, the end goal is

to generate revenue, therefore it is important for the algorithm to distin-

guish between users who are just browsing and those who are also likely to

purchase something. This is the intent prediction task: based on (partial)

sessions, we want to predict the intent (end goal) of the user. [Loyola et al.

9This is known during the training and can be set during inference time according to
the actual context.

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 112

112 B. Hidasi

ℎ�,� ℎ�,� ℎ�,� �� ℎ�,� ℎ�,� ℎ�,� ��ℎ�,�

��,� ��,� ��,� ��,� ��,� ��,� ��,�

	�,� 	�,� 	�,� 	�,� 	�,� 	�,� 	�,�

Session level

�
�User level

in
it

Fig. 3.19. Hierarchical RNN.

(2017)] is a preliminary work in this direction. The proposed architecture

is an encoder-decoder based sequence-to-sequence learner for session data.

The advantage of this architecture is that the output of the encoder can

be used with different decoders simultaneously. One of the decoders can

predict the rest of the session (next click prediction), while the other

can predict the user’s intent.

3.6.4. Brief introduction to generative models

So far this chapter discussed discriminative models only. Even though deep

generative models — such as the Generative Adversarial Network (GAN) or

the Variational Autoencoder (VAE) — are in the focus of the mainstream

deep learning research, their preliminary application for recommenders hap-

pened only recently. This section gives a brief introduction to two of the

most popular classes of deep generative models, Generative Adversarial

Networks and Variational Autoencoders and discusses their preliminary

applications in the RecSys domain.

Generative Adversarial Networks: The GAN [Goodfellow et al.

(2014)] consists of two neural networks, the Generator (G) and the Dis-

criminator (D) (see Figure 3.20). The goal of the generator is to capture

the underlying distribution of the data and be able to generate new data

points according to this distribution. In order to achieve this objective

it plays a competitive game with the discriminator whose objective is to

discriminate between samples coming from the training data and samples

generated by the generator. The two networks are trained simultaneously

and as D improves in discriminating real and generated samples, so does

the ability of G to generate more realistic samples. In theory, this min-max

game is played until the networks reach the Nash equilibrium and can not

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 113

Cutting-Edge Collaborative Recommendation Algorithms: Deep Learning 113

Prior

�~��
Generator Discriminator

Generated

data

� �

0/1

Data

�~���	�

Fig. 3.20. High level schematic of the GAN.

improve further. In practice, GANs are known to be fairly unstable and re-

quire careful hyperparameter tuning. They also suffer from mode collapse.

This means that the generator learns to exploit one or few of the modes of

the training data instead of capturing the entirety of the underlying distri-

bution. A vast body of literature is available on solutions for this problem,

including modified training and different loss functions for D and G [Ar-

jovsky et al. (2017); Mao et al. (2017); Bellemare et al. (2017); Salimans

et al. (2016)]. Modeling continuous data (e.g. images, sounds) with GAN

is trivial, modeling discrete data (e.g. sequences of symbols) requires sig-

nificant modifications [Kusner and Hernández-Lobato (2016); Hjelm et al.

(2017); Yu et al. (2017)]. GANs are well known for their application on

images, such as realistic image generation [Radford et al. (2015)], image su-

per resolution [Ledig et al. (2016)], image-to-image translation [Isola et al.

(2017)] (e.g. creating photorealistic images based on doodles) and many

more; but they have also been used in other areas, e.g. for speech enhance-

ment [Pascual et al. (2017)].

IRGAN: In order to unify the generative and discriminative models of

information retrieval in a single framework [Wang et al. (2017)] proposed to

adapt GANs for the information retrieval domain and coined this framework

IRGAN. IRGAN is a conditional GAN as the generator is conditioned on the

query (e.g. search query, recommendation request). Instead of generating a

new document (item), the generator of IRGAN selects documents form the

available documents. The documents are selected independently from each

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 114

114 B. Hidasi

other. The discriminator rates the choices of G and tries to distinguish

them from documents that are known to be relevant for the given query.

A different way to look at this framework is that G is an adaptive negative

sample generator for D, which is a relevance predictor. IRGAN is also

extended for the pairwise case. In this mode, G generates a pair of items

where the first item is preferred to the second one for the given query.

This is compared to the item pairs sampled from the training data by the

discriminator. In practice, a real pair is sampled first and G only replaces

the preferred item within it. By doing this, the pairwise IRGAN becomes a

novel sampling strategy on its own, where the negative samples sought are

already more relevant than the less preferred item of a pairwise feedback.

IRGAN is demonstrated to work on the recommendation task (along with

web search and question answering) in preliminary offline experiments, but

it is unknown how it compares to various negative sampling strategies.

Variational Autoencoder: Similarly to autoencoders and denois-

ing autoencoders (Section 3.4.1), a variational autoencoder [Kingma and

Welling (2013)] also consist of an encoder and a decoder network. The key

difference is that the encoder of an autoencoder encodes the input into a

latent feature vector (code); meanwhile the encoder of VAE encodes it into

a parameterized distribution in the latent space, called variational distri-

bution (see Figure 3.21). In practice, the variational distribution is often

a multivariate, fully factorized Gaussian distribution (i.e. Gaussian with

diagonal covariance matrix), thus the encoder needs to compute the mean

vector and the diagonal of the covariance. The decoder takes a sample from

this distribution and tries to reconstruct the original input. Since sampling

does not work with SGD directly, it is common to use the reparameteriza-

tion trick [Rezende et al. (2014)] instead. This means that the sample is

computed as the sum of the mean vector and the diagonal of the covariance

matrix multiplied by a sample from N (0, I) (white noise). This way, sam-

pling is decoupled from the parameters of the encoder, which enables the

use of SGD for training. The objective of the VAE is the negative recon-

struction loss minus the KL divergence between the variational distribution

and the prior distribution10.

VAE for collaborative filtering: Variational Autoencoders for

Collaborative Filtering (VAE-CF) [Liang et al. (2018)] improves upon the

10While this description of the VAE is easy to understand and allows for comparisons
with autoencoders, it is not the usual formulation of the model and misses some details.

We refer the reader to [Kingma and Welling (2013); Rezende et al. (2014)] for the full

description of the VAE.

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 115

Cutting-Edge Collaborative Recommendation Algorithms: Deep Learning 115

Data

� σ

� = � + �� ∘ 	 ϵ~�(0, �)

Data

Encoder

Decoder

Fig. 3.21. High level schematic of the VAE with the reparameterization trick.

autoencoder based recommenders (Section 3.4.1) by using a variational au-

toencoder instead of a denoising autoencoder. In order to adapt VAE to

the recommendation domain, two modifications are made by the authors.

Firstly, multinomial conditional likelihood is used instead of Gaussian as it

fits the implicit feedback problem better. Secondly, instead of using the ev-

idence lower bound (i.e. the standard loss of the VAE) for optimization, the

loss is interpreted as the sum of the reconstruction error and the regulariza-

tion (i.e. constraining the variational distribution on the prior distribution).

As regularization is deemed too restrictive, it is multiplied by 0 ≤ β ≤ 1

to soften its effect. β starts from 0 at the beginning of the training and is

slowly annealed towards 1. Increasing β stops when ranking metrics on the

validation set start decreasing. The results with VAE-CF are promising,

especially on sparser data.

VAE for slate recommendations: Most recommender algorithms

only do relevance estimation and the set of recommended items is gen-

erated greedily by returning the most relevant items. While this strategy

works well enough in most cases, it ignores important aspects of recommen-

dations, such as the positioning of recommended items or their interdepen-

dencies. Slate-CVAE [Jiang et al. (2018)] aims to generate optimal sets

of recommended items (slates), where optimality is defined as maximizing

user interaction with the slate. The training data for this task consists of

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 116

116 B. Hidasi

slates and user interactions with slates. The input of the encoder is the

concatenated item embeddings of a slate. The condition contains the num-

ber of interactions each item of the slate received. It is important to note,

that while the condition vector can use other information as well, it is not

mandatory to add anything else to it. This means that the algorithm is ca-

pable of non-personalized, personalized, context-aware and context-driven

[Pagano et al. (2016)] recommendations, depending on the information used

in the context vector. The decoder tries to reconstruct the slate from the

sampled code and the condition vector. The final layer of the decoder is

a soft nearest neighbor layer, so it is able to return one of the slates of

the training data. Slate-CVAE is definitely an interesting direction, but

it is only evaluated via proxies: simulated data and sessions interpreted

as slates. Even though more thorough evaluation is needed, these proxy

evaluations suggest that the method has potential.

3.7. Practical guide

This section gives a brief overview of deep learning frameworks and dis-

cusses the most important best practices for researching and developing

deep learning algorithms.

3.7.1. Frameworks

Creating efficient implementations of deep models from scratch can be a

challenging and time consuming task. Fast execution requires highly opti-

mized code and low level optimization for the hardware. Fortunately, there

are several open source frameworks available in which this low level opti-

mization is already available. Thus researchers and practitioners can focus

on designing the model, which then will be executed quickly on either CPU

or GPU. These frameworks also provide other kinds of supports to shorten

development time. One of these is the automatic computations of gradi-

ents. This feature is immensely helpful for the gradient descent training as

it eliminates the (often tedious) manual computation of gradients, which

can easily be the cause of errors. The core of these frameworks are tensor

operations extended with other operators that are common in deep models

(e.g. convolutions). Below we detail some of the popular frameworks.

Theano11 [The Theano Development Team (2016)] is an open source

python framework — developed by the MILA lab of the University of

11http://deeplearning.net/software/theano

http://deeplearning.net/software/theano

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 117

Cutting-Edge Collaborative Recommendation Algorithms: Deep Learning 117

Montreal — for defining and evaluating mathematical expressions effi-

ciently. First a mathematical expression needs to be defined using symbolic

variables and operations. These variables and operations are organized into

a directed computational graph. This graph is then compiled into highly op-

timized code. This code can be executed several times with different input

values (e.g. the actual data points). The framework has both a CPU and

a GPU backend. While finding the optimal operators for efficient Theano

code can be tricky, optimized Theano programs often run faster than those

in other frameworks. Theano is a low level framework in the sense, that

the focus is on efficiently evaluating any mathematical expression, thus any

kind of model can be defined easily and previously defined models can be

modified quickly. On the other hand — while there is clearly additional sup-

port for deep learning models built into the framework — this also means

that predefined models/layers are not part of the core package. Those ei-

ther have to be assembled by the user or imported from high level packages

built on Theano. These properties make it ideal for research, but less so for

production. It is one of the older frameworks with its development started

in 2007. In September 2017, the cease of development was announced after

the next release with support and bug fixes being provided for another year.

TensorFlow12 [Abadi et al. (2016)] is Google’s machine learning frame-

work that was opensourced at the end of 2015. The ideas behind the

framework are very similar to Theano: machine learning models are rep-

resented as computational graphs, which are then compiled into efficient

code and then executed on CPU, GPU or custom hardware. The frame-

work quickly gained popularity and has become the de facto deep learning

framework. Besides the quick development, clear focus on machine learn-

ing and Google’s support, this is also due to it being not just a standalone

framework for research but part of a deep learning ecosystem, tailored to-

wards production. Other parts of this ecosystem have been made public

as well. For example, TensorBoard visualizes learning of the networks,

tf.layers provides high level predefined and optimized layers as building

blocks, TensorFlow Serving helps with running models in production, Ten-

sorFlow models can be easily run on smart phones, etc. While TensorFlow

is generally slower than Theano, it is much easier to put together complex

models in it thanks to the high level functionality available in the frame-

work.

12https://www.tensorflow.org/

https://www.tensorflow.org/

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 118

118 B. Hidasi

pyTorch13 is developed by Facebook and follows a different approach.

It provides quick tensor computations on GPU and supports deep net-

works by having an automatic differentiation library. Since there is no

need to predefine expressions and compile the computational graph, py-

Torch is more similar to traditional programming and thus can be seen as a

more lightweight framework from the user’s point of view. Since computa-

tional graphs are defined on the fly, implementing dynamic neural models,

such as RNNs, is easier. The developers of the framework put a lot of em-

phasis on efficient execution both in terms of speed and memory footprint.

Even though the framework was released only in 2017, it quickly gained

popularity, due to the aforementioned features making it an ideal research

framework.

Keras14 is a high level framework that provides layers and networks as

building blocks of complex models. It has backends for Theano, TensorFlow

and CNTK, so it can be installed over any of these low level frameworks.

There are many other deep learning frameworks, e.g. the Microsoft

CNTK or the Apache MXNet, which is the default machine learning envi-

ronment on Amazon AWS. The major frameworks all support both CPU

and GPU execution and distributed (e.g. multi GPU) training. There is

some difference is speed, but as the frameworks are constantly developed

and optimized, the title of fastest framework (for a given network) often

changes hands. The key difference is mostly in syntax and the available

selection of high level features. The optimal choice thus is mostly up to

personal preference and whether it is to be used for research or production.

3.7.2. Best practices

Hyperparameter optimization: Neural networks have several hyper-

parameters that influence their performance. Unfortunately the effect of

these can be significant, so hyperparameter tuning is often required. It

is best to have a separate validation set for this optimization. Training

neural networks requires a lot of resources (compared to simpler models)

and the space of hyperparameters is large, thus optimization takes a long

time. Optimizing the code for speed before the parameter search can signif-

icantly decrease the total time required. Note however, that even with the

use of a deep learning framework, optimizing for GPU and CPU can differ

slightly. Sometimes the frameworks themselves can be the bottleneck, e.g.

13http://pytorch.org/
14https://keras.io/

http://pytorch.org/
https://keras.io/

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 119

Cutting-Edge Collaborative Recommendation Algorithms: Deep Learning 119

a frequently used operator is implemented inefficiently. In this case, using

custom code for the part in question can be the answer, but the trade-

off between implementation and execution time should be kept in mind.

Fortunately, not all hyperparameters have huge effects on the performance

and interaction between the parameters is limited. With limited resources,

finding just the optimal network size and learning rate can give reasonably

good results.

Scalability & training times: Scalability is a really important prop-

erty of recommender algorithms in practice. While researchers started to

take scalability into account recently, it is still not addressed every time and

is often misinterpreted. Scalability is not the same as having an acceptable

training time on a dataset. Scalability is how much more computation will

be required if you train it on a bigger dataset. For example, if an algorithm

scales with the product of the number of users and items, it scales poorly,

even if it can be trained on the research dataset in an hour. Deep models are

complex and require significant amount of computational power, but can

scale both well and poorly, depending on the model design. The general

rule of thumb is that the algorithm should scale linearly with the num-

ber of training events/users/items in order to be robust enough for use in

practice. Unfortunately, it is not just scalability that matters. Recommen-

dation models are retrained frequently in order to accommodate for new

items/users and to follow the trends in the data. If training takes several

days, the model is already outdated when it is freshly trained. This is in

contrast with other application domains of deep learning, where the model

can even train for months and then can be used for a longer time period

without any retraining. It is very easy to go overboard and design a deep

model for recommendation that takes lot of time to train. The threshold

for acceptable training time depends on the domain, as well as the ability

of the algorithm of handling new users/items without retraining. A trade-

off should be sought between model complexity (more accurate, but slower

training model) and model recency.

Reproducibility: Reproducibility is of key importance for research,

yet it is usually undermined by pragmatic considerations. Fortunately, the

deep learning research community holds reproducibility in high regards.

It is common that a published paper about a new model or technique is

accompanied by a public implementation, including the algorithm and the

experimental setup. Experiments are often carried out on public benchmark

datasets that help both reproducibility and the comparison of methods.

Recommender systems process user generated behavior data, which can tell

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 120

120 B. Hidasi

a lot about the service that generated the data and the users themselves,

thus companies are often reluctant to share their data. In the meantime,

their research focuses on improving their recommendations on their own

data and care less about public benchmarks (not to mention that the offline

evaluation of recommenders is just a proxy for their actual performance).

However, it is still encouraged to include measurements on related public

datasets, even if they are not the primary targets. The choice of dataset

should be appropriate for the problem set out to be solved by the proposed

algorithm. Making code public is also strongly encouraged: the solution

can generate higher interest and can be more easily used as a baseline when

publicly available.

3.8. Summary

Although using deep learning in recommender systems is a very recent, it

still boasts of good results and even more potential. The direct use of con-

tent has a huge possibility for hybrid systems, recurrent neural networks

have revitalized session-based recommendations and the modularity of neu-

ral network can be easily exploited to handle heterogeneous data. Due to

it being a novel research direction, there is much research to be done, but

some robust methods have already been developed. Working with deep

learning within this domain is challenging due to having to adhere to prac-

tical constraints, but is also rewarding.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G. S., Davis, A., Dean, J., Devin, M. et al. (2016). Tensorflow: Large-
scale machine learning on heterogeneous distributed systems, arXiv preprint
arXiv:1603.04467.

Arjovsky, M., Chintala, S. and Bottou, L. (2017). Wasserstein gan, arXiv preprint
arXiv:1701.07875.

Arjovsky, M., Shah, A. and Bengio, Y. (2016). Unitary evolution recurrent neural
networks, in International Conference on Machine Learning, pp. 1120–1128.

Bansal, T., Belanger, D. and McCallum, A. (2016). Ask the GRU: Multi-task
learning for deep text recommendations, in Proceedings of the 10th ACM
Conference on Recommender Systems (ACM), pp. 107–114.

Barkan, O. and Koenigstein, N. (2016). Item2vec: neural item embedding for
collaborative filtering, in Machine Learning for Signal Processing (MLSP),
2016 IEEE 26th International Workshop on (IEEE), pp. 1–6.

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 121

Cutting-Edge Collaborative Recommendation Algorithms: Deep Learning 121

Bellemare, M. G., Danihelka, I., Dabney, W., Mohamed, S., Lakshminarayanan,
B., Hoyer, S. and Munos, R. (2017). The cramer distance as a solution to
biased wasserstein gradients, arXiv preprint arXiv:1705.10743.

Cho, K., Van Merriënboer, B., Bahdanau, D. and Bengio, Y. (2014). On the prop-
erties of neural machine translation: Encoder-decoder approaches, arXiv
preprint arXiv:1409.1259.

Clevert, D.-A., Unterthiner, T. and Hochreiter, S. (2015). Fast and accurate
deep network learning by exponential linear units (elus), arXiv preprint
arXiv:1511.07289.

Cremonesi, P., Koren, Y. and Turrin, R. (2010). Performance of recommender
algorithms on top-n recommendation tasks, in Proceedings of the fourth
ACM conference on Recommender systems (ACM), pp. 39–46.

Dai, H., Wang, Y., Trivedi, R. and Song, L. (2016). Recurrent coevolutionary la-
tent feature processes for continuous-time recommendation, in Proceedings
of the 1st Workshop on Deep Learning for Recommender Systems (ACM),
pp. 29–34.

Duchi, J., Hazan, E. and Singer, Y. (2011). Adaptive subgradient methods for
online learning and stochastic optimization, Journal of Machine Learning
Research 12, Jul, pp. 2121–2159.

Goodfellow, I., Bengio, Y. and Courville, A. (2016). Deep learning, MIT Press.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,

S., Courville, A. and Bengio, Y. (2014). Generative adversarial nets, in
Advances in neural information processing systems, pp. 2672–2680.

Grbovic, M., Radosavljevic, V., Djuric, N., Bhamidipati, N., Savla, J., Bhagwan,
V. and Sharp, D. (2015). E-commerce in your inbox: Product recommen-
dations at scale, in Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (ACM), pp. 1809–
1818.

He, R. and McAuley, J. (2016). Vbpr: Visual bayesian personalized ranking from
implicit feedback, in AAAI, pp. 144–150.

Hidasi, B. and Karatzoglou, A. (2017). Recurrent neural networks with top-k
gains for session-based recommendations, arXiv preprint arXiv:1706.03847
http://arxiv.org/abs/1706.03847.

Hidasi, B., Karatzoglou, A., Baltrunas, L. and Tikk, D. (2015). Session-based
recommendations with recurrent neural networks, International Conference
on Learning Representations (ICLR 2016) http://arxiv.org/abs/1511.

06939.
Hidasi, B., Karatzoglou, A., Sar-Shalom, O., Dieleman, S., Shapira, B. and

Tikk, D. (2017). DLRS 2017: Second workshop on deep learning for recom-
mender systems, in Proceedings of the Eleventh ACM Conference on Rec-
ommender Systems, RecSys ’17 (ACM, New York, NY, USA), ISBN 978-1-
4503-4652-8, pp. 370–371, doi:10.1145/3109859.3109953, http://doi.acm.
org/10.1145/3109859.3109953.

Hidasi, B., Quadrana, M., Karatzoglou, A. and Tikk, D. (2016). Parallel re-
current neural network architectures for feature-rich session-based recom-
mendations, in Proceedings of the 10th ACM Conference on Recommender

http://arxiv.org/abs/1706.03847
http://arxiv.org/abs/1511.06939
http://arxiv.org/abs/1511.06939
http://doi.acm.org/10.1145/3109859.3109953
http://doi.acm.org/10.1145/3109859.3109953

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 122

122 B. Hidasi

Systems, RecSys ’16 (ACM, New York, NY, USA), ISBN 978-1-4503-4035-
9, pp. 241–248, doi:10.1145/2959100.2959167, http://doi.acm.org/10.

1145/2959100.2959167.
Hidasi, B. and Tikk, D. (2013). Initializing matrix factorization methods on im-

plicit feedback databases, J. UCS 19, 12, pp. 1834–1853.
Hjelm, R. D., Jacob, A. P., Che, T., Trischler, A., Cho, K. and Bengio, Y.

(2017). Boundary-seeking generative adversarial networks, arXiv preprint
arXiv:1702.08431.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory, Neural
computation 9, 8, pp. 1735–1780.

Hornik, K., Stinchcombe, M. and White, H. (1989). Multilayer feedforward net-
works are universal approximators, Neural networks 2, 5, pp. 359–366.

Hu, F., Chen, T., Liu, N. N., Yang, Q. and Yu, Y. (2012). Discriminative factor
alignment across heterogeneous feature space, in Joint European Conference
on Machine Learning and Knowledge Discovery in Databases (Springer),
pp. 757–772.

Hu, Y., Koren, Y. and Volinsky, C. (2008). Collaborative filtering for implicit
feedback datasets, in Data Mining, 2008. ICDM’08. Eighth IEEE Interna-
tional Conference on (IEEE), pp. 263–272.

Isola, P., Zhu, J.-Y., Zhou, T. and Efros, A. A. (2017). Image-to-image translation
with conditional adversarial networks, arXiv preprint.

Jiang, R., Gowal, S., Mann, T. A. and Rezende, D. J. (2018). Optimizing slate
recommendations via slate-cvae, arXiv preprint arXiv:1803.01682.

Karatzoglou, A., Hidasi, B., Tikk, D., Sar-Shalom, O., Roitman, H. and Shapira,
B. (2016). Recsys’16 workshop on deep learning for recommender systems
(DLRS), in Proceedings of the 10th ACM Conference on Recommender Sys-
tems, RecSys ’16 (ACM, New York, NY, USA), ISBN 978-1-4503-4035-
9, pp. 415–416, doi:10.1145/2959100.2959202, http://doi.acm.org/10.

1145/2959100.2959202.
Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization,

arXiv preprint arXiv:1412.6980.
Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes, arXiv

preprint arXiv:1312.6114.
Klambauer, G., Unterthiner, T., Mayr, A. and Hochreiter, S. (2017). Self-

normalizing neural networks, arXiv preprint arXiv:1706.02515.
Kusner, M. J. and Hernández-Lobato, J. M. (2016). Gans for sequences of

discrete elements with the gumbel-softmax distribution, arXiv preprint
arXiv:1611.04051.

Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A., Acosta, A.,
Aitken, A., Tejani, A., Totz, J., Wang, Z. et al. (2016). Photo-realistic
single image super-resolution using a generative adversarial network, arXiv
preprint.

Liang, D., Krishnan, R. G., Hoffman, M. D. and Jebara, T. (2018). Variational
autoencoders for collaborative filtering, arXiv preprint arXiv:1802.05814.

Linden, G., Smith, B. and York, J. (2003). Amazon.com recommendations: Item-
to-item collaborative filtering, IEEE Internet computing 7, 1, pp. 76–80.

http://doi.acm.org/10.1145/2959100.2959167
http://doi.acm.org/10.1145/2959100.2959167
http://doi.acm.org/10.1145/2959100.2959202
http://doi.acm.org/10.1145/2959100.2959202

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 123

Cutting-Edge Collaborative Recommendation Algorithms: Deep Learning 123

Loyola, P., Liu, C. and Hirate, Y. (2017). Modeling user session and intent
with an attention-based encoder-decoder architecture, in Proceedings of the
Eleventh ACM Conference on Recommender Systems, RecSys ’17 (ACM,
New York, NY, USA), ISBN 978-1-4503-4652-8, pp. 147–151, doi:10.1145/
3109859.3109917, http://doi.acm.org/10.1145/3109859.3109917.

Maas, A. L., Hannun, A. Y. and Ng, A. Y. (2013). Rectifier nonlinearities improve
neural network acoustic models, in Proc. ICML, Vol. 30.

Mao, X., Li, Q., Xie, H., Lau, R. Y., Wang, Z. and Smolley, S. P. (2017). Least
squares generative adversarial networks, in 2017 IEEE International Con-
ference on Computer Vision (ICCV) (IEEE), pp. 2813–2821.

Mikolov, T., Chen, K., Corrado, G. and Dean, J. (2013a). Efficient estimation of
word representations in vector space, arXiv preprint arXiv:1301.3781.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S. and Dean, J. (2013b). Dis-
tributed representations of words and phrases and their compositionality,
in Advances in neural information processing systems, pp. 3111–3119.

Mnih, V., Heess, N., Graves, A. et al. (2014). Recurrent models of visual attention,
in Advances in neural information processing systems, pp. 2204–2212.

Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted Boltz-
mann machines, in Proceedings of the 27th international conference on ma-
chine learning (ICML-10), pp. 807–814.

Nedelec, T., Smirnova, E. and Vasile, F. (2017). Specializing joint representa-
tions for the task of product recommendation, in Proceedings of the 2nd
Workshop on Deep Learning for Recommender Systems (ACM), pp. 10–18.

Pagano, R., Cremonesi, P., Larson, M., Hidasi, B., Tikk, D., Karatzoglou, A. and
Quadrana, M. (2016). The contextual turn: From context-aware to context-
driven recommender systems, in Proceedings of the 10th ACM conference
on recommender systems (ACM), pp. 249–252.

Pascual, S., Bonafonte, A. and Serra, J. (2017). Segan: Speech enhancement
generative adversarial network, arXiv preprint arXiv:1703.09452.

Paterek, A. (2007). Improving regularized singular value decomposition for col-
laborative filtering, in Proceedings of KDD cup and workshop, Vol. 2007,
pp. 5–8.

Pilászy, I. and Tikk, D. (2009). Recommending new movies: even a few ratings are
more valuable than metadata, in Proceedings of the third ACM conference
on Recommender systems (ACM), pp. 93–100.

Qu, Y., Cai, H., Ren, K., Zhang, W., Yu, Y., Wen, Y. and Wang, J. (2016).
Product-based neural networks for user response prediction, in Data Mining
(ICDM), 2016 IEEE 16th International Conference on (IEEE), pp. 1149–
1154.

Quadrana, M., Karatzoglou, A., Hidasi, B. and Cremonesi, P. (2017). Personaliz-
ing session-based recommendations with hierarchical recurrent neural net-
works, in Proceedings of the Eleventh ACM Conference on Recommender
Systems, RecSys ’17 (ACM, New York, NY, USA), ISBN 978-1-4503-4652-
8, pp. 130–137, doi:10.1145/3109859.3109896, http://doi.acm.org/10.

1145/3109859.3109896.

http://doi.acm.org/10.1145/3109859.3109917
http://doi.acm.org/10.1145/3109859.3109896
http://doi.acm.org/10.1145/3109859.3109896

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 124

124 B. Hidasi

Radford, A., Metz, L. and Chintala, S. (2015). Unsupervised representation learn-
ing with deep convolutional generative adversarial networks, arXiv preprint
arXiv:1511.06434.

Rendle, S. (2012). Factorization machines with libfm, ACM Transactions on In-
telligent Systems and Technology (TIST) 3, 3, p. 57.

Rendle, S., Freudenthaler, C., Gantner, Z. and Schmidt-Thieme, L. (2009). Bpr:
Bayesian personalized ranking from implicit feedback, in Proceedings of
the twenty-fifth conference on uncertainty in artificial intelligence (AUAI
Press), pp. 452–461.

Rezende, D. J., Mohamed, S. and Wierstra, D. (2014). Stochastic backpropaga-
tion and approximate inference in deep generative models, arXiv preprint
arXiv:1401.4082.

Salakhutdinov, R., Mnih, A. and Hinton, G. (2007). Restricted boltzmann ma-
chines for collaborative filtering, in Proceedings of the 24th international
conference on Machine learning (ACM), pp. 791–798.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A. and Chen,
X. (2016). Improved techniques for training gans, in Advances in Neural
Information Processing Systems, pp. 2234–2242.

Singh, A. P. and Gordon, G. J. (2008). Relational learning via collective ma-
trix factorization, in Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining (ACM), pp. 650–658.

Smirnova, E. and Vasile, F. (2017). Contextual sequence modeling for recommen-
dation with recurrent neural networks, in Proceedings of the 2nd Workshop
on Deep Learning for Recommender Systems, DLRS 2017, ISBN 978-1-
4503-5353-3, pp. 2–9, doi:10.1145/3125486.3125488, http://doi.acm.org/
10.1145/3125486.3125488.

Song, Y., Elkahky, A. M. and He, X. (2016). Multi-rate deep learning for tempo-
ral recommendation, in Proceedings of the 39th International ACM SIGIR
conference on Research and Development in Information Retrieval (ACM),
pp. 909–912.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R.
(2014). Dropout: a simple way to prevent neural networks from overfitting,
Journal of machine learning research 15, 1, pp. 1929–1958.

Sutskever, I., Vinyals, O. and Le, Q. V. (2014). Sequence to sequence learning
with neural networks, in Advances in neural information processing systems,
pp. 3104–3112.

The Theano Development Team (2016). Theano: A python framework for
fast computation of mathematical expressions, CoRR abs/1605.02688,
arXiv:1605.02688, http://arxiv.org/abs/1605.02688.

Tieleman, T. and Hinton, G. (2012). Lecture 6.5-rmsprop: Divide the gradient by
a running average of its recent magnitude, COURSERA: Neural networks
for machine learning 4, 2, pp. 26–31.

Van den Oord, A., Dieleman, S. and Schrauwen, B. (2013). Deep content-based
music recommendation, in Advances in neural information processing sys-
tems, pp. 2643–2651.

http://doi.acm.org/10.1145/3125486.3125488
http://doi.acm.org/10.1145/3125486.3125488
http://arxiv.org/abs/1605.02688

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 125

Cutting-Edge Collaborative Recommendation Algorithms: Deep Learning 125

Vasile, F., Smirnova, E. and Conneau, A. (2016). Meta-prod2vec: Product em-
beddings using side-information for recommendation, in Proceedings of the
10th ACM Conference on Recommender Systems (ACM), pp. 225–232.

Vincent, P., Larochelle, H., Bengio, Y. and Manzagol, P.-A. (2008). Extracting
and composing robust features with denoising autoencoders, in Proceedings
of the 25th international conference on Machine learning (ACM), pp. 1096–
1103.

Wang, H., Wang, N. and Yeung, D.-Y. (2015). Collaborative deep learning for rec-
ommender systems, in Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (ACM), pp. 1235–
1244.

Wang, J., Yu, L., Zhang, W., Gong, Y., Xu, Y., Wang, B., Zhang, P. and Zhang,
D. (2017). Irgan: A minimax game for unifying generative and discrimina-
tive information retrieval models, in Proceedings of the 40th International
ACM SIGIR conference on Research and Development in Information Re-
trieval (ACM), pp. 515–524.

Williams, R. J. and Zipser, D. (1995). Gradient-based learning algorithms for
recurrent networks and their computational complexity, Backpropagation:
Theory, architectures, and applications 1, pp. 433–486.

Wilson, A. C., Roelofs, R., Stern, M., Srebro, N. and Recht, B. (2017). The
marginal value of adaptive gradient methods in machine learning, arXiv
preprint arXiv:1705.08292.

Wu, Y., DuBois, C., Zheng, A. X. and Ester, M. (2016). Collaborative denoising
auto-encoders for top-n recommender systems, in Proceedings of the Ninth
ACM International Conference on Web Search and Data Mining (ACM),
pp. 153–162.

Yu, L., Zhang, W., Wang, J. and Yu, Y. (2017). Seqgan: Sequence generative
adversarial nets with policy gradient, in AAAI, pp. 2852–2858.

Zeiler, M. D. (2012). Adadelta: an adaptive learning rate method, arXiv preprint
arXiv:1212.5701.

Zheng, Y., Liu, C., Tang, B. and Zhou, H. (2016). Neural autoregressive collabo-
rative filtering for implicit feedback, in Proceedings of the 1st Workshop on
Deep Learning for Recommender Systems (ACM), pp. 2–6.

October 23, 2018 9:3 ws-rv9x6-9x6 Book Title 11131-03 page 126

127

Chapter 4

Hybrid Collaborative Recommendations: Practical
Considerations and Tools to Develop a Recommender

Michal Kompan, Peter Gašpar and Maria Bielikova

Slovak University of Technology in Bratislava
Faculty of Informatics and Information Technologies

Ilkovičova 2, 842 16, Bratislava, Slovak Republic
{name.surname}@stuba.sk

Hybrid collaborative recommender systems were developed to increase
performance of single recommenders similarly to the ensemble machine learning
methods. There are several types of hybridization that can be utilized in various
scenarios. In this chapter, we summarize the overview of hybrid collaborative
recommender systems. We focus on how they are beneficial with respect to the
standard collaborative filtering techniques and how they can be utilized to
solve the main issues of the collaborative filtering techniques. Examples of
frameworks and libraries that implement existing recommendation approaches
are complemented with the comprehensive list of datasets available (including
state-of-the-art results reported on these datasets). Evaluation process of
recommender systems is discussed followed by the examples of the evaluation
frameworks. We summarize pros and cons of several hybrid approaches and
conclude with suggestions for practical implementations.

4.1. Introduction

The diversity as a concept has been proved by the evolution to be very
successful. The researches follow this idea in many modern approaches.
The ensemble methods in the machine learning often outperform
standalone methods. In the context of the recommender systems, similar
idea is used as so-called hybrid recommenders.

As a rule, two standard recommendation techniques became
established [Balabanovic et al., 1997]: collaborative filtering and content-
based recommendation. In a collaborative filtering a recommender relies

128 M. Kompan, P. Gašpar and M. Bielikova

on the user evaluation of the items and based on that it calculates the user
and item similarity [Kim et al., 2009]. Such a recommender is able to find
users that have a similar taste to a given user or the items that would be
similarly rated by the other users [Balabanovic et al., 1997]. Content-based
recommenders utilize content representation of the items (i.e., a set of
attributes that characterize an item) and predict, whether a user would like
items that are similar to those he/she preferred in the past.

It is clear that all these techniques have their advantages and
disadvantages, which researchers try to solve in many different ways.
Luckily, characteristics of these approaches are often disjointed and thus
their reasonable combination can result in better performing approach.

Therefore, we adopt the following definition. Hybrid recommender
systems are based on the combination of two or more monolithic
recommendation techniques, such that the advantages of one
recommender are utilized in order to solve the disadvantages of the other
recommender [Burke et al., 2011]. Hybrid recommendation is sometimes
referred as another recommendation technique (alongside to content-based
and collaborative filtering) [Adomavicius et al., 2005].

Hybrid recommenders were introduced to increase an accuracy of
existing monolithic techniques and also to reduce or eliminate their major
drawbacks (such as the cold-start problem, sparsity, or user outliers). The
most common technique is to employ collaborative filtering with the
combination of other technique (e.g., content-based or knowledge-based
recommender) [Burke, 2002]. However, there are also other combinations
of techniques that are suitable depending on the studied problem and
sometimes even a domain.

Hybrid recommender systems also attracted many companies and they
became employed as a part of their products. In the domain of news,
Google developed [Liu et al., 2010] a hybrid recommender that was aimed
to combine both user interests and trends in Google News (a combination
of content-based recommendation and collaborative filtering). As they
reported, proposed hybrid improved Click-Through-Rate by 30% (in
comparison to the baseline collaborative approach).

In 2006 a movie streaming company Netflix announced a competition,
where the goal was to recommend movies such that the proposed
algorithm made an improvement over 10% in comparison to the Netflix

 Hybrid Collaborative Recommendations 129

baseline recommender. Several solutions were proposed (such as [Koren,
2009]) and many of them were actually the hybrid approaches based on
the collaborative filtering recommendation (including the winning ones).
Netflix also uses hybrid recommenders nowadays [Gomez-Uribe et al.,
2015], for example in the search results, where it combines user movie
playbacks, search data and metadata.

The recommender system domain historically connects academia with
the business. As a result, plenty of libraries and frameworks have been
proposed. These cover various programing languages and as a rule
implement state-of-the-art approaches. To give a short overview, we
present a comparison of several recommendations libraries and
frameworks with emphasis on the hybrid recommenders.

The typical evaluation of a recommenders starts with offline
experiments. To obtain a reliable and comparable results, appropriate
methodology and dataset is a necessity. In this chapter, we also compare
typical datasets used for the evaluation of recommenders with metrics
reported by several authors.

The chapter systematically covers the following topics:
 Overview of hybrid recommender techniques with emphasis on pros

and cons (Sec. 4.2)
 Comparison of recommender system libraries and frameworks (Sec.

4.3)
 Practical hints for the evaluation of recommenders (Sec. 4.4)
 Comparison of datasets and reported metrics (Sec. 4.4.4)

4.2. Hybrid recommender systems — pros and cons

Hybrid recommender systems were proposed to improve existing
monolithic recommendation techniques. By using and combining these
techniques, hybrids aim to improve recommendation performance (from
several points of view) and thus enhance overall user experience.
Correspondingly, there are problems that monolithic techniques suffer
from and hybrid recommenders are able to solve.

130 M. Kompan, P. Gašpar and M. Bielikova

4.2.1. Types of combinations

When picking a hybrid recommendation technique, we have to select,
which combination will be utilized. In other words, which monolithic
recommendation techniques will be employed and also how they will be
combined.

Following the Burke’s taxonomy [Burke, 2002] we distinguish
between seven basic types of hybrid combinations: weighted, switching,
mixed, feature combination, cascade, meta-level, and feature
augmentation. We would like to emphasize that these combinations types
define how two or more approaches are combined (no restrictions for
specific recommender type).

In weighted hybrid, the underlying recommenders calculate a score for
an item and these scores are then combined to produce a final (single)
score for the recommended item. [Hornung et al., 2013] built a weighted
music recommender that combined collaborative recommender (for track
similarity) and two content-based recommenders (for tag and time
similarity). To enrich the final list of recommendations, they also
generated the additional serendipitous music tracks by considering a
similarity of the users. Moreover, the famous Netflix prize winner
algorithm combined 24 monolithic predictors in order to provide final
estimate. The gradient boosted decision trees were used to combine single
models covering neighborhood, matrix factorization or regression models
[Koren, 2009].

Switching hybrid specifies a condition, which determines which
recommendation technique will be selected and used for the
recommendation (depending on the situation). A switching hybrid was
proposed in [Ghazanfar et al., 2014], where the authors utilized clustering
approach to detect the gray-sheep users. These gray-sheep users then
received recommendations generated by the separate content-based
recommender.

In mixed hybrid, each underlying recommender generates a list of
recommendations that are combined to produce a final recommendation.
In other words, both lists are presented to the user. A TV recommendation
using mixed hybrid was proposed in [Barragans-Martínez et al., 2010],
where the collaborative filtering was combined with the content-based

 Hybrid Collaborative Recommendations 131

recommendation. During the merging strategy, they used an average rating
of TV shows (calculated by the recommenders). Kaššák et al. proposed a
mixed hybrid recommender that aggregated the content-based and
collaborative filtering candidates within the group of people [Kaššák et al.,
2016].

Feature combination uses multiple types of features that are combined
to learn a single recommender model. For instance, the ratings of users
combined with the content features of the specific item [Basu et al., 1998].
[Zanker et al., 2009] utilized a single collaborative filtering recommender
that combined various features (called rating domains), such as the
navigation actions, viewed items, items added to the shopping basket, or
the user context.

Cascade hybrid is based on the idea of refinements, where the first-
level recommender generates recommended items. The role of the second
recommender is to adjust the items returned by the first recommender, but
here the focus is only on those items that need refinements. Lampropoulos
[Lampropoulos et al., 2012] presented a cascade hybrid that employed a
two-step solution. Firstly, a content-based recommender was used as a
one-class classifier that identified the items suitable for a particular user.
Then, a second-level collaborative filtering recommender assigned ratings
to the items identified by the content-based recommender.

In meta-level hybrid, the first recommender learns a model, which is
used as an input to the second recommender. By analyzing the rule-based
preferences from historical user interactions, a collaborative filtering
model was learned and used as an input to the knowledge-based
recommender in [Zanker, 2008].

Similar idea is applied for the feature augmentation hybrid, where the
result (not a model) of the first recommender prediction is used as a feature
to the second recommender. [Campos et al., 2010] created a hybrid
recommender that used weights produced during the content-based
recommendation as an input to the collaborative filtering recommender.

As noted by [Burke, 2002], some combinations (e.g., switching or
mixed hybrid) require an initial effort that must be done before we may
employ the hybrid strategy. For example, in case of the switching hybrid,
we must define the criteria to switch between the recommendation

132 M. Kompan, P. Gašpar and M. Bielikova

techniques beforehand. The weighted hybrid requires setting the weights
that apply for the results of particular hybrids.

For the feature augmentation, the cascade and the meta-level hybrid, a
dependency may cause issues, if the second-level recommender relies on
the results of the first-level recommender (Table 4.1 summarizes the pros
and cons of these combinations).

Another perspective for the hybrid recommender classification was
proposed by Aggarwal [Aggarwal, 2016]. He recognizes three high-level
types:
 ensemble design — analogy to ensemble methods in machine

learning. Several algorithms are combined into a single output
(switching, weighted, cascade, feature augmentation),

 monolithic design — refers to a recommender combining several data
sources (feature combination, meta-level),

 mixed systems — combines both ensemble and monolithic design.
This taxonomy offers a valuable (from the machine learning perspective)
view which addresses the nature of Burke’s insight.

4.2.2. Hybrids as a solution for recommendation issues

There are several issues that standard recommendation techniques suffer
from. In the worst-case scenario, it results in an inability to recommend
any items. Most of these issues are related to how recommender systems
work.

We further examine the problems related to the collaborative filtering
recommendations (the problems collaborative filtering is either suffering
from or is able to help to deal with):
 cold-start problem (a problem of a new user/item, or a new context in

case of the context-aware recommender systems),
 over-specialization (inability to recommend items outside-the-box),
 sparsity (of a user-item matrix),
 extremes (gray and black sheep),
 lack of diversity.
Hybrid recommenders are capable of reducing these problems by
hybridization of collaborative filtering with the other recommendation
technique.

 Hybrid Collaborative Recommendations 133

Table 4.1. Pros and cons of hybrid combinations (based on [Burke, 2002]).

Type Pros Cons
Weighted Possible to adjust weights of

hybrids.

Can be used in datasets with
implicit feedback.

Value of the particular
recommendation techniques
should be uniform across the
algorithms.

All the techniques apply the
weights to each item, which may
be redundant.

Switching System is more sensitive to
strengths and weaknesses of the
particular recommenders.

Switching criteria must be
defined.

Mixed Suitable where it is possible to
make a large number of
recommendations
simultaneously.

Allows to recommend both
popular and new items.

Combination technique must be
employed.

Rules for solving conflicting
situations must be also defined.

Feature
combination

Combines features from several
algorithms which results to
improved similarities.

May require feature selection in
content-based recommender
[Basu et al., 1998].

Feature
augmentation

Allows to improve an accuracy
of a system without modifying it.

A quality of second
recommender may depend on the
recommendations of the first
(augmenting) recommender.

Cascade Allows to employ second
recommender to only relevant
items (results of the first
recommender).

More efficient than weighted.

Quality of second-level
recommender may depend on the
recommendations of the first-
level recommender.

Meta-level Learned model is a compressed
representation of the user-item
preferences.

A quality of the second
recommender may depend on the
quality of the representation of
the first recommender.

4.2.2.1. Cold-start problem

One of the most notable problems occurs when a new user or a new item
is introduced to a recommender. This problem is also referred as a cold-
start problem. Here, the recommender fails to generate appropriate

134 M. Kompan, P. Gašpar and M. Bielikova

recommendations since it does not have enough knowledge about the user
preferences (see Chapter 8).

When a new user appears, a low number of user-item interactions
causes that the recommender is unable to unmask user preferences. This
problem is usually present in both content-based and collaborative
recommenders. Specifically, for the collaborative recommenders, a cold-
start problem occurs also when a new item appears. Since it is not rated by
any users, it is not possible to score how appropriate would be to
recommend such an item [Schein et al., 2002].

There are several domains, which suffer from the new item cold-start
problem more as others. In some domains recommended items are relevant
for only a short time period (e.g., news, discounts) and thus the value of
the recommended item decreases exponentially over the time.

The cold-start problem is not usually an isolated state of the system,
but it is a process (its effect decay over the time, i.e., user activity). It is
clear, that there is no specific line (e.g., an amount of user ratings) to be
recognized as the “no cold-start”. In [Visnovsky et al., 2014], authors
analyzed the influence of the amount of user rating to the quality of user
similarity search (cluster quality). As we can see (Fig. 4.1), the increasing
number of the user ratings logarithmically improves the cluster quality.
For the MovieLens dataset approx. 50 ratings are required to obtain similar
clusters as considering all the user ratings.

However, a new item problem does not affect the content-based
recommenders, hence the content-based recommender can extract item
properties without any user ratings1. Therefore, the content-based
recommenders can be used to reduce the cold-start problem of
collaborative filtering [Ronen et al., 2013]. Moreover, several approaches
aim at addressing not only important content-based features, but also
important features selection [Cella et al., 2017].

1This assumes that content (and similarity search) can be processed and computed
immediately.

 Hybrid Collaborative Recommendations 135

Fig. 4.1. The influence of the amount of user ratings to the cluster quality (similar user
search task) in MovieLens dataset [Višňovský et al., 2014].

Hybrid recommendation is able to solve the cold-start problem for both a
new user and a new item. One example is a work of Schein [Schein et al.,
2002], where they fit a model using content and collaborative information.
They present a two-way aspect model and Naïve Bayes recommender that
uses content features in order to predict the ratings for the non-rated items.

The cold-start problem was further explored in [Braunhofer et al.,
2014], where the authors applied hybrid recommender to solve a problem
of a new context. A cold-start problem of a new context occurs when an
existing user is exposed to a new contextual situation. They proposed a
switching hybrid recommender that combined a demographic-based
context-aware recommender and demographics-based context-aware
recommender.

However, as they outlined, evaluating such a hybrid recommender that
was in addition extended by the contextual feature was a demanding task
since there was a lack of large datasets suitable for this task. There are
several datasets that can be used for this task: STS [Elahi et al., 2013],
CoMoDa [Odic et al., 2013], and Music [Baltrunas et al., 2011].

4.2.2.2. Over-specialization

One of the shortcomings of the content-based recommenders is that they
are not able to recommend the outside-the-box items, also referred as a

136 M. Kompan, P. Gašpar and M. Bielikova

problem of over-specialization [Shardanand et al., 1995]. Since the
content-based recommender relies on the content descriptions during the
user preferences analysis, it is limited to find the similar items to only
those that user previously liked.

For example, if a user watches movie from the comedy and adventure
genre, content-based recommender learns this information and builds a
user model that is used to recommend only movies from these genres.
Therefore, it may fail to recommend, for example horror movies even if a
user would appreciate some.

On the contrary, there are domains where it is useless to recommend
similar items. If someone bought an expensive camera, he/she probably
won’t buy another (within some reasonable time period).

Here, the hybridization can be beneficial if we combine both
collaborative filtering and content-based recommendation. In such a
hybrid environment, collaborative recommendation can be helpful in
recommending the items outside-the-box. Moreover, the hybridization
may eliminate the trade-off between recommendation accuracy and
diversity of recommended items [Yoshii et al., 2008].

On the contrary, the specific settings and domain characteristics may
bring the over-specialization problem to the collaborative recommenders
as well. As the collaborative filtering usually uses the most similar users,
if these are highly consistent (and recommender is not designed to bring
diversity), only highly specific items will be recommended (similarly to
the content-based over-specialization problem).

The over-specialization problem refers to recommending highly
tailored items to user past preferences. This often results to the problem of
diversity lack. These are, however, two separate concepts. We may lack
the diversity of recommended items without over-specialization problem
(e.g., user likes adventure and receives sci-fi recommendations).

4.2.2.3. Sparsity

Real-world web applications contain tremendous amount of content and
users. This is unfortunately a problem for the collaborative recommender
approaches, which often use a user-item matrix (Fig. 4.2). In fact, such a

 Hybrid Collaborative Recommendations 137

matrix is extremely sparse in an average system. This is usually a result of
the fact that many users interact with only few items.

One example is the MovieLens 20M dataset [Harper et al., 2015],
which contains 27 000 items (movies) and 138 000 users. An upper bound
for the maximum number of ratings is therefore 3,726 * 109, however the
dataset contains only 2 * 107 ratings.

Fortunately, sparsity is yet another issue of the recommender systems
that can be reduced by the hybrid recommenders. By utilizing a hybrid
model, the missing items from the matrix can be calculated, which solves
the problem of sparsity. Several hybridization types are helpful, e.g., the
feature combination. By combining several recommender sources (e.g.,
content and collaborative), we reduce the rating matrix sparsity. An
example hybrid recommender was proposed in [Kim et al., 2012], where
the authors used a social network and trust scores between users to reduce
data sparsity.

Fig. 4.2. User-item interaction matrix from the MovieLens 100k dataset.

138 M. Kompan, P. Gašpar and M. Bielikova

4.2.2.4. Gray and black sheep

Another problem of the standard recommendation techniques is the
specific users (extremes), for which a particular approach can be not
sufficient enough. Here we distinguish between two basic extremes: gray
sheep and black sheep.

Gray sheep users do not have consistent opinions and thus do not
clearly fall into any of the groups of people sharing the same opinion
[Claypool et al., 1999]. This problem occurs namely in the small and
medium community of users.

Also, as noted in [Claypool et al., 1999], unlike in the cold-start
problem, even by gathering more ratings from such users, a recommender
is unable to produce precise predictions. Depending on the dataset and a
number of gray sheep users [Ghazanfar et al., 2014], a presence of the gray
sheep users may affect the quality of the recommendation for the whole
community.

On the other hand, black sheep users [McCrae et al., 2004] have
no or few people that they correlate with. Therefore, recommendation
approaches relying on the user-to-user correlations are unable to generate
any predictions. Su et al. pointed out that although this is clearly a failure
of the recommender system, non-electronic recommenders are unable to
properly recommend items to black sheep users as well [Su et al., 2009].
Therefore, we may consider such a failure to be acceptable.

Both gray and black sheep users cannot benefit from the collaborative
recommendation. This is a consequence of the inability of the
recommender to find a relationship between such a user and other users in
the community. Similarly, a demographic recommender may have the
same issue, since it uses demographic information about the users to
categorize them into groups. However, here the solution of the problem is
a hybridization where a collaborative or demographic recommender can
be combined with a content-based recommendation.

[Ghazanfar et al., 2014] utilized K-means clustering to identify the
gray sheep users and proposed a switching hybrid recommender that was
able to decrease the recommendation error rate by switching between the
collaborative filtering and the content-based recommender.

 Hybrid Collaborative Recommendations 139

4.2.3. Drawbacks of the hybrid recommenders

One reason to employ a hybrid recommendation is to improve the
performance of individual — monolithic recommenders, such that the
hybrid recommender performs better than any underlying recommender.

However, this requires that the underlying recommenders should be
also well-tuned such that they are able to recommend items with satisfying
accuracy. If the underlying recommender performs poorly, a hybrid
recommender may fail in improving the accuracy and it may end up with
the drop, indeed.

We need to choose which recommendation techniques we need to
employ and optimize its parameters. Moreover, these recommender
techniques need to be properly evaluated. For this step, it is required to
have a good knowledge of the underlying recommendation techniques, but
also, we need to understand the domain.

Here we should take into consideration the basic domain
characteristics [Burke et al., 2011]: heterogeneity (of items in the
domain), degree of risk (for a user accepting a recommendation), degree
of churn (whether a recommender face a continual stream of new items),
preferences (stable or unstable), interaction style (implicit or explicit), and
scrutability (whether an explanation of recommendation is required by the
recommender). Analysis of the domain allows us to choose an appropriate
recommendation technique and consider the conditions within which it
would run. For instance, in the news domain, where the degree of churn is
relatively high, we need to consider the scalability of a hybrid approach.

Explanation of recommendations is a still an open research problem in
monolithic recommenders [Herlocker et al., 2000]. In case of hybrid
techniques, the problem grows even further, hence we need to properly
present an information about the source of the recommendation. By using
for instance, a weighed hybrid, it could become cumbersome to determine
which recommender contributes the most to the result and even more how
this should be presented to a user.

Recently, there have been attempts to solve the issues with the
explanation of a hybrid recommendation. For example, Bostandjiev
[Bostandjiev et al., 2012] used visual interactive interface that was

140 M. Kompan, P. Gašpar and M. Bielikova

intended to explain recommendation process and elicit additional user
preferences.

This is related to another issue with the hybridization. Not only a
particular recommendation technique may need some training phase, but
also a hybrid recommender need to be trained in order to handle such
particular recommenders. In other words, a hybrid recommender itself
adds another parameter that need to be tuned [Campos et al., 2010]. A
cross-validation may be employed in order to set parameters (weights),
such that the combination of recommendation techniques would fit the
problem the best (e.g., which recommenders should be picked for the
switching hybrid).

This is a case especially in a weighed hybrid, where the weights need
to be estimated. Here, some heuristics may be applied, or these weights
can be set with the machine learning. Moreover, these weights can be also
personalized, which requires not even more time to train recommender,
but also more training instances.

Finally, a hybrid recommender usually requires an additional
computation complexity (as more methods are used), which results in
worse performance than the monolithic approaches [Cremonesi et al.,
2011]. The issues of scalability and distributed approaches is deeply
discussed in Chapter 11.

4.3. Practical implementation considerations

The concept of combining several recommenders to overcome notorious
shortcomings is widely accepted. Most of studies in the recommender
systems field pointing improved results when used hybrid recommenders.
Thanks to this “agreement”, there are plenty of libraries and frameworks
implementing (or supporting) hybrid recommender approaches. In this
section, we will briefly analyze the most important features of these (Table
4.2).

 Hybrid Collaborative Recommendations 141

Table 4.2. Comparison of libraries and frameworks supporting hybrid recommendation.

Name Language License
Type of

combination
Evaluation Note

Mrec Python BSD
Weighted,
Cascade

yes -

Matchbox AzureML
Microsoft

online
services

Switching yes -

Surprise Python
BSD-3
Clause

– yes
Custom hybrid

implementation is
required

LightFM Python
Apache

v2
Feature

combination
yes -

Librec Java
GNU
GPL

Weighted yes -

LensKit Java
LGPL
v2.1

Weighted yes -

MyMediaLite .NET
GNU

GPL v3
Weighted yes -

Easyrec Java
GNU
GPL

– no
Custom hybrid

implementation is
required

PredictionIO Scala
Apache
Licence

v2.0
Multiple yes -

FluRS Python MIT – yes
Custom hybrid

implementation is
required

Seldon Python
Apache
Licence

v2.0
Cascade yes -

Recommenderlab R
GNU

GPL v2
Weighted yes -

Prea Java Free BSD – yes
Custom hybrid

implementation is
required

Duine Java LGPL v3 Switching yes -

142 M. Kompan, P. Gašpar and M. Bielikova

4.3.1. Mrec2 recommender system library

Mrec is a Python recommender and evaluation library developed at
Mendeley [Mendeley, 2017]. As a part of it, there are several algorithms
implemented, which can be used either standalone or as a part of the
recommender. The library provides an implementation for:
 SLIM item similarity,
 Weighted matrix factorization WRMF,
 Weighted approximately ranked pairwise ranking loss (WARP),
 Hybrid model which optimizes WARP based on user-item matrix and

content features,
 various evaluation metrics (such as Precision, Recall, or Mean

Reciprocal Rank).
For a fast development, a command-line interface is available. In addition,
the library supports parallelization using IPython. The input for the hybrid
recommender consists of the user-item matrix and the content features. A
core approach for the library is the WARP algorithm, which reached
promising results on the well-established image dataset ImageNet3 — in
the mean of the speed, memory usage, and the performance as well
[Weston et al., 2010].

4.3.2. Matchbox4 recommender

Azure machine learning is getting more and more attention in the last
years. The Matchbox recommender, which is available as a part of this
machine learning platform, is a large-scale recommender system. It
includes both collaborative and content-based approach. These are
combined based on the Bayesian probabilistic model.

The main idea is to use the content-based approach first (when a user
is relatively new to the system and has only few ratings). Next, the smooth
transition to the collaborative filtering is performed as more and more
ratings for the user are available.

2https://mendeley.github.io/mrec
3http://www.image-net.org
4https://msdn.microsoft.com/en-us/library/azure/dn905987.aspx

 Hybrid Collaborative Recommendations 143

Two types of content-based features are supported — item and user
content features (characteristics). The framework also supports three types
of feedback [Stern et al., 2009]: (a) explicit user ratings of items, (b) binary
preferences (likes and dislikes), (c) ordinal ratings on a user-specific scale.
One of the major shortcomings is the lack of an online training (model has
to be retrained periodically).

Model optimal parameters search is offered through the Tune
Hyperparameter Module and Cross Validation Module. Also, several
metrics to evaluate the performance are available (e.g., MAE, RSME,
Precision, AUC).

As the experiments showed [Stern et al., 2009], the content-based
features are especially important in the cold-start phase. Together as a
hybrid approach, the Matchbox reflects the state-of-the-art performance.

4.3.3. Surprise5 library

SciPy provides a collection of packages for scientific computation. The
Surprise library is a Scikit (SciPy toolkit) library for building and
analyzing recommenders [Hug, 2017]. Although it is intended for an easy
implementation of custom recommenders, it also provides a range of
popular algorithms. The core functionality covers:
 dataset handling (MovieLens and Jester included),
 prediction algorithms — neighborhood methods (kNN), matrix

factorization (SVD, SVD++, PMF, NMF), and similarity measures
(cosine, Pearson, MSD),

 evaluation support (cross-validation), parameter optimization.
The library itself does not implement any of the hybrid approaches. The
ecosystem allows to create custom recommenders, though. In this way, we
are able to create a variety of recommenders on the level of a rating
prediction or rank reordering.

The performance of the algorithms is evaluated based on the RMSE,
MAE, or FCP metrics. One of the important characteristics is the
documentation, which provides relevant information and a plethora of
examples.

5http://surpriselib.com

144 M. Kompan, P. Gašpar and M. Bielikova

4.3.4. LightFM6 library

Yet another Python implementation. The name is derived from
“factorization machines” and combines the content and collaborative ideas
[Kula, 2015]. The users and items are represented as the latent vectors,
which are defined by the linear combinations of embeddings of the content
features (users and items).

Implemented model reflects the data available for the training. If there
are no content features provided, it acts as a pure collaborative filtering
approach. When the content features are available, these are considered in
the optimization process (also useful for the cold-start problem reduction).
In total, four loss functions are implemented:
 Logistic,
 Bayesian probabilistic rating,
 Weighted approximate-rank pairwise,
 k-OS Weighted approximate-rank pairwise (kth positive example as a

bias).
A model performance evaluation is supported by the implementation of
the standard metrics: Precision, Recall, AUC, and Reciprocal rank.
Moreover, LightFM allows to easily obtain the MovieLens 100k dataset7
and use it for the fast experiments.

The LightFM is also available as a Docker container. The
documentation provides several examples over various scenarios.

4.3.5. Librec8

Librec is a Java library, which includes plenty (over 70) of algorithms
implementations. The library consists of several modules, which cover the
whole process of recommendation (Fig. 4.3).

The library implements a weighted hybrid recommender, which uses a
linear combination of HeatS and ProbS algorithms (derived from the heat
and probability spreading) [Zhou et al., 2010]. In total, six types of

6https://github.com/lyst/lightfm
7http://grouplens.org/datasets/movielens/100k/
8https://www.librec.net

 Hybrid Collaborative Recommendations 145

recommenders are included, while each of them consists of several
algorithm implementations:
 Abstract Recommender — provides a set of basic algorithms (e.g.,

most popular, collaborative, association rules, global average, hybrid),
 Probabilistic Graphical Recommender (e.g., clustering, LDA, PLSA,

BUCM),
 Matrix Factorization Recommender (e.g., SVD, BPR, WRMF, RBM),
 Factorization Machines Recommender (e.g., FMALS, FMSGS),
 Social Recommender (e.g., TrustMF, TrustSVD, SOREG, RSTE),
 Tensor Recommender (e.g., BPTF, PITF).

Fig. 4.3. Librec modules overview. The final algorithm is a combination of these
components. A set of interfaces allows a flexible implementation of any new algorithms8.

Several metrics for the performance evaluation are also included,
e.g., AUC, nDCG, Precision, Recall, MAE, MPE, and RMSE. Also, a
FilmTrust dataset was extracted and included. The documentation
provides details for the library usage, with references to the active blogs
and discussion forums.

146 M. Kompan, P. Gašpar and M. Bielikova

4.3.6. LensKit9

Lenskit is an open-source toolkit for building and researching
recommender systems, created at University of Minnesota by the
GroupLens research group [Ekstrand et al., 2011]. The toolkit was used in
over 40 research papers and is also a part of the MovieLens project.

LensKit consists of the several modules focused on the similarity
calculation, recommendation, and evaluation of the performance. Four
basic algorithms are implemented:
 item-based collaborative filtering,
 user-based collaborative filtering,
 matrix factorization (FunkSVD),
 slope-one rating prediction.
The linear weighted hybrid recommender mechanism is also provided,
which allows to combine two recommender lists.

To evaluate the performance of build algorithms, two groups of metrics
are supported: prediction accuracy metrics (e.g., RMSE, MAE, Coverage)
and top-n (or ranking) metrics (e.g., MAP, MRR, Precision, Recall, and
nDCG).

Since the toolkit is supported by the one of major recommenders
research group, the community is highly active.

4.3.7. MyMediaLite10

The library was created and currently is maintained by the research group
at University of Hildesheim [Gantner et al., 2011]. Thanks to its academic
background, it has been utilized in over 20 research papers. There are
several algorithms implemented in the library, while in addition, own
approaches are supported as well. Two basic scenarios are feasible — the
rating prediction and the item prediction:
 Item recommenders (e.g., Random, Most popular, Incremental),
 Rating prediction (e.g., SlopeOne, BPSO, Latent-feature log linear,

Matrix factorization with factor-wise learning).

9http://lenskit.org
10http://www.mymedialite.net

 Hybrid Collaborative Recommendations 147

For the hyperparameter optimization, a grid search and the Nealder-Mead
algorithm is used. As a part of the library, a weighted hybrid
recommendation is also provided.

Evaluation module includes the cross-validation and the online
evaluation for the several standard metrics (e.g., MAE, RMSE, AUC,
nDCG, Precision). MyMediaLite also supports the real-time incremental
updates for the selected recommenders.

4.3.8. Easyrec11

Easyrec service is made available for the public usage by using the
instance provided by the Smart Agent Technologies of the Research
Studios Austria. However, the source code is accessible and allows to run
an own instance. Easyrec also supports the third-party plugins to integrate
with the popular web-based applications (e.g., Drupal, Mediawiki) via the
RESTful Web services.

Several non-personalized and personalized algorithms are already
implemented within the service:
 Bought together,
 Popular,
 SlopeOne,
 Association rule miner.
The service is designed such that there is no need to implement any
recommenders, which partially limits its possibilities, though. Also, there
is no evaluation support provided within the service.

4.3.9. PredictionIO12

PredictionIO is currently an incubating project of Apache covering the
predictive engines for various machine learning tasks. The platform
consists of three parts (Fig. 4.4):
 core machine learning stack (intended for building, evaluating and

deploying algorithms),

11http://easyrec.org
12http://predictionio.incubator.apache.org

148 M. Kompan, P. Gašpar and M. Bielikova

 event server (unifying the events from multiple platforms),
 a template gallery (a storage of algorithm implementations).
The recommenders template gallery contains a number of
implementations aiming at the specific tasks (e.g., in the domain of e-
shops):
 Collaborative filtering: user and item based,
 Content based: products similarity,
 Association rules, Frequent pattern,
 Complimentary purchases,
 Personalized ranking,
 Hybrid recommendations.
Among the recommender templates, also a classification, regression,
clustering, and NLP tasks are supported. The hybrid idea is supported in
each of these tasks, while various combining (ensemble) mechanism can
be utilized.

Fig. 4.4. PredictionIO core components12.

 Hybrid Collaborative Recommendations 149

An evaluation of the performance is provided by the Tuning and
Evaluation module, which supports the optimal parameters search and
standard evaluation metrics (e.g., Precision, Recall, Accuracy).

PredicionIO is a highly scalable platform as it bases on Apache
Hadoop, HBase, Spark and ElasticSearch (also available as Docker
container). The project benefits from the extensive documentation with a
plenty of examples and highly active community of the developers.

4.3.10. FluRS13

Build in Python, FluRS is a small open-source project for an online item
recommendation for Python. Its main idea is to provide the “fluent”,
i.e., incremental recommendation algorithms. Several algorithms are
implemented, such as:
 Incremental collaborative filtering (based on the kNN),
 Incremental Matrix factorization and Matrix factorization with BPR

optimization,
 Incremental Factorization machines.
A native support for the hybrid recommenders is not provided, on the
contrary several metrics for the performance evaluation are available (e.g.,
MAP, MRR, Precision, Recall). As the project is relatively small and new,
the documentation is still evolving.

4.3.11. Seldon14

Seldon is a platform supporting machine learning tasks intended for the
deploy in the production. It runs within a Kubernetes Clusters and supports
several model-building tools. Two basic endpoints are available:
 Prediction (several Python pipelines support),
 Recommendation (similar users, latent factor models, association rules,

content based, collaborative, hybrid).
Seldon is capable of the weighted and cascading combination of several
algorithms and also allows to implement an own hybridization approach.

13https://github.com/takuti/flurs
14https://www.seldon.io

150 M. Kompan, P. Gašpar and M. Bielikova

The process of generating recommendations is divided into the offline and
the real-time part (Fig. 4.5).

The platform supports extensive monitoring and analytics via the third-
party applications. Also, a paid support for commercial projects is
available.

Seldon community is highly active, which results in a rich
documentation with many examples.

4.3.12. Recommenderlab15

Framework Recommenderlab aims at providing general research
infrastructure rather than to create recommender applications. Authors
focus on optimizing the process of experiments covering efficient data
handling, easy incorporation of algorithms and evaluation [Hahsler, 2017].
Several algorithms are available within the framework:
 Collaborative filtering: user and item based,
 Association rules,
 Most popular, Random,
 Hybrid recommenders: weighting scheme.
The framework supports standard evaluation metrics (e.g., MAE, RMSE,
ROC, Precision, Recall). Similarly, the cross-validation, bootstrap
sampling serves for the model performance comparison. As a standard for

15http://lyle.smu.edu/IDA/recommenderlab

Fig. 4.5. Seldon recommendation components14.

 Hybrid Collaborative Recommendations 151

the R libraries, Recommenderlab is well documented and a variety of
examples is included in the documentation.

4.3.13. Prea16

Toolkit Prea is focused on the collaborative filtering approaches [Lee
et al., 2012]. Natively, there is no hybridization technique available, but
the support for the own recommenders is provided. Comparing to the
Mahout or MyMedia, Prea also implements several Matrix factorization
approaches. Moreover, many additional algorithms are implemented:
 Random, Constant, Average,
 User and Item based, Slope-One,
 Matrix factorization (SVD, NMF, PMF).
For the evaluation of the performance, the toolkit has built-in some basic
metrics (e.g., RMSE, MAE, nDCG). Surprisingly, Precision and Recall
are not supported. For the data split, a cross-validation is supported. In
[Lee et al., 2012], the authors compared the implementations of the
algorithm to the MyMedia framework resulting in the very similar values
for MAE and RMSE metrics respectively.

4.3.14. Duine17

Duine is rather a smaller framework mainly focused on the predictive tasks
for the recommendation. Its idea is based on a concept of plugins (e.g.,
profile models, feedback processors). From the hybrid recommenders
perspective, the switching mechanism is utilized. Interesting feature of
Duine is an Explanation API, which helps with creating user-friendly
explanations for the end-users. Several prediction techniques are
implemented:
 Average,
 User-based collaborative filtering,
 Content-based,
 Case-based reasoning.

16http://prea.gatech.edu
17http://www.duineframework.org

152 M. Kompan, P. Gašpar and M. Bielikova

The framework provides a variety of practical examples; however, the last
update comes from 2009. Despite this, it can be used as a solid starting
point for the own implementations.

4.3.15. Summarization

Whether attempting to create a new recommender, or using an existing
one, recommendation libraries can be useful during the whole
development process. However, it is sometimes cumbersome to choose a
proper one.

Firstly, it is important to know, which task we aim to do — a
rating prediction or an item recommendation (i.e., a Top-N item
recommendation). In fact, nearly every library that is capable of the rating
prediction can be used for the item recommendation task as well (items
can be sorted by their predicted ratings and returned in a Top-N list).
However, some libraries are adapted to the item recommendation task and
also utilize various techniques in order to improve the order of the
recommended items (e.g., learning to rank) with respect to the ranking
metrics (such as precision, or recall). One notable example is a LightFM
library that uses various loss functions that are meant to optimize the
ranking of the items (e.g., Weighted approximate-rank pairwise).

In the training and evaluation phase, the dataset (about users, items,
and their interactions) plays an important role. One source is to use
the existing recommendation datasets (such as MovieLens; we further
describe several available datasets later) or to use the custom ones. The
main advantage of the existing datasets is that we are able to compare our
results with the research community without the need of implementing
the state-of-the-art techniques. However, when creating a recommender
for the production environment, there is also a need to evaluate the
performance of the recommender on custom data. Here, we may utilize the
pre-implemented state-of-the-art recommendation methods.

Some of the libraries support data preprocessing, e.g., the
normalization. For instance, (e.g., Surprise) offer tools to handle data pre-

 Hybrid Collaborative Recommendations 153

processing, or machine learning libraries can be utilized (such as Scikit-
learn18 for Python).

Finally, an important criterion is whether we plan to deploy our
recommendation technique to a production environment. This can be
usually achieved using every library listed above, however, several of
them are more suitable for this task and support the whole pipeline of the
process of the recommendation: data preprocessing and storage, model
training and storage, evaluation, and serving recommendation. Also, there
are other relevant factors:
 Do we need to scale to many users (i.e., the process of serving

recommendation need to be fast)?
 Do we need to keep the recommendation model up-to-date (i.e.,

method of recommendation should be capable of a frequent model
training without any significant impact on the performance)?

 Is it possible to perform an incremental model update?
Examples of the libraries that are suitable for the production environment
are PredictionIO and Seldon.

4.4. Practical evaluation considerations

There are several best practices that should be followed when evaluating
a recommender system. We list some common principles that are
applicable to any technique and add those specific for the hybrid
recommendation techniques.

4.4.1. Defining an experiment

One of the first important things that need to be considered during the
evaluation is the dataset. Here a correct splitting criterion should be
chosen. A common approach is to split the whole dataset into the training
and the test set. Usually, it is also suggested to interchange these sets and
conduct several successive experiments, such that the train and test set is
always different (e.g., k-fold cross validation).

18http://scikit-learn.org

154 M. Kompan, P. Gašpar and M. Bielikova

Besides the train and tests sets, also a validation set is important.
Especially, in a case of hybrid recommenders, where we need to set and
test various parameters, weights, and combinations, the experiments
conducted on a validation set are a necessity. The validation set need to be
different from the train and test sets.

In the domain of recommenders, there are two basic types of
experiments: online and offline (see Chapter 9). Offline experiments are
conducted using the pre-collected datasets [Ricci et al., 2015] (for details
see Sec. 4.4.4). These experiments are usually performed as soon as the
first prototype of the recommender is available and are intended to well-
tune the parameters and to explore recommender basic characteristics.

The offline experiments should be not interpreted as the exact measure
of the recommender performance. They provide rather the worst-case
scenario estimate (as the users do not have a chance to see
recommendations and to interact with them).

In an online experiment scenario, we are able to measure how the
recommender system influences user behavior, while he/she interacts with
the presented items [Ricci et al., 2015]. Clearly, the advantage is that the
experiment is conducted with the real users performing the real tasks.
Usually, users are split into the groups, where each group experience a
different recommendation setup (A/B testing). There are also some
drawbacks, such as the risk that the users will be faced a non-relevant
recommendation and they leave the experiment too early. There, an online
study is done after the offline experiments since the recommender is
supposed to be well-tuned and several parameters are already set.

4.4.2. Evaluation in hybrid recommenders

Since the hybrid recommender may consist of different underlying
recommender techniques, this need to be considered during the evaluation.
This also depends on the used combination strategy. Therefore, there are
several approaches that were adopted by the researches and were used
during their evaluation phase.

The most common practice is to compare the performance of the hybrid
recommender (as a whole) to the other state-of-the-art techniques. The

 Hybrid Collaborative Recommendations 155

state-of-the-art techniques can be either baseline monolithic techniques
(such as collaborative filtering) or other hybrid recommenders.

Problem with such a simple approach is that the hybrid recommender
is a black-box and we do not know how the underlying recommenders
perform. Therefore, many authors also examine different setups of hybrids
with respect to the choice of underlying recommenders, used features, and
parameters.

Specifically, for the cascade hybrid combination [Lampropoulos et al.,
2012], it is suitable to focus on the improvement of the second-level
recommender with respect to the first-level recommender (i.e., whether a
second-level recommender is viable to improve the performance of the
first-level recommender). However, as we have discussed before, it also
important to have the first-level recommender well-tuned and evaluated,
as well.

In the case of hybrids that combine results of two or more monolithic
recommenders, it is more appropriate to evaluate these monolithic
approaches separately and then as a whole. For instance, different weights
should be set in order to tune the weighted recommender. We can go even
further and analyze all the underlying recommenders to compare whether
their predictions are similar and how close they are to each other [Hornung
et al., 2013].

For instance, in feature combination hybrids, various feature
configurations can be investigated [Zanker et al., 2009]. Here, not only
different inputs should be considered, but also a different weighing
of these inputs. Moreover, if we keen to bring a more personalized
experience, a relevance scores of the inputs can be measured for the user
(of group of users) separately.

An initial motivation to create hybrid recommenders was not only to
improve performance, but also to address the issues associated with the
monolithic approaches. However, here we need to focus on the data that
we analyze and also for the metrics we choose.

To verify a cold-start problem, a performance for the new user, new
item, or new context need to be investigated [Braunhofer et al., 2014].
Based on the combination strategy, several comparisons need to be utilized
for each scenario. To illustrate the cold-start problem, there should be also
suitable data containing users (or items, or contexts) with the low number

156 M. Kompan, P. Gašpar and M. Bielikova

of ratings. In some scenarios, these cold-start users (or items, or contexts)
may be evaluated separately. If the dataset does not contain such data, we
may simulate the cold-start problem by removing the selected number of
interactions.

Similarly, for the gray and black sheep users, we first need to identify
those users and measure how the recommendation quality differs based
on the approach. However, it is usually necessary to verify whether a
recommender is able to provide relevant items to non-extreme (i.e., other
than gray and black sheep) users.

[Miranda et al., 1999] investigate whether gray sheep users would
benefit from using hybrid recommendation rather than collaborative or
content-based only. Evaluation procedure was conducted using an online
experiment, where these users were actually a part of the study. [Ghazanfar
et al., 2014] utilized state-of-the-art datasets and performed offline
evaluation, where gray sheep users were separated from the whole dataset
and the performance of monolithic approaches was compared to the
performance of the switching hybrid.

An issue of diversity is measured as a metric itself — we can measure
how diverse the resulting recommendations are or, more precisely, how
diverse their properties are. For instance, [Burke et al., 2014] analyzed
user-based diversity (how users differ within group) and tag-based
diversity (how different item tags are) and compared them between three
different hybrid approaches.

4.4.3. Evaluation frameworks

Usually, a framework which supports prediction tasks for the
recommendation also supports some kind of the performance evaluation.
There are, however, frameworks designed specifically for the evaluation
of recommender algorithms.

 Hybrid Collaborative Recommendations 157

4.4.3.1. WrapRec19

WrapRec is a configuration based open-source project (under the MIT
license) written in C#. Its idea is to support a fast evaluation of the custom
algorithms or the algorithms adopted from the other frameworks [Loni and
Said, 2014]. WrapRec architecture is split to three parts (Fig. 4.6).

First one is a module which brings a native support to MyMediaLite
and LibFM frameworks. Moreover, also the third-party libraries and
custom build recommenders can be evaluated by extending WrapRec. The
second module is the Split, which defines the way the data are handled
from the train and test evaluation perspective. After the data is loaded
through Data reader, they are stored in Data container. By extending the
split class, a split can be fully customized. Finally, the metrics used for the
evaluation are defined in the Evaluation context module. Multiple
evaluators are supported.

The WrapRec is a part of the research project CrowdRec based on the
Delft University of Technology. It comes with an extensive documentation
including several examples.

Fig. 4.6. WrapRec evaluation framework architecture19.

19http://babakx.github.io/WrapRec

158 M. Kompan, P. Gašpar and M. Bielikova

4.4.3.2. Rival20

Another open-source toolkit designed especially for the recommender
evaluation is Rival, which is written in Java under LGPL v2.1 license. As
it is quite new toolkit, its documentation needs to be improved in the
future. Rival consists of four basic modules (important from our point of
view).

The evaluation module implements several metrics and strategies for
the evaluation. Error metrics include MAE and RMSE, while Precision,
Recall, nDCG and MAP as ranking metrics are included.

A recommendation module integrates algorithms from the LensKit and
Apache Mahout, which provides a complement to their evaluation tools.
The split module is, as expected, responsible for the train and test data
splitting. Standard Cross validation is supported. Moreover, a random split
and temporal split (considering a timestamp of instances) is available.

Last, but not least, the example module provides examples of the
toolkit usage on a real-case scenario. The toolkit is available via the Maven
repository.

4.4.4. Overview of the datasets

Since the domain of recommendation is largely connected to the industry,
there are many real-world datasets available that are being used in research
papers. We summarize the available datasets suitable for the collaborative
filtering recommendation in the domains such as movies, music, or
e-commerce (Table 4.3). We opt for the datasets covered by the research
papers. The descriptive characteristics are supplemented by the
comparison of the performance in the rating and ranking prediction (Table
4.4).

A majority of the listed datasets is intended to be used for the
evaluation of the explicit feedback, namely to predict the ratings of the
items. However, in many scenarios, these ratings can be also used as an
implicit feedback, as well and can be utilized to evaluate the Top-N
collaborative recommendations. In addition, many selected datasets

20http://rival.recommenders.net

 Hybrid Collaborative Recommendations 159

contain not only the interactions between users and items, but also the
characteristics of either the users (demography) or the items (content
characteristics) that can be utilized in the hybrid collaborative
recommendation.

Table 4.3. Overview of available recommendation datasets.

Dataset Released Ratings Users Items
Sparsity

(%)

MovieLens 100k 10/2016 100K 1K 9K 98.889

MovieLens 1M 2/2003 1M 6K 4K 95.833

MovieLens 10M 1/2009 10M 72K 10K 98.611

MovieLens 20M 10/2016 20M 138K 27K 99.463

MovieLens 26M 8/2017 26M 270K 45K 99.786

DouBan 2011 16.8M 129K 59K 99.779

Flixter 9/2010 8.2M 1M 49K 99.983

Last.fm 1K 5/2010 19.1M 992 1.5M 98.716

Last.fm 360K 3/2010 17.6M 359K 294K 99.983

Yahoo Music R1 3/2004 11.5M - 98K -

Yahoo Music R2 2006 717M 1.8M 136K 99.707

Yahoo Music R3 2006 300K 15K 1K 98.000

Yahoo Music KDD Cup
Track 1

2011 262M 1M 625K 99.958

The Million Playlist
Dataset

1/2018 1 000 000 playlists with 5-250 of tracks

Epinions (product ratings) 10/2007 664K 50K 140K 99.990

Epinions
(trust ratings)

10/2007 487K - - -

Amazon Product Data

2015 142M - - -

Yelp 2018 5.2M - 174K -

Book-Crossing 9/2004 1.1M 279K 271K 99.999

Jester Dataset 1 2003 4.1M 73K 100 43.836

Jester Dataset 2 2012 2.2M 79K 150 81.435

160 M. Kompan, P. Gašpar and M. Bielikova

Table 4.4. Results of the evaluation of recommendation approaches using the selected
datasets.

Dataset RMSE MAE Precision Recall F-score AUC

MovieLens 100k 0.8906A 0.3526A

MovieLens 1M 0.8333B -

MovieLens 10M 0.7764C -

MovieLens 20M 0.7762C -

Flixter 1.0954D 0.046E

DouBan 0.6988D 0.082E

Last.fm 1K - 0.301F

Yahoo Music T1 21.2634G

Yahoo Music T1 21.879H

Yelp 1.0072I 0.7920I 0.63J 0.85J

Yelp 0.0152K

Epinions 0.9321L

Epinions 0.825M

Amazon
(clothing)

0.7961 /
0.7317N

Amazon (home)
0.7155 /
0.6396N

Amazon 0.033K

Book-Crossing
(item-based)

 0.0364O 0.0732O

Book-Crossing
(user-based)

 0.0369O 0.0576O

Jester Dataset 1 4.1229P 3.1606P

A http://www.mymedialite.net I [Hu et al., 2014]
B [Lee et al., 2013] J [Tsai, 2016]
C [Strub et al., 2016] K results are reported at F-Score@5; [Chen et al.,

2016]
D [Ma et al., 2011] L detailed results are reported in the paper; [Ma

et al., 2008]
E [Wu et al., 2017] M [Pham et al., 2011]
F [Yang et al., 2012] N first result is a warm-start setting, second result

is a cold-start setting; [Liu et al., 2017]
G [Zheng et al., 2012] O [Ziegler et al., 2005]
H [Koenigstein et al., 2011] P [Takacs et al., 2009]

 Hybrid Collaborative Recommendations 161

Movies has been one of the most dominant domains in collaborative
filtering recommendation for many years. Its popularity is ascribed namely
to the Netflix Prize competition, however, also to a great availability of
the datasets. The MovieLens datasets21 published by the GroupLens
contain movie ratings and tagging activity of the users on the online portal
MovieLens.org. Basic content information is also available, but this can
be easily extended through the mapping to the external sources: IMDB22
and TMDB23. Douban is the Chinese social network allowing users to rate,
review and recommend movies, music, and books [Ma et al., 2011]. Ma
et al. crawled the movie section of the portal and besides the ratings they
obtained also 1.7M user-to-user relationships (friends links). Similarly,
user-to-user relationships are also available for the Flixster dataset [Jamali
and Ester, 2010]. From totally 1M users, the user-movie ratings are
available for only 150K of them. Although the number of ratings is
considerably lower than in the case of MovieLens or DouBan, Flixster
dataset stands out in much greater number of social interactions (26.7M).
An example of TV and movie recommender is presented in Chapter 14.

Yahoo published several recommendation datasets in the domain of
music with varying amount of information24. Yahoo Music R1 contains
the rating activity of users over artists (i.e., the items are artists). Yahoo
Music R2, a much bigger dataset, contains the rating activity of users on
the songs. In addition, there are also metadata available (such as artist,
album, genres), though these metadata are represented only using the
anonymous identifiers. R2 dataset was used in an evaluation of a
data-parallel low-rank matrix factorization [Schelter et al., 2013], where
authors applied MapReduce technique to improve the performance
of the computations in order to better match production environment
requirements. The third dataset — Yahoo Music R3 contains a sample of
ratings for the songs that were collected from the users’ interactions and
from the online survey conducted by Yahoo Research. An example of
music recommender is presented in Chapter 15.

21https://grouplens.org/datasets/movielens/
22https://www.imdb.com/
23https://themoviedb.org/
24https://webscope.sandbox.yahoo.com/catalog.php?datatype=r

162 M. Kompan, P. Gašpar and M. Bielikova

As a part of the KDD Cup 2011 competition25, another music ratings
dataset was released that contained 10-years (1999–2009) rating activity
on four types of items: tracks, albums, artists, and genres. There are also
four different versions of this dataset available varying by the amount of
rating activity, where one version is focused on the learning-to-rank
problem rather than rating prediction.

Last.fm is a popular online service intended to provide music
recommendations based on the music that users listen on their devices. In
2010 there were two datasets released [Celma, 2010]: Last.fm 1K26 and
Last.fm 360K27. Last.fm 1K contains full listening history of 992 users
represented by the tuple user-artist-track. Last.fm 360K provides history
for 359,347 users, however, this dataset contains only information about
the playcount of the artists. Both datasets contain users’ demography
(gender, age, country, sign-up date) and MusicBrainz28 ID for artists and
tracks (if available), which allows to extend the dataset for additional
metadata.

For the task of the playlist continuation prediction The Million Playlist
Dataset (MPD) was published as a part of the Recommender Systems
Challenge 201829. Provided dataset contains 1 million playlists created by
the U.S. users in the online music streaming service Spotify30. When the
dataset was generated, there were several criteria for picking up the
representative playlists (e.g., minimum number of artists in a playlist,
minimum number of albums in a playlist). In comparison to other datasets
available in this domain, one disadvantage is the missing information
about the playlist authors (i.e., user ids). Since at the time of writing this
book the challenge was just announced, there were no published papers
using this dataset.

25http://www.kdd.org/kdd2011/kddcup.shtml
26http://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/lastfm-1K.html
27http://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/lastfm-360K.html
28https://musicbrainz.org
29https://recsys-challenge.spotify.com/
30https://www.spotify.com

 Hybrid Collaborative Recommendations 163

Amazon31 is one of the most famous online retailers with roughly
millions of daily users. In 2015 Julian McAuley released32 the Amazon
product reviews dataset [McAuley et al., 2015], which contained the
reviews and product metadata from the May 1996–July 2014 period.
Reviews consist of numerical ratings, textual reviews, and helpfulness
votes. Product metadata include descriptions, categories, price, brand,
related products, sales rank, and visual features extracted from the product
images (4096-length feature vector extracted using the deep convolutional
neural network). Reviews can be retrieved as a whole or as the subsets
distinguished by the product categories. In addition, the author provides
the raw ratings (a tuple user-item-rating-timestamp) that can be suitable
for the training using some of the recommender systems libraries (e.g.,
MyMediaLite).

Epinions.com was an online service (run by eBay, now discounted)
more focused on the opinions of the users on various items (e.g., cars,
books, movies, software) [Massa and Avesani, 2007]. Moreover, users
were able to “rate” other reviews and express their trust to the reviews of
these users (i.e., which reviews they find valuable and which they found
offensive, inaccurate, or not valuable at all). Massa et al. crawled
Epinions.com website in order to evaluate a trust-aware collaborative
filtering recommender. The dataset33 that they released contained both the
ratings of the users on the products, but also the ratings of users on other
users’ reviews (i.e., the users’ trust statements).

Another dataset containing reviews is from Yelp34, where the
businesses are being reviewed. Here, the dataset is published directly by
Yelp and is updated periodically, since it is a part of an ongoing research
challenge. It contains more than 5 million reviews of 174K businesses
supplemented by 200K pictures. Moreover, there are 1.1M tips by 1.3M
users available and also aggregated hourly check-ins for each business.
Besides the reviews and check-ins, there are several metadata about the
businesses (such as address, average rating, whether it is a take-out

31https://www.amazon.com
32http://jmcauley.ucsd.edu/data/amazon/
33http://www.trustlet.org/downloaded_epinions.html
34https://www.yelp.com/dataset

164 M. Kompan, P. Gašpar and M. Bielikova

restaurant, availability of parking, business categories, etc.) and the users
(such as list of friends, votes given by the user, opinions received by other
users, etc.).

In a book domain, Book-Crossing dataset35 was released, which
contains implicit and explicit ratings (on a scale 1–10) of people on books
from Book-Crossing.com [Ziegler et al., 2005]. Book-Crossing36 is an
online community portal, where the users may exchange books between
themselves. There are also demographic data available (users’ location and
age) and books metadata (title, author, year of publication, publisher,
cover images).

Another popular dataset among the research community is from Jester
Online Recommender System37. Dataset contains users’ ratings on jokes
on a rating scale from −10 to 10 [Goldberg et al., 2001]. What is specific
for this dataset is that the number of items is very low (100 and 150), thus
resulting in low sparsity of the rating matrix.

4.4.5. Summarization

Generally, an evaluation of any recommender system is a systematic
process where a researcher need to take into account several aspects:
experiment setup, used data, examined metrics, and desired outcomes.
Especially, if we think of hybrid recommender systems, there also
other factors, such as whether we need to evaluate any monolithic
recommenders, or whether we need to evaluate various combinations of
attributes in data.

Existing recommendation libraries may simplify this process by
providing pre-implemented tools. There are also libraries that are focused
specifically on the recommender systems evaluations. In case of data,
there are several datasets from a couple of domains publicly available,
which allows not only to easily evaluate new recommendation approaches
but also to be more transparent while comparing the results (of evaluation)
with the research community.

35http://www2.informatik.uni-freiburg.de/~cziegler/BX/
36https://www.bookcrossing.com
37http://eigentaste.berkeley.edu/

 Hybrid Collaborative Recommendations 165

4.5. Conclusions

Recommender systems have been proved beneficial in many domains.
There are several types of recommendation techniques, such as content-
based, collaborative, or demographic that are utilized with respect to the
domain, user characteristics, item characteristics, and a goal. However,
many of these techniques still suffer from various issues that have their
roots namely in a lack of data or a specific user behavior.

Hybrid recommender systems were designed to combine the
advantages of these techniques in order to solve their major issues and to
improve an overall recommendation performance. There are several
hybrid combinations that we may choose from and can be used as a
template of how to combine two or more recommendation techniques.

Each combination may be suitable for a different scenario and in a
different domain. Moreover, we should take into consideration their
advantages and disadvantages. It is also important to note that these
combinations are not tightened to any particular recommendation
techniques. In addition, researchers are not limited to basic combinations,
but there are many parameters that can be tuned (e.g., weights, switching
criteria). Allowing to tune the parameters brings a possibility to create
another level of personalization.

There are several issues related to collaborative filtering that can be
reduced by employing a hybrid recommender. Most notable are the cold-
start problem, over-specialization, lack of diversity, user extremes, and
sparsity. Collaborative filtering may either suffer from these problems or
can be used a solution to this problems with the combination of another
technique. A major advantage of hybridization is that it enables system to
recommend items in some scenarios that collaborative filtering may fail in
(such as a new item or a user extreme).

Hybrid recommenders have become a part of many frameworks and
libraries in the domain of recommendation. These libraries are also
available in various programming languages (such as R, Python, Java,
Scala) and support different hybrid combinations. Moreover, many of
these libraries are also extendable (e.g., Surprise, Easyrec, FluRS), which
allows researchers to easily create their own combinations and yield more
valuable research results. They also consist of many other algorithms that

166 M. Kompan, P. Gašpar and M. Bielikova

are related to the recommendation, such as similarity measures, plenty of
matrix factorization approaches, or prediction algorithms.

In most cases, the libraries also provide tools to evaluate performance
of the recommendation and measure some basic and also advanced
metrics. For this purpose, several state-of-the-art datasets were created and
are publicly available as well.

Evaluation of hybrid recommenders inherits many specifics of basic
recommendation techniques. Firstly, it is important to pick a suitable
dataset and split the data into train and test sets. While designing an
experiment, we may opt into online or offline evaluation. Choice of
the evaluation metrics should be performed with the respect to the
recommendation task.

There are also specifics that are related to the evaluation of the hybrid
recommenders. Here we should not only evaluate hybrid recommender as
a whole, but also consider evaluating particular underlying recommenders,
as well as their parameters. Moreover, if a hybrid recommender was
designed to solve the recommendation issues, it is necessary to investigate
whether (and how) the hybrid was able to tackle them.

There are also some evaluation frameworks that were designed
specifically for this purpose: WrapRec and Rival. Both of them allow to
use existing libraries and algorithms. They also offer evaluation measures
that are related to the recommendation tasks. Moreover, they are open-
source, which allows researchers to do a further development.

Besides all the advantages of the hybrid recommenders, the
hybridization may bring up some issues. Hybrids suffer from the problem
of the scalability since the training phase may require additional time cost.
Another related issue is that we need more data in order to well-tune
parameters of hybrid combinations, which is not needed in monolithic
approaches.

Yet there are still some unexplored hybrid combinations that were
not studied and verified in current literature. Also, many state-of-the-art
approaches are only compared to monolithic techniques, with missing
comparison of hybrids between each other. There are also many domains,
where the hybrid recommenders were not applied yet.

 Hybrid Collaborative Recommendations 167

Acknowledgement

This chapter is based on work and was partially supported by the grants
No. APVV-15-0508, VG 1/0667/18 and KEGA 028STU-4/2017.

References

Adomavicius, G. and Tuzhilin, A. (2005). Toward the next generation of recommender
systems: a survey of the state-of-the-art and possible extensions. IEEE Transactions
on Knowledge and Data Engineering, 17(6), 734-749.

Aggarwal, C. C. (2016). Recommender Systems: The Textbook. Cham: Springer. ISBN:
978-3-319-29657-9.

Balabanovic, M. and Shoham, Y. (1997). Fab: Content-based, collaborative
recommendation. Commun. ACM, 40(3), 66-72.

Baltrunas, L., Kaminskas, M., Ludwig, B., Moling, O., Ricci, F., Aydin, A., Luke, K.-H.,
and Schwaiger, R. (2011). InCarMusic: Context-Aware Music Recommendations in
a Car, pp. 89-100. Springer Berlin Heidelberg, Berlin, Heidelberg.

Barragans-Martinez, A. B., Costa-Montenegro, E., Burguillo, J. C., Rey-Lopez, M., Mikic-
Fonte, F. A., and Peleteiro, A. (2010). A hybrid content-based and item-based
collaborative filtering approach to recommend TV programs enhanced with singular
value decomposition. Information Sciences, 180(22), pp. 4290-4311.

Basu, C., Hirsh, H., and Cohen, W. (1998). Recommendation as classification: Using social
and content-based information in recommendation. In Proceedings of the Fifteenth
National/Tenth Conference on Artificial Intelligence/Innovative Applications of
Artificial Intelligence, AAAI ’98/IAAI ’98, pp. 714-720, Menlo Park, CA, USA.
American Association for Artificial Intelligence.

Braunhofer, M., Codina, V., and Ricci, F. (2014). Switching hybrid for cold-starting
context-aware recommender systems. In Proceedings of the 8th ACM Conference on
Recommender Systems, RecSys ’14, pp. 349-352, New York, NY, USA. ACM.

Bostandjiev, S., O’Donovan, J., and Hollerer, T. (2012). Tasteweights: A visual interactive
hybrid recommender system. In Proceedings of the Sixth ACM Conference on
Recommender Systems, RecSys ’12, pp. 35-42, New York, NY, USA. ACM.

Burke, R. (2002). Hybrid recommender systems: Survey and experiments. User Modeling
and User-Adapted Interaction, 12(4), pp. 331-370.

Burke, R. and Ramezani, M. (2011). Matching Recommendation Technologies and
Domains, pp. 367-386. Springer US, Boston, MA.

Burke, R., Vahedian, F., and Mobasher, B. (2014). Hybrid Recommendation in
Heterogeneous Networks, pages 49-60. Springer International Publishing, Cham.

Celma, O. (2010). Music Recommendation, pp. 43–85. Springer Berlin Heidelberg, Berlin,
Heidelberg.

168 M. Kompan, P. Gašpar and M. Bielikova

Chen, X., Qin, Z., Zhang, Y., and Xu, T. (2016). Learning to rank features for

recommendation over multiple categories. In Proceedings of the 39th International
ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’16, pp. 305–314, New York, NY, USA. ACM.

Cremonesi, P., Turrin, R., and Airoldi, F. (2011). Hybrid algorithms for recommending
new items. In Proceedings of the 2nd International Workshop on Information
Heterogeneity and Fusion in Recommender Systems, HetRec ’11, pp. 33-40, New
York, NY, USA. ACM.

de Campos, L. M., Fernandez-Luna, J. M., Huete, J. F., and Rueda-Morales, M. A. (2010).
Combining content-based and collaborative recommendations: A hybrid approach
based on bayesian networks. International Journal of Approximate Reasoning, 51(7):
pp. 785-799.

Cella, L., Cereda, S., Quadrana, M., and Cremonesi, P. (2017) Deriving Item Features
Relevance from Past User Interactions. Proceedings of the 25th Conference on User
Modeling, Adaptation and Personalization, ACM, pp. 275-279.

Claypool, M., Gokhale, A., Miranda, T., Murnikov, P., Netes, D., and Sartin, M. (1999).
Combing content-based and collaborative filters in an online newspaper.

Ekstrand, M., D., Ludwig, M., Konstan, J., A., and Riedl, J., T. (2011). Rethinking the
recommender research ecosystem: reproducibility, openness, and LensKit. In
Proceedings of the fifth ACM conference on Recommender systems (RecSys '11).
ACM, New York, NY, USA, pp. 133-140.

Elahi, M., Braunhofer, M., Ricci, F., and Tkalcic, M. (2013). Personality-based active
learning for collaborative filtering recommender systems. In Proceeding of the XIIIth
International Conference on AI*IA 2013: Advances in Artificial Intelligence -
Volume 8249, pp. 360-371, New York, NY, USA. Springer-Verlag New York, Inc.

Gantner, Z., Rendle, S., Freudenthaler, Ch. and Schmidt-Thieme, L. (2011). MyMediaLite:
a free recommender system library. In Proceedings of the fifth ACM conference on
Recommender systems (RecSys '11). ACM, New York, NY, USA, pp. 305-308.

Ghazanfar, M. A. and Prugel-Bennett, A. (2014). Leveraging clustering approaches to
solve the gray-sheep users problem in recommender systems. Expert Syst. Appl.,
41(7), pp. 3261-3275.

Goldberg, K., Roeder, T., Gupta, D., and Perkins, C. (2001). Eigen-taste: A constant time
collaborative filtering algorithm. Information Retrieval, 4(2):133–151.

Gomez-Uribe, C. A. and Hunt, N. (2015). The Netflix Recommender System: Algorithms,
Business Value, and Innovation. ACM Trans. Manage. Inf. Syst., 6(4), pp. 13:1-
13:19.

Hahsler, M. (2017). recommenderlab: A Framework for Developing and Testing
Recommendation Algorithms. Technical report.

Harper, F. M. and Konstan, J. A. (2015). The movielens datasets: History and context.
ACM Trans. Interact. Intell. Syst., 5(4), pp. 19:1-19:19.

 Hybrid Collaborative Recommendations 169

Herlocker, J. L., Konstan, J. A., and Riedl, J. (2000). Explaining collaborative filtering

recommendations. In Proceedings of the 2000 ACM Conference on Computer
Supported Cooperative Work, CSCW ’00, pp. 241-250, New York, NY, USA. ACM.

Hornung, T., Ziegler, C.-N., Franz, S., Przyjaciel-Zablocki, M., Schatzle, A., and Lausen,
G. (2013). Evaluating hybrid music recommender systems. In Proceedings of the
2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI)
and Intelligent Agent Technologies (IAT) - Volume 01, WI-IAT ’13, pp. 57-64,
Washington, DC, USA. IEEE Computer Society.

Hu, L., Sun, A., and Liu, Y. (2014). Your neighbors affect your ratings: On geographical
neighborhood influence to rating prediction. In Proceedings of the 37th International
ACM SIGIR Conference on Research & Development in Information Retrieval,
SIGIR ’14, pp. 345–354, New York, NY, USA. ACM.

Hug, N. (2017). Surprise, a Python library for recommender systems. http://surpriselib.com
Jamali, M. and Ester, M. (2010). A matrix factorization technique with trust propagation

for recommendation in social networks. In Proceedings of the Fourth ACM
Conference on Recommender Systems, RecSys ’10, pp. 135–142, New York, NY,
USA. ACM.

Kaššák, O., Kompan, M., and Bieliková, M. (2016). Personalized hybrid recommendation
for group of users: Top-n multimedia recommender. Information Processing
Management, 52(3):459–477.

Kim, J. K., Jang, M. K., Kim, H. K., and Cho, Y. H. (2009). A hybrid recommendation
procedure for new items using preference boundary. In Proceedings of the 11th
International Conference on Electronic Commerce, ICEC ’09, pp. 289-295, New
York, NY, USA. ACM.

Kim, S.-C., Park, C.-S., and Kim, S. K. (2012). A Hybrid Recommendation System Using
Trust Scores in a Social Network, pp. 107–112. Springer Netherlands, Dordrecht.

Koenigstein, N., Dror, G., and Koren, Y. (2011). Yahoo! music recommendations:
Modeling music ratings with temporal dynamics and item taxonomy. In Proceedings
of the Fifth ACM Conference on Recommender Systems, RecSys ’11, pp. 165–172,
New York, NY, USA. ACM.

Koren, Y. (2009). The bellkor solution to the netflix grand prize.
Kula, M. (2015). Metadata Embeddings for User and Item Cold-start Recommendations.

In Proceedings of the Workshop on New Trends in Content-Based Recommender
Systems. Ceur-WS, pp. 14-21.

Lampropoulos, A. S., Sotiropoulos, D. N., and Tsihrintzis, G. A. (2012). Evaluation of a
cascade hybrid recommendation as a combination of one-class classification and
collaborative filtering. In 2012 IEEE 24th International Conference on Tools with
Artificial Intelligence, volume 1, pp. 674-681.

Lee, J., Kim, S., Lebanon, G., and Singer, Y. (2013). Local low-rank matrix approximation.
In Dasgupta, S. and McAllester, D., editors, Proceedings of the 30th International
Conference on Machine Learning, volume 28 of Proceedings of Machine Learning
Research, pp. 82–90, Atlanta, Georgia, USA.

170 M. Kompan, P. Gašpar and M. Bielikova

Lee, J., Sun, M., and Lebanon, G. (2012). PREA: personalized recommendation algorithms

toolkit. J. Mach. Learn. Res. 13, 1 (September 2012), pp. 2699-2703.
Liu, J., Dolan, P., and Pedersen, E. R. (2010). Personalized news recommendation based

on click behavior. In Proceedings of the 15th International Conference on Intelligent
User Interfaces, IUI ’10, pp. 31-40, New York, NY, USA. ACM.

Liu, Q., Wu, S., and Wang, L. (2017). Deepstyle: Learning user preferences for visual
recommendation. In Proceedings of the 40th International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’17, pp. 841–844,
New York, NY, USA. ACM.

Loni, B., and Said, A. (2014). WrapRec: an easy extension of recommender system
libraries. In Proceedings of the 8th ACM Conference on Recommender systems
(RecSys '14). ACM, New York, NY, USA, pp. 377-378.

Ma, H., Zhou, D., Liu, C., Lyu, M. R., and King, I. (2011). Recommender systems with
social regularization. In Proceedings of the Fourth ACM International Conference
on Web Search and Data Mining, WSDM ’11, pp. 287–296, New York, NY, USA.
ACM.

Ma, H., Yang, H., Lyu, M. R., and King, I. (2008). Sorec: Social recommendation using
probabilistic matrix factorization. In Proceedings of the 17th ACM Conference on
Information and Knowledge Management, CIKM ’08, pp. 931–940, New York, NY,
USA. ACM.

Massa, P. and Avesani, P. (2007). Trust-aware recommender systems. In Proceedings of
the 2007 ACM Conference on Recommender Systems, RecSys’07, pp. 17–24, New
York, NY, USA. ACM.

McAuley, J., Targett, C., Shi, Q., and van den Hengel, A. (2015). Image-based
recommendations on styles and substitutes. In Proceedings of the 38th International
ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’15, pp. 43–52, New York, NY, USA. ACM.

McCrae, J., Piatek, A., and Langley, A. (2004). Collaborative filtering.
Miranda, T., Claypool, M., Gokhale, A., Mir, T., Murnikov, P., Netes, D., & Sartin, M.

(1999). Combining content-based and collaborative filters in an online newspaper.
In Proceedings of ACM SIGIR Workshop on Recommender Systems.

Mendeley. (2017). Mrec library documentation. http://mendeley.github.io/mrec
Odic, A., Tkalcic, M., Tasic, J. F., and Kosir, A. (2013). Predicting and detecting the

relevant contextual information in a movie-recommender system. Interact-ing with
Computers, 25(1), pp. 74-90.

Pham, M. C., Cao, Y., Klamma, R., and Jarke, M. (2011). A clustering approach for
collaborative filtering recommendation using social network analysis. 17(4):583–
604.

Ricci, F., Rokach, L., and Shapira, B. (2015). Recommender Systems Handbook. Springer
US, New York, NY, USA, 2nd edition.

Ronen, R., Koenigstein, N., Ziklik, E., and Nice, N. (2013). Selecting content-based
features for collaborative filtering recommenders. In Proceedings of the 7th ACM

 Hybrid Collaborative Recommendations 171

Conference on Recommender Systems, RecSys ’13, pp. 407-410, New York, NY,
USA. ACM.

Schein, A. I., Popescul, A., Ungar, L. H., and Pennock, D. M. (2002). Methods and metrics
for cold-start recommendations. In Proceedings of the 25th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’02, pp. 253-260, New York, NY, USA. ACM.

Schelter, S., Boden, C., Schenck, M., Alexandrov, A., and Markl, V. (2013). Distributed
matrix factorization with mapreduce using a series of broadcast-joins. In Proceedings
of the 7th ACM Conference on Recommender Systems, RecSys ’13, pp. 281–284,
New York, NY, USA. ACM.

Shardanand, U. and Maes, P. (1995). Social information filtering: Algorithms for
automating “word of mouth”. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI’95, pp. 210-217, New York, NY, USA. ACM
Press/Addison-Wesley Pub. Co.

Stern, D., H., Herbrich, R. and Graepel, T. (2009). Matchbox: Large Scale Online Bayesian
Recommendations. In Proceedings of the 18th international conference on World
wide web (WWW '09). ACM, New York, NY, USA, pp. 111-120.

Strub, F., Gaudel, R., and Mary, J. (2016). Hybrid recommender system based on
autoencoders. In Proceedings of the 1st Workshop on Deep Learning for
Recommender Systems, DLRS 2016, pp. 11–16, New York, NY, USA. ACM.

Su, X. and Khoshgoftaar, T. M. (2009). A survey of collaborative filtering techniques.
Advances in Artificial Intelligence, 2009, pp. 4:2–4:2.

Takacs, G., Pilaszy, I., Nemeth, B., and Tikk, D. (2009). Scalable collaborative filtering
approaches for large recommender systems. J. Mach. Learn. Res., 10:623–656.

Tsai, C.-H. (2016). A fuzzy-based personalized recommender system for local businesses.
In Proceedings of the 27th ACM Conference on Hypertext and Social Media, HT
’16, pp. 297–302, New York, NY, USA. ACM.

Višnovský, J., Kaššák, O., Kompan, M. and Bieliková, M. (2014) The Cold Start: Minimal
User's Rating Activity Estimation. In 1st Workshop on Recommender Systems for
Television and online Video (RecSysTV) in conjunction with 8th ACM Conference
on Recommender Systems, Foster City, USA, p. 4.

Weston, J., Bengio, S., and Usunier, N. (2010). Large scale image annotation: learning to
rank with joint word-image embeddings. Mach. Learn. 81, 1, pp. 21-35.

Wu, Q., Liu, S., and Miao, C. (2017). Modeling uncertainty driven curiosity for social
recommendation. In Proceedings of the International Conference on Web
Intelligence, WI ’17, pp. 790–798, New York, NY, USA. ACM.

Yang, D., Chen, T., Zhang, W., Lu, Q., and Yu, Y. (2012). Local implicit feedback mining
for music recommendation. In Proceedings of the Sixth ACM Conference on
Recommender Systems, RecSys ’12, pp. 91–98, New York, NY, USA. ACM.

Yoshii, K., Goto, M., Komatani, K., Ogata, T., and Okuno, H. G. (2008). An efficient
hybrid music recommender system using an incrementally trainable probabilistic

172 M. Kompan, P. Gašpar and M. Bielikova

generative model. IEEE Transactions on Audio, Speech, and Language Processing,
16(2), pp. 435-447.

Zanker, M. (2008). A collaborative constraint-based meta-level recommender. In
Proceedings of the 2008 ACM Conference on Recommender Systems, RecSys’08,
pp. 139-146, New York, NY, USA. ACM.

Zanker, M. and Jessenitschnig, M. (2009). Collaborative feature-combination
recommender exploiting explicit and implicit user feedback. In 2009 IEEE
Conference on Commerce and Enterprise Computing, pp. 49-56.

Zheng, Z., Chen, T., Liu, N., Yang, Q., and Yu, Y. (2012). Rating prediction with
informative ensemble of multi-resolution dynamic models. In Dror, G., Koren, Y.,
and Weimer, M., editors, Proceedings of KDD Cup 2011, volume 18 of Proceedings
of Machine Learning Research, pp. 75–97. PMLR.

Zhou, T., Kuscsik, Z., Liu, J., Medo, M., Wakeling, J., and Zhang, Y. (2010). Solving the
apparent diversity-accuracy dilemma of recommender systems. Proceedings of the
National Academy of Sciences, 107, 4511–4515.

Ziegler, C.-N., McNee, S. M., Konstan, J. A., and Lausen, G. (2005). Improving
recommendation lists through topic diversification. In Proceedings of the 14th
International Conference on World Wide Web, WWW ’05, pp. 22–32, New York,
NY, USA. ACM.

October 23, 2018 10:47 ws-rv9x6-9x6 Book Title 11131-05 page 173

Chapter 5

Context-Aware Recommendations

Yong Zheng1 and Bamshad Mobasher2

1Illinois Institute of Technology, Chicago, Illinois, 60616, USA
2DePaul University, Chicago, Illinois, 60604, USA

yong.zheng@iit.edu, mobasher@cs.depaul.edu

With increasingly more complex information spaces on the Internet, recom-
mender systems have emerged as critical tools to alleviate information overload
and to assist decision making. Although such systems generate personalized rec-
ommendations based on users’ learned preferences, most recommenders do not
consider the fact that a user’s decision or preferences may vary across contexts
and situations. Context-aware recommender systems, on the other hand, not only
adapt to user preferences, but also consider the contextual situations. This chapter
provides a broad introduction to Context-Aware Recommender Systems (CARS).
We especially focus on algorithmic approaches for integrating context into the
recommendation framework, including approaches based on context selection
and context-aware collaborative filtering. We also discuss evaluation strategies
for CARS; available data sets and open-source libraries; and lessons learnt from
the practical applications.

5.1. Introduction

Recommender Systems have been effective tools in alleviating the information
overload problem. They can assist users in decision making by recommending
item or resources that are tailored to those user tastes or preferences. The underly-
ing principle behind recommender systems is to make predictions on users’ prefer-
ences for items by inferring or learning from their past preferences or activity. The
“item” refers to the information entity in a specific domain that can be selected or
consumed by a user. For example, the item could be a video on YouTube, a movie
on Netflix, a playlist on Pandora, a restaurant on Yelp, a hotel in TripAdvisor, or
a book sold on Amazon.com. User preferences on items are expressed through
either explicit or implicit feedback. Examples of explicit feedback are user rat-
ings or thumb up/down behaviors. Implicit feedback may be obtained through

173

October 23, 2018 10:47 ws-rv9x6-9x6 Book Title 11131-05 page 174

174 Y. Zheng and B. Mobasher

textual reviews, click-throughs, purchase behavior, etc. Several recommendation
algorithms have been developed for personalized item recommendation by ex-
ploiting users’ preference histories. Common approaches include collaborative
filtering [Resnick et al. (1994); Koren et al. (2009)] in Chapter 1, content-based
recommenders [Lops et al. (2011)], and hybrid recommenders [Burke (2002)]
in Chapter 4.

Traditional recommender systems, however, ignore the impact of contextual
factors (e.g., time, location, companion, weather) which may affect the user pref-
erences on items. Time-aware recommender systems [Koren (2010); Campos
et al. (2014)] made the first attempt to take a specific contextual factor, namely
time, into account. The assumption behind such a system is that a user’s prefer-
ences may change over time. For example, a user may prefer cartoons when he is
a child, but he may like other types of movies when he grows up. But, there are
many other contextual factors, such as location, companion, occasion, weather,
mood, and others that may have an impact on user preferences or on the utility of
an item for a user in a given situation. For example, a user may choose a different
type of movie when he or she is going to watch the movie with different “com-
panions” such as with a partner rather than with kids.1 Also, users may choose
a more formal restaurant for a business dinner, but a fast food restaurant may be
more appropriate for a quick lunch alone.2 Research in context-Aware Recom-
mender Systems (CARS) has been focused on addressing the issue of integrating
contextual factors into the recommendation process.

Many context-aware recommendation algorithms have been developed in a
variety of application domains. It has been demonstrated that considering con-
text in recommendation can result in significant improvements in the effective-
ness of recommendation in various domains such as movies [Košir et al. (2011);
Zheng et al. (2013b)], music [Baltrunas et al. (2010, 2011a)], tourism [Zheng et al.
(2012); Braunhofer et al. (2013)], restaurants [Ono et al. (2009); Ramirez-Garcia
and Garca-Valdez (2014)], mobile apps [Baltrunas et al. (2015)], and others.

This chapter provides an overview of CARS as well as practical introduction
to algorithms and applications of context-aware recommendation. We first intro-
duce the notion of “context” in recommendation and discuss how to identify most
influential context information. Next, we review a variety of context-aware col-
laborative filtering algorithms and discuss their practical implementation. We also
discuss evaluation methods in CARS, available data sets and open source libraries
that can help in conducting experiments. Finally, we also introduce the lessons
learnt from our experiences, followed by the discussion of some open issues and
challenges.
1Partner and kids are viewed as two contextual conditions for “companion”.
2Business dinner and quick lunch are viewed as two different occasions.

October 23, 2018 10:47 ws-rv9x6-9x6 Book Title 11131-05 page 175

Context-Aware Recommendations 175

5.2. Background and Preliminaries

5.2.1. Context Definition and Categorization

The notion of context and its role in our daily interactions with our environment
has been studied in psychology, linguistics, artificial intelligence, information re-
trieval, pervasive/ubiquitous computing, mobile computing, and more recently,
recommender systems. While little agreement exists among researchers as to
what constitutes context, the importance of context is undisputed. In psychol-
ogy, a change in context during learning has been shown to have an impact on
recall [Smith (1979); Bartlett and Santrock (1979)], suggesting a key role played
by context in structuring of and retrieval from human memory. Research into
linguistics has shown that context plays the important role of a disambiguation
function, that is, it reduces the possible interpretations of a message that exists in
abstraction from its context [Leech (1981)].

In more computational settings, the definition of context varies from domain
to domain, which results in different understandings and applications of context in
each area. The most commonly used definition for context in ubiquitous comput-
ing was attributed to Abowd et al. in 1999 [Abowd et al. (1999)]: “context is any
information that can be used to characterize the situation of an entity. An entity is
a person, place, or object that is considered relevant to the interaction between a
user and an application, including the user and applications themselves.”

In information retrieval, the notion of context has been used to better capture a
user’s information need and intent which may not be available from an ambiguous
query alone [Brown and Jones (2001)]. For example, time and location could
be useful contextual information that can help the system provide more relevant
results given a user query. Google may return different results for the same query
depending on user’s location. Context can be defined as “all cognitive and social
factors as well as the user’s aims and intentions during a search session [Belkin
et al. (2004)]”. In other words, the user’s intent inferred by the topics in the query
could be also considered context [Bai et al. (2007)]. A query “apple” could mean
a fruit, a tech company, a type of computer, or a reference to New York City (“the
Big Apple”). The intent of the user, however, may need to be inferred based on
the topics in corpus and possibly based on the user’s learned profile.

In recommender systems, any variable influencing users’ decision making
could be viewed as context. Contextual variables may include time, location, emo-
tional state, weather conditions, type of activity, and other variables considered
relevant in a given domain. The earliest work in CARS [Van Setten et al. (2004)]
dates back to more than a decade ago. Despite the considerable amount of work

October 23, 2018 10:47 ws-rv9x6-9x6 Book Title 11131-05 page 176

176 Y. Zheng and B. Mobasher

since then, the research community still used competing definitions of context.
For example, there are no clear guidelines for selecting appropriate contextual
variables when designing recommender systems. In some academic publications,
researchers have blended user characteristics (e.g., gender) and item features (e.g.,
genre) into the scope of contexts. This blurs the line between the context-aware
and content-based recommender systems.

Adomavicius et al. [Adomavicius et al. (2011)] introduce an analysis to cate-
gorize context factors resulting in six possible general classes for context factors,
as shown in Figure 5.1.

Fig. 5.1. Classification of Contextual Factors.

More specifically, they introduce a two-part classification of contextual infor-
mation based on two considerations: what a recommender system knows about
contextual factors (i.e., contextual factors may be fully observable, partially ob-
servable or unobservable) and how the contextual factors change over time (i.e.,
the environment is static or dynamic). This classification enables the understand-
ing of context under different scenarios when designing recommender systems.
But, even in a situation when there are a set of static and full observable contex-
tual factors, it may still be difficult to determine which subset of factors should be
used to characterize context.

Zheng [Zheng (2015b)] revisited the notion of context and defined context as
the set of attributes which are related to the experience of users on items. For
example, the time and location may be different each time someone watches a
movie. Similarly, changes in a user’s emotional state may influence the choice of
music a user may be streaming online. In short, we find that most contextual fea-
tures are the attributes of the activity itself, such as time, location and companion.
Certain user characteristics can also be considered as contextual factors, such as
user’s emotional states or demographic features. By contrast, item features, such
as movie genre, music album, news category, are usually viewed as describing the
content of items in recommender systems.

October 23, 2018 10:47 ws-rv9x6-9x6 Book Title 11131-05 page 177

Context-Aware Recommendations 177

Dourish [Dourish (2004)] distinguished between two views of context: the
representational contexts and the interactional contexts. The representational
view, dominant in ubiquitous computing and recommender systems, assumes con-
text is a form of delineable information that can be described using a set of “ap-
propriate” observable attributes. Furthermore, these attributes do not change and
are clearly distinguishable from features describing the underlying activity under-
taken by the user within the context. In the interactional view [Hosseinzadeh Agh-
dam et al. (2015); Hariri et al. (2015)], the scope of contextual features is defined
dynamically and occasioned rather than static. Rather than assuming that context
defines the situation within which an activity occurs, Dourish suggests a cyclical
relationship between context and activity, where the activity gives rise to context.
While context itself is may not be characterized using a set of observable vari-
ables, the behavior arising from context is observable and may be explained by a
set of latent factors.

This chapter is focused on CARS with representational contexts — generally,
we assume there are a set of fully observed contextual variables available at hand,
and we assume these variables are static and their contextual influence is relatively
stable for a specific domain. For example, time, location and companion can be
three relevant contextual variables in the movie domain and the system can adapt
to users’ preferences in different contextual situations based on combinations of
values for these observed variables.

Table 5.1. Contextual Ratings on Movies.

User Item Rating Time Location Companion
U1 T1 3 weekend home alone
U1 T1 5 weekend cinema girlfriend
U1 T1 ? weekday home family

As an example, consider the situation depicted in the table above: there is
one user U1, one item T 1, and three contextual dimensions — Time (weekend
or weekday), Location (at home or cinema) and Companion (alone, girlfriend,
family).

Generally, we use the phrase context dimension to denote a contextual vari-
able, e.g. “Location”. The term context condition refers to a specific value in a
dimension, e.g. “home” and “cinema” are two contextual conditions for “Loca-
tion”. A context or context situation is, therefore, a set of contextual conditions,
e.g. {weekend, home, family}.

October 23, 2018 10:47 ws-rv9x6-9x6 Book Title 11131-05 page 178

178 Y. Zheng and B. Mobasher

5.2.2. Context Selection

Once the context variables are identified from the data, context selection becomes
the next task, since not all the contextual variables are influential in the recom-
mendation task. It is similar to the feature selection process in machine learning
tasks such as classification. It is an essential step in CARS because irrelevant con-
textual variables may not only increase computational costs but also result in noise
that could negatively affect the effectiveness of recommendations. Furthermore,
too many context variables may result in the “cold-start context” problem which
makes it difficult to predict user’s taste in contexts in which they do not have any
preference histories.

Odic et al. [Odic et al. (2012)] identified two approaches to context selec-
tion: online survey and statistical detection for context relevancy assessment. In
the user survey approach, subjects are asked to explicitly give information about
how important or influential each context is from their perspective. For example,
in [Baltrunas et al. (2012)] users’ opinions on contextual information in tourism
domain were acquired by asking users to imagine a given situation. Statistical
detection is a more objective way which utilize a statistical test (e.g, t-test) to
evaluate whether users gave significant different ratings in different contextual
conditions. This strategy was adopted in the context-aware splitting approaches
[Baltrunas and Ricci (2014); Zheng et al. (2014a)].

There are some drawbacks in these two context selection approaches. Using
surveys is straightforward but it will require additional user effort which is unde-
sirable from user perspective in practice. In addition, some research [Asoh et al.
(2010)] has pointed out that users’ opinions by imagining a situation is usually not
reliable. The results from statistical detection may also not be reliable if there is
not a sufficient number rating profiles in different contextual conditions. However,
statistical detection is a widely used approach in practice since it does not require
extra user effort.

5.3. Context-Aware Collaborative Filtering

In the past decade, several context-aware recommendation algorithms have been
developed in order to adapt the recommendations to different contextual situa-
tions. According to Adomavicius [Adomavicius and Tuzhilin (2011)], there are
three ways to incorporate contexts into recommender systems which can be de-
scribed by the Figure 5.2.

Contextual pre-filtering uses contexts as filters to filter out irrelevant rating
profiles and then applies a standard recommender to generate the recommendation

October 23, 2018 10:47 ws-rv9x6-9x6 Book Title 11131-05 page 179

Context-Aware Recommendations 179

Fig. 5.2. Three ways to incorporate contexts into recommendation algorithms.

list. Contextual post-filtering applies a standard recommender first and then uses
contexts as filters to filter out irrelevant recommendations or re-rank the item rec-
ommendations. In contextual modeling approaches, contexts are utilized as parts
of the learning process to develop the predictive models based on which recom-
mendations are generated.

In this section, we will focus on collaborative filtering (CF) approach to rec-
ommendation and discuss how context information can be incorporated into the
CF algorithms. CF is one of the most popular recommendation approaches and
has several advantages over other types of recommendation models:

• CF can provide recommendations based on user ratings and it does not
require additional information about users or items, such as user demo-
graphic information or item features. This reduces the complexity of
data collection and alleviates user privacy problems since the pure CF
technique does not rely on content information.
• CF techniques are simple and straightforward. They are easy-

implemented and capable for online learning or real-time recommenda-
tions, especially the matrix factorization based approaches in Chapter 2.
• The nature of CF allows researchers to further explore underlying pat-

terns or understand the insights of recommendations. Many applications
utilize CF to exploit explanations of item recommendations [Herlocker
et al. (2000)], such as Amazon.com.

October 23, 2018 10:47 ws-rv9x6-9x6 Book Title 11131-05 page 180

180 Y. Zheng and B. Mobasher

• CF approaches are applicable and useful, especially in some domains
where the content analysis may be very expensive or difficult.

For more details about the collaborative filtering recommendation, please refer
to the first and second chapter of this book. We specifically focus on context-aware
recommendation algorithms based on matrix factorization. Below, we catego-
rize different algorithms into the aforementioned groups (i.e., pre-filtering, post-
filtering and contextual modeling), and then further discuss the methods that are
based on matrix factorization.

5.3.1. Contextual Pre-Filtering

Contextual pre-filtering uses contexts to filter out irrelevant rating profiles and
then applies a recommender to generate the recommendation list. The earliest
approach falling into this category was the reduction-based approach [Adomavi-
cius et al. (2005a)] developed by Adomavicius et al. in 2005 which uses only the
rating profiles that pertain to the context of the user-specified criteria in which a
recommendation is made. DaVI (Dimensions as Virtual Items) [Domingues et al.
(2011)] is another approach developed by Domingues et al. in 2009. This ap-
proach treats contextual conditions as new items (i.e., virtual item), and create
an item-item similarity matrix to discover the relationships between items and
contexts (i.e., virtual items). The top similar items will be recommended to a
user within a given context by inferring from this similarity matrix. Semantic
pre-filtering (SPF) [Codina et al. (2013, 2015)] is another approach which tries
to learn similarity between context conditions based on a user-context or item-
context matrix, and then aggregates the similarity of two contextual situations to
further filter out ratings placed in dissimilar contexts.

Differential context modeling is another category of algorithms which utilize
contexts as filters. These approaches can be viewed as hybrid models that combine
pre-filtering and contextual modeling. There are two types of algorithms falling
into this category: differential context relaxation (DCR) [Zheng et al. (2012)] and
differential context weighting (DCW) [Zheng et al. (2013a)]. DCR uses different
context dimensions as filters for various components in the recommendation algo-
rithm. Take user-based collaborative filtering for example, the algorithm may need
to calculate user-user similarities, aggregate neighborhood ratings to make pre-
dictions. These different steps or parts are considered as algorithm components.
Zheng et al. [Zheng et al. (2012)] used particle swarm optimization to identify the
optimal context filters to maximize the contextual contribution of each algorithm
components. DCR follows the notion of context matching. The context matching

October 23, 2018 10:47 ws-rv9x6-9x6 Book Title 11131-05 page 181

Context-Aware Recommendations 181

refers to the process of seeking matched contexts from the rating profiles. For ex-
ample, if we are going to recommend movies to a user for him or her to watch at
weekend with kids, an exact context matching will look for ratings that were left
in the same situation (i.e., at weekend with kids) in the preference history. DCR
does not require an exact match in two contextual situations, which helps alleviate
the sparsity problem. DCW is an improvement over the DCR model, where DCW
measures the similarity between two contexts by learning the weights for each
context dimension. Only the ratings with a similar context situation will be incor-
porated in the prediction model. Both DCR and DCW are general approaches to
be applied on any traditional recommendation models.

Another popular approach is Item splitting [Baltrunas and Ricci (2009)] pro-
posed by Baltrunas et al. in 2009. It assumes that the nature of an item, from
the user’s point of view, may change in different contextual conditions, hence it
may be useful to consider it as two different items. Once the influential contextual
conditions are identified for each item, this item can be split into different new
item entities, one for each context. In this way, the context information is fused
into the new items, which converts the original multidimensional rating data to a
traditional two-dimension data which only contains ratings associated with users-
item pairs. Similarly, we can split users rather than items. Baltrunas et al. (2009)
developed micro-profiling [Baltrunas and Amatriain (2009)], which was the first
attempt to examine user splitting. Said et al. made a similar proposal called con-
textual user profiles [Said et al. (2011)]. It is also possible to split users and items
at the same time, which results in the UISplitting approach [Zheng et al. (2014a)].

Due to the simplicity and flexibility in these context-aware splitting ap-
proaches, they have become some of the most popular pre-filtering algorithms
for context-aware recommendation. In this section, we specifically introduce how
item splitting works. User splitting and UISplitting can be performed in a similar
way. Take the original rating matrix in Table 5.2 as an example. We have three
rating profiles associated with a same user U1 and item T 1. Item splitting iterates
over all contextual conditions in each context dimension and evaluates the splits
based on the impurity criteria. It finds the best split for each item in the rating
matrix and then items are split into two new ones, where contexts are eliminated
from the original matrix. Thus, it transforms the original multi-dimensional rating
matrix to a 2D matrix. Assume that the best contextual condition to split item T1
in Table 5.2 is “Location = home and not home”, T1 can be split into T11 (movie
T1 being seen at home) and T12 (movie T1 being seen not at home). Once the
best split has been identified, the rating matrix can be transformed as shown by
Table 5.3(a). Accordingly, if we plan to perform user splitting only, the result
could be shown as Table 5.3(b) if we assume “Time = Weekday or not” as the best
split.

October 23, 2018 10:47 ws-rv9x6-9x6 Book Title 11131-05 page 182

182 Y. Zheng and B. Mobasher

Table 5.2. Original Rating Matrix.

User Item Rating Time Location Companion
U1 T1 3 Weekend Home Friend
U1 T1 5 Weekend Cinema Girlfriend
U1 T1 ? Weekday Home Family

Table 5.3. Transformed Rating Matrix.

User Item Rating
U1 T11 3
U1 T12 5
U1 T11 ?

User Item Rating
U12 T1 3
U12 T1 5
U11 T1 ?

(a) by Item Splitting (b) by User Splitting

This example shows a simple split, in which a single contextual condition is
used to split the item. It is also possible to perform a complex split using mul-
tiple conditions across multiple context dimensions. However, as discussed in
[Baltrunas and Ricci (2009)], there are significant costs of sparsity and potential
overfitting when using multiple conditions. Once the splitting operations are com-
pleted, we can apply any traditional recommendation algorithms, such as matrix
factorization, to produce item recommendation based on the transformed two-
dimensional rating matrix.

The main challenge is how to find the best context conditions to split the user
or the item. Impurity criteria [Baltrunas and Ricci (2009)] has been used to de-
termine whether and how much the items are rated differently in binary context
conditions. For example, t-test can be applied on two list of ratings associated
with the binary context conditions, such as “Time = Weekday or not”. The p-value
based on the t-test can tell us whether there is a significant difference in the rat-
ings. And the t-value can be used to compare which context condition is the best
split if there are multiple significant split options.

Based on our experience, it is difficult to determine whether item splitting or
user splitting is the best option for a particular domain. We suggest using UISplit-
ting directly which splits users and items at the same time. The risk behind UIS-
plitting is that it may increase the sparsity of the rating matrix since the number
of users and items will be enlarged. A balance between the sparsity and the splits
should be taken into consideration to find the best parameter or the best splitting
approach by given a data set. Furthermore, techniques like matrix factorization
help manage the sparsity problem in certain situations.

October 23, 2018 10:47 ws-rv9x6-9x6 Book Title 11131-05 page 183

Context-Aware Recommendations 183

5.3.2. Contextual Post-Filtering

Compared to the other two categories, contextual post-filtering has not been as
heavily investigated. The idea behind post-filtering is straightforward — the rec-
ommender system produces the predicted ratings or the list of top-N items without
considering contexts using a traditional recommendation algorithm. Next, items
that are irrelevant to the target context are removed, or the recommendation list of
the items is reranked to favor items more appropriate to the target context. Pan-
niello et al. [Panniello et al. (2009)] proposed the first post-filtering method which
can be described by Equation 5.1.

R̂(u, t,c) =

{
R̂(u, t) Pr(u, t,c)≥ p

0 Pr(u, t,c)< p
(5.1)

R̂(u, t,c) refers to the predicted rating for the user u on item t within context
situation c, while R̂(u, t) is the predicted rating without considering contexts by a
traditional recommendation algorithm. They additionally calculate a probability
with which the user will choose a certain type of item in a given context which is
denoted by Pr(u, t,c). This probability is computed as the number of neighbors
(i.e., users similar to u) who purchased or consumed the same item t in contexts
c divided by the number of the total number of neighbors. We set R̂(u, t,c) as
zero if this probability is smaller than a threshold p. In other words, the item
t is not qualified to be recommended. Otherwise, the model will use R̂(u, t) to
represent R̂(u, t,c). We call this method post-filtering based on user neighbor-
hood and denote it by “PoF Ngbr”. The notion of user neighborhood comes from
the neighborhood-based collaborative filtering [Resnick et al. (1994)], where the
neighborhood can be identified by measuring user-user similarities by correspond-
ing metrics, such as cosine similarity or Pearson correlations. This method is only
valid for evaluating the top-N recommendations, since they mark R̂(u, t,c) as zero
if item t is not going to be recommended.

Ramirez et al. [Ramirez-Garcia and Garca-Valdez (2014)] proposed a post-
filtering method by adjusting the predicted ratings. We refer to this method as
“PoF Ad j”. The predicted rating can be obtained by Equation 5.2. R(t,c) denotes
the average value of the ratings that are placed on the item t within context c.
The predicted contextual rating, therefore, is composed by this average rating and
the predicted rating without considering context (i.e., R̂(u, t)). They set a ratio β

(0¡β ¡1) to control the contributions of each part.

R̂(u, t,c) = β × R̂(u, t)+(1−β)×R(t,c) (5.2)

Inspired by these two approaches, Zheng [Zheng (2018)] proposed a new ap-
proach which utilizes the rating deviations between a contextual rating and the

October 23, 2018 10:47 ws-rv9x6-9x6 Book Title 11131-05 page 184

184 Y. Zheng and B. Mobasher

rating without contexts. This rating deviation is used to estimate whether the user
likes a specific item in context c. More specifically, the prediction method can be
described by Equations 5.3 and 5.4.

R̂(u, t,c) =

{
R̂(u, t) Dev(u, t,c)> 0

0 Dev(u, t,c)≤ 0
(5.3)

Dev(u, t,c) =
∑aεN(R(a, t,c)−R(a, t))× sim(a,u)

∑aεN sim(a,u)
(5.4)

Dev(u, t,c) is used to estimate the rating deviation of u’s rating on item t with
and without considering context c. It tells that it is appropriate to recommend the
item t to u in context c if the deviation is positive. Otherwise, we set the predicted
rating as zero to remove this item from the recommendation list. To compute
Dev(u, t,c), we utilize Equation 5.4. N denotes the top-K nearest neighbors for
user u who rated item t in our knowledge base, and user a is a user neighbor in
set N. The function sim(a,u) is used as a weight to aggregate the contributions
by these neighbors. This similarity can be calculated by the popular user-user
similarity metrics, e.g., cosine similarity. R(a, t) denotes neighbor a’s rating on
item t, while R(a, t,c) tells a’s rating on item t in contexts c.

The model by Equation 5.3 is similar to PoF Ngbr as shown in Equation 5.1,
where we set the predicted rating value as zero to remove an inappropriate item
from the recommendation list. From another perspective, we can also use a similar
method in the PoF Ad j model to adjust the predicted ratings. It can be shown in
Equation 5.5. Due to the fact that the value of Dev(u, t,c) could be a positive or
negative one, it implies that we should apply a bonus or penalty to the user u’s
rating on item t if the context information c is taken into account.

R̂(u, t,c) = R̂(u, t)+Dev(u, t,c) (5.5)

As a summary, these post-filtering techniques are simple and straightforward.
They use a traditional recommendation algorithm to produce the predicted rating
without considering contexts (i.e., R̂(u, t)), then try to contextualize this predicted
rating by removing irrelevant items associated with the contexts or adjusting the
predicted rating. Apparently, the key challenge is how to contextualize the pre-
dicted rating or recommendations without considering contexts.

5.3.3. Contextual Modeling

In contextual modeling, contextual factors are directly considered as part of learn-
ing the prediction function. One such approach is based on tensor factorization
(TF) [Karatzoglou et al. (2010); Frolov and Oseledets (2017)]. In TF, each context

October 23, 2018 10:47 ws-rv9x6-9x6 Book Title 11131-05 page 185

Context-Aware Recommendations 185

variable is viewed as an individual dimension in the multidimensional rating space
in addition to the traditional user and item dimensions. TF directly takes advan-
tage of the multidimensional data representation, and it assumes each dimension
is independent from others. There are also other context-dependent recommenda-
tion models which are demonstrated to be more effective and easier to interpret
[Zheng (2017c)]. CARS2 [Shi et al. (2014)] is an approach which learns context
representations. More specifically, it uses a separate representation for users and
items under a specific context to capture the interactions among users, items and
contexts. In this section, we specifically discuss two classes of context-dependent
algorithms: deviation-based contextual modeling and similarity-based contextual
modeling.

5.3.3.1. Deviation-Based Models

The deviation-based contextual modeling is a learning algorithm that attempts to
minimize the squared rating prediction errors by learning the rating deviations
between two contextual situations. Table 5.4 illustrates this concept through an
example.

Table 5.4. Example of Rating Deviations.

Context D1: Time D2: Location
c1 Weekend Home
c2 Weekday Cinema

Dev(Di) 0.5 -0.1

In this example, there are two context dimensions: Time and Location. Each
context situation is constructed by the context conditions in these two variables.
There are two contexts c1:{Weekend, Home} and c2:{Weekday, Cinema}. The
last row in Table 5.4 depicts the rating deviation from c1 to c2 in each context
variable. For example, Dev(D1) represents the rating deviation in the variable
“Time” from c1 to c2. More specifically, it indicates that a user’s rating in weekday
is generally higher than his or her rating at weekend by 0.5. Accordingly, Dev(D2)
is -0.1, which tells that a user’s rating in cinema is generally lower than his or her
rating at home by 0.1.

Therefore, we can predict a user’s rating on a specific item within contexts c2

if we know his or her rating on the same item within contexts c1. For example, if
user u rated item t in context c1 as a four-star, his or her rating on t in context c2

can be simply estimated as the four star plus the aggregated rating deviations in
each context variable. Namely, the predicted rating will be 4.4 (i.e., 4 + 0.5 - 0.1).

October 23, 2018 10:47 ws-rv9x6-9x6 Book Title 11131-05 page 186

186 Y. Zheng and B. Mobasher

Theoretically, we can learn the rating deviations between every pair of context
conditions within the same context variable. However, that approach may intro-
duce sparsity problems if there are many context conditions in a single context
variable. A simple solution to alleviate this problem is to use a single virtual base-
line context to which all other contexts are compared. Take Table 5.5 for example,
we introduce a special context situation c0, where the context conditions in all the
context variables are “N/A” (i.e., not available). The ratings in c0 can be inter-
preted as a user’s ratings on the items without considering contextual situations.

Table 5.5. Example of Rating Deviations.

Context D1: Time D2: Location
c0 N/A N/A
c2 Weekday Cinema

Dev(Di) 0.5 -0.1

Therefore, the predictive function for user’s rating on an item within a context
can be described by Equation 5.6.

F(u, t,c) = P(u, t)+
N

∑
1

Dev(Di,c) (5.6)

where F(u, t,c) is the prediction function to estimate user u’s rating on item t
within context c. P(u, t) is the predicted rating given by u on t without consider-
ing any context situations. Dev(Di,c) tells the rating deviation at the ith context
variable from c0 to c, where N is the number of context dimensions in the data set.

P(u, t), as the predicted rating given by u on t, can be replaced by any pre-
dictive function in the traditional recommendation algorithms. For example, it
could be the prediction function in user-based collaborative filtering, or the func-
tion by matrix factorization. What we are going to learn are the rating deviations
in each context variable from c0 to c, i.e., the rating deviation between two context
conditions in each context variable.

In Equation 5.6, we simply assume the Dev(Di,c) is the same for all the users
and the items. A finer-grained model may assume Dev(Di,c) may vary from users
to users, from items to items. For example, a user-specific model could be de-
scribed by Equation 5.7, where we assign a Dev(Di,c,u) to each user by assum-
ing that different users may have personalized values in Dev(Di,c). According,
an item-specific model can be developed too.

F(u, t,c) = P(u, t)+
N

∑
1

Dev(Di,c,u) (5.7)

The abovementioned framework provides a high-level picture of how the rat-
ing deviations in different contexts can be incorporated into the recommendation

October 23, 2018 10:47 ws-rv9x6-9x6 Book Title 11131-05 page 187

Context-Aware Recommendations 187

model. Context-aware matrix factorization (CAMF) [Baltrunas et al. (2011b)]
is one approach that falls into the category of deviation-based contextual model-
ing approaches. CAMF replaces P(u, t) in the above formula with the predictive
function in matrix factorization, as shown in the Equation 5.8:

r̂uick,1ck,2...ck,L = µ +bu +
L

∑
j=1

Bi jck, j +
−→pu ·−→qi (5.8)

In this model, µ represents the average rating, and bu indicates the user bias
in the rating. Furthermore, −→pu is used to denote a user feature vector, and −→qi the
item feature vector. Assuming that there are L contextual dimensions in total, ck =

{ck,1ck,2...ck,L} a contextual situation, where ck, j denotes the contextual condition
in the jth context dimension. Therefore, Bi jck, j indicates the contextual rating
deviation associated with item i and the contextual condition in the jth dimension.
Deviation-based contextual sparse linear method (CSLIM) [Zheng et al. (2014b)]
is another example which utilizes the prediction function in sparse linear method
[Ning and Karypis (2011)] as the component P(u, t).

5.3.3.2. Similarity-Based Models

Instead of learning ratings deviations across context conditions, similarity-based
contextual modeling tries to learn the similarities between pairs of context situ-
ations. In this setting, the terms “context similarity” or “similarity of contexts”
refer to the similarity of a user’s rating behavior in two contexts.

Table 5.6. Example of Context Similarity.

Context D1: Time D2: Location
c0 N/A N/A
c2 Weekday Cinema

Sim(Di) 0.5 0.1

Table 5.6 gives an example of context similarity. The table is similar to the one
that is used to represent rating deviations in contexts. The last row in Table 5.6
provides the similarity values of the contexts c0 and c2 in each context variable.

The predicted rating or ranking score can be described as:

F(u, t,c) = P(u, t)×Sim(c0,c) (5.9)

Again, any predictive function in the traditional recommender systems can be
used to replace the P(u, t). The challenge becomes how to measure the similarity
between c0 and c.

October 23, 2018 10:47 ws-rv9x6-9x6 Book Title 11131-05 page 188

188 Y. Zheng and B. Mobasher

Zheng et al. [Zheng et al. (2015c,d,b)] proposed three methods to represent
the similarity of contexts. Independent Context Similarity (ICS) assumes the sim-
ilarity between two contexts is the product of the similarities between pairs of
context conditions in each context variable. In this case, the model will learn
the similarity between every two context conditions in the same context variable.
Latent Context Similarity (LCS) is an improved method based on the ICS where
each context condition is represented by a latent vector, and therefore the similar-
ity between two context conditions can be estimated by the dot product of the two
corresponding vectors. LCS is used to alleviate the cold-start context problem in
ICS. Multidimensional Context Similarity (MCS) is the most effective but also the
most complex model. It assigns a weight to each context condition, where a con-
text situation can be viewed as a point in the multidimensional space. As a result,
the dissimilarity of two contexts is represented as the distance between points in
this space. Readers interested in a more detailed description of these approaches
may refer to our previous work [Zheng et al. (2015c,d)].

5.4. Experimentation in CARS: Library, Data and Evaluations

5.4.1. Recommendation Library: CARSKit

In the area of recommender systems, many recommendation algorithms have been
developed. Many of these have been incorporated in to recommendation software
libraries and frameworks such as Mahout3, Duine4, Cofi5, EasyRec6, GraphLab
Create7, LensKit8, LibRec9, MyMediaLite10.

However, until recently no libraries have included implementations of context-
aware recommendation algorithms due to the challenges associated with data for-
mats and usage of contexts in the recommendation algorithms. We developed
CARSKit [Zheng et al. (2015a)] as a tool for facilitating CARS research and to
support recommender system community. It is the 1st open-source Java-based
context-aware recommendation library. The library is hosted on the Github11.

CARSKit provides a flexible architecture so that it is easy to expand the scope
of context-aware recommendation algorithms and provides a framework based on
3Mahout, http://mahout.apache.org/
4Duine, http://www.duineframework.org/
5Cofi, http://www.nongnu.org/cofi/
6EasyRec, http://easyrec.org/
7GraphLab Create, https://dato.com/products/create/
8LensKit, http://lenskit.org/
9LibRec, http://www.librec.net/
10MyMediaLite, http://www.mymedialite.net/
11CARSKit, https://github.com/irecsys/CARSKit

October 23, 2018 10:47 ws-rv9x6-9x6 Book Title 11131-05 page 189

Context-Aware Recommendations 189

Generic Interfaces I Recommender L I lterativeRecommender l:: I ContextRecommender I
I I I

Data Algorithms

Structure Processor Baseline CARS

Sparse Tensor DataDAO Avg CF Ranking (Transformation Adaptation
Sparse Matrix DataSplitter
Dense Matrix Data Transformer GlobalAverage UserKNN BPR ltemSplitting

Independent Dependent

Sparse Vector
... -----+ User Average ltemKNN SLIM UserSplitting CAMF_CI

Dense Vector ltemAverage SlopeOne LRMF UISplitting
TF

CAMF_ICS
TensorEntry ContextAvg BiasedMF RankALS . . .

. . .

CSLIM_CI
MatrixEntry UserltemAverage NMF/PMF RankSGD CSLIM_LCS
Vector Entry UserContextAvg SVD++ . . . FM
. . . ltemContextAvg

.
...

Fig. 5.3. The Architecture and Design in CARSKit.

which new algorithms can be developed in the future. The design of the library is
depicted in the Figure 5.3.

The workflow is straightforward: different recommendation algorithms are
the implementations and extensions of the generic interfaces where the shared
and common functions are defined, such as functions for rating or score predic-
tion in a specific context. Evaluation metrics for rating predictions and top-N
recommendations are embedded into the Recommender.

Due to the special characteristics of the data format and processing methods in
CARS, there were several challenges in the design of the library. The key features
in CARSKit are described below.

5.4.1.1. Data Transformer

Before discussing data structures, we introduce the data transformer component in
CARSKit. Usually, the contextual rating data can be stored in two formats: loose
format and compact format, as shown in tables below. The loose format assumes
that there is only one rating for each <user, item> pair in associated contexts,
where the compact format allows to store multiple ratings to a same <user, item>

pair in different contextual situations. Take the example shown in the two tables
illustrating formats. The first two rows in loose format actually represent a single
rating by U1 for T1 within contexts {Weekend, Work}. In the compact format,
each row represents a single contextual rating profile, that is, there are only two
contextual rating profiles in the loose format but four rating profiles in the compact
format in this example.

Most contextual information is in the form of categorical data. In this case,
both the loose and compact formats will increase storage and computational
costs. In CARSKit, we store contextual ratings in binary format as shown in

October 23, 2018 10:47 ws-rv9x6-9x6 Book Title 11131-05 page 190

190 Y. Zheng and B. Mobasher

Table 5.7. Loose Format.
UserID ItemID Rating Context Condition

U1 T1 3 Time Weekend
U1 T1 3 Location Work
U2 T2 4 Time Weekday
U2 T2 4 Location Home

Table 5.8. Compact Format.

UserID ItemID Rating Time Location
U1 T1 3 Weekend Work
U2 T2 4 Weekday Home
U1 T1 4 Weekend Home
U2 T2 2 Weekday Work

Table 5.9. Binary Format.

UserID ItemID Rating Time:Weekend Time:Weekday Location:Home Location:Work
U1 T1 3 1 0 0 1
U2 T2 4 0 1 1 0
U1 T1 4 1 0 1 0
U2 T2 2 0 1 0 1

Table 5.9, which is able to significantly boost the running performance. To assist
the end users to prepare the rating data, we provide two methods Transforma-
tionFromLooseToBinary and TransformationFromCompactToBinary as the data
transformer in our toolkit.

5.4.1.2. Data Structures

Since contexts are considered additional inputs beyond users and items, the data
structure becomes the most important part and has a direct impact on the flexibility
and running performance of the models.

There are two factors involved in designing the data structure: data storage
and data operations. Intuitively, the context-aware data can be represented in N-
dimensional space as tensors where each context dimension is considered as an
individual dimension in the rating space. In this case, we build SparseTensor and
TensorEntry to record the indices of each user, item, context dimension, and the
associated rating. This structure is useful for the context-aware recommendation
algorithms using N-dimensional operations, such as the multiverse recommenda-
tion algorithm described in [Karatzoglou et al. (2010)].

There are also other contextual recommendation algorithms that consider the
dependencies between contexts and user/item dimensions, where two-dimensional

October 23, 2018 10:47 ws-rv9x6-9x6 Book Title 11131-05 page 191

Context-Aware Recommendations 191

operation is still the most frequent one adopted in those algorithms. In such cases,
the modules such as SparseMatrix and SparseVector can be useful. They well-
recognized and efficient data representations in existing recommendation libraries,
such as LensKit and LibRec. SparseMatrix uses the compressed row and column
storage12 which was also demonstrated to boost the running efficiency in the de-
sign of LibRec [Guo et al. (2015)].

5.4.1.3. Recommendation Algorithms

As mentioned before, CARSKit is the 1st library specifically designed for CARS.
As shown in Figure 5.3, we divide the contextual algorithms into two categories:
transformation algorithms and adaptation algorithms.

The transformation algorithms try to pre-process the data and convert the con-
textual data set to a 2-dimensional rating matrix which only contains users, items
and ratings, so that any traditional recommendation algorithms can be applied to.
One of the most effective classes of techniques falling into this category is the
context-aware splitting approaches [Zheng et al. (2014a)].

The adaptation algorithms directly incorporate contexts into the prediction
function. There are two subcategories: independent modeling (e.g., TF [Karat-
zoglou et al. (2010)]) which assumes contexts are independent with users (and
items); and dependent modeling which exploits the dependencies among users,
items and contexts, such as CAMF [Baltrunas et al. (2011b)] and contextual
sparse linear method (CSLIM) [Zheng et al. (2014b,c)]. Dependent modeling
can be built in two ways: by modeling contextual rating deviations [Baltrunas
et al. (2011b); Zheng et al. (2014c)] and by learning context similarities [Zheng
et al. (2015c,d)]. Factorization machines (FM) [Rendle et al. (2011)] is a finer-
grained algorithm which exploits pairwise relationships in its learning process.
Among those algorithms, TF and CAMF are two popular ones which have been
recognized as the standard baselines in CARS.

In addition to those state-of-the-art contextual recommendation algorithms,
we also included some traditional recommendation algorithms in the package
baseline. We did not re-compile those algorithms and directly reuse the classi-
cal recommenders provided by LibRec. There are two main purposes to include
those traditional recommendation algorithms — on one hand, those algorithms
can be applied after the data transformation (e.g., splitting operations), which is
an essential step in the context-aware transformation algorithms. On the other
hand, it is usually common to compete a contextual recommendation algorithm
with non-contextual algorithms to judge whether the contextual effect is signifi-
cant, or a context-aware recommendation algorithm is necessary or not.
12Sparse Matrix Storage, http://netlib.org/linalg/html templates/node90.html

October 23, 2018 10:47 ws-rv9x6-9x6 Book Title 11131-05 page 192

192 Y. Zheng and B. Mobasher

5.4.1.4. Configuration and Evaluations

For evaluation purpose, we provide DataSplitter which enables the users to adopt
either train-testing evaluation or the N-folds cross validations.

Most of the recommendation algorithms embedded in CARSKit are able to
perform two recommendation tasks: rating prediction and item recommendation,
except those specifically designed for top-N recommendation, such as CSLIM.
But the evaluation is different from traditional approaches since contexts are ad-
ditional inputs in the evaluation process. Typically, the rating prediction can be
evaluated by different prediction errors, such as mean absolute error (MAE), root
mean square error (RMSE) and mean prediction error (MPE). The item recom-
mendation can be evaluated through relevance metrics, such as precision and re-
call, and ranking metrics, such as mean average precision (MAP), normalized
discounted cumulative gain (NDCG) and mean reciprocal rank (MMR).

Moreover, CARSKit provides flexible configurations by a single file which in-
cludes both algorithm configuration (e.g., algorithm parameters) and experimen-
tal configuration, e.g., input and output, evaluation strategy and metrics, etc. For
more details about the configurations, please visit the Github page of CARSKit to
review the latest manual published on the page.

5.4.2. Context-Aware Data

Context-aware recommendation is still an emerging area of research. Thus, the
number of context-aware data sets available for research is limited due to the diffi-
culty of context collections as well as the potential risks to user privacy. The data
sets used in this research are described by Table 5.10.

Table 5.10. List of Available Context-aware Data Sets.
Food Restaurant AdomMovie CoMoDa Music STS Frappe

of users 212 50 116 121 42 325 957
of items 20 40 226 1232 139 249 4082

of context dimensions 2 2 4 8 5 11 3
of context conditions 8 7 23 37 21 53 14

Rating Type and Scale
Rating
(1 - 5)

Rating
(1 - 5)

Rating
(1 - 13)

Rating
(1 - 5)

Rating
(1 - 5)

Rating
(1 - 5)

Logged Frequency
(0 - 4.46)

of ratings 6360 2309 1717 2292 3251 2354 87580
Density (i, c) 75% 71.4% 36.2% 26.2% 42.1% 10.2% 31.3%

More details about these data sets are provided below.

• The Food data [Ono et al. (2009)] was collected from surveys and
it includes subjects’ ratings on the Japan food menus in two contex-
tual dimensions: degree of hungriness in real situations, and degree of

October 23, 2018 10:47 ws-rv9x6-9x6 Book Title 11131-05 page 193

Context-Aware Recommendations 193

hungriness in assumed or imagined situations. Typical context condi-
tions in these two dimensions are full, hungry, normal. There are 212
subjects, and every subject gave 30 ratings on their selected 5 food menus
in 6 different contextual situations. Generally, this is a good data set for
exploring contextual preferences, since each user gave multiple ratings
on a same item in different contexts.
• The Restaurant data [Ramirez-Garcia and Garca-Valdez (2014)] is also

a data set collected from survey. Subjects gave ratings to the popular
restaurants in Tijuana, Mexico by considering two contextual variables:
time and location.
• The Adom data [Adomavicius et al. (2005b)] could be the earliest avail-

able context-aware movie data set. Subjects were asked to leave ratings
on movies in different situations: time, location and companion. This
data set is very sparse in ratings and very few users rated the same movie
for multiple times in different contexts, so contextual effect may be very
weak or difficult to be captured in this data set.
• The CoMoDa data [Košir et al. (2011)] is a publicly available context-

aware movie data collected from surveys. There are 12 context dimen-
sions which captured users’ various situations, including mood, weather,
time, location, companion, etc.
• The South Tyrol Suggests (STS) data [Braunhofer et al. (2013)] was col-

lected from a mobile app which provides context-aware suggestions for
attractions, events, public services, restaurants, and much more for South
Tyrol. There are 14 contextual dimensions in total, such as budget, com-
panion, daytime, mood, season, weather, etc.
• The Music data [Baltrunas et al. (2011a)] was collected from InCarMu-

sic which is a mobile application (Android) offering music recommen-
dations to the passengers of a car. Users are requested to enter ratings for
some items using a web application. Here is the list of contextual vari-
ables included in the data: driving style, road type, landscape, sleepiness,
traffic conditions, mood, weather, natural phenomena.
• The Frappe data [Baltrunas et al. (2015)] comes from the mobile usage

in the app named as Frappe which is a context-aware app discovery tool
that will recommend the right apps for the right moment. We used 3
context dimensions for experimental evaluations, including time of the
day, day of the week and location. This data captures the frequencies of
an app used by each user within 2 months.

October 23, 2018 10:47 ws-rv9x6-9x6 Book Title 11131-05 page 194

194 Y. Zheng and B. Mobasher

All of the context-aware data sets listed above are real-world data, most of
which were collected from surveys. The music, STS, and Frappe data sets were
obtained from the real-usage data. A problem with survey data is that biases may
be included from subjective opinions. On the other hand, there is only limited
context information in real-world usage data. But survey data is able to collect
user’s tastes in more context situations which are difficult to collect from practice,
such as emotional states. You can find most of these data sets available at the
CARSKit repository on the Github13.

5.4.3. Evaluation Protocols

The quality of context-aware recommendations can be evaluated similarly as in
the traditional recommender systems — by rating prediction or top-N recommen-
dations. Due to the fact that context information will be utilized as parts of the
inputs to the system, the evaluation metrics may be calculated in a different way.

The task in rating prediction evaluations is relatively easy and straightforward
— given a user and one item, along with the specific contextual situations where
the user is going to consume or enjoy the item, the system will predict the rating
for the tuple <user, item, contexts>. Afterwards, traditional evaluation metrics in
the rating prediction task, such as mean absolute error (MAE), root mean squared
error (RMSE), or mean squared error (MSE), can be produced in the same way.
The example of MAE can be shown as follows.

MAE =
1
|T | ∑

(a,t)εT
abs(Pa,t,c−Ra,t,c) (5.10)

T represents the test set, where |T | denotes the total number of ratings in the
test set. Ra,t,c is the actual rating given by user a on item t within contexts c.
(a, t,c) is the <user, item, contexts> tuple in the test set. Pa,t,c is the predicted
rating by the context-aware recommendation model. The “abs” function is able to
return the absolute value of the prediction error.

When it comes to the top-N recommendation task, we can still use the rele-
vance metrics (such as precision and recall) and ranking metrics (such as Mean
Reciprocal Rank (MRR) and Normalized Discounted Cumulative Gain (NDCG))
as the evaluation protocols. However, the calculation should be different since
we are recommending a list of items to a user within a given contextual situation.
Take precision at 10 for example, we produce a ranked list of top-10 items that
user a may like in the context c. Precision measures what is the ratio of the rel-
evant items in these ten recommendations. The ground truth should be the items
13Context-aware Data Sets, https://github.com/irecsys/CARSKit/tree/master/context-aware data sets

October 23, 2018 10:47 ws-rv9x6-9x6 Book Title 11131-05 page 195

Context-Aware Recommendations 195

user a likes within the same context c in the test set. Therefore, precision should
be computed as the average of precision values over all of the <user, contexts>
pairs in the test set.

In the CARSKit library, we further group the <user, contexts> pairs by each
unique user, calculate the precision by each user and finally obtain the average
value as the result for precision. This operation allows us to compare precision
values based on user-basis. Accordingly, other top-N evaluation metrics, such as
recall, MRR, NDCG, can be adjusted in a similar way.

5.5. Discussion

5.5.1. Lessons Learnt

Based on our practical experience in the area of context-aware recommendation,
we would like to share some lessons we learnt.

• We believe the process of context selection is important and necessary.
When there are many context dimensions or conditions, sparsity becomes
a problem and the computational costs, not to mention that irrelevant
contexts may negatively affect recommendation performance.
• Contextual pre-filtering techniques may work well in smaller datasets.

However, one cannot generalize the results since the sparsity of contex-
tual ratings may introduce biases into the recommendation models. It is
highly recommended that the context-aware recommendation algorithms
should be evaluated over larger and denser data sets if possible.
• There are different CARS algorithms which can be built upon the

neighborhood-based collaborative filtering approaches, the matrix fac-
torization techniques, or the sparse linear methods. Those based on
neighborhood-based collaborative filtering may consume a lot of mem-
ory and spend more time to produce recommendations due to the expen-
sive process of the similarity calculations. In contrast to the algorithms
based on the matrix factorization, fewer learning iterations may be re-
quired for the SLIM-based recommendation approaches, but they are
sensitive to the algorithm parameters, such as the initial values, learn-
ing rates, etc. It may take a while to find the optimal parameters for these
algorithms. Context-aware recommendation algorithms based on matrix
factorization may not be the best choice in terms of recommendation ac-
curacy, but they are easily implemented and extended, and it is also easy
to tune up the learning parameters. That is also the reason why we use

October 23, 2018 10:47 ws-rv9x6-9x6 Book Title 11131-05 page 196

196 Y. Zheng and B. Mobasher

matrix factorization based context-aware recommendation algorithms on
the case studies in this chapter.
• Last but not least, A/B testing or user studies could be the best way to

evaluate different context-aware recommendation models. The process
of decision making in specific contexts could be very subjective. It is not
guaranteed that one algorithm that has a good offline performance will
also perform well in real setting. It is always suggested to use A/B tests
or user studies before reaching final conclusions.

5.5.2. Open Issues

We believe that there are several aspects of context-aware recommendation that
are worth exploring as future research.

• User-Centric Evaluations
Most CARS research has focused on simulation-based evaluation of rec-
ommendation effectiveness. However, we believe it is important to con-
duct user studies and A/B tests to evaluate how different context-aware
recommendation algorithms perform in real practice. We expect to build
real-world applications and examine the corresponding algorithms based
on user-centric evaluations in our future work.
• Post-filtering Recommendation Algorithms

There is very limited research on contextual post-filtering algorithms.
One of the reasons is the data sparsity problem which may result in
bad performance in post-filtering. In our experimental evaluations, we
found that SLIM works well in the top-N recommendation, even if it
does not take contexts into consideration. We expect to fuse contextual
post-filtering with the recommendations produced by SLIM to improve
context-aware recommendations.
• Deep Learning for CARS

The popular deep learning techniques have been incorporated into the
area of recommender systems in Chapter 3, but there are few of applica-
tions in CARS.
• Sparsity and Cold-start Problems in Chapter 8

The sparsity problem is always a challenge in context-aware recommen-
dation. Braunhofer et al. [Braunhofer (2014); Braunhofer et al. (2014)]
have explored hybrid methods as one of solutions. We believe there
is still a long way to go on dealing with sparsity problems in context-
aware recommendations. For example, we may utilize cross-domain

October 23, 2018 10:47 ws-rv9x6-9x6 Book Title 11131-05 page 197

Context-Aware Recommendations 197

knowledge to alleviate the sparsity problems. A “domain” can be a dif-
ferent or related application domain, or another context, or information
extracted from different devices.
• Numeric v.s. Categorical Contexts

In current development of CARS, we mainly use categorical context in-
formation, but ignore the real valued contextual variables. In the ear-
lier development of time-aware recommender systems, the usage of time
information was based on discrete time information, such as time in sec-
onds, weeks or years. By contrast, we segment this information to differ-
ent categories (e.g., morning, evening, weekend, weekday). It is worth
exploring the combination of numerical and categorical representations
of time information in time-aware recommender systems. Moreover,
other contextual variables may also be represented with real numbers,
such as temperature, degree of happiness or other emotional status, and
so forth. Dealing with these numerical variables in addition to segment-
ing them into different categories is still an area of investigation.
• Context Suggestions

Both traditional recommender systems and CARS produce item recom-
mendations, while the context-awareness may bring new recommen-
dation opportunities, such as context suggestion. Context suggestion
[Baltrunas et al. (2010); Zheng (2015a); Zheng et al. (2016); Zheng
(2017b,a)] aims to recommend appropriate context situations to users in
order for them to better consume or enjoy the items. Not only appropri-
ate item recommendations but also the suitable contexts can guarantee
good user experience in the real-world applications.
• Recommendation Explanations by Contexts

Recommendation explanation is always an important problem in recom-
mender systems research. It helps us to better understand the recom-
mendations and help end users trust the recommendations and be more
engaged. Many types of new recommender systems try to provide users
with recommendation explanations. For example, Netflix found that tak-
ing social connections into account in their movie recommender systems
may not have an effect unless the system explicitly explains them [Ama-
triain and Basilico (2015)]. Accordingly, we believe contexts also plays
an important role in recommendation explanations [Zheng (2017d)] and
we will explore it in future work.
• Privacy in CARS

There are multiple privacy concerns in the recommender systems, such
as user privacy and RecSys privacy, as mentioned in Chapter 13. Context

October 23, 2018 10:47 ws-rv9x6-9x6 Book Title 11131-05 page 198

198 Y. Zheng and B. Mobasher

privacy is another concern, e.g., whether and how should we utilize user
locations, and so forth.
• New User Interfaces and Interactions

Both academia and industry have realized the importance of context in
the recommendation process. To design better context-aware recom-
mender systems or use context for recommendation explanation, it is im-
portant to develop new user interfaces and new ways for users to interact
with the application in different contexts.

References

Abowd, G. D., Dey, A. K., Brown, P. J., Davies, N., Smith, M. and Steggles, P. (1999).
Towards a better understanding of context and context-awareness, in Handheld and
ubiquitous computing, pp. 304–307.

Adomavicius, G., Mobasher, B., Ricci, F. and Tuzhilin, A. (2011). Context-aware recom-
mender systems, AI Magazine 32, 3, pp. 67–80.

Adomavicius, G., Sankaranarayanan, R., Sen, S. and Tuzhilin, A. (2005a). Incorporating
contextual information in recommender systems using a multidimensional approach,
ACM Transactions on Information Systems (TOIS) 23, 1, pp. 103–145.

Adomavicius, G., Sankaranarayanan, R., Sen, S. and Tuzhilin, A. (2005b). Incorporating
contextual information in recommender systems using a multidimensional approach,
ACM Transactions on Information Systems (TOIS) 23, 1, pp. 103–145.

Adomavicius, G. and Tuzhilin, A. (2011). Context-aware recommender systems, in Rec-
ommender systems handbook (Springer), pp. 217–253.

Amatriain, X. and Basilico, J. (2015). Recommender systems in industry: A netflix case
study, in Recommender Systems Handbook (Springer), pp. 385–419.

Asoh, H., Motomura, Y. and Ono, C. (2010). An analysis of differences between prefer-
ences in real and supposed contexts, in ACM RecSys’ 10, Proceedings of the 2nd
International Workshop on Context-Aware Recommender Systems.

Bai, J., Nie, J.-Y., Cao, G. and Bouchard, H. (2007). Using query contexts in information
retrieval, in Proceedings of the 30th annual international ACM SIGIR conference on
Research and development in information retrieval (ACM), pp. 15–22.

Baltrunas, L. and Amatriain, X. (2009). Towards time-dependant recommendation based
on implicit feedback, in ACM RecSys, the 4th Workshop on Context-Aware Recom-
mender Systems.

Baltrunas, L., Church, K., Karatzoglou, A. and Oliver, N. (2015). Frappe: Understand-
ing the usage and perception of mobile app recommendations in-the-wild, CoRR
abs/1505.03014, http://arxiv.org/abs/1505.03014.

Baltrunas, L., Kaminskas, M., Ludwig, B., Moling, O., Ricci, F., Aydin, A., Lüke, K.-H.
and Schwaiger, R. (2011a). Incarmusic: Context-aware music recommendations in
a car, in E-Commerce and Web Technologies (Springer), pp. 89–100.

Baltrunas, L., Kaminskas, M., Ricci, F., Rokach, L., Shapira, B. and Luke, K.-H. (2010).
Best usage context prediction for music tracks, in Proceedings of the 2nd Workshop
on Context Aware Recommender Systems.

October 23, 2018 10:47 ws-rv9x6-9x6 Book Title 11131-05 page 199

Context-Aware Recommendations 199

Baltrunas, L., Ludwig, B., Peer, S. and Ricci, F. (2012). Context relevance assessment and
exploitation in mobile recommender systems, Personal and Ubiquitous Computing
16, 5, pp. 507–526.

Baltrunas, L., Ludwig, B. and Ricci, F. (2011b). Matrix factorization techniques for con-
text aware recommendation, in Proceedings of the fifth ACM conference on Recom-
mender systems (ACM), pp. 301–304.

Baltrunas, L. and Ricci, F. (2009). Context-based splitting of item ratings in collaborative
filtering, in Proceedings of ACM conference on Recommender systems, pp. 245–248.

Baltrunas, L. and Ricci, F. (2014). Experimental evaluation of context-dependent collab-
orative filtering using item splitting, User Modeling and User-Adapted Interaction
24, 1-2, pp. 7–34.

Bartlett, J. C. and Santrock, J. (1979). Affect-depedent episodic memory in young children,
Child Development 5, pp. 513–518.

Belkin, N., Muresan, G. and Zhang, X. (2004). Using users context for ir personalization,
in Proceedings of the ACM/SIGIR Workshop on Information Retrieval in Context
(Citeseer).

Braunhofer, M. (2014). Hybrid solution of the cold-start problem in context-aware rec-
ommender systems, in User Modeling, Adaptation, and Personalization (Springer),
pp. 484–489.

Braunhofer, M., Codina, V. and Ricci, F. (2014). Switching hybrid for cold-starting context-
aware recommender systems, in Proceedings of the 8th ACM Conference on Recom-
mender systems (ACM), pp. 349–352.

Braunhofer, M., Elahi, M., Ricci, F. and Schievenin, T. (2013). Context-aware points of in-
terest suggestion with dynamic weather data management, in Information and Com-
munication Technologies in Tourism 2014 (Springer), pp. 87–100.

Brown, P. J. and Jones, G. J. (2001). Context-aware retrieval: Exploring a new environ-
ment for information retrieval and information filtering, Personal and Ubiquitous
Computing 5, 4, pp. 253–263.

Burke, R. (2002). Hybrid recommender systems: Survey and experiments, User Modeling
and User-Adapted Interaction 12, 4, pp. 331–370.

Campos, P. G., Dı́ez, F. and Cantador, I. (2014). Time-aware recommender systems: a
comprehensive survey and analysis of existing evaluation protocols, User Modeling
and User-Adapted Interaction 24, 1-2, pp. 67–119.

Codina, V., Ricci, F. and Ceccaroni, L. (2013). Exploiting the semantic similarity of con-
textual situations for pre-filtering recommendation, in User Modeling, Adaptation,
and Personalization (Springer), pp. 165–177.

Codina, V., Ricci, F. and Ceccaroni, L. (2015). Distributional semantic pre-filtering in
context-aware recommender systems, User Modeling and User-Adapted Interaction,
pp. 1–32.

Domingues, M. A., Jorge, A. M. and Soares, C. (2011). Using contextual information as
virtual items on top-n recommender systems, arXiv preprint arXiv:1111.2948.

Dourish, P. (2004). What do we talk about when we talk about context, Personal and Ubiq-
uitous Computing 8, 1, pp. 19–30.

Frolov, E. and Oseledets, I. (2017). Tensor methods and recommender systems, Wiley In-
terdisciplinary Reviews: Data Mining and Knowledge Discovery 7, 3.

October 23, 2018 10:47 ws-rv9x6-9x6 Book Title 11131-05 page 200

200 Y. Zheng and B. Mobasher

Guo, G., Zhang, J., Sun, Z. and Yorke-Smith, N. (2015). Librec: A java library for rec-
ommender systems, in Posters, Demos, Late-breaking Results and Workshop Pro-
ceedings of the 23rd International Conference on User Modeling, Adaptation and
Personalization.

Hariri, N., Mobasher, B. and Burke, R. (2015). Adapting to user preference changes in
interactive recommendation, in IJCAI, Vol. 15, pp. 4268–4274.

Herlocker, J. L., Konstan, J. A. and Riedl, J. (2000). Explaining collaborative filtering rec-
ommendations, in Proceedings of the 2000 ACM conference on Computer supported
cooperative work (ACM), pp. 241–250.

Hosseinzadeh Aghdam, M., Hariri, N., Mobasher, B. and Burke, R. (2015). Adapting rec-
ommendations to contextual changes using hierarchical hidden markov models, in
Proceedings of the 9th ACM Conference on Recommender Systems (ACM), pp. 241–
244.

Karatzoglou, A., Amatriain, X., Baltrunas, L. and Oliver, N. (2010). Multiverse recommen-
dation: n-dimensional tensor factorization for context-aware collaborative filtering,
in Proceedings of the fourth ACM conference on Recommender systems (ACM),
pp. 79–86.

Koren, Y. (2010). Collaborative filtering with temporal dynamics, Communications of the
ACM 53, 4, pp. 89–97.

Koren, Y., Bell, R. and Volinsky, C. (2009). Matrix factorization techniques for recom-
mender systems, IEEE Computer 42, 8, pp. 30–37.

Košir, A., Odic, A., Kunaver, M., Tkalcic, M. and Tasic, J. F. (2011). Database for contex-
tual personalization, ELEKTROTEHNISKI VESTNIK 78, 5, pp. 270–274.

Leech, G. (1981). Semantics: The Study of Meaning, 2nd edn. (Penguin).
Lops, P., De Gemmis, M. and Semeraro, G. (2011). Content-based recommender systems:

State of the art and trends, in Recommender systems handbook (Springer), pp. 73–
105.

Ning, X. and Karypis, G. (2011). SLIM: Sparse linear methods for top-n recommender sys-
tems, in 2011 IEEE 11th International Conference on Data Mining (IEEE), pp. 497–
506.

Odic, A., Tkalcic, M., Tasic, J. F. and Košir, A. (2012). Relevant context in a movie recom-
mender system: Users opinion vs. statistical detection, in ACM RecSys’ 12, Proceed-
ings of the 4th International Workshop on Context-Aware Recommender Systems.

Ono, C., Takishima, Y., Motomura, Y. and Asoh, H. (2009). Context-aware preference
model based on a study of difference between real and supposed situation data,
pp. 102–113.

Panniello, U., Tuzhilin, A., Gorgoglione, M., Palmisano, C. and Pedone, A. (2009). Ex-
perimental comparison of pre-vs. post-filtering approaches in context-aware rec-
ommender systems, in Proceedings of the third ACM conference on Recommender
systems (ACM), pp. 265–268.

Ramirez-Garcia, X. and Garca-Valdez, M. (2014). Post-filtering for a restaurant context-
aware recommender system, in Recent Advances on Hybrid Approaches for Design-
ing Intelligent Systems, Vol. 547 (Springer), ISBN 978-3-319-05169-7, pp. 695–707.

Rendle, S., Gantner, Z., Freudenthaler, C. and Schmidt-Thieme, L. (2011). Fast context-
aware recommendations with factorization machines, in Proceedings of the 34th
international ACM SIGIR conference on Research and development in Information
Retrieval (ACM), pp. 635–644.

October 23, 2018 10:47 ws-rv9x6-9x6 Book Title 11131-05 page 201

Context-Aware Recommendations 201

Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P. and Riedl, J. (1994). Grouplens: an
open architecture for collaborative filtering of netnews, in Proceedings of the 1994
ACM conference on Computer supported cooperative work (ACM), pp. 175–186.

Said, A., De Luca, E. W. and Albayrak, S. (2011). Inferring contextual user profiles – im-
proving recommender performance, in ACM RecSys, the 4th Workshop on Context-
Aware Recommender Systems.

Shi, Y., Karatzoglou, A., Baltrunas, L., Larson, M. and Hanjalic, A. (2014). Cars2: Learn-
ing context-aware representations for context-aware recommendations, in Proceed-
ings of the 23rd ACM International Conference on Conference on Information and
Knowledge Management (ACM), pp. 291–300.

Smith, S. M. (1979). Remembering in and out of context, Journal of Experimental Psy-
chology: Human Learning and Memory 5, pp. 460–471.

Van Setten, M., Pokraev, S. and Koolwaaij, J. (2004). Context-aware recommendations
in the mobile tourist application COMPASS, in Adaptive hypermedia and adaptive
web-based systems (Springer), pp. 235–244.

Zheng, Y. (2015a). Context suggestion: Solutions and challenges, in Proceedings of the
15th IEEE International Conference on Data Mining Workshops (IEEE), pp. 1602–
1603.

Zheng, Y. (2015b). A revisit to the identification of contexts in recommender systems, in
Proceedings of the 20th ACM Conference on Intelligent User Interfaces Companion
(ACM), pp. 133–136, doi:10.1145/2732158.2732167.

Zheng, Y. (2017a). Context suggestion: empirical evaluations vs user studies, in Proceed-
ings of the International Conference on Web Intelligence (ACM), pp. 753–760.

Zheng, Y. (2017b). Indirect context suggestion, in Proceedings of the 25th Conference on
User Modeling, Adaptation and Personalization (ACM), pp. 399–400.

Zheng, Y. (2017c). Interpreting contextual effects by contextual modeling in recommender
systems, in CIKM’ 17, Proceedings of the Workshop on Interpretable Data Mining
(IDM) Bridging the Gap between Shallow and Deep Models (ACM).

Zheng, Y. (2017d). Interpreting contextual effects by contextual modeling in recommender
systems, arXiv preprint arXiv:1710.08516.

Zheng, Y. (2018). Context-aware mobile recommendations by a novel post-filtering ap-
proach, in The 31st International Florida Artificial Intelligence Research Society
Conference.

Zheng, Y., Burke, R. and Mobasher, B. (2012). Differential context relaxation for context-
aware travel recommendation, in E-Commerce and Web Technologies, Lecture Notes
in Business Information Processing (Springer Berlin Heidelberg), pp. 88–99.

Zheng, Y., Burke, R. and Mobasher, B. (2013a). Recommendation with differential context
weighting, in User Modeling, Adaptation, and Personalization, Lecture Notes in
Computer Science (Springer Berlin Heidelberg), pp. 152–164.

Zheng, Y., Burke, R. and Mobasher, B. (2013b). The role of emotions in context-aware rec-
ommendation, in ACM RecSys’ 13, Proceedings of the 3rd International Workshop
on Human Decision Making in Recommender Systems (ACM), pp. 21–28.

Zheng, Y., Burke, R. and Mobasher, B. (2014a). Splitting approaches for context-aware
recommendation: An empirical study, in Proceedings of the 29th Annual ACM Sym-
posium on Applied Computing (ACM), pp. 274–279.

October 23, 2018 10:47 ws-rv9x6-9x6 Book Title 11131-05 page 202

202 Y. Zheng and B. Mobasher

Zheng, Y., Mobasher, B. and Burke, R. (2014b). CSLIM: Contextual SLIM recommenda-
tion algorithms, in Proceedings of the 8th ACM Conference on Recommender Sys-
tems (ACM), pp. 301–304, doi:10.1145/2645710.2645756.

Zheng, Y., Mobasher, B. and Burke, R. (2014c). Deviation-based contextual SLIM recom-
menders, in Proceedings of the 23rd ACM Conference on Information and Knowl-
edge Management (ACM), pp. 271–280, doi:10.1145/2661829.2661987.

Zheng, Y., Mobasher, B. and Burke, R. (2015a). CARSKit: A java-based context-aware
recommendation engine, in Proceedings of the 15th IEEE International Conference
on Data Mining Workshops (IEEE).

Zheng, Y., Mobasher, B. and Burke, R. (2015b). Incorporating context correlation into
context-aware matrix factorization, in Proceedings of the 2015 International Con-
ference on Constraints and Preferences for Configuration and Recommendation
and Intelligent Techniques for Web Personalization-Volume 1440 (CEUR-WS.org),
pp. 21–27.

Zheng, Y., Mobasher, B. and Burke, R. (2015c). Integrating context similarity with sparse
linear recommendation model, in User Modeling, Adaptation, and Personalization,
Lecture Notes in Computer Science, Vol. 9146 (Springer Berlin Heidelberg), ISBN
978-3-319-20266-2, pp. 370–376, doi:10.1007/978-3-319-20267-933.

Zheng, Y., Mobasher, B. and Burke, R. (2015d). Similarity-based context-aware recom-
mendation, in Web Information Systems Engineering, Lecture Notes in Computer
Science (Springer Berlin Heidelberg).

Zheng, Y., Mobasher, B. and Burke, R. (2016). User-oriented context suggestion, in Pro-
ceedings of the 24th ACM Conference on User Modeling, Adaptation, and Person-
alization (ACM).

October 23, 2018 10:58 ws-rv9x6-9x6 Book Title 11131-06 page 203

Chapter 6

Group Recommendations

Ludovico Borattoa and Alexander Felfernigb

aEurecat, Centre Tecnológic de Catalunya,
aGraz University of Technology

Email: ludovico.boratto@acm.org, alexander.felfernig@ist.tugraz.at

Group recommender systems have been developed to produce sugges-
tions in contexts in which more than one person is involved in the rec-
ommendation process. As it happens with the systems that produce
recommendation for single users, collaborative algorithms have been em-
ployed for most of the group-based solutions presented in the literature.
Producing group recommendations, however, is not trivial and a system
has to deal with additional aspects, such as the combination of the indi-
vidual preferences into group preferences, or the prediction of the ratings
straight for a group. In this chapter, we explore collaborative group rec-
ommender systems, analyzing the different families of approaches and
architectural solutions available to build them, the algorithms that can
be developed to produce the recommendations, the existing solutions in
the literature, and the current open challenges in this area.

6.1. Introduction

While recommender systems suggest items that single users might like,

group recommender systems are designed to provide suggestions in scenar-

ios where a group of users is engaged [Jameson and Smyth (2007); Felfernig

et al. (2018b)]. Group recommendation can be naturally adopted in appli-

cation scenarios that involve groups (e.g., suggest a restaurant to a group

of people who want to dine together).

Group recommendation has been highlighted as a challenging research

area, with the first survey on the topic [Jameson and Smyth (2007)] being

placed in the Challenges section of the widely-known book “The Adaptive

Web”, and research indicating it as a future direction in recommender sys-

tems, since it presents numerous open issues and challenges [Ricci (2014)].

203

October 23, 2018 10:58 ws-rv9x6-9x6 Book Title 11131-06 page 204

204 L. Boratto and A. Felfernig

Indeed, with respect to classic recommender systems, those that operate

with groups present several additional aspects that characterize them and

cannot be dealt with recommender systems for single users. Examples of

these challenging aspects are the following:

(1) Preference acquisition. A group recommender system might acquire

the preferences by considering only those expressed by the individual

group members, or by allowing the groups to express them. It is also

known that the interactions between the members of a group can help

refining the individual preferences [Delic et al. (2016)].

(2) Group building. At the moment, no public dataset that contains both

the groups’ structure and the individual preferences exists, so there is

a need to detect and/or synthesize groups that have the same charac-

teristics of those handled by the system.

(3) Group modeling is the process adopted to combine the individual pref-

erences in a unique model that represents the group.

(4) Rating prediction is the most characterizing aspect in all the types of

recommender systems, and also plays an important role when working

with groups, since the ratings might be predicted for single users or

specifically for groups.

(5) Help group members to achieve consensus. This task is adopted in order

to find an agreement on what should be proposed to the group.

(6) Explanation of the recommendations, i.e., the task performed by some

of the systems to justify why an item has been suggested to the group.

To this day, 300+ research papers can be counted in the literature on

this topic. As for single user recommender systems, also the vast major-

ity of the research on group-based ones has been devoted to collaborative

algorithms1, exploring both memory-based and model-based algorithms

previously presented in Chapter 1. Hence, in this chapter we focus on

collaborative group recommender systems. In particular, we will consider

the architectural and algorithmic solutions that can be employed to build

these systems, thus focusing on the second, third, and fourth aspect of

the previous list (i.e., group building, group modeling, and rating prediction

tasks). While preference acquisition, helping the members to achieve a con-

sensus, and generating explanations are important aspects to consider to

build effective systems, these topics deviate from the collaborative focus
1For a discussion of group recommendation algorithms based on content-based filtering,

constraint-based, critiquing-based, and hybrid recommendation we refer to [Felfernig
et al. (2018b)].

October 23, 2018 10:58 ws-rv9x6-9x6 Book Title 11131-06 page 205

Group Recommendations 205

of this book, and readers are referred to [Jameson and Smyth (2007)] for

additional details. In this chapter, we assume that users provide individual

ratings for the items, that the system recommends to the group the top-n

items in the list, without involving group members to reach a consensus,

and without providing any explanations. Since it would be impossible to

cover the whole literature in collaborative group recommender systems in

this chapter, Table 6.1 presents a summary of the most relevant approaches

(considered as the ones that contain a collaborative algorithm and with over

fifty citations at the time of the writing of this chapter), in order to give

readers a summary of representative literature.

The remainder of this chapter is organized as follows: Section 6.2 illus-

trates different families of approaches that exist to produce group recom-

mendations, showing the different high-level architectural representations

of a system; Section 6.3 presents the strategies adopted in the literature

to define groups; Section 6.4 focuses on the group modeling task, aimed at

creating a unique representation of the preferences of a group; Section 6.5

illustrates how collaborative rating prediction algorithms are employed in

group recommender systems; Section 6.6 presents a case-study that com-

pares the different families of approaches by employing a user-based collabo-

rative approach; Section 6.7 introduces future directions that the definition

of collaborative group recommender systems can take; Section 6.8 contains

concluding remarks.

6.2. Families of Approaches: Architectural Solutions

Given a set of individual preferences, expressed in the form of ratings for

the items that a user evaluated, group preferences can be generated by

using one of the following three families of approaches [Jameson and Smyth

(2007)]:

• constructing group preference models and then predicting missing rat-

ings for each group by using such models;

• predicting ratings for the items not rated by each user and merging the

individual recommendations made for the members of a group;

• aggregating predictions built for every user into a group preference.

We will now describe in detail each of them, by also presenting the

architecture of the system (both, the details and the figures have been

adapted from the ones originally presented in [Boratto and Carta (2015);

Boratto et al. (2017)]).

October 23, 2018 10:58 ws-rv9x6-9x6 Book Title 11131-06 page 206

206 L. Boratto and A. Felfernig

Table 6.1. Most cited collaborative group recommender systems.

Author(s) Domain Group

building

Prediction

algorithm

Group

modeling

Dataset(s) Evaluation

type

Evaluation

metric(s)

[O’Connor

et al. (2001)]

Movies Predefined

groups

User-based

CF

Least misery MovieLens

(actual

system)

User study Surveys

[Chen et al.

(2008)]

Movies [Not

specified]

Item-based

CF

Weighted

Average

MovieLens

(not

specified)

Offline MAE,

Precision

[Amer-

Yahia et al.

(2009)]

Movies Based on

similarity

between

users

User-based

CF

Least misery MovieLens-

10M

Offline DCG

[Boratto

et al.

(2009a)]

Movies Commu-

nity

Detection

(Louvain)

Item-based

CF

Weighted

Average

MovieLens-

1M

Offline RMSE

[Campos

et al. (2009)]

Movies Based on

similarity

between

users

Bayesian

Networks

Average,

Least

Misery, Most

Pleasure,

Approval

Voting

MovieLens-

100k

Offline Percentage

of success,

MAE

[Recio-

Garćıa et al.

(2009)]

Movies Predefined

groups

User-based

CF

Weighted

Average

MovieLens User study Defined by

the

authors

[Baltrunas

et al. (2010)]

Movies Based on

similarity

between

users

SVD Average

Least misery,

Borda

MovieLens-

100k

Offline nDCG

[Berkovsky

and Freyne

(2010)]

Food Predefined

groups

User-based

CF

Weighted

Average

Wellbeing

Diet book

Offline F1, MAE,

Precision@k

Coverage

[Kim et al.

(2010)]

Books Predefined

groups

User-based

CF

Popularity [Not

available]

User study Precision

[Quijano-

Sánchez

et al. (2011)]

Movies People

explicitly

joining

social

events

User-based

CF

Average Facebook

and Tuenti

User study Precision@3

[Ntoutsi

et al. (2012)]

Movies Based on

similarity

between

users

User-based

CF

Least Misery,

Average,

Most

Pleasure

MovieLens-

100k

Offline Defined by

the

authors

[Liu et al.

(2012)]

POIs Predefined

groups

Probabilistic

Latent Topic

Models

Weighted

Average

whrrl.com,

Meetup

Offline Recall

[Ye et al.

(2012)]

Music Predefined

groups

Model-based

CF

Weighted

Average

lastfm.com,

whrrl.com

Offline Relative

Ranking

October 23, 2018 10:58 ws-rv9x6-9x6 Book Title 11131-06 page 207

Group Recommendations 207

6.2.1. Constructing Group Preference Models

This approach detects groups of users according to the constraints imposed

by the system (e.g., demographic features, or homogeneous preferences),

builds a group model by using the preferences expressed by each user, and

via that model predicts a rating for the items not rated by the group.

Algorithm 1 presents how the approach works.

Algorithm 1 Approach that constructs group preference models.

Detect a set of groups G

Construct a model mg for each group g ∈ G, which represents the pref-

erences of the whole group

for all items i not rated by the group g do

Use mg to predict a group rating pgi
end for

Calculate an aggregate rating rgi from the ratings of the members of the

group, either expressed (rui) or predicted (pui)

The architecture of a system that uses this approach is reported in

Fig. 6.1. As mentioned earlier, the system has first to detect the exist-

ing groups in the dataset (TASK 1), considering the available information

about the users (like the ratings they gave to the items or their demo-

graphic information, INPUT 1) and the constraints that the system has

(e.g., the number of groups to detect). In order to build the predictions

for a group, the system has to produce a group model that contains the

group’s preferences (TASK 2). The task that builds the model receives as

input the ratings for the items evaluated by each user (INPUT 1) and the

groups detected by the previous task. Each group model is used to predict

the ratings for the group (TASK 3). After the system has predicted the

ratings, group recommendations are selected.

6.2.2. Merging Recommendations Made for Single Users

This approach merges the items with the highest predicted ratings for each

group member. Algorithm 2 presents how the approach works.

The architecture of a system that uses this approach is reported in

Fig. 6.2. The system first detects the groups (TASK 1), considering both

the user information (INPUT 1) and the existing constraints when detecting

the groups (INPUT 2). The ratings for the items evaluated by each user

October 23, 2018 10:58 ws-rv9x6-9x6 Book Title 11131-06 page 208

208 L. Boratto and A. Felfernig

Fig. 6.1. Architecture of a system that uses group preference models to build the pre-

dictions.

Algorithm 2 Approach that merges the recommendations made for single

users.
Detect a set of groups G

for all members u of a group g ∈ G do

for all items i not rated by the user u do

Predict a rating pui
end for

end for

Select the set Ci of items with the highest predicted ratings pui for each

user u

Fig. 6.2. Architecture of a system that merges the recommendations produced for each

user.

October 23, 2018 10:58 ws-rv9x6-9x6 Book Title 11131-06 page 209

Group Recommendations 209

(INPUT 1) are then used to predict the missing ratings for the items (TASK

2). The output of this task (the top-n predictions, which represent the

recommendations for a user) is given as input to the task that merges the

recommendations, usually with a union (group modeling, TASK 3), along

with the composition of each group. After the system has merged the

individual recommendations, group recommendations are selected.

6.2.3. Aggregating Individual Predictions

This approach first detects the groups, then predicts individual preferences

for all the items not rated by each user, and aggregates the individual

preferences for an item to derive a group preference. While the previous

approach merged the individual recommendations (top-n items) through a

union, this approach considers all the individual predictions and aggregates

them in a unique group score. Algorithm 3 presents how the approach

works.

Algorithm 3 Approach that aggregates the predictions made for single

users.
Detect a set of groups G

for all items i do

for all members u of a group g ∈ G who did not rate i do

predict a rating pui
end for

end for

Calculate an aggregate rating rgi from the ratings of the members of the

group, either expressed (rui) or predicted (pui)

The architecture of a system that uses this approach is shown in Fig. 6.3.

This system applies an approach that is similar to the one described above.

First, it detects the groups (TASK 1), considering both the user information

(INPUT 1) and the existing constraints when detecting the groups (INPUT

2). The ratings for the items evaluated by each user (INPUT 1) are used

as input to predict the missing ratings for each user’s items (TASK 2). The

output (i.e., all the calculated predictions) is given as input, along with

the ratings given by the users for the items (INPUT 1) and each group’s

composition, to the task that models the group preferences (TASK 3). After

the system has modeled each group’s preferences, group recommendations

are selected.

October 23, 2018 10:58 ws-rv9x6-9x6 Book Title 11131-06 page 210

210 L. Boratto and A. Felfernig

Fig. 6.3. Architecture of a system that aggregates individual predictions.

A variant of this approach, which switches the first two tasks, was in-

troduced in [Boratto et al. (2017)]. As the architecture in Fig. 6.4 shows,

a system can predict the ratings for the single users before detecting the

groups, in order to use the predicted ratings as additional information in

the group building task. This allows to avoid the data sparsity that usu-

ally characterizes the ratings, detect more cohesive groups in terms of their

preferences, and produce more accurate group recommendations.

Fig. 6.4. Architecture of a system that aggregates individual predictions, which are also

used to detect the groups.

October 23, 2018 10:58 ws-rv9x6-9x6 Book Title 11131-06 page 211

Group Recommendations 211

6.3. Group Building

Since no dataset with information about both the structure of groups and

the ratings of users exist, it is necessary to process datasets that do not

contain group features as, for example, the household or group member-

ship. The most common approach to induce explicit group features is to

use rating data, and the similarity between two users can be computed in

different ways. Baltrunas et al. [Baltrunas et al. (2010)] compute the Pear-

son’s correlation between two users, and forms groups of two, three, four,

and eight users, whose similarity is over 0.27. Other approaches employ

the k-means clustering algorithm on the ratings matrix, to detect groups

of users with similar preferences [Boratto et al. (2017)].

Group construction might also involve features specifying certain de-

mographic information about the user. Using demographic information,

synthetic groups can be created, for example, using location, interest, age,

gender, etc.

Another example of utilizing non-group features in order to generate

groups is to make use of the users’ social networks. Especially in social net-

work graphs, where connections are asymmetric (follower/followee), strong

social ties (two users are both followers/followees of each other) represent

a strong group connection between two users. Is is also possible to iden-

tify larger groups where all users are each others followers and followees.

Depending on the nature of the social network, these strongly connected

social graphs can either represent similarities in taste, interests, or actual

groups in real world [Mislove et al. (2010)].

6.4. Group Modeling

In order to manage and provide information related to a group, it is nec-

essary to first model the group [Masthoff (2015)]. A group is composed of

single users that get together for a particular aim. So, the first aspect to

consider when modeling a group is an individual user model, made of inter-

ests for a set of items. A group model can be considered as a “synthesis” of

the user models, built by combining the preferences of the users in a group.

In group recommendation, building a group model is strongly related

to the idea of collective choice, i.e., making a choice for a group, by taking

into account the opinions of the users that belong to it. The aggregation

of individual preferences is made by using a particular strategy and the

usefulness of a strategy has to be evaluated in the environment in which

the modeling is done.

October 23, 2018 10:58 ws-rv9x6-9x6 Book Title 11131-06 page 212

212 L. Boratto and A. Felfernig

6.4.1. Existing Strategies

Existing group modeling strategies are now presented. Each strategy is

described with an example of how individual ratings are combined, by con-

sidering three users (u1, u2, and u3) that rate ten items (identified by

i1, ..., i10) with a rating from 1 to 10.

Additive Utilitarian. Individual ratings for each item are summed and

a list of the group ratings is produced (the higher the sum is, the earlier

the item appears in the list). The ranked group list of items is exactly the

same that would be produced when averaging the individual ratings, so

this strategy is also called ‘Average strategy’. Table 6.2 shows an example

of how the strategy works. The strategy has shown to be very effective in

several contexts, especially those in which the users have the same relevance

in the group [Boratto and Carta (2014)]. However, the function causes

problems in the context of larger groups since the opinions of individuals

count less.

Table 6.2. Additive Utilitarian strategy.

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10

u1 8 10 7 10 9 8 10 6 3 6
u2 7 10 6 9 8 10 9 4 4 7

u3 5 1 8 6 9 10 3 5 7 10

Group 20 21 21 25 26 28 22 15 14 23

Pocket RestaurantFinder [McCarthy (2002)] recommends restaurants to

a group of people, by averaging the individual preferences of the users in

the group on different types of features (e.g., location, cost, cuisine). In

[Pessemier et al. (2013)], the authors illustrate that modeling users with

an average is the best way to aggregate individual preferences in different

contexts; so, this strategy is employed in their experiments, along with the

Average Without Misery strategy, which will be presented later.

Multiplicative Utilitarian. For each item, the ratings given by the

users are multiplied and a ranked list of items is produced (the higher

the product is, the earlier the item appears in the list). Table 6.3 shows an

example of how the strategy works.

In [Christensen and Schiaffino (2011)], this strategy is adopted in order

to produce music recommendations.

October 23, 2018 10:58 ws-rv9x6-9x6 Book Title 11131-06 page 213

Group Recommendations 213

Table 6.3. Multiplicative Utilitarian strategy.

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10

u1 8 10 7 10 9 8 10 6 3 6

u2 7 10 6 9 8 10 9 4 4 7
u3 5 1 8 6 9 10 3 5 7 10

Group 280 100 336 540 648 800 270 120 84 420

Borda Count. Each item gets a number of points, according to the po-

sition in the list of each user. The least favorite item gets 0 points and a

point is added each time the next item in the list is considered. If a user

gave the same rating to more items, points are distributed. In the example

in Table 6.4, items i8 and i9 were rated by user u2 with the lowest rating

and should “share” the lowest positions with 0 and 1 points, so both the

items get (0+1)/2=0.5 points. A group preference is obtained by adding

the individual points of an item.

This strategy was implemented in [Baltrunas et al. (2010)].

Table 6.4. Borda Count strategy.

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10

u1 4.5 8 3 8 6 4.5 8 1.5 0 1.5

u2 3.5 8.5 2 6.5 5 8.5 6.5 0.5 0.5 3.5
u3 2.5 0 6 4 7 8.5 1 2.5 5 8.5

Group 10.5 16.5 11 18.5 18 21.5 15.5 4.5 5.5 13.5

Copeland Rule. It is a form of majority voting that sorts the items

according to their Copeland index, which is calculated as the number of

times in which an alternative beats the others, minus the number of times

it loses against the other alternatives. In the example in Table 6.5, item i2
beats item i1, since both u1 and u2 gave it a higher rating.

The approach proposed in [Felfernig et al. (2012)] proved that a form of

majority voting is the most successful in a requirements negotiation context,

in which the system resolves the existing conflicts between requirements and

decides the ones that are implemented.

Plurality Voting. Each user votes for her/his favorite option. The al-

ternative that receives the highest number of votes wins. If more than one

October 23, 2018 10:58 ws-rv9x6-9x6 Book Title 11131-06 page 214

214 L. Boratto and A. Felfernig

Table 6.5. Copeland Rule strategy.

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10

i1 0 + - + + + + - - 0

i2 - 0 - 0 - 0 0 - - -
i3 + + 0 + + + + - - +

i4 - 0 - 0 - + - - - -

i5 - + - + 0 + + - - -
i6 - 0 - - - 0 - - - -

i7 - 0 - + - + 0 - - -

i8 + + + + + + + 0 0 +
i9 + + + + + + + 0 0 +

i10 0 + - + + + + - - 0

Index -2 +6 -5 +6 +1 +8 +4 -8 -8 -2

Table 6.6. Plurality Voting strategy.

1 2 3 4 5 6

u1 i2, i4, i7 i4, i7 i5 i1 i3 i8
u2 i2, i6 i4, i7 i5 i1, i10 i3 i8, i9
u3 i6, i10 i10 i10 i10 i3 i9

Group i2, i6 i4, i7 i5 i1, i10 i3 i8, i9

alternative needs to be selected, the options that received the highest num-

ber of votes are selected. Table 6.6 presents an example of how the strategy

works.

This strategy was implemented and tested by [Senot et al. (2010, 2011)]

in the TV domain.

Approval Voting. Each user can vote for as many items as she/he wants

and a point is assigned to all the items a user likes. To show how the strategy

works, we are going to suppose that each user votes for all the items with a

rating above a certain threshold (in the example in Table 6.7, the threshold

rating is 5). A group preference is obtained by adding the individual points

of an item.

When choosing the pages to recommend to a group, Let’s Browse

[Lieberman et al. (1999)] evaluates if the page currently considered by the

system matches with the user profile above a certain threshold and recom-

mends the one that gets the highest score.

October 23, 2018 10:58 ws-rv9x6-9x6 Book Title 11131-06 page 215

Group Recommendations 215

Table 6.7. Approval Voting strategy.

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10

u1 1 1 1 1 1 1 1 1 1

u2 1 1 1 1 1 1 1 1
u3 1 1 1 1 1 1

Group 2 2 3 3 3 3 2 1 1 3

Least Misery. The rating assigned to an item for a group is the lowest

rating expressed for that item by any of the members of the group. This

strategy is usually employed to model small groups, to make sure that

every group member is satisfied. A drawback of this strategy is that if the

majority of the group members really likes something, but one person does

not, the item will not be recommended to the group. This is what happens

in the example in Table 6.8 for items i2 and i7.

This strategy is used by PolyLens [O’Connor et al. (2001)], in order to

produce movie recommendations that satisfy the small groups handled by

the system.

Table 6.8. Least Misery strategy.

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10

u1 8 10 7 10 9 8 10 6 3 6

u2 7 10 6 9 8 10 9 4 4 7

u3 5 1 8 6 9 10 3 5 7 10

Group 5 1 6 6 8 8 3 4 3 6

Most Pleasure. The rating assigned to an item for a group is the highest

rating expressed for that item by a member of the group. Table 6.9 presents

an example of how the strategy works.

This strategy is adopted by [Quijano-Sánchez et al. (2012)] in a case-

based group recommender system, proposed as a solution to the cold start

problem.

Average Without Misery. The rating assigned to an item for a group

is the average of the ratings assigned by each user for that item. All the

items that were evaluated by a user with a rating under a certain threshold

are not considered in the group model (in the example in Table 6.10, the

threshold rating is 4).

October 23, 2018 10:58 ws-rv9x6-9x6 Book Title 11131-06 page 216

216 L. Boratto and A. Felfernig

Table 6.9. Most Pleasure strategy.

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10

u1 8 10 7 10 9 8 10 6 3 6

u2 7 10 6 9 8 10 9 4 4 7
u3 5 1 8 6 9 10 3 5 7 10

Group 8 10 8 10 9 10 10 6 7 10

Table 6.10. Average Without Misery strategy.

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10

u1 8 10 7 10 9 8 10 6 3 6
u2 7 10 6 9 8 10 9 4 4 7

u3 5 1 8 6 9 10 3 5 7 10

Group 20 - 21 25 26 28 - 15 - 23

In order to model the preferences of a group for each genre of music that

can be played in a gym, MusicFX [McCarthy and Anagnost (1998)] sums

the individual ratings expressed by each user, discarding the ones under

a minimum degree of satisfaction. As previously mentioned, in [Pessemier

et al. (2013)], the authors illustrate that an average is the best way to

represent individual preferences in a group model in different contexts and

employ this strategy in their study.

Fairness. This strategy is based on the idea that users can be recom-

mended something they do not like, as long as they also get recommended

something they like. This is done by allowing each user to choose her/his

favorite item. If two items have the same rating, the choice is based on the

other users’ preferences. This is done until everyone made a choice. Next,

everyone chooses a second item, starting from the person who chose last

the first time.

If in the example, if we suppose that user u1 chose first, she/he would

consider i2, i4, and i7, and would choose i4, because it has the highest

average considering the other users’ ratings. Next, u2 would choose between

i2 and i6 and would select i6 for the same reason. Then, u3 would choose

item i10. Since everyone chose an item, it would be u3’s turn again and i5
would be chosen. User u2 would choose i2, which has the highest rating

along with i6 (which was already chosen). Then, u1 would choose i7, which

is the one with the highest rating and was not chosen yet. The final sequence

of items that models the group would be: i4, i6, i10, i5, i2, i7, i1, i3, i9, i8.

October 23, 2018 10:58 ws-rv9x6-9x6 Book Title 11131-06 page 217

Group Recommendations 217

This strategy was adopted in the music recommender system proposed

in [Christensen and Schiaffino (2011)].

Most Respected Person (Dictatorship). This strategy selects the

items according to the preferences of the most respected person, using the

preferences of the other users just in case more than one item received

the same evaluation. The idea behind this strategy is that there are sce-

narios is which a group is guided/dominated by a person. In the example

in Table 6.11, it is supposed that u1 is the most respected person.

Table 6.11. Most Respected Person strategy (Dictatorship).

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10

u1 8 10 7 10 9 8 10 6 3 6

u2 7 10 6 9 8 10 9 4 4 7
u3 5 1 8 6 9 10 3 5 7 10

Group 8 10 7 10 9 8 10 6 3 6

This strategy is used by INTRIGUE [Ardissono et al. (2005)] that, in

order to build a group model, advantages the preferences of a subset of users

with particular needs. The studies performed on the G.A.I.N. [Pizzutilo

et al. (2005)] system show that when people interact, a user or a small

portion of the group influences the choices of the whole group. In [Jung

(2012)], Jung presented an approach to identify long tail users, i.e., users

who can be considered as an expert group on a certain attribute. So, the

ratings given by the long tail user groups are considered in order to provide

a relevant recommendation to the non-expert user group, called short head

group.

6.4.2. Discussion

As highlighted in [Pizzutilo et al. (2005)], there is no strategy useful in

every context independently from the environment, and the choice of the

strategy that best models a group should be made after a deep analysis of

the context in which the group is modeled.

However, in the current group recommendation literature, Additive Util-

itarian is the strategy that is most-widely employed. Indeed, as previously

highlighted, it has been proven to be effective in several scenarios [Pessemier

et al. (2013)]. This could also be due to the fact, in practice, groups are

October 23, 2018 10:58 ws-rv9x6-9x6 Book Title 11131-06 page 218

218 L. Boratto and A. Felfernig

usually built from existing datasets. Hence, as shown in [Boratto et al.

(2016)], where groups are built with the k-means clustering algorithm:

• an average, which is a single value that is meant to typify a set of

different values, allows to weigh the preferences of all the users in equal

ways;

• creating a group model with an average of the individual values for each

item is like re-creating the centroid of the cluster, i.e., a super-user that

connects every user in the group.

Figure 6.5 and Table 6.12 illustrate a comparison of the different group

modeling strategies in the collaborative group recommender system previ-

ously mentioned [Boratto et al. (2016)]2. The results present the RMSE

obtained in the MovieLens-1M dataset (whose details are presented in Sec-

tion 6.6), using the different group modeling strategies for a varying number

of groups. As these results show, Additive Utilitarian obtains the highest

accuracy (lowest RMSE) for all the groups.

Fig. 6.5. RMSE values obtained by using the different group modeling strategies.

Table 6.12. RMSE values obtained by using the different group modeling strategies.

20 groups 50 groups 200 groups 500 groups

AU 0.9554 0.9435 0.9395 0.9385

AV [threshold=1] 1.7634 1.7558 1.7573 1.7629

AV [threshold=2] 1.6112 1.6025 1.6057 1.6193

BC 1.0667 1.0624 1.0596 1.0570

LM 2.4782 2.1972 1.8868 1.7024

MP 1.6786 1.5796 1.4648 1.3735

2The paper compared only the strategies that produce an actual rating for a group and

some of them were discarded for different reasons. Readers can refer to the original paper
for more details.

October 23, 2018 10:58 ws-rv9x6-9x6 Book Title 11131-06 page 219

Group Recommendations 219

6.5. Rating Prediction

Rating prediction is a key task to build effective group recommender sys-

tems. Given that the algorithms have been presented in Chapter 1, in this

section we will analyze how the different classes of prediction algorithms

that have been previously presented (i.e., memory-based and model-based)

have been employed in the group recommendation context. One aspect

that emerges is that there is not a one-fits-all solution, and the choice of

the algorithm employed by the system strongly depends on the studied

domain.

In this section, we will provide relevant examples of how the different

algorithms have been employed for the different families of approaches.

Sometimes, a comparison between the different classes of algorithms is

even necessary, in order to explore what is the most appropriate solution.

For example, in [Pessemier et al. (2013)], a model-based approach (SVD)

was compared to two memory-based algorithms (user- and item-based) and

to content-based and hybrid systems; results showed that the item-based

algorithm outperformed the user-based one (thus it was employed also in

the hybrid solution) and that SVD outperformed the rest of the algorithms.

Castro et al. [Castro et al. (2017)] compared user-based and item-based

algorithms in a noise handling context, finding out that the user-based

approach was the most effective.

6.5.1. Memory-based Algorithms

Here, we will analyze how memory-based algorithms have been employed

in group recommender systems, dividing the analysis into user- and item-

based approaches.

6.5.1.1. User-based Algorithms

This class of algorithms is by far the most widely-employed in the group

recommendation literature. As previously mentioned, sometimes new do-

mains need to explore different solutions. Even though it might be clear

that user-based filtering is the most appropriate solution, the family of ap-

proaches in which the algorithm should be embedded needs to be studied.

Berkovsky and Freyne [Berkovsky and Freyne (2010)] considered the case of

recipe recommendation to the members of a family and employed both an

approach based on group preference models and one based on aggregating

individual predictions, finding out that the first one was more effective in

this context.

October 23, 2018 10:58 ws-rv9x6-9x6 Book Title 11131-06 page 220

220 L. Boratto and A. Felfernig

User-based collaborative filtering has been employed in several group

recommender systems that built the predictions using a group preference

model. The approach presented in [Anand (2013)], provides movie rec-

ommendations to groups characterized by similar content-based features,

and [Chen et al. (2008)] that derived subgroup ratings by considering the

interactions between the members of a group; these subgroup ratings are

employed by the rating prediction task.

When the family of approaches that merges single user recommenda-

tions is considered, the most famous example is PolyLens [O’Connor et al.

(2001)], which recommends movies to small groups of users.

Examples of systems that aggregate all the individual predictions are

that by Quijano-Sánchez et al. [Quijano-Sánchez et al. (2011)], in which

the predictions are combined in a model that also considers the group per-

sonality composition and the social connections between the single users,

and e-Tourism [Sebastia et al. (2009)], which combines the predictions pro-

duced by a user-based algorithm with that produced with content-based,

demographic, and knowledge-based filterings.

6.5.1.2. Item-based Algorithms

Item-based collaborative filtering has not been widely-employed in the

group recommendation literature. Examples of systems that employ it in a

system based on group preference models are [Boratto et al. (2009b)] and

[Boratto and Carta (2014)], which use item-based algorithms to produce

recommendations for large groups, respectively detected with community-

detection and clustering algorithms.

Some systems aggregate individual predictions with item-based algo-

rithms when considering the disagreement between the group members

[Amer-Yahia et al. (2009)] and when considering fairness in package recom-

mendations to a group [Serbos et al. (2017)].

6.5.2. Model-based algorithms

Some exploratory studies have been conducted to compare the use of model-

based algorithms on different families of approaches, as we saw with user-

based algorithms. Ortega et al. [Ortega et al. (2016)] compared the use

of Matrix Factorization algorithms on systems that used group preference

models and aggregated individual predictions, while Hu et al. [Hu et al.

(2011)] compared SVD on the same two families of approaches. The first

study found out that the use of group preference models is better with

October 23, 2018 10:58 ws-rv9x6-9x6 Book Title 11131-06 page 221

Group Recommendations 221

large datasets and medium/large groups and individual predictions should

be preferred with small groups, while the second study found out that the

use of group preference models outperforms the aggregation of individual

predictions in the Moviepilot dataset.

Different types of model-based algorithms are employed for the differ-

ent families of approaches. Regarding group preference models, Yuan et al.

[Yuan et al. (2014)] presented a Latent Dirichlet Allocation (LDA) based

generative model on groups, while Purushotham et al. [Purushotham et al.

(2014)] used classic Matrix Factorization to build group-activity recommen-

dations in Location-Based Social Networks.

Model-based algorithms have also been employed when aggregating in-

dividual predictions. The approach by Baltrunas et al. [Baltrunas et al.

(2010)] built individual predictions with SVD to produce a ranked list of

items to recommend to a group. Christensen and Schiaffino [Christensen

and Schiaffino (2014)] built individual predictions with a classic Matrix

Factorization algorithm, which are combined with information such as the

trusted relationships, the social similarity, and the social centrality of the

users, in order to build group recommendations.

6.6. Case-study: Comparing Families of Approaches

This section presents a case-study, in which we compare the different fami-

lies of approaches introduced in this chapter (readers can refer to [Boratto

et al. (2017)] for more details on the study).

For each of the four architectures presented in Section 6.2, we built a

group recommender system. More specifically, the association between the

systems and the families of approaches presented in Section 6.2 is shown in

Table 6.13.

Table 6.13. Systems developed according to each family of approaches and architecture.

Name Family of approaches Architecture

ModelBased (MB) Group preference models (Section 6.2.1) Fig. 6.1

MergeRecommendations (MR) Merging recommendations (Section 6.2.2) Fig. 6.2

Predict&Cluster (PC) Merging predictions (Section 6.2.3) Fig. 6.3

Cluster&Predict (CP) Merging predictions (Section 6.2.3) Fig. 6.4

October 23, 2018 10:58 ws-rv9x6-9x6 Book Title 11131-06 page 222

222 L. Boratto and A. Felfernig

6.6.1. Experimental setup

The datasets used to perform the study are MovieLens-1M (ML–1M)3 and

a subset of Yahoo! Webscope (R4)4. Details of the datasets’ structure are

provided in Table 6.14.

Table 6.14. Datasets details.

ML–1M R4

Users 6040 5070
Items 1682 1647

Ratings 100,000,000 153,461

The accuracy of the predicted ratings was measured through the Root

Mean Squared Error (RMSE) metric. It compares each rating rui, given

by a user u for an item i in the test set, with the rating pgi, predicted for

the item i for the group g under which user u is subsumed. The related

formula is shown below:

RMSE =

√∑n
i=0(rui − pgi)2

n
n is the number of ratings available in the test set. Measuring the ef-

fectiveness of the group recommendations as an average of the individual

accuracies is necessary since, as we will highlight in Section 6.7, no met-

ric specific for group recommendation exists. This way of measuring the

accuracy might have some drawbacks, since it does not take into account

if some users have a different role/importance/reputation in the group or

the size of the group itself. However, since our groups are detected via

a clustering algorithm (hence, no user has a different role), this approach

seems fair to evaluate how accurate are the group recommendations are for

the individual group members.

The details of the algorithms used to implement each of the tasks con-

sidered in this study are the following:

Group building. Groups are detected with the k-means clustering algo-

rithm. In order to study different group recommendation scenarios, we

detected 20, 50, 200, and 500 groups. In addition, we will also present

two settings that will serve as baselines, in which we create a unique

group with all the users (named “1 group”) and we do not group the

users, thus creating individual recommendations for each user (named

“P”, which stands for “Personalized”).
3http://www.grouplens.org/
4https://webscope.sandbox.yahoo.com/catalog.php?datatype=r

October 23, 2018 10:58 ws-rv9x6-9x6 Book Title 11131-06 page 223

Group Recommendations 223

Group modeling. Group preferences have been modeled with the Addi-

tive Utilitarian strategy previously presented, which was shown to be

the most effective to model groups detected with the k-means clustering

algorithm [Boratto and Carta (2014)].

Rating prediction. In the families of approaches that merge recommen-

dations for single users and aggregate individual predictions, ratings

have been predicted for individual users with the user-based algorithm

presented in Chapter 1; the number of neighbors chosen to run the

algorithm is 100. In the family of approaches that constructs group

preference models, the predictions for the groups have been built with

with the item-based algorithm presented in Chapter 1; the number of

neighbors chosen is 20 in the MovieLens-1M dataset, and 10 in the

Webscope (R4) dataset (the difference in the number of neighbors is

due to a parameter setting, done via experiments that can be found

in [Boratto and Carta (2015)]).

6.6.2. Results

Figure 6.6 and Table 6.15 report the results obtained by each system with

the MovieLens-1M dataset, while Fig. 6.7 and Table 6.16 report the results

for the Webscope (R4) dataset.

Fig. 6.6. RMSE obtained by the each system in the MovieLens-1M dataset.

Table 6.15. RMSE obtained by the each system in the MovieLens-1M dataset.

1 group 20 groups 50 groups 200 groups 500 groups Personalized

MB 1.0705 1.0398 1.0327 1.0257 1.0249 0.9120

MR 1.2667 1.2207 1.2075 1.1653 1.1461 0.9120

CP 0.9895 0.9872 0.9857 0.9837 0.9832 0.9120

PC 0.9895 0.9554 0.9435 0.9395 0.9385 0.9120

October 23, 2018 10:58 ws-rv9x6-9x6 Book Title 11131-06 page 224

224 L. Boratto and A. Felfernig

Fig. 6.7. RMSE obtained by the each system in the Webscope (R4) dataset.

Table 6.16. RMSE obtained by the each system in the Webscope (R4) dataset.

1 group 20 groups 50 groups 200 groups 500 groups Personalized

MB 1.1767 1.1534 1.1610 1.1780 1.1985 1.0074

MR 1.2477 1.1585 1.1187 1.0780 1.0751 1.0074

CP 1.0686 1.0644 1.0631 1.0622 1.0587 1.0074

PC 1.0686 1.0626 1.0454 1.0421 1.0330 1.0074

As it can be observed, as the number of groups increases, the RMSE

values decrease. In other words, as we expected, a system can perform

better when more recommendations can be produced, since groups get

smaller and it is easier for the system to produce more effective recom-

mendations when the preferences of less users have to be met. This is not

true for the ModelBased system in the Webscope (R4) dataset (which is

the smaller and sparser one), which cannot provide accurate predictions for

small groups (the 200 and 500 groups settings). This apparently negative

feedback demonstrates that a model-based group recommender system is

not accurate for small groups. More specifically, given a small amount of

information about the preferences of the users for the items, a group model

cannot be effectively employed to generate group recommendations.

As it can be noticed, the three approaches to produce group recom-

mendations are clearly separated in the MovieLens-1M results. Webscope

(R4) shows a different behavior for the ModelBased system due to the lat-

ter’s inability to provide accurate predictions for small groups. Conversely,

the other three systems (i.e., MergeRecommendations, Predict&Cluster, and

Cluster&Predict) behave as the MovieLens-1M dataset.

October 23, 2018 10:58 ws-rv9x6-9x6 Book Title 11131-06 page 225

Group Recommendations 225

In both cases, however, the approach that merges individual recommen-

dations (i.e., MergeRecommendations) and that based on a group model

(i.e., ModelBased) produced the worst results. This means that if we em-

ploy an approach that merges individual recommendations, only a small

amount of preferences per user is available and a group recommender sys-

tem is not able to properly satisfy the users. As for the approach based

on group preference models, these results confirm the need of relying on

preferences expressed by single users, in order to build accurate group rec-

ommendations.

The systems that merge individual preferences (i.e., Cluster&Predict

and Predict&Cluster) are the ones that achieve the best results. As it can

also be noticed, the accuracy of Predict&Cluster is much higher than that of

Cluster&Predict, and this proves that enhancing clustering with individual

predictions leads to great improvements in the quality of the predicted

results.

6.7. Future Directions: Open Issues and Challenges

This section presents the current open issues and challenges in the devel-

opment of collaborative group recommender systems.

Explanation with model-based algorithms. A current open challenge

when working with model-based collaborative filtering algorithms, such

as Matrix Factorization, is the lack of explanations on why and item

has been recommended to the group, due to the fact that the recom-

mendation is based on latent features. The problem is amplified in

the group recommendation scenario, since the individual preferences

are usually combined into a group model, which makes it even more

difficult to connect the produced recommendations to the individual

preferences of the users. An initial overview of approaches to explain

recommendation to groups is given in [Felfernig et al. (2018c)].

Understanding and employing group dynamics. It is known that

group members are influenced in their evaluations by the composition

of the group [Gartrell et al. (2010)] and by the interactions between

the members [Delic et al. (2016)]. Integrating the evolution of the in-

dividual preferences that happens because of the group dynamics into

collaborative algorithms is still an open issue. An initial overview of

approaches to take into account group dynamics in group recommen-

dations scenarios is given in [Tkalčič et al. (2018)].

October 23, 2018 10:58 ws-rv9x6-9x6 Book Title 11131-06 page 226

226 L. Boratto and A. Felfernig

Adapting to group constraints. At the moment, users are not allowed

to express specific constraints in the context of a group. While a step

in this direction has been made in the INTRIGUE system [Ardissono

et al. (2005)], which gives a different weight to the preferences of users

with specific needs (e.g., children or disabled people), moving from

generic needs to individual constraints to produce more tailored group

recommendations still represents a challenge. An initial overview of

related approaches is given in [Felfernig et al. (2018a)].

Lack of existing datasets. The fact that in practice we need to detect

artificial groups in order to build group recommender systems, makes

it hard to evaluate their effectiveness in real-world scenarios, in which

users might be connected because of unexpected reasons or might in-

teract among themselves, thus providing relevant information for the

building of effective systems.

Evaluation metrics. As [Ricci (2014)] highlights, the evaluation of group

recommender systems is a challenging aspect. Indeed, there is no metric

to evaluate the satisfaction of a group as a whole, and the metrics cur-

rently used to evaluate single user recommender systems only measure

the individual satisfactions with the group recommendations.

Lack of software frameworks. Chapter 9 surveyed the existing software

frameworks for recommender systems. Unfortunately, none of them

directly allows to generate group recommendations. Hence, when

adopting a regular (single user) recommender system for group recom-

mendation purposes, some form of pre- or post-processing filter function

is needed, that is aware of the given group structure in the dataset. In

the case when the system works with group profiles, the pre-filtering

function would merge the individual preferences into one group profile

(i.e., the function would treat the group as a super-user). In case the

system treats the user profiles separately to calculate lists of recommen-

dations, a post-processing filter function would be needed that is able

to aggregate the individual recommendation lists into a unique group

recommendation list.

6.8. Conclusions

This chapter introduced group recommender systems from the collaborative

point of view. Group recommendation is characterized by several peculiar

and challenging aspects that do not characterize the systems that produce

recommendations for single users. Hence, starting from these aspects, we

October 23, 2018 10:58 ws-rv9x6-9x6 Book Title 11131-06 page 227

Group Recommendations 227

analyzed how to build a system. We considered the existing families of

approaches and presented the high-level architecture of the systems. For

each of the tasks in the architectures, we presented the algorithms and

techniques that are employed to build them. A case-study compared the

different families of approaches on different datasets, showing which family

of approaches is more effective when groups are detected with a clustering

algorithm. Despite the big efforts made to develop effective group recom-

mender systems, several open issues still exist, which represent interesting

perspectives and directions to do exciting research in this area.

References

Amer-Yahia, S., Roy, S. B., Chawla, A., Das, G. and Yu, C. (2009). Group recom-
mendation: Semantics and efficiency, Proceedings of the VLDB Endowment
2, 1, pp. 754–765.

Anand, D. (2013). Group movie recommendations via content based feature pref-
erences, International Journal of Scientific & Engineering Research 4, 2.

Ardissono, L., Goy, A., Petrone, G. and Segnan, M. (2005). A multi-agent infras-
tructure for developing personalized web-based systems, ACM Transactions
on Internet Technology 5, 1, pp. 47–69.

Baltrunas, L., Makcinskas, T. and Ricci, F. (2010). Group recommendations with
rank aggregation and collaborative filtering, in X. Amatriain, M. Torrens,
P. Resnick and M. Zanker (eds.), Proceedings of the 2010 ACM Conference
on Recommender Systems, RecSys 2010, Barcelona, Spain, September 26-
30, 2010 (ACM), pp. 119–126, doi:10.1145/1864708.1864733, http://doi.
acm.org/10.1145/1864708.1864733.

Berkovsky, S. and Freyne, J. (2010). Group-based recipe recommendations: anal-
ysis of data aggregation strategies, in X. Amatriain, M. Torrens, P. Resnick
and M. Zanker (eds.), Proceedings of the 2010 ACM Conference on Recom-
mender Systems, RecSys 2010, Barcelona, Spain, September 26-30, 2010
(ACM), ISBN 978-1-60558-906-0, pp. 111–118.

Boratto, L. and Carta, S. (2014). Modeling the preferences of a group of users
detected by clustering: a group recommendation case-study, in R. Akerkar,
N. Bassiliades, J. Davies and V. Ermolayev (eds.), 4th International Con-
ference on Web Intelligence, Mining and Semantics (WIMS 14), WIMS
’14, Thessaloniki, Greece, June 2-4, 2014 (ACM), pp. 16:1–16:7, doi:10.
1145/2611040.2611073, http://doi.acm.org/10.1145/2611040.2611073.

Boratto, L. and Carta, S. (2015). The rating prediction task in a group
recommender system that automatically detects groups: architectures,
algorithms, and performance evaluation, J. Intell. Inf. Syst. 45, 2,
pp. 221–245, doi:10.1007/s10844-014-0346-z, https://doi.org/10.1007/

s10844-014-0346-z.

http://doi.acm.org/10.1145/1864708.1864733
http://doi.acm.org/10.1145/1864708.1864733
http://doi.acm.org/10.1145/2611040.2611073
https://doi.org/10.1007/s10844-014-0346-z
https://doi.org/10.1007/s10844-014-0346-z

October 23, 2018 10:58 ws-rv9x6-9x6 Book Title 11131-06 page 228

228 L. Boratto and A. Felfernig

Boratto, L., Carta, S., Chessa, A., Agelli, M. and Clemente, M. L. (2009a). Group
recommendation with automatic identification of users communities, in Pro-
ceedings of the 2009 IEEE/WIC/ACM International Joint Conference on
Web Intelligence and Intelligent Agent Technology - Volume 03, WI-IAT
’09 (IEEE Computer Society, Washington, DC, USA), ISBN 978-0-7695-
3801-3, pp. 547–550, doi:10.1109/WI-IAT.2009.346, http://dx.doi.org/

10.1109/WI-IAT.2009.346.
Boratto, L., Carta, S., Chessa, A., Agelli, M. and Clemente, M. L. (2009b).

Group recommendation with automatic identification of users commu-
nities, in Proceedings of the 2009 IEEE/WIC/ACM International Con-
ference on Web Intelligence and International Conference on Intelligent
Agent Technology - Workshops, Milan, Italy, 15-18 September 2009 (IEEE
Computer Society), pp. 547–550, doi:10.1109/WI-IAT.2009.346, https:

//doi.org/10.1109/WI-IAT.2009.346.
Boratto, L., Carta, S. and Fenu, G. (2016). Discovery and representation of the

preferences of automatically detected groups, Future Gener. Comput. Syst.
64, C, pp. 165–174, doi:10.1016/j.future.2015.10.007, http://dx.doi.org/
10.1016/j.future.2015.10.007.

Boratto, L., Carta, S. and Fenu, G. (2017). Investigating the role of the rating
prediction task in granularity-based group recommender systems and big
data scenarios, Inf. Sci. 378, pp. 424–443, doi:10.1016/j.ins.2016.07.060,
https://doi.org/10.1016/j.ins.2016.07.060.

Campos, L. M., Fernández-Luna, J. M., Huete, J. F. and Rueda-Morales, M. A.
(2009). Managing uncertainty in group recommending processes, User
Modeling and User-Adapted Interaction 19, 3, pp. 207–242, doi:10.1007/
s11257-008-9061-1, http://dx.doi.org/10.1007/s11257-008-9061-1.

Castro, J., Toledo, R. Y. and Mart́ınez, L. (2017). An empirical study of natu-
ral noise management in group recommendation systems, Decision Support
Systems 94, pp. 1–11, doi:10.1016/j.dss.2016.09.020, http://dx.doi.org/
10.1016/j.dss.2016.09.020.

Chen, Y.-L., Cheng, L.-C. and Chuang, C.-N. (2008). A group recommendation
system with consideration of interactions among group members, Expert
Systems with Applications 34, 3, pp. 2082–2090.

Christensen, I. A. and Schiaffino, S. N. (2011). Entertainment recommender sys-
tems for group of users, Expert Systems with Applications 38, 11, pp. 14127–
14135.

Christensen, I. A. and Schiaffino, S. N. (2014). Social influence in
group recommender systems, Online Information Review 38, 4,
pp. 524–542, doi:10.1108/OIR-08-2013-0187, http://dx.doi.org/10.

1108/OIR-08-2013-0187.
Delic, A., Neidhardt, J., Nguyen, T. N., Ricci, F., Rook, L., Werthner, H. and

Zanker, M. (2016). Observing group decision making processes, in S. Sen,
W. Geyer, J. Freyne and P. Castells (eds.), Proceedings of the 10th ACM
Conference on Recommender Systems, Boston, MA, USA, September 15-
19, 2016 (ACM), pp. 147–150, doi:10.1145/2959100.2959168, http://doi.
acm.org/10.1145/2959100.2959168.

http://dx.doi.org/10.1109/WI-IAT.2009.346
http://dx.doi.org/10.1109/WI-IAT.2009.346
https://doi.org/10.1109/WI-IAT.2009.346
https://doi.org/10.1109/WI-IAT.2009.346
http://dx.doi.org/10.1016/j.future.2015.10.007
http://dx.doi.org/10.1016/j.future.2015.10.007
https://doi.org/10.1016/j.ins.2016.07.060
http://dx.doi.org/10.1007/s11257-008-9061-1
http://dx.doi.org/10.1016/j.dss.2016.09.020
http://dx.doi.org/10.1016/j.dss.2016.09.020
http://dx.doi.org/10.1108/OIR-08-2013-0187
http://dx.doi.org/10.1108/OIR-08-2013-0187
http://doi.acm.org/10.1145/2959100.2959168
http://doi.acm.org/10.1145/2959100.2959168

October 23, 2018 10:58 ws-rv9x6-9x6 Book Title 11131-06 page 229

Group Recommendations 229

Felfernig, A., Atas, M., Helic, D., Tran, T. N. T., Stettinger, M. and Samer, R.
(2018a). Algorithms for group recommendation, in Group Recommender
Systems: An Introduction (Springer International Publishing, Cham),
ISBN 978-3-319-75067-5, pp. 27–58, doi:10.1007/978-3-319-75067-5 2,
https://doi.org/10.1007/978-3-319-75067-5_2.

Felfernig, A., Boratto, L., Stettinger, M. and Tkalčič, M. (2018b). Group Recom-
mender Systems: An Introduction (Springer).

Felfernig, A., Tintarev, N., Tran, T. N. T. and Stettinger, M. (2018c). Ex-
planations for groups, in Group Recommender Systems: An Introduc-
tion (Springer International Publishing, Cham), ISBN 978-3-319-75067-
5, pp. 105–126, doi:10.1007/978-3-319-75067-5 6, https://doi.org/10.

1007/978-3-319-75067-5_6.
Felfernig, A., Zehentner, C., Ninaus, G., Grabner, H., Maalej, W., Pagano, D.,

Weninger, L. and Reinfrank, F. (2012). Group decision support for re-
quirements negotiation, in L. Ardissono and T. Kuflik (eds.), Advances in
User Modeling - UMAP 2011 Workshops, Girona, Spain, July 11-15, 2011,
Revised Selected Papers, Lecture Notes in Computer Science, Vol. 7138
(Springer), ISBN 978-3-642-28508-0, pp. 105–116.

Gartrell, M., Xing, X., Lv, Q., Beach, A., Han, R., Mishra, S. and Seada,
K. (2010). Enhancing group recommendation by incorporating social re-
lationship interactions, in W. G. Lutters, D. H. Sonnenwald, T. Gross
and M. Reddy (eds.), Proceedings of the 2010 International ACM SIG-
GROUP Conference on Supporting Group Work, GROUP 2010, Sanibel
Island, Florida, USA, November 6-10, 2010 (ACM), pp. 97–106, doi:10.
1145/1880071.1880087, http://doi.acm.org/10.1145/1880071.1880087.

Hu, X., Meng, X. and Wang, L. (2011). Svd-based group recommendation ap-
proaches: an experimental study of moviepilot, in Proceedings of the 2nd
Challenge on Context-Aware Movie Recommendation, CAMRa ’11 (ACM,
New York, NY, USA), ISBN 978-1-4503-0825-0, pp. 23–28, doi:10.1145/
2096112.2096117, http://doi.acm.org/10.1145/2096112.2096117.

Jameson, A. and Smyth, B. (2007). Recommendation to groups, in The Adap-
tive Web, Methods and Strategies of Web Personalization, Lecture Notes in
Computer Science, Vol. 4321 (Springer, Berlin), ISBN 978-3-540-72078-2,
pp. 596–627.

Jung, J. J. (2012). Attribute selection-based recommendation framework for
short-head user group: An empirical study by movielens and imdb, Ex-
pert Systems with Applications 39, 4, pp. 4049–4054, doi:10.1016/j.eswa.
2011.09.096, http://dx.doi.org/10.1016/j.eswa.2011.09.096.

Kim, J. K., Kim, H. K., Oh, H. Y. and Ryu, Y. U. (2010). A group recommen-
dation system for online communities, International Journal of Informa-
tion Management 30, 3, pp. 212–219, doi:10.1016/j.ijinfomgt.2009.09.006,
http://dx.doi.org/10.1016/j.ijinfomgt.2009.09.006.

Lieberman, H., Dyke, N. W. V. and Vivacqua, A. S. (1999). Let’s browse: A
collaborative web browsing agent, in IUI, pp. 65–68.

https://doi.org/10.1007/978-3-319-75067-5_2
https://doi.org/10.1007/978-3-319-75067-5_6
https://doi.org/10.1007/978-3-319-75067-5_6
http://doi.acm.org/10.1145/1880071.1880087
http://doi.acm.org/10.1145/2096112.2096117
http://dx.doi.org/10.1016/j.eswa.2011.09.096
http://dx.doi.org/10.1016/j.ijinfomgt.2009.09.006

October 23, 2018 10:58 ws-rv9x6-9x6 Book Title 11131-06 page 230

230 L. Boratto and A. Felfernig

Liu, X., Tian, Y., Ye, M. and Lee, W.-C. (2012). Exploring personal impact
for group recommendation, in X. wen Chen, G. Lebanon, H. Wang and
M. J. Zaki (eds.), 21st ACM International Conference on Information and
Knowledge Management, CIKM’12, Maui, HI, USA, October 29 - Novem-
ber 02, 2012 (ACM), ISBN 978-1-4503-1156-4, pp. 674–683.

Masthoff, J. (2015). Group recommender systems: Aggregation, satisfaction
and group attributes, in F. Ricci, L. Rokach and B. Shapira (eds.),
Recommender Systems Handbook (Springer), pp. 743–776, doi:10.1007/
978-1-4899-7637-6 22, https://doi.org/10.1007/978-1-4899-7637-6_

22.
McCarthy, J. (2002). Pocket RestaurantFinder: A situated recommender system

for groups, in Workshop on Mobile Ad-Hoc Communication at the 2002
ACM Conference on Human Factors in Computer Systems,
http://interrelativity.com/joe/publications/

PocketRestaurantFinder-CHI2002ws-AdHoc.pdf.
McCarthy, J. F. and Anagnost, T. D. (1998). Musicfx: An arbiter of group pref-

erences for computer supported collaborative workouts, in S. E. Poltrock
and J. Grudin (eds.), CSCW ’98, Proceedings of the ACM 1998 Conference
on Computer Supported Cooperative Work, Seattle, WA, USA, November
14-18, 1998 (ACM), ISBN 1-58113-009-0, pp. 363–372.

Mislove, A., Viswanath, B., Gummadi, P. K. and Druschel, P. (2010). You are who
you know: inferring user profiles in online social networks, in B. D. Davison,
T. Suel, N. Craswell and B. Liu (eds.), Proceedings of the Third Interna-
tional Conference on Web Search and Web Data Mining, WSDM 2010,
New York, NY, USA, February 4-6, 2010 (ACM), pp. 251–260, doi:10.
1145/1718487.1718519, http://doi.acm.org/10.1145/1718487.1718519.

Ntoutsi, E., Stefanidis, K., Nørv̊ag, K. and Kriegel, H.-P. (2012). Fast group
recommendations by applying user clustering, in P. Atzeni, D. W. Cheung
and S. Ram (eds.), Conceptual Modeling - 31st International Conference ER
2012, Florence, Italy, October 15-18, 2012. Proceedings, Lecture Notes in
Computer Science, Vol. 7532 (Springer), ISBN 978-3-642-34001-7, pp. 126–
140.

O’Connor, M., Cosley, D., Konstan, J. A. and Riedl, J. (2001). Polylens: A rec-
ommender system for groups of users, in W. Prinz, M. Jarke, Y. Rogers,
K. Schmidt and V. Wulf (eds.), Proceedings of the Seventh European Con-
ference on Computer Supported Cooperative Work, 16-20 September 2001,
Bonn, Germany (Kluwer), pp. 199–218.

Ortega, F., Hernando, A., Bobadilla, J. and Kang, J. H. (2016). Recommend-
ing items to group of users using matrix factorization based collabora-
tive filtering, Inf. Sci. 345, C, pp. 313–324, doi:10.1016/j.ins.2016.01.083,
http://dx.doi.org/10.1016/j.ins.2016.01.083.

Pessemier, T., Dooms, S. and Martens, L. (2013). Comparison of
group recommendation algorithms, Multimedia Tools and Applications,
pp. 1–45, doi:10.1007/s11042-013-1563-0, http://dx.doi.org/10.1007/

s11042-013-1563-0.

https://doi.org/10.1007/978-1-4899-7637-6_22
https://doi.org/10.1007/978-1-4899-7637-6_22
http://interrelativity.com/joe/publications/PocketRestaurantFinder-CHI2002ws-AdHoc.pdf
http://interrelativity.com/joe/publications/PocketRestaurantFinder-CHI2002ws-AdHoc.pdf
http://doi.acm.org/10.1145/1718487.1718519
http://dx.doi.org/10.1016/j.ins.2016.01.083
http://dx.doi.org/10.1007/s11042-013-1563-0
http://dx.doi.org/10.1007/s11042-013-1563-0

October 23, 2018 10:58 ws-rv9x6-9x6 Book Title 11131-06 page 231

Group Recommendations 231

Pizzutilo, S., Carolis, B. D., Cozzolongo, G. and Ambruoso, F. (2005). Group
modeling in a public space: Methods, techniques and experiences, in Pro-
ceedings of WSEAS AIC 05 (ACM, Malta).

Purushotham, S., Kuo, C. J., Shahabdeen, J. and Nachman, L. (2014). Col-
laborative group-activity recommendation in location-based social net-
works, in R. A. de By and C. Wenk (eds.), Proceedings of the 3rd ACM
SIGSPATIAL International Workshop on Crowdsourced and Volunteered
Geographic Information, GeoCrowd ’14, Dallas, Texas, USA, November
4, 2014 (ACM), pp. 8–15, doi:10.1145/2676440.2676442, http://doi.acm.
org/10.1145/2676440.2676442.

Quijano-Sánchez, L., Bridge, D. G., Dı́az-Agudo, B. and Recio-Garćıa, J. A.
(2012). A case-based solution to the cold-start problem in group recom-
menders, in B. Dı́az-Agudo and I. Watson (eds.), Case-Based Reasoning
Research and Development - 20th International Conference, ICCBR 2012,
Lyon, France, September 3-6, 2012. Proceedings, Lecture Notes in Computer
Science, Vol. 7466 (Springer), ISBN 978-3-642-32985-2, pp. 342–356.

Quijano-Sánchez, L., Recio-Garćıa, J. A., Dı́az-Agudo, B. and Jiménez-Dı́az, G.
(2011). Social factors in group recommender systems, ACM Transactions
on Intelligent Systems and Technology.

Recio-Garćıa, J. A., Jiménez-Dı́az, G., Sánchez-Ruiz-Granados, A. A. and
Dı́az-Agudo, B. (2009). Personality aware recommendations to groups, in
L. D. Bergman, A. Tuzhilin, R. D. Burke, A. Felfernig and L. Schmidt-
Thieme (eds.), Proceedings of the 2009 ACM Conference on Recommender
Systems, RecSys 2009, New York, NY, USA, October 23-25, 2009 (ACM),
ISBN 978-1-60558-435-5, pp. 325–328.

Ricci, F. (2014). Recommender systems: Models and techniques, in Encyclopedia
of Social Network Analysis and Mining (Springer, New York), pp. 1511–
1522.

Sebastia, L., Garcia, I., Onaindia, E. and Guzman, C. (2009). E-Tourism:
a tourist recommendation and planning application, International Jour-
nal on Artificial Intelligence Tools 18, 5, pp. 717–738, doi:10.1142/
S0218213009000378, http://dx.doi.org/10.1142/S0218213009000378.

Senot, C., Kostadinov, D., Bouzid, M., Picault, J. and Aghasaryan, A. (2011).
Evaluation of group profiling strategies, in T. Walsh (ed.), IJCAI 2011,
Proceedings of the 22nd International Joint Conference on Artificial In-
telligence, Barcelona, Catalonia, Spain, July 16-22, 2011 (IJCAI/AAAI),
ISBN 978-1-57735-516-8, pp. 2728–2733.

Senot, C., Kostadinov, D., Bouzid, M., Picault, J., Aghasaryan, A. and Bernier,
C. (2010). Analysis of strategies for building group profiles, in P. D. Bra,
A. Kobsa and D. N. Chin (eds.), User Modeling, Adaptation, and Per-
sonalization, 18th International Conference, UMAP 2010, Big Island, HI,
USA, June 20-24, 2010. Proceedings, Lecture Notes in Computer Science,
Vol. 6075 (Springer), ISBN 978-3-642-13469-2, pp. 40–51.

http://doi.acm.org/10.1145/2676440.2676442
http://doi.acm.org/10.1145/2676440.2676442
http://dx.doi.org/10.1142/S0218213009000378

October 23, 2018 10:58 ws-rv9x6-9x6 Book Title 11131-06 page 232

232 L. Boratto and A. Felfernig

Serbos, D., Qi, S., Mamoulis, N., Pitoura, E. and Tsaparas, P. (2017). Fairness in
package-to-group recommendations, in Proceedings of the 26th International
Conference on World Wide Web, WWW ’17 (International World Wide
Web Conferences Steering Committee, Republic and Canton of Geneva,
Switzerland), ISBN 978-1-4503-4913-0, pp. 371–379, doi:10.1145/3038912.
3052612, https://doi.org/10.1145/3038912.3052612.

Tkalčič, M., Delic, A. and Felfernig, A. (2018). Personality, emotions,
and group dynamics, in Group Recommender Systems: An Introduc-
tion (Springer International Publishing, Cham), ISBN 978-3-319-75067-
5, pp. 157–167, doi:10.1007/978-3-319-75067-5 9, https://doi.org/10.

1007/978-3-319-75067-5_9.
Ye, M., Liu, X. and Lee, W.-C. (2012). Exploring social influence for rec-

ommendation: a generative model approach, in Proceedings of the 35th
international ACM SIGIR conference on Research and development in in-
formation retrieval, SIGIR ’12 (ACM, New York, NY, USA), ISBN 978-1-
4503-1472-5, pp. 671–680, doi:10.1145/2348283.2348373, http://doi.acm.
org/10.1145/2348283.2348373.

Yuan, Q., Cong, G. and Lin, C. (2014). COM: a generative model for group
recommendation, in S. A. Macskassy, C. Perlich, J. Leskovec, W. Wang
and R. Ghani (eds.), The 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’14, New York, NY, USA
- August 24-27, 2014 (ACM), pp. 163–172, doi:10.1145/2623330.2623616,
http://doi.acm.org/10.1145/2623330.2623616.

https://doi.org/10.1145/3038912.3052612
https://doi.org/10.1007/978-3-319-75067-5_9
https://doi.org/10.1007/978-3-319-75067-5_9
http://doi.acm.org/10.1145/2348283.2348373
http://doi.acm.org/10.1145/2348283.2348373
http://doi.acm.org/10.1145/2623330.2623616

October 22, 2018 14:58 ws-rv9x6-9x6 Book Title 11131-07 page 233

Chapter 7

User Preference Sources: Explicit vs. Implicit Feedback

Paolo Cremonesi, Franca Garzotto and Maurizio Ferrari Dacrema

Politecnico di Milano, Department of Electronic, Information and
Bioengineering, Via Ponzio 34/5, 20133 Milano, Italy

paolo.cremonesi@polimi.it, franca.garzotto@polimi.it,

maurizio.ferrari@polimi.it

The process of collecting preferences from users is fundamental during
the normal operational life of a recommender system. The preference
elicitation strategy can affect both the “user utility” (how well the system
can make good recommendations to the new user who is undergoing
the elicitation process) and the “system utility” (how well the system
can provide good recommendations to all users, given what it learns
from the new users). Not only do recommender systems need to gather
information from users; they also need this information to be reliable and
noiseless, as inconsistencies in user preferences limit prediction accuracy.

This chapter provides an overview of several design criteria for mak-
ing the elicitation process more effective. The chapter analyzes two
sources of preferences: (i) implicit feedbacks, inferred from the observ-
able user activity, such as purchases or clicks; and (ii) preferences the
user has explicitly stated for particular items.

Keywords: preference elicitation, system design, implicit feedback,
explicit feedback.

7.1. Introduction

Whenever a user joins a recommender systems, the system needs to learn

something from the user in order to provide personalized recommendations

[Kluver et al. (2012); Sparling and Sen (2011); Ekstrand et al. (2011)].

These information needs come up under the guise of the cold-start prob-

lem. The cold-start problem concerns the issue of providing recommenda-

tions when data are not yet available on which to base those predictions.

There are three types of cold-start problems: (i) new-user, whenever a new

233

October 22, 2018 14:58 ws-rv9x6-9x6 Book Title 11131-07 page 234

234 P. Cremonesi, F. Garzotto and M. F. Dacrema

user joins the system but their preferences are not yet known [Cosley et al.

(2003)], (ii) new-item, whenever new items are added to the system (e.g.,

when a new movie or book is released) but these have not yet received

enough preferences to be recommendable [Schein et al. (2002)], and (iii)

system bootstrap, where a system has no information about any user pref-

erences (an extreme intersection of both new-user and new-item problems).

The elicitation process is fundamental not only during cold-start but

also during the normal operational life of the system, as user’s preferences

evolve with time [Drenner et al. (2008); Konstan and Riedl (2012); Rashid

et al. (2002); Cremonesi et al. (2012a, 2013)].

The preference elicitation strategy can affect both the “user utility”

(how well the system can make good recommendations to the new user

who is undergoing the elicitation process) and the “system utility” (how

well the system can provide good recommendations to all users, given what

it learns from the new users) [Drenner et al. (2008); Konstan and Riedl

(2012); Rashid et al. (2002)].

Not only do recommender systems need to gather information from

users; they also need this information to be reliable and noiseless, as in-

consistencies in user preferences limit prediction accuracy [Kluver et al.

(2012)], a requirement that is referred to as the “magic barrier” [Said et al.

(2012b,a); Amatriain et al. (2009a)].

Preference is not a function of the item only: contextual factors such as

time, mood, and social environment can influence a user’s preference.

Consumption ratings are provided when the user has just consumed (or

is consuming) the item in question. These ratings are particularly com-

mon in online streaming media environments, such as the Spotify music

recommender or NetFlix instant streaming.

Memory ratings are provided based on the user’s memory of experienc-

ing the item. When a user eats at a restaurant then rates it on TripAdvisor,

they are providing a memory preference. In some ways, consumption rat-

ings are the most reliable, as the item is fresh in the user’s mind. Memory

ratings are also based on experience, so the user has a fuller set of data on

which to base their rating than in the expectation case, but their impres-

sion of the item may not be accurately remembered or may be influenced

by various external factors.

Therefore the elicited data may contain information about the context in

which the user experienced the item and, in the case of memory preferences,

intervening events or changes of mind as well as their preference for the item

itself.

October 22, 2018 14:58 ws-rv9x6-9x6 Book Title 11131-07 page 235

User Preference Sources: Explicit vs. Implicit Feedback 235

Maximizing both utility and ease of use are somehow conflicting require-

ments in the design of an elicitation process. The system needs to learn

from users and to collect enough “good” information to generate satisfying

recommendations. Not gathering enough information can result in a poor

user model, which may lead to limited accuracy of recommendations and, in

turn, may negatively affect the quality of the user interaction with the rec-

ommender system. Still, requiring users to spend too much time and energy

with the system to express their opinions can be annoying, and may cause

users either to stop using the system or to provide random information (or

no information at all); this in turn will result in poor recommendations, in-

creasing the risk of dissatisfying the user. Hence, elicitation strategies must

face a potential design tension: to raise utility by increasing the amount

of information gathered from users, and to make the elicitation process

smooth from a user interaction perspective, limiting complexity and user

effort during sign-up tasks [Cremonesi et al. (2012b)].

The chapter is structured as follows. Section 7.2 outlines the differ-

ent design choices available when eliciting users’ preferences. Section 7.3

investigates the impact of feedback noise on the quality of recommenda-

tions. Sections 7.4 and 7.5 investigate the trade-off between quality and

effort during explicit elicitation. Section 7.6 investigates the impact of the

user interface on explicit elicitation. Section 7.7 analyzes strategies and

problems related to implicit feedback collection. Section 7.8 outlines future

research aimed at improving the quality of the elicitation process.

7.2. Design dimensions

A number of design criteria have been identified for making the elicitation

process more effective in terms of both utility and quality of the user inter-

action with the recommender system. Such criteria can be organized along

different design dimensions.

7.2.1. Demographics vs. Preferences

A first design dimension is the type of information the system needs to

collect in order to provide recommendations.

Historically, the first recommender systems focused on collecting de-

mographic attributes from users and providing recommendations based on

demographic classes [Rich (1979); Al-Shamri (2016)]. Age, gender, occupa-

tion, income, nationality, are examples of demographic data used by these

October 22, 2018 14:58 ws-rv9x6-9x6 Book Title 11131-07 page 236

236 P. Cremonesi, F. Garzotto and M. F. Dacrema

systems. Today, demographics-based recommender systems raise some con-

cerns due to security and privacy issues and the difficulty to obtain reliable

demographic data from the users.

Modern systems provide personalized recommendations based on same

users’ preferences for items in a domain (e.g., ratings of movies). Even

a few users’ preferences on some of the items are more valuable than any

demographic data in terms of quality of recommendations [Pilászy and Tikk

(2009)].

In this chapter we deal only with preference-based elicitation.

7.2.2. Sources of Preferences

A second design dimension is the source of preferences. Preference data

comes from two primary sources:

• implicit feedbacks are inferred by the system from the observable

user activity, such as purchases or clicks;

• explicit feedbacks are preferences the user has explicitly stated for

particular items.

System designers must be careful when using implicit data to understand

the mapping between user interaction and actual user preferences, needs

and intentions. Explicit feedbacks avoid the potentially difficult inference

problems for user preferences that affect the collection of implicit ratings.

However, explicit feedback suffers from the drawback that there can be a

discrepancy between what the users say and what they do [O’Mahony et al.

(2006)].

In this chapter we analyze both explicit (Sections 7.3–7.5) and implicit

(Section 7.7) feedback.

7.2.3. Categorical vs. Numerical Explicit Preferences

An explicit preference elicitation process means that the system learns from

specific facts provided by users about their preferences. When dealing with

explicit preferences, a third design dimension concerns the type of feedback

collected from the user. Explicit preferences can be divided into rating-

based (i.e., numerical) feedbacks and categorical feedbacks [Awang et al.

(2016)].

With rating-based elicitation, user’s preferences are mapped to numeri-

cal values (ratings). Rating scales are arbitrary and vary widely in granu-

larity.

October 22, 2018 14:58 ws-rv9x6-9x6 Book Title 11131-07 page 237

User Preference Sources: Explicit vs. Implicit Feedback 237

Categorical preferences have no order or structure. Examples of categor-

ical preferences are tagging items [Drenner et al. (2008)] and preferences on

product attributes (e.g., favorite actors) [Adomavicius and Tuzhilin (2005)].

Categorical preferences are not analyzed in this chapter.

7.2.4. Rating Scale

Many recommender systems represent a user’s opinion about an item as a

single number on a rating scale.

The choice of rating scales is a major concern in recommender systems

[Friedman and Amoo (1999); Amoo and Friedman (2001); Garland (1991);

Cosley et al. (2003)]. The rating scale should be high enough so that users

can create the correct number of categories for them to distinguish between

levels of liking, but not so high that users require too much effort in order

to make appropriate judgments among the categories. The scale should

also allow the system to make accurate predictions.

Rating scales are analyzed in more details in Section 7.4.

7.2.5. Human vs. System Controlled Elicitation

When designing the interaction process for explicit elicitation, two possi-

ble strategies are available: (i) human-controlled — the user selects au-

tonomously the items to evaluate, and (ii) system-controlled — the system

creates the list of items for the user to evaluate [Mobasher (2007)].

One limitation of the human-controlled elicitation approach is that the

users may not be able to identify the items to evaluate that maximize utility

(either for the user or for the system).

System-controlled elicitation involves the issue of which items the user

should rate and in which order, in order to maximize user or system utility.

The most common approaches for system-controlled elicitation are based

on active learning, which selectively chooses the items to be rated by the

users [Elahi et al. (2016)].

This chapter assumes that a human-controlled elicitation is in place

whenever we are dealing with explicit feedback, although most of the con-

siderations apply to system-controlled elicitation as well. The benefits of

active learning with respect to human-controlled elicitation are analyzed

with more details in Chapter 11.

October 22, 2018 14:58 ws-rv9x6-9x6 Book Title 11131-07 page 238

238 P. Cremonesi, F. Garzotto and M. F. Dacrema

7.2.6. Number of Ratings

One of the difficult issues when designing a recommender system is the

number of ratings — i.e., the profile length — which should be collected

from a user before providing recommendations [Cremonesi et al. (2012b)].

A design tension exists which is induced by two conflicting requirements.

On the one hand, the system must collect “enough” ratings from the users

in order to learn their preferences and improve the accuracy of recommen-

dations. On the other hand, gathering more ratings adds a burden on the

users, which may negatively affect the quality of their experience.

Several research works investigated the effects of profile length from both

a subjective (user-centric) point of view and an objective (accuracy-based)

perspective [Drenner et al. (2008); Konstan and Riedl (2012); Rashid et al.

(2002)]. These studies identify a potentially optimal profile length for an

explicit, rating based, and human controlled elicitation strategy [Cremonesi

et al. (2012b)].

The effects of profile length on recommendations are analyzed in Section

7.5.

7.3. Noise

Most recommender systems assume user ratings accurately represent user

preferences. However, several research works show that user ratings are

imperfect and noisy. Moreover, this noise limits the predictive power of

any recommender system [Kluver et al. (2012)]. This limit has been named

the magic barrier [Said et al. (2012a); Belloǵın et al. (2014); Amatriain

et al. (2009a)]. Recent work has begun to explore the quality of the ratings

themselves [Cosley et al. (2003); O’Mahony et al. (2004); Sparling and Sen

(2011)].

Rating errors (the difference between users’ ratings and their true prefer-

ences) can be divided into two categories: natural noise, where user ratings

differ from true preference due to errors in the elicitation process, and ma-

licious noise, which refers to discrepant ratings introduced for the purpose

of manipulating the system’s recommendations or predictions [O’Mahony

et al. (2006)]. In this chapter, we are only concerned with natural noise.

Malicious noise is analyzed in Chapter 17.

Natural noise can result from normal human errors, interface design

(such as the order in which items are presented for rating), the context

in which an item was consumed (e.g., eating in a restaurant at lunch or

October 22, 2018 14:58 ws-rv9x6-9x6 Book Title 11131-07 page 239

User Preference Sources: Explicit vs. Implicit Feedback 239

dinner times), the user’s bias, and other confounding factors [Amatriain

et al. (2009b)].

One additional potential source of noise is the time gap between when

the user consumed the item and when they rated it. Consumption ratings

are provided when the user has just consumed (or is consuming) the item in

question. These ratings are particularly common in online streaming media

environments, such as the Spotify and NetFlix streaming services. Memory

ratings are provided based on the user’s memory of experiencing the item.

When a user eats at a restaurant and later they rate it on TripAdvisor, they

are providing a memory rating. In some ways, consumption ratings are the

most reliable, as the item is fresh in the user’s mind. Memory ratings are

also based on experience but their impression of the item may not be accu-

rately remembered or may be later influenced by various external factors.

Two non-exclusive approaches are possible to mitigate the negative im-

pact of rating noise: (i) reducing the noise at the elicitation level, or (ii)

designing noise-aware recommender algorithms.

Detecting and compensating for noise in the users input ratings poten-

tially results in better recommender systems. From the academic point of

view, natural noise in ratings can be detected by asking users to re-rate

items [Amatriain et al. (2009a); Cosley et al. (2003)]. This approach is

almost impractical in commercial systems, as asking users to re-rate item

would likely annoy users and negatively affect their experience. Proper

choices during the rating elicitation process — such as rating scale, profile

length, interface designs — can be adopted more effectively to reduce nat-

ural noise. However, re-rating can be used in experimental setups to help

defining the best rating scale, as explained in Section 7.4.1.

Recommender systems that understand and adapt to noise in user rat-

ings may be able to mitigate the magic barrier problem and generate more

accurate recommendations [Toledo et al. (2015)]. Some probabilistic models

assumes that user-provided ratings are drawn from a normal distribution

whose mean is the user’s true preference. Analyzing ratings with these

models in a naive Bayesian framework allows the system to compensate for

noise in individual ratings [Babas et al. (2013); Adomavicius and Tuzhilin

(2005)]. User biases can be accounted with pre-normalization of the rat-

ings, as with global effects normalization [Bell and Koren (2007)]. Context

noise can be accounted with ad-hoc context-aware recommender systems

(see Chapter 5).

October 22, 2018 14:58 ws-rv9x6-9x6 Book Title 11131-07 page 240

240 P. Cremonesi, F. Garzotto and M. F. Dacrema

7.4. Rating scale

Many recommender systems represent a user’s opinion about an item as a

single number on a rating scale.

Scales vary widely in their granularity [Cosley et al. (2003)]. These

scales are appealing to the system designer, as they provide an integral or

real-valued rating that is easy to use in computations. They also benefit

from the body of research about Likert scales that is available in the area

of survey design [Amoo and Friedman (2001); Friedman and Amoo (1999);

Garland (1991)].

When choosing a ratings scale, a number of design options are available:

• the number of categories (or granularity) of the scale (e.g., 2 values,

5 values, 10 values, ...);

• the labels attached to each category (e.g., stars, thumbs up/down,

...);

• the presence of a neutral mid point in the scale.

The impact of these choices on the accuracy of recommendations is

analyzed in the following subsections.

7.4.1. Granularity

Mapping user preference to a rating scale is not an easy task, as different

users may have different preferences with respect to the rating scales [Gena

et al. (2011)].

Ideally, a rating scale should allow users to express their opinions in a

meaningful way without too much effort. The rating scale should be high

enough so that users can create the correct number of categories for them

to distinguish between levels of liking, but not so high that users require too

much time and effort to make judgments between the categories. System

designers may face a fundamental trade-off between a coarse rating scale

that is relatively quick and noisy, and a granular rating scale that requires

more effort with less noise.

There is not a clear consensus on the optimal granularity that balances

quality and effort. A number of psychological studies use information the-

ory to measure how much information different rating scales transmit. One

of the fundamental measures of information is called entropy, which mea-

sures how hard a random variable is to predict [Shannon (2001)]. By study-

ing the entropy of ratings, results suggest that a less granular rating scale

October 22, 2018 14:58 ws-rv9x6-9x6 Book Title 11131-07 page 241

User Preference Sources: Explicit vs. Implicit Feedback 241

increases rating noise, although this effect is limited [Garner (1960)]. For

instance, users seem to give borderline items the benefit of the doubt when

forced to rate on a coarse scale, i.e., they rate borderline items higher than

with a finer rating scale [Cosley et al. (2003)]. However, quality of rec-

ommendations does not increase indefinitely with the “rating effort”: we

cannot gain more information by arbitrarily increasing the resolution of the

rating scale [Kluver et al. (2012)].

On the contrary, other studies comparing scales with varying numbers of

response categories show that users rate items consistently even when using

different scales, and as few as two response categories may be adequate in

practice [Matell and Jacoby (1971, 1972)].

Other studies show that the effectiveness of rating scales depends on

both the human-computer interface (e.g., mobile, desktop) and the appli-

cation domain [Cosley et al. (2003)].

To directly address the quality/effort trade-off [Kluver et al. (2012)]

measure and compare three quantities: preference bits per rating, mean

time per raring and preference bits per second.

• Preference bits per rating (pbpr) measures how much an elicited

rating is able to reduce the entropy of a new rating, and it is as-

sessed either by asking users to re-rate an item or by comparing

elicited and predicted ratings. Pbpr are strongly correlated with

the accuracy of recommendations.

• The mean time required to rate an item is used as a measure of the

user’s mental effort [Sparling and Sen (2011)].

• Preference bits per second (pbps) measures the ratio between the

amount of information collected from a user divided by the effort

for that user. For a rating scale, pbps is defined as the pbpr for that

rating scale divided by the number of seconds per rating with that

scale. Preferences bits per second can be considered as a measure

of the speed at which we can elicit preference information from a

user.

Table 7.1 reports the values of the three metrics (pbpr, mean time, pbps)

collected on two different experiments with two different movie datasets

(values re-elaborated from [Kluver et al. (2012)]). The results suggest that,

despite the faster ratings, the binary scale gives us slower information than

other scales. There is evidence that a rating scale with 5 or 10 values

matches how users think about movies better than a 2 values rating scale.

The results show also that there is not a strong difference between the 5

and 10 values rating scale, in terms of pbps.

October 22, 2018 14:58 ws-rv9x6-9x6 Book Title 11131-07 page 242

242 P. Cremonesi, F. Garzotto and M. F. Dacrema

Table 7.1. Effort and quality for each scale and dataset.

Preference bits per rating Mean rating time per item Preference bits per second

(pbpr) (sec) (pbps)

Scale 2 5 10 2 5 10 2 5 10

ML 0.15 0.270 0.270 3.91 4.09 4.33 0.038 0.66 0.65
Jester 0.12 0.210 0.240 15.47 16.39 16.55 0.008 0.13 0.17

7.4.2. Labels

Labels associated with each choice in a rating scale can affect the distri-

bution of responses [Friedman and Amoo (1999)]. For instance, changing

a scale’s range without changing the granularity (e.g., from -5 . . . 5 to 0

. . . 10) influences users’ responses [Amoo and Friedman (2001)].

When using a Likert scale, users specify their level of preference for an

item with a bipolar like-dislike scale, measuring either positive or negative

preferences for an item [Croasmun and Ostrom (2011)].

Several studies report that users with both like and dislike options pro-

vide more ratings than users with only “like” options [Sen et al. (2007)].

For this reason, rating scales should exhibit “symmetry”. Symmetry means

that a scale contains an equal numbers of positive and negative positions,

or labels, whose distances are symmetric about the “neutral” mid value

(whether or not that value is present in the scale).

The labels for a five-level rating scale, for example, could be: 1-Strongly

Dislike, 2-Dislike, 3-Neither Like nor Dislike, 4-Dislike, 5-Strongly Like. If

labels are missing and only numerical values are presented to the users,

most users will still assume a balanced and symmetrical numerical scale.

However, some users could have a biased mapping between numbers and

labels. Referring to the previous example, some users might map the neutral

“Neither Like or Dislike” label with 4, other users with 2. This discrepancy

from the intended, implicit labeling of a numerical-only rating scale and

the user interpretation introduce biases in the rating behavior of users.

The user bias is a form of rating noise and should be considered when

building a recommender algorithm (see Section 7.3).

7.4.3. Mid-point

The use of a mid-point in ratings is still debated. Using a mid-point value

has been shown to affect the data [Croasmun and Ostrom (2011)].

October 22, 2018 14:58 ws-rv9x6-9x6 Book Title 11131-07 page 243

User Preference Sources: Explicit vs. Implicit Feedback 243

Since they have no neutral point, even-numbered rating scales force the

respondent to commit to a certain polarized position, even if the respondent

may not have a definite opinion.

Odd-numbered scales provide an option for indecision or neutrality. By

giving responders a neutral response option, they are not required to decide

one way or the other on an issue. This may reduce the chance of response

biases, which is the tendency to favor either positive or negative ratings.

Respondents do not feel forced to have an opinion if they do not have one.

Some researches suggest that excluding a middle choice can reduce re-

spondents’ bias toward providing positive replies, but that doing so can

increase the rating effort and reduce the number of collected ratings [Gar-

land (1991)].

7.5. Number of ratings

One issue when designing a recommender system is the number of ratings

— i.e., the profile length — which should be collected from a new user

before providing recommendations [Drenner et al. (2008)].

On the one hand, the system must collect enough ratings from the users

in order to learn their preferences and improve the accuracy of recommen-

dations. On the other hand, gathering more ratings adds a burden on

the user, which may negatively affect the user experience [Cremonesi et al.

(2012b)].

Several works confirm that the profile length of a users is positively

correlated to the accuracy of recommendations [Konstan and Riedl (2012);

Rashid et al. (2002)]. However, Figure 7.1 shows that the accuracy (recall)

of two state-of-art CF algorithms — PureSVD and AsySVD — measured

on the Netflix dataset does not increases indefinitely with the profile length

[Cremonesi et al. (2012b)].

Other works suggest to minimize the number of elicited preferences

in the profile initialization [Drenner et al. (2008); Golbandi et al. (2010);

Rashid et al. (2002)]. According to behavioral decision theories [Häubl and

Trifts (2000)], users are likely to settle on the immediate benefit of saving

effort over the delayed gratification of higher accuracy. A number of stud-

ies find that the optimal number of ratings in the user profile is between

5 and 20 ratings (more likely 10 ratings). Eliciting more ratings does not

significantly improve the quality of recommendations, while it adds an use-

less burden on the user, with the risk of increasing noise [Cremonesi et al.

(2012b); Kluver and Konstan (2014)].

October 22, 2018 14:58 ws-rv9x6-9x6 Book Title 11131-07 page 244

244 P. Cremonesi, F. Garzotto and M. F. Dacrema

5 10 15 20 25 30 35 40
0.08

0.12

0.16

0.2

0.24

user profile length (number of elicited ratings)

re
c
a
ll

@
 5

PureSVD

AsySVD

Fig. 7.1. Accuracy of recommendations vs. number of elicited ratings for two matrix-

factorization based CF algorithms.

7.6. Interface

Designers of recommender systems interfaces try to help users form con-

sistent and useful preferences by helping them to remember the item, for

example by presenting descriptions and attributes of it.

In the course of eliciting ratings, the system interface may affect users’

opinions of the rated items. When a person is asked to evaluate an item, the

evaluation of it may depend on the information provided in the interface

[Nguyen et al. (2013)].

For instance, if the interface displays some kind of predefined opinion

on the items the users are asked to rate, (e.g., average rating, or predicted

rating), the system is actually influencing their beliefs, persuading them

to rate items consistently with the opinions shown by the interface [Cosley

et al. (2003)]. If opinions are influenced by the interface, they might be less

valuable for making recommendations [Cosley et al. (2003)].

7.7. Implicit feedback

Preferences can also be inferred from user behavior [Oard et al. (1998)].

Many e-commerce systems often use purchase decisions as a proxy for rat-

ings, resulting in either a unary scale (bought items are “liked”, others

unknown) or a binary scale (bought items “liked”, unbought items “dis-

liked”).

User actions such as time spent reading the description of an item,

saving an item in the favorite list, buying an item, and any other user

“signals” potentially contribute to the building of an implicit user profile

[Morita and Shinoda (1994); Tan et al. (2016); Quadrana et al. (2017)].

October 22, 2018 14:58 ws-rv9x6-9x6 Book Title 11131-07 page 245

User Preference Sources: Explicit vs. Implicit Feedback 245

Observed or inferred preference information are expected to be noisier

than explicitly provided data. However, one problem with explicit ratings

is that the point in time when users provide a rating can be quite different

from the point in time when they consumed or purchased an item (e.g.,

when a user rates a bunch of movies while registering for a movie recom-

mendation service), which in turn creates some natural noise in the ratings

and might easily mislead the recommender system. For this reason, in this

situations it may happen that implicit feedback can build a more accurate

long-term profile of a user’s taste then users themselves can articulate with

explicit ratings [O’Mahony et al. (2006)].

When implicit ratings are collected, the observed user events must be

translated into computationally useful estimators of preference. The most

common setup is to map implicit feedback into explicit ratings, and to

later use traditional CF techniques to provide recommendations [Oard et al.

(1998)]. For instance, if a user skips a track while listening to music from

an online streaming service, this signal could be considered as a negative

feedback. On the contrary, if a user listens to the same track again and

again, this signal could be considered as a positive feedback. Other forms

of data, such as the time spent on a page, also provide useful signals for

inferring user preferences. There is a substantial correlation between the

time a user spend reading the description of an item and his/her preference

for that item [Morita and Shinoda (1994); Konstan et al. (1997)].

While this approach supports the usage of traditional CF algorithms, it

also oversimplifies the underlying problem potentially.

There are also other interesting patterns that can be derived from inter-

action logs but are not easily tied to a positive or negative feedback. Based

on the ordering and the timestamps of the user actions, we can for example

detect interest drifts of individual users over time, or detect short-term pop-

ularity trends in the community that can be exploited by recommendation

algorithms. These patterns are exploitable only with the design of ad-hoc

CF algorithms tuned for implicit feedback, as it happens in session-based

recommender systems [Tan et al. (2016); Quadrana et al. (2017)].

The main input to a session-based recommender system is a — usually

time-stamped — list of past user actions. Each action can be associated

with one user of the system or be an anonymous action. Each action can

furthermore be associated with one of the recommendable items. Finally,

each action can be of one of several pre-defined types (e.g., item-view, item-

purchase, add-to-cart, etc.) and each action, user, and item may have a

number of additional attributes. In a traditional setup, all implicit feedback

October 22, 2018 14:58 ws-rv9x6-9x6 Book Title 11131-07 page 246

246 P. Cremonesi, F. Garzotto and M. F. Dacrema

are associated to one of the known users and items, and a mapping is de-

signed between each user action and an explicit rating. However, anony-

mous user actions are not uncommon, e.g., in the e-commerce domain,

where users are often not logged in. Moreover, not all actions are related

to an item, since, for example, relevant information can be extracted from

the users search or navigation behavior as well [Quadrana et al. (2018)].

In session-based recommenders, recommendations can be provided

based solely on the interactions in the current user session (e.g., when the

users are anonymous). But there are also cases where a user might be

logged-in or some form of user identifier might be present (e.g., by effect

of cookies or other identifiers). In these cases it is reasonable to assume

that the user behavior in past sessions might offer valuable information for

providing recommendations in the next session [Quadrana et al. (2017)].

In the literature, the difference between explicit and implicit feedback

recommender systems only lies in the type of the available preference sig-

nals. Many research researches on implicit feedback assume implicit feed-

backs as positive opinions of users and map these to a positive rating. These

approaches do not consider multiple interactions over time and do not con-

sider signals that express negative feedback. In particular, in session-based

recommendation scenarios, the users’ short-term intents, which can be esti-

mated from their very last actions, can represent a crucial form of context

information that should be taken into account when recommending [Jan-

nach et al. (2015)].

Explicit and implicit rating data are not mutually exclusive [Koren

(2010)]. Recommender systems can incorporate both into the recommenda-

tion process. Whenever a new user join a recommender system, the system

can first collect some implicit ratings (e.g., through page views). As the

user is persuaded to provide explicit ratings, hybrid data becomes available

to the system. Many commercial recommender systems make use of both

explicit and implicit data in providing their various recommendations (e.g.,

Amazon, Netflix).

7.8. Future directions

The wide set of studies on preference elicitation provides a number of an-

swers to different questions, but also highlights the discrepancy between

what we know and what we need to know, pinpointing directions for current

and future research. In this respect, the following issues are particularly

challenging.

October 22, 2018 14:58 ws-rv9x6-9x6 Book Title 11131-07 page 247

User Preference Sources: Explicit vs. Implicit Feedback 247

(1) Investigation of pairwise preference elicitation. Since ratings represent

evaluations measured against an absolute benchmark, it could be diffi-

cult for the user to consistently rate items. For instance, if a user rates

an item with the highest value in the rating scale and successively finds

an even better item, then there is no way to express such a preference.

Another way to articulate preferences is based on pairwise comparisons:

one item is preferred with respect to another item. Although some ex-

isting research shows that pairwise-based recommendation technology

can lead to a better quality of recommendations [Blédaité and Ricci

(2015)], there is still no consensus whether it is easier to decide which

item is preferred among two, rather than rating them in some prede-

fined scale [Nobarany et al. (2012)]. In that respect, further work is

needed in the development of user interfaces and algorithms that make

use of pairwise preferences.

(2) Investigation of session-based recommender systems. The development

of new effective session-based recommenders is still an open research

issue. In e-commerce domains, implicit feedback in the form of page

views and item purchases is the primary source of preference data for

recommendation [Linden et al. (2003)]. System designers and analysts

must be careful when using implicit data to understand the mapping

between system-visible user identities (frequently accounts) and actual

people.

(3) Investigation of mixed feedback. One of the most common sources of

natural noise in collected feedbacks (either explicit or implicit) is that

users of e-commerce systems will often share their account with other

users. For instance, a family may have a single Amazon.com account,

thus providing the system with ill-defined aggregate information about

several people’s preferences. Moreover, users will often purchase items

as gifts for others. Those purchases and related activities do not neces-

sarily communicate anything about the user’s tastes. A similar scenario

happens for TV recommender systems: the same TV set is used by dif-

ferent members of a family (either individually or in group), making

difficult for the recommender system to guess who is in front of the

TV screen. A lot of research effort has been focused on group recom-

mender systems but little work has been done to identify single users

from group feedbacks.

October 22, 2018 14:58 ws-rv9x6-9x6 Book Title 11131-07 page 248

248 P. Cremonesi, F. Garzotto and M. F. Dacrema

References

Adomavicius, G. and Tuzhilin, A. (2005). Toward the next generation of recom-
mender systems: A survey of the state-of-the-art and possible extensions,
IEEE transactions on knowledge and data engineering 17, 6, pp. 734–749.

Al-Shamri, M. Y. H. (2016). User profiling approaches for demographic recom-
mender systems, Know.-Based Syst. 100, C, pp. 175–187, doi:10.1016/j.
knosys.2016.03.006, https://doi.org/10.1016/j.knosys.2016.03.006.

Amatriain, X., Pujol, J. M. and Oliver, N. (2009a). I like it... i like it not: Evaluat-
ing user ratings noise in recommender systems, in Proceedings of the 17th In-
ternational Conference on User Modeling, Adaptation, and Personalization:
Formerly UM and AH, UMAP ’09 (Springer-Verlag, Berlin, Heidelberg),
ISBN 978-3-642-02246-3, pp. 247–258, doi:10.1007/978-3-642-02247-0 24,
http://dx.doi.org/10.1007/978-3-642-02247-0_24.

Amatriain, X., Pujol, J. M., Tintarev, N. and Oliver, N. (2009b). Rate it again:
Increasing recommendation accuracy by user re-rating, in Proceedings of
the Third ACM Conference on Recommender Systems, RecSys ’09 (ACM,
New York, NY, USA), ISBN 978-1-60558-435-5, pp. 173–180, doi:10.1145/
1639714.1639744, http://doi.acm.org/10.1145/1639714.1639744.

Amoo, T. and Friedman, H. H. (2001). Do numeric values influence subjects
responses to rating scales?

Awang, Z., Afthanorhan, A. and Mamat, M. (2016). The likert scale analysis
using parametric based structural equation modeling (sem), Computational
Methods in Social Sciences 4, 1, p. 13.

Babas, K., Chalkiadakis, G. and Tripolitakis, E. (2013). You are what you con-
sume: A bayesian method for personalized recommendations, in Proceedings
of the 7th ACM Conference on Recommender Systems, RecSys ’13 (ACM,
New York, NY, USA), ISBN 978-1-4503-2409-0, pp. 221–228, doi:10.1145/
2507157.2507158, http://doi.acm.org/10.1145/2507157.2507158.

Bell, R. M. and Koren, Y. (2007). Lessons from the netflix prize challenge, Acm
Sigkdd Explorations Newsletter 9, 2, pp. 75–79.

Belloǵın, A., Said, A. and de Vries, A. P. (2014). The magic barrier of recom-
mender systems–no magic, just ratings, in International Conference on User
Modeling, Adaptation, and Personalization (Springer), pp. 25–36.

Blédaité, L. and Ricci, F. (2015). Pairwise preferences elicitation and exploitation
for conversational collaborative filtering, in Proceedings of the 26th ACM
Conference on Hypertext & Social Media, HT ’15 (ACM, New York,
NY, USA), ISBN 978-1-4503-3395-5, pp. 231–236, doi:10.1145/2700171.
2791049, http://doi.acm.org/10.1145/2700171.2791049.

Cosley, D., Lam, S. K., Albert, I., Konstan, J. A. and Riedl, J. (2003). Is see-
ing believing?: How recommender system interfaces affect users’ opinions,
in Proceedings of the SIGCHI Conference on Human Factors in Comput-
ing Systems, CHI ’03 (ACM, New York, NY, USA), ISBN 1-58113-630-7,
pp. 585–592, doi:10.1145/642611.642713, http://doi.acm.org/10.1145/

642611.642713.

https://doi.org/10.1016/j.knosys.2016.03.006
http://dx.doi.org/10.1007/978-3-642-02247-0_24
http://doi.acm.org/10.1145/1639714.1639744
http://doi.acm.org/10.1145/2507157.2507158
http://doi.acm.org/10.1145/2700171.2791049
http://doi.acm.org/10.1145/642611.642713
http://doi.acm.org/10.1145/642611.642713

October 22, 2018 14:58 ws-rv9x6-9x6 Book Title 11131-07 page 249

User Preference Sources: Explicit vs. Implicit Feedback 249

Cremonesi, P., Garzotto, F. and Turrin, R. (2012a). Investigating the persuasion
potential of recommender systems from a quality perspective: An empirical
study, ACM Trans. Interact. Intell. Syst. 2, 2, pp. 11:1–11:41, doi:10.1145/
2209310.2209314, http://doi.acm.org/10.1145/2209310.2209314.

Cremonesi, P., Garzotto, F. and Turrin, R. (2013). User-centric vs. system-centric
evaluation of recommender systems, in P. Kotzé, G. Marsden, G. Lindgaard,
J. Wesson and M. Winckler (eds.), Human-Computer Interaction – INTER-
ACT 2013 (Springer Berlin Heidelberg, Berlin, Heidelberg), ISBN 978-3-
642-40477-1, pp. 334–351.

Cremonesi, P., Garzottto, F. and Turrin, R. (2012b). User effort vs. accuracy
in rating-based elicitation, in Proceedings of the Sixth ACM Conference on
Recommender Systems, RecSys ’12 (ACM, New York, NY, USA), ISBN
978-1-4503-1270-7, pp. 27–34, doi:10.1145/2365952.2365963, http://doi.

acm.org/10.1145/2365952.2365963.
Croasmun, J. T. and Ostrom, L. (2011). Using likert-type scales in the social

sciences, Journal of Adult Education 40, 1, p. 19.
Drenner, S., Sen, S. and Terveen, L. (2008). Crafting the initial user experi-

ence to achieve community goals, in Proceedings of the 2008 ACM Con-
ference on Recommender Systems, RecSys ’08 (ACM, New York, NY,
USA), ISBN 978-1-60558-093-7, pp. 187–194, doi:10.1145/1454008.1454039,
http://doi.acm.org/10.1145/1454008.1454039.

Ekstrand, M. D., Riedl, J. T., Konstan, J. A. et al. (2011). Collaborative filter-
ing recommender systems, Foundations and Trends R© in Human–Computer
Interaction 4, 2, pp. 81–173.

Elahi, M., Ricci, F. and Rubens, N. (2016). A survey of active learning in collab-
orative filtering recommender systems, Comput. Sci. Rev. 20, C, pp. 29–50,
doi:10.1016/j.cosrev.2016.05.002, http://dx.doi.org/10.1016/j.cosrev.
2016.05.002.

Friedman, H. H. and Amoo, T. (1999). Rating the rating scales.
Garland, R. (1991). The mid-point on a rating scale: Is it desirable, Marketing

bulletin 2, 1, pp. 66–70.
Garner, W. R. (1960). Rating scales, discriminability, and information transmis-

sion, Psychological review 67, 6, p. 343.
Gena, C., Brogi, R., Cena, F. and Vernero, F. (2011). The impact of rating

scales on user’s rating behavior, in Proceedings of the 19th International
Conference on User Modeling, Adaption, and Personalization, UMAP’11
(Springer-Verlag, Berlin, Heidelberg), ISBN 978-3-642-22361-7, pp. 123–
134, http://dl.acm.org/citation.cfm?id=2021855.2021867.

Golbandi, N., Koren, Y. and Lempel, R. (2010). On bootstrapping recommender
systems, in Proceedings of the 19th ACM International Conference on
Information and Knowledge Management, CIKM ’10 (ACM, New York,
NY, USA), ISBN 978-1-4503-0099-5, pp. 1805–1808, doi:10.1145/1871437.
1871734, http://doi.acm.org/10.1145/1871437.1871734.

Häubl, G. and Trifts, V. (2000). Consumer decision making in online shopping
environments: The effects of interactive decision aids, Marketing science
19, 1, pp. 4–21.

http://doi.acm.org/10.1145/2209310.2209314
http://doi.acm.org/10.1145/2365952.2365963
http://doi.acm.org/10.1145/2365952.2365963
http://doi.acm.org/10.1145/1454008.1454039
http://dx.doi.org/10.1016/j.cosrev.2016.05.002
http://dx.doi.org/10.1016/j.cosrev.2016.05.002
http://dl.acm.org/citation.cfm?id=2021855.2021867
http://doi.acm.org/10.1145/1871437.1871734

October 22, 2018 14:58 ws-rv9x6-9x6 Book Title 11131-07 page 250

250 P. Cremonesi, F. Garzotto and M. F. Dacrema

Jannach, D., Lerche, L. and Jugovac, M. (2015). Adaptation and evaluation of rec-
ommendations for short-term shopping goals, in Proceedings of the 9th ACM
Conference on Recommender Systems, RecSys ’15 (ACM, New York, NY,
USA), ISBN 978-1-4503-3692-5, pp. 211–218, doi:10.1145/2792838.2800176,
http://doi.acm.org/10.1145/2792838.2800176.

Kluver, D. and Konstan, J. A. (2014). Evaluating recommender behavior for new
users, in Proceedings of the 8th ACM Conference on Recommender Sys-
tems, RecSys ’14 (ACM, New York, NY, USA), ISBN 978-1-4503-2668-
1, pp. 121–128, doi:10.1145/2645710.2645742, http://doi.acm.org/10.

1145/2645710.2645742.
Kluver, D., Nguyen, T. T., Ekstrand, M., Sen, S. and Riedl, J. (2012). How

many bits per rating? in Proceedings of the Sixth ACM Conference on
Recommender Systems, RecSys ’12 (ACM, New York, NY, USA), ISBN
978-1-4503-1270-7, pp. 99–106, doi:10.1145/2365952.2365974, http://doi.
acm.org/10.1145/2365952.2365974.

Konstan, J. A., Miller, B. N., Maltz, D., Herlocker, J. L., Gordon, L. R. and
Riedl, J. (1997). Grouplens: Applying collaborative filtering to usenet news,
Commun. ACM 40, 3, pp. 77–87, doi:10.1145/245108.245126, http://doi.
acm.org/10.1145/245108.245126.

Konstan, J. A. and Riedl, J. (2012). Recommender systems: From algorithms
to user experience, User Modeling and User-Adapted Interaction 22, 1-
2, pp. 101–123, doi:10.1007/s11257-011-9112-x, http://dx.doi.org/10.

1007/s11257-011-9112-x.
Koren, Y. (2010). Factor in the neighbors: Scalable and accurate collaborative

filtering, ACM Trans. Knowl. Discov. Data 4, 1, pp. 1:1–1:24, doi:10.1145/
1644873.1644874, http://doi.acm.org/10.1145/1644873.1644874.

Linden, G., Smith, B. and York, J. (2003). Amazon.com recommendations: Item-
to-item collaborative filtering, IEEE Internet computing 7, 1, pp. 76–80.

Matell, M. S. and Jacoby, J. (1971). Is there an optimal number of alternatives
for likert scale items? study i: Reliability and validity, Educational and
psychological measurement 31, 3, pp. 657–674.

Matell, M. S. and Jacoby, J. (1972). Is there an optimal number of alternatives
for likert-scale items? effects of testing time and scale properties, Journal
of Applied Psychology 56, 6, p. 506.

Mobasher, B. (2007). The adaptive web, chap. Data Mining for Web Personaliza-
tion (Springer-Verlag, Berlin, Heidelberg), ISBN 978-3-540-72078-2, pp. 90–
135, http://dl.acm.org/citation.cfm?id=1768197.1768201.

Morita, M. and Shinoda, Y. (1994). Information filtering based on user behavior
analysis and best match text retrieval, in Proceedings of the 17th Annual
International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’94 (Springer-Verlag New York, Inc., New
York, NY, USA), ISBN 0-387-19889-X, pp. 272–281, http://dl.acm.org/
citation.cfm?id=188490.188583.

Nguyen, T. T., Kluver, D., Wang, T.-Y., Hui, P.-M., Ekstrand, M. D., Willem-
sen, M. C. and Riedl, J. (2013). Rating support interfaces to improve
user experience and recommender accuracy, in Proceedings of the 7th ACM

http://doi.acm.org/10.1145/2792838.2800176
http://doi.acm.org/10.1145/2645710.2645742
http://doi.acm.org/10.1145/2645710.2645742
http://doi.acm.org/10.1145/2365952.2365974
http://doi.acm.org/10.1145/2365952.2365974
http://doi.acm.org/10.1145/245108.245126
http://doi.acm.org/10.1145/245108.245126
http://dx.doi.org/10.1007/s11257-011-9112-x
http://dx.doi.org/10.1007/s11257-011-9112-x
http://doi.acm.org/10.1145/1644873.1644874
http://dl.acm.org/citation.cfm?id=1768197.1768201
http://dl.acm.org/citation.cfm?id=188490.188583
http://dl.acm.org/citation.cfm?id=188490.188583

October 22, 2018 14:58 ws-rv9x6-9x6 Book Title 11131-07 page 251

User Preference Sources: Explicit vs. Implicit Feedback 251

Conference on Recommender Systems, RecSys ’13 (ACM, New York, NY,
USA), ISBN 978-1-4503-2409-0, pp. 149–156, doi:10.1145/2507157.2507188,
http://doi.acm.org/10.1145/2507157.2507188.

Nobarany, S., Oram, L., Rajendran, V. K., Chen, C.-H., McGrenere, J. and Mun-
zner, T. (2012). The design space of opinion measurement interfaces: Ex-
ploring recall support for rating and ranking, in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’12 (ACM, New
York, NY, USA), ISBN 978-1-4503-1015-4, pp. 2035–2044, doi:10.1145/
2207676.2208351, http://doi.acm.org/10.1145/2207676.2208351.

Oard, D. W., Kim, J. et al. (1998). Implicit feedback for recommender systems, in
Proceedings of the AAAI workshop on recommender systems (Menlo Park,
CA: AAAI Press), pp. 81–83.

O’Mahony, M., Hurley, N., Kushmerick, N. and Silvestre, G. (2004). Collaborative
recommendation: A robustness analysis, ACM Trans. Internet Technol.
4, 4, pp. 344–377, doi:10.1145/1031114.1031116, http://doi.acm.org/10.
1145/1031114.1031116.

O’Mahony, M. P., Hurley, N. J. and Silvestre, G. C. (2006). Detecting noise in
recommender system databases, in Proceedings of the 11th International
Conference on Intelligent User Interfaces, IUI ’06 (ACM, New York, NY,
USA), ISBN 1-59593-287-9, pp. 109–115, doi:10.1145/1111449.1111477,
http://doi.acm.org/10.1145/1111449.1111477.

Pilászy, I. and Tikk, D. (2009). Recommending new movies: Even a few rat-
ings are more valuable than metadata, in Proceedings of the Third ACM
Conference on Recommender Systems, RecSys ’09 (ACM, New York, NY,
USA), ISBN 978-1-60558-435-5, pp. 93–100, doi:10.1145/1639714.1639731,
http://doi.acm.org/10.1145/1639714.1639731.

Quadrana, M., Jannach, D. and Cremonesi, P. (2018). Sequence-aware recom-
mender systems, ACM Computing Surveys.

Quadrana, M., Karatzoglou, A., Hidasi, B. and Cremonesi, P. (2017). Personaliz-
ing session-based recommendations with hierarchical recurrent neural net-
works, in Proceedings of the Eleventh ACM Conference on Recommender
Systems, RecSys ’17 (ACM, New York, NY, USA), ISBN 978-1-4503-4652-
8, pp. 130–137, doi:10.1145/3109859.3109896, http://doi.acm.org/10.

1145/3109859.3109896.
Rashid, A. M., Albert, I., Cosley, D., Lam, S. K., McNee, S. M., Konstan, J. A.

and Riedl, J. (2002). Getting to know you: Learning new user preferences
in recommender systems, in Proceedings of the 7th International Conference
on Intelligent User Interfaces, IUI ’02 (ACM, New York, NY, USA), ISBN
1-58113-459-2, pp. 127–134, doi:10.1145/502716.502737, http://doi.acm.
org/10.1145/502716.502737.

Rich, E. (1979). User modeling via stereotypes, Cognitive science 3, 4, pp. 329–
354.

Said, A., Jain, B. J., Narr, S. and Plumbaum, T. (2012a). Users and noise: The
magic barrier of recommender systems, in Proceedings of the 20th Inter-
national Conference on User Modeling, Adaptation, and Personalization,
UMAP’12 (Springer-Verlag, Berlin, Heidelberg), ISBN 978-3-642-31453-7,

http://doi.acm.org/10.1145/2507157.2507188
http://doi.acm.org/10.1145/2207676.2208351
http://doi.acm.org/10.1145/1031114.1031116
http://doi.acm.org/10.1145/1031114.1031116
http://doi.acm.org/10.1145/1111449.1111477
http://doi.acm.org/10.1145/1639714.1639731
http://doi.acm.org/10.1145/3109859.3109896
http://doi.acm.org/10.1145/3109859.3109896
http://doi.acm.org/10.1145/502716.502737
http://doi.acm.org/10.1145/502716.502737

October 22, 2018 14:58 ws-rv9x6-9x6 Book Title 11131-07 page 252

252 P. Cremonesi, F. Garzotto and M. F. Dacrema

pp. 237–248, doi:10.1007/978-3-642-31454-4 20, http://dx.doi.org/10.

1007/978-3-642-31454-4_20.
Said, A., Jain, B. J., Narr, S., Plumbaum, T., Albayrak, S. and Scheel, C. (2012b).

Estimating the magic barrier of recommender systems: A user study, in
Proceedings of the 35th International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’12 (ACM, New York,
NY, USA), ISBN 978-1-4503-1472-5, pp. 1061–1062, doi:10.1145/2348283.
2348469, http://doi.acm.org/10.1145/2348283.2348469.

Schein, A. I., Popescul, A., Ungar, L. H. and Pennock, D. M. (2002). Meth-
ods and metrics for cold-start recommendations, in Proceedings of the
25th Annual International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, SIGIR ’02 (ACM, New York, NY,
USA), ISBN 1-58113-561-0, pp. 253–260, doi:10.1145/564376.564421, http:
//doi.acm.org/10.1145/564376.564421.

Sen, S., Harper, F. M., LaPitz, A. and Riedl, J. (2007). The quest for quality
tags, in Proceedings of the 2007 International ACM Conference on Support-
ing Group Work, GROUP ’07 (ACM, New York, NY, USA), ISBN 978-1-
59593-845-9, pp. 361–370, doi:10.1145/1316624.1316678, http://doi.acm.
org/10.1145/1316624.1316678.

Shannon, C. E. (2001). A mathematical theory of communication, SIGMOBILE
Mob. Comput. Commun. Rev. 5, 1, pp. 3–55, doi:10.1145/584091.584093,
http://doi.acm.org/10.1145/584091.584093.

Sparling, E. I. and Sen, S. (2011). Rating: How difficult is it? in Proceedings of
the Fifth ACM Conference on Recommender Systems, RecSys ’11 (ACM,
New York, NY, USA), ISBN 978-1-4503-0683-6, pp. 149–156, doi:10.1145/
2043932.2043961, http://doi.acm.org/10.1145/2043932.2043961.

Tan, Y. K., Xu, X. and Liu, Y. (2016). Improved recurrent neural networks
for session-based recommendations, in Proceedings of the 1st Workshop
on Deep Learning for Recommender Systems, DLRS 2016 (ACM, New
York, NY, USA), ISBN 978-1-4503-4795-2, pp. 17–22, doi:10.1145/2988450.
2988452, http://doi.acm.org/10.1145/2988450.2988452.

Toledo, R. Y., Mota, Y. C. and Mart́ınez, L. (2015). Correcting noisy ratings in
collaborative recommender systems, Knowledge-Based Systems 76, pp. 96–
108.

http://dx.doi.org/10.1007/978-3-642-31454-4_20
http://dx.doi.org/10.1007/978-3-642-31454-4_20
http://doi.acm.org/10.1145/2348283.2348469
http://doi.acm.org/10.1145/564376.564421
http://doi.acm.org/10.1145/564376.564421
http://doi.acm.org/10.1145/1316624.1316678
http://doi.acm.org/10.1145/1316624.1316678
http://doi.acm.org/10.1145/584091.584093
http://doi.acm.org/10.1145/2043932.2043961
http://doi.acm.org/10.1145/2988450.2988452

October 22, 2018 16:2 ws-rv9x6-9x6 Book Title 11131-08 page 253

Chapter 8

User Preference Elicitation, Rating Sparsity and

Cold Start

Mehdi Elahi, Matthias Braunhofer, Tural Gurbanov and Francesco Ricci

Free University of Bozen-Bolzano,
Piazza Domenicani, 3

Italy - 39100, Bozen-Bolzano

{meelahi,mbraunhofer,tgurbanov,fricci}@unibz.it

A prerequisite for implementing collaborative filtering recommender sys-
tems is the availability of users’ preferences data. This data, typically
in the form of ratings, is exploited to learn the tastes of the users and to
serve them with personalized recommendations. However, there may be
a lack of preference data, especially at the initial stage of the operations
of a recommender system, i.e., in the Cold Start phase. In particular,
when a new user has not yet rated any item, the system would be inca-
pable of generating relevant recommendations for this user. Or, when a
new item is added to the system catalogue and no user has rated it, the
system cannot recommend this item to any user.

This chapter discusses the cold start problem and provides a com-
prehensive description of techniques that have been proposed to address
this problem. It surveys algorithmic solutions and provides a summary
of their performance comparison. Moreover, it lists publicly available
resources (e.g., libraries and datasets) and offers a set of practical guide-
lines that can be adopted by researchers and practitioners.

8.1. Introduction

The research on Recommender Systems (RSs) has seen a continuous growth,

starting from the mid-90s when early works have been published [Resnick

et al. (1994); Shardanand and Maes (1995)]. One of the most popular ap-

proaches in recommender systems is Collaborative Filtering (CF), which

is the main focus of this chapter. In collaborative filtering a set of pref-

erences provided by a community of users, the relationships and similar-

ities among the user preferences, are exploited to generate personalized

253

October 22, 2018 16:2 ws-rv9x6-9x6 Book Title 11131-08 page 254

254 M. Elahi, M. Braunhofer, T. Gurbanov and F. Ricci

recommendations for a target user. A variety of collaborative filtering tech-

niques, which are typically classified as user-based [Herlocker et al. (1999)],

item-based [Linden et al. (2003)], or Matrix Factorization (MF) [Koren

and Bell (2011)], have been proposed and evaluated in both industry and

academia [Koren and Bell (2015); Shi et al. (2014)].

Moreover, various types of preference data can be exploited by collabo-

rative filtering recommender systems, and they can roughly divided in two

wide categories: Explicit Feedback and Implicit Feedback (see Chapter 7).

Explicit feedback, which is typically considered as a more informative sig-

nal of user’s preference, refers to item evaluations that the user explicitly

reports, e.g., five star ratings for movies in Netflix, or like/dislikes for posts

in Facebook [Koren and Bell (2015); Stern et al. (2009); Agarwal and Chen

(2009)]. Despite their usefulness, eliciting explicit feedback requires some

user effort [Elahi et al. (2014)] and still might not completely reveal actual

users’ needs [Neidhardt et al. (2014)].

Hence, implicit feedback, i.e., actions performed by the users on the

items, such as viewing an item, have been used to infer preference informa-

tion [Oard et al. (1998); Hu et al. (2008a); Gurbanov and Ricci (2017)]. This

data is much more abundant and simpler to collect than explicit feedback.

For example, the purchase or browsing history of a user in Amazon.com can

be used by the system to predict additional interests of the user and ulti-

mately generate recommendations for her. A user who frequently purchases

books of a specific author will likely be interested in that author.

It is worth noting that despite the clear usefulness of the implicit feed-

back, the usage of this type of data has some limitations: for instance, it

is easier to infer a “positive” feedback from a user action rather than a

“negative” one. Most importantly, the system can only guess the actual

user interests from the tracked behaviour of a user. In fact, purchasing an

item may not necessarily indicate that the user was satisfied about it, as

the user may have regret purchasing that item. But, repeated actions of the

users on items may increase the confidence in such an inferred preference

[Hu et al. (2008a)].

Preference data can be also classified into Absolute or Relative. The

former type of preference is the most popular; these are expressed in the

form of absolute evaluations in a predefined scale, e.g., the five star ratings

used by Netflix.com [Linden et al. (2003); Sarwar et al. (2001); Koren and

Bell (2015)]. However, this type of preference data have limitations. For

example, a user who loves two items, but prefers one over another, might

be pushed to rate them alike, or to penalize one, due to the limited number

October 22, 2018 16:2 ws-rv9x6-9x6 Book Title 11131-08 page 255

User Preference Elicitation, Rating Sparsity and Cold Start 255

of points in the rating scale. This, and other problems, could be resolved

by eliciting relative preferences, i.e., pairwise comparisons: “I prefer Blade

Runner to Indiana Jones”. One can also express how much an item is

preferred (or considered inferior) to another, hence generating pair scores

(positive or negative). The larger the score the more one item is preferred

to the other item in the pair [Kalloori et al. (2016); Blédaité and Ricci

(2015); Jones et al. (2011); Rendle et al. (2009)].

Regardless of the type of the data used, collaborative filtering recom-

mender systems commonly suffer from a challenging problem, i.e., Cold

Start. This problem occurs when the system has not yet acquired sufficient

preference data (e.g., ratings or pairwise scores) to generate relevant recom-

mendations for users. The most common example of the cold start problem

occurs when the system is not capable of properly recommending any item

to a new user (New User problem) or recommending a new item (not yet

evaluated by any user) to a user (New Item problem) [Adomavicius and

Tuzhilin (2005); Schein et al. (2002)]. In extreme cases, both problems may

take place, e.g., when a recommender system has been recently launched

and the system database contains very limited or no information about the

preferences of users on items [Su and Khoshgoftaar (2009)].

In addition to these problems, preference data Sparsity may be observed.

This occurs when the system has only collected a small percentage of all

the potential preferences, which, for instance, in a collaborative filtering

system is the full set of ratings of all the users for all the items. In fact,

even in a mature system the users have rated a small percentage of the

available items. Sparsity becomes a significant problem when the number of

available ratings of each user is extremely smaller than the overall number

of items [Adomavicius and Tuzhilin (2005)]. In general, preference data

sparsity makes it very challenging for the recommender to generate accurate

recommendations.

The cold start problem is even more challenging in Context-Aware

Recommender Systems, known as CARSs (see Chapter 5). These systems

generate recommendations which are adapted not only to the user’s pref-

erences but also to the contextual situation [Adomavicius and Tuzhilin

(2011)]. Here, there is a cold start problem when the system is requested

to generate recommendations for contextual situations under which the ob-

served users did not express preferences (New Context problem) [Braunhofer

(2015)]. Indeed, CARS needs to collect preference data that are augmented

with the indication of the contextual situation of the user when experienc-

ing the evaluated item. For that reason, in CARS, it is not only important

October 22, 2018 16:2 ws-rv9x6-9x6 Book Title 11131-08 page 256

256 M. Elahi, M. Braunhofer, T. Gurbanov and F. Ricci

to have ratings, but also to acquire them in several different contextual

situations, so that the system can learn the users’ contextually dependent

preferences. Hence, the cold start problem in CARS occurs more frequently,

compared to traditional recommender systems; there is often a large num-

ber of possible alternative contextual situations that may be observed in

realistic scenarios [Braunhofer et al. (2014)].

Various approaches for addressing the cold start problem and improving

collaborative filtering have been proposed in the literature. Here we briefly

introduce them, and in the other sections of this chapter, we discuss them

in details.

A popular approach to cope with the cold start problem consists of

implementing hybrid recommendation techniques (see Chapter 4), e.g., to

combine collaborative and content-based filtering [Nicholas and Nicholas

(1999); Burke (2002); Ge et al. (2015); Adomavicius and Tuzhilin (2005);

Ricci et al. (2015); Vartak et al. (2017); Kim et al. (2016)]. It is also pos-

sible to address the cold-start problem with cross-domain recommendation

techniques. These techniques aim at improving the recommendations in a

target domain by making use of information about the user preferences in

an auxiliary domain [Fernández-Tob́ıas et al. (2016); Cantador and Cre-

monesi (2014)]. In this case, knowledge of the preferences of the user is

transferred from an auxiliary domain to the target domain. More complete

and accurate user models and item recommendations in the target domain

can then be built even when not much preference data is available in this

domain. For example, by using the knowledge of ratings and tags assigned

by the users to items in a movie domain (auxiliary) it is possible to better

learn the user preferences in a book domain (target) [Enrich et al. (2013)].

Another approach to cold-start consists of complementing the rating

data with other sources of information about the items. For example, in

multimedia recommender systems, it has been shown that audio-visual fea-

tures, e.g., variation of colour, camera and object motion, and lighting,

can be automatically extracted from movies in order to solve the cold start

problem and to effectively generate relevant recommendations [Elahi et al.

(2017); Deldjoo et al. (2016, 2018)]. As an additional example, in a food rec-

ommender, it has been shown that one can exploit the information brought

by tags assignments of the users to recipes to improve the recommendation

performance of a system that is using only ratings for recipes [Ge et al.

(2015); Massimo et al. (2017)]. Or, in a restaurant RS, it is possible to use

information about the restaurant cuisine or location [Burke (2000); Ado-

mavicius and Tuzhilin (2005); Ricci et al. (2015)].

October 22, 2018 16:2 ws-rv9x6-9x6 Book Title 11131-08 page 257

User Preference Elicitation, Rating Sparsity and Cold Start 257

In an alternative group of approaches the cold start problem is tackled

by better profiling the users with additional information about them, such

as their personality [Pu et al. (2012)]. In fact, studies conducted on user

personality characteristics have shown that it is useful to exploit this in-

formation in collaborative filtering [Hu and Pu (2011, 2009); Tkalcic et al.

(2013); Schedl et al. (2018); Elahi et al. (2013)]. Another example in this

group of approaches, is discussed in [Trevisiol et al. (2014)]. The authors

propose a graph-based method to solve the cold start problem in news rec-

ommendation. This method uses referral link of the new user as well as the

currently visited page in order to generate recommendations for new users.

The cold-start problem can also attacked by directly enlarge the size of

the preference data set by programming the system to selectively acquire

new users’ preferences with Active Learning [Elahi et al. (2016)]. In fact,

Active learning tackles the cold start problem at the root, by identifying

high quality data that better represents a user’s preferences and improves

the performance of the system. This can be done in various forms, e.g., by

requesting the user to assess items one-by-one [Rashid et al. (2008a); Elahi

et al. (2014)] or alternatively to evaluate a set of them altogether [Ekstrand

et al. (2014); Loepp et al. (2014)].

In one seminal paper on this subject [Rashid et al. (2002)], the authors

present several active learning techniques that have been tested on the well-

known movie recommender system MovieLens. The goal was to create an

effective sign up procedure that can help the system to build the initial user

profile by acquiring specific ratings. Hence, when a new user registers to

the system, the user is requested to rate movie items that are estimated to

be more informative. Experimental results have shown the effectiveness of

the approach.

Active learning has been used in a Points of Interest (POI) CARS named

South Tyrol Suggests (STS) [Braunhofer (2015)]. In the early stages of the

deployment, STS was in an extreme cold-start situation where only a few

hundred of contextual ratings were provided by users for nearly 27,000 POIs

stored in the system database. To solve this problem, the system acquired

the users’ personality to identify which items they could have visited and

hence requested to provide their contextual ratings for those items [Elahi

et al. (2013)].

In addition to the above-mentioned methods, it is also possible to use

stereotypes as a mechanism for generating recommendations for users in

the cold start situation. In this case, the system recommends items that

matches a generic profile of that user, built upon the available data for a

October 22, 2018 16:2 ws-rv9x6-9x6 Book Title 11131-08 page 258

258 M. Elahi, M. Braunhofer, T. Gurbanov and F. Ricci

group the target user belongs to [Adomavicius and Tuzhilin (2005)]. For

example, the systems attempts to recommend items that are popular within

a certain age group or gender [Braunhofer et al. (2015a)]. In the extreme

cold start scenario, if absolutely no data is available, the system may rec-

ommend popular items or items with the highest average ratings. Although

the recommendations are non-personalized, still a satisfactory level of rec-

ommendation quality might be achieved [Fernandez Tobias et al. (2016)].

The rest of the chapter is structured as the following. Section 8.2 reviews

the algorithmic solutions to tackle with the cold start and sparsity problem.

Section 8.3 introduces the available resources such as libraries and datasets

applicable in the research on cold start. Section 8.4 compares the discussed

solutions and provides an overview of their performances. In Section 8.5, a

set of practical guidelines are provided that can be used by researchers and

practitioners. Finally, Section 8.6 concludes the chapter and discusses the

directions of the future works.

8.2. Algorithmic solutions

As we have discussed in the introduction, various and different approaches

to alleviate the cold-start problem have been proposed in the literature. We

present them by grouping them into two broad classes according to which

kind of knowledge is mainly used. The approaches in the first and more im-

portant class exploit in the recommendation process additional knowledge

sources about either the users, the items or the contextual situations. The

five approaches identified in this class are: active learning, cross-domain rec-

ommendation, recommendation based on implicit feedback, content-based

recommendation and demographic-based recommendation. On the other

hand, the approaches in the second class try to better process and leverage

existing knowledge rather than acquiring new one.

8.2.1. Active Learning

Active learning (AL) applied to recommender systems refers to technologies

aimed at eliciting the most informative preference data. When the system

is using ratings, AL tries to elicit from the user those ratings that best

reveal the user’s interests, and hence should better improve the quality of

subsequent recommendations [Rubens et al. (2015)]. [Rashid et al. (2002)]

discusses six different AL rating elicitation strategies:

October 22, 2018 16:2 ws-rv9x6-9x6 Book Title 11131-08 page 259

User Preference Elicitation, Rating Sparsity and Cold Start 259

Entropy where items with the largest rating entropy are asked to be rated

by the user;

Random which randomly selects items to be rated;

Popularity which measures the number of already acquired ratings for

the items, and requests the user to rate the most frequently rated

ones;

Popularity * Entropy where items that are both popular and have di-

verse ratings are requested to be rated by the user;

Log(popularity) * Entropy which is similar to the previous strategy ex-

cept that it considers the log of the number of ratings before com-

puting popularity;

Item-Item Personalized where the items are selected randomly until a

first rating is acquired. Then a recommender is used to predict the

items that the user is likely to have seen; these items are requested

to the user to rate.

The results of off line and on line experiments conducted on the Movie-

Lens dataset demonstrated that log(popularity) * entropy improves more

the performance of the recommender system in terms of rating prediction

accuracy.

In [Rashid et al. (2008a)], the authors extend their early work [Rashid

et al. (2002)] by proposing additional AL strategies, namely:

Entropy0 which differs from the entropy strategy, as described above, in

that it treats missing ratings as a separate category, in addition to

the acquired ratings on the 1-5 scale;

HELF Harmonic mean of Entropy and Logarithm of Frequency selects the

items with the largest harmonic mean of the logarithm of the rating

frequency and the entropy;

IGCN Information Gain through Clustered Neighbours constructs a de-

cision tree where the nodes are the items to rate and a node’s

branches according to the different ratings that a user can give to

the item.

The authors evaluated these strategies in a preliminary off line experi-

ment. Then, in an on line experiment, they used the MovieLens web-based

movie recommender and every new user, during the sign-up process, was

asked to rate 20 movies selected by one of the AL strategies (training set).

After the sign-up process the new users were asked to complete a user

satisfaction survey and to provide some more movie ratings, which were

October 22, 2018 16:2 ws-rv9x6-9x6 Book Title 11131-08 page 260

260 M. Elahi, M. Braunhofer, T. Gurbanov and F. Ricci

used to check the prediction accuracy (testing set). Based on the obtained

results, the authors concluded that, overall, IGCN and entropy0 are the

best-performing strategies.

Additional AL strategies can be found in [Elahi et al. (2014, 2011)],

including:

Binary Prediction which first transforms the original rating matrix into

a binary matrix, by mapping null entries to 0 and not null entries

to 1, and then learns a predictive model that identifies the items

the user is likely to have experienced and thus is able to rate;

Highest Predicted where the items with the highest predicted ratings

are asked to be rated by the user;

Lowest Predicted which, differently from Highest Predicted, requests

the user to rate the items with the lowest predicted ratings;

Highest and Lowest Predicted where items with either extreme low or

extreme high predicted ratings are selected;

Voting which combines together the lists of top candidate items for rating

elicitation from different strategies to produce a single list.

The authors have evaluated the considered strategies for their system-

wide effectiveness implementing a simulation loop that models the gradual

process of rating elicitation and rating dataset growth. The procedure is

initiated by splitting the matrix of ratings into three different matrices with

the equal number of rows and columns [Elahi et al. (2014)]:

• K: contains the ratings which are known to the recommender sys-

tem at a certain point of time;

• X: contains the ratings which are known by the users but not by

the recommender system. These ratings are iteratively acquired,

i.e., they are transferred into K if the recommender system requests

the (simulated) users to rate them;

• T : contains a subset of the ratings that are known by the users but

are withheld from X for the evaluation purpose.

In every iteration of the experiment, the system carefully selects a set of

items from the item catalog, according to a specific active learning strategy.

The selected items are checked to find those with ratings available in X.

The ratings of these items are assigned to the corresponding entries in K.

Then the assigned ratings are removed from the X. Finally, the evaluation

metrics are measured on the ratings in T , and the prediction model of the

October 22, 2018 16:2 ws-rv9x6-9x6 Book Title 11131-08 page 261

User Preference Elicitation, Rating Sparsity and Cold Start 261

system is trained again using the new set of ratings in K. This process is

repeated for 170 iterations, till almost all the ratings are elicited and the

system performance gets stabilized.

Figure 8.1 illustrates the comparison of the rating prediction accuracy

(in terms of Mean Absolute Error) of the described active learning strategies

on MovieLens dataset. As it can be seen, there are two separable groups of

active learning strategies [Elahi et al. (2014)]:

(1) Monotone error reduction strategies which include lowest-highest pre-

dicted, lowest predicted, voting and random strategies.

(2) Non-monotone error reduction strategies that include binary predicted,

highest predicted, popularity, log(popularity)*entropy and variance

strategies.

The strategies in the first group have a better performance, specially

in the middle phase of the rating elicitation process. However, at the very

beginning and at the end, the strategies in the second group outperform

the first ones. Indeed, at the very beginning, the binary-predicted and the

0 20 40 60 80 100 120 140 160 180
0.7

0.75

0.8

0.85

0.9

0.95

1

of iterations

M
A

E

variance

random

popularity

lowest−pred

lo−hi−pred

highest−pred

binary−pred

voting

log(pop)*entropy

Fig. 8.1. Performance comparison of some well known Active Learning strategies in
terms of prediction accuracy [Elahi et al. (2014)].

October 22, 2018 16:2 ws-rv9x6-9x6 Book Title 11131-08 page 262

262 M. Elahi, M. Braunhofer, T. Gurbanov and F. Ricci

voting strategies (both from the first group) perform the best. Then, the

random and the lowest-highest-predicted strategies (both from the second

group) have good performance. Finally, at the ending phase, the MAE

stabilizes for most of the strategies since they are not able to elicit anymore

ratings.

The non-monotone behavior of the strategies in the second group occurs

since they have a strong selection bias. The highest predicted strategy is

perhaps the best known since it is the default strategy in recommender

systems (people typically provide ratings to the recommendations). At the

beginning of the rating elicitation process, this strategy elicits primarily

items that have received high ratings. This leads to acquire significantly

more high ratings than low ratings and ultimately biasing the recommender

towards overestimating the predicted ratings. This is the reason why the

error increases in the middle stage and drops afterward, as the items with

high ratings are finished and the strategy begins to select also items with

lower ratings.

Overall, all the conducted experiments have shown that each strategy

has its own strengths and weaknesses. Prediction-based strategies are in-

effective to deal with new users or new items, whereas voting, popularity

and log(popularity) * entropy can select items for new users, though not for

new items. Moreover, some strategies, such as, highest predicted and low-

est predicted may bring a system-wide bias and increase the system error

as they try to add only ratings with certain values.

It is worth noting that all the aforementioned AL strategies have been

designed to work on traditional, two-dimensional user-item rating matrices,

hence they are only suitable for attacking the new user and new item prob-

lems. In case of multidimensional user-item-context matrices, it is necessary

to modify these strategies so that they output not only a list of items to

be rated but also the contextual factors which characterize the situation of

the items’ consumption. Identifying and acquiring exactly those contextual

information that matter ensures that (i) the user effort in specifying contex-

tual information is kept to a minimum, and (ii) the system’s performance

is not negatively impacted by irrelevant information.

A solution to that problem can be found in [Baltrunas et al. (2012)],

where the authors present a survey-based approach to identify the most

useful contextual factors and conditions, as well as, to capture data about

how the context influences user ratings. In their approach, they first esti-

mated the dependency of the user preferences from an initial candidate set

of contextual factors. This was achieved through a web tool, in which users

October 22, 2018 16:2 ws-rv9x6-9x6 Book Title 11131-08 page 263

User Preference Elicitation, Rating Sparsity and Cold Start 263

were requested to evaluate if a particular contextual condition (e.g.,“it is a

cold day”) has a positive, negative or no influence on the user’s rating of

a particular type of POI (e.g., spa). Using the obtained data, they were

able to establish the most important contextual factors for different types

of POI.

The same problem mentioned above, i.e., identifying the contextual fac-

tors that are truly relevant for a particular recommender system, was ad-

dressed by Odić et al. [Odić et al. (2012)]. They developed two approaches:

the first one is called “assessment” and it is based on surveying the users,

while the second is called “detection” of the context relevance and is per-

formed by mining the rating data. These two approaches are very different

in terms of when each one could be used (e.g., assessment can be used before

rating acquisition, whereas detection cannot), what information is needed

(e.g., detection requires a substantial number of in-context ratings, while

assessment does not) and whether they rely on real situations (as in detec-

tion) or hypothetical situations (as in assessment). In order to determine

which of the two is better, the authors used real rating data and a survey

data set to construct two (possibly different) lists of relevant and irrelevant

contextual factors. Then, they considered all the contextual information

one by one as input to a contextualized matrix factorization model, and fi-

nally counted for both approaches the number of times a contextual factor

estimated as relevant led the system to obtain a higher prediction accuracy

than using a factor estimated as irrelevant. Based on the obtained results,

they concluded that the detection method performs better than the assess-

ment one for identifying the contextual factors that should be exploited in

the rating prediction model.

In a related paper [Odić et al. (2013)], the same authors investigate in

more detail the “detection” approach and provide several statistical mea-

sures for relevant-context detection, i.e., unalikeability, entropy, variance,

χ2 test and Freeman-Halton test. Among these measures, they identify the

Freeman-Halton test as the most useful and flexible measure to distinguish

relevant from irrelevant contextual factors. Moreover, the authors show

that the rating prediction performance was significantly better when using

contextual factors detected as relevant than when using contextual factors

detected as irrelevant.

Another example of selecting the most relevant contextual factors can

be found in [Vargas-Govea et al. (2011)]. In this paper, the authors focus

on a context-aware recommender system for restaurants, and show that

its efficiency and predictive accuracy can be improved by using a reduced

October 22, 2018 16:2 ws-rv9x6-9x6 Book Title 11131-08 page 264

264 M. Elahi, M. Braunhofer, T. Gurbanov and F. Ricci

subset of contextual factors. To select contextual factors, the Las Vegas

Filter (LVF) algorithm was chosen. LVF repeatedly generates random sub-

sets of factors, computes their evaluation measure based on an inconsistency

criterion, which tests the extent to which a reduced subset can still predict

the rating values, and finally returns the subset yielding the best evaluation

measure.

Finally, in [Braunhofer et al. (2015b); Braunhofer and Ricci (2016)], a

context acquisition algorithm is proposed, that given a user-item pair, parsi-

moniously and adaptively identifies the most useful contextual factors, i.e.,

those that when elicited together with the user ratings improve more the

quality of future recommendations, both for that user and for other users of

the system. “Parsimonious” means that it selectively requests and possibly

elicits only the most relevant contextual factors, whereas “adaptive” means

that it personalizes the selection of the most relevant contextual factors to

each individual user and item.

8.2.2. Cross-Domain Recommendation

Another option for collecting preference data in the form of ratings comes

from collecting them in an auxiliary and possibly better known domain

with the plan to transfer the knowledge brought by this preference data

to the target domain [Cremonesi et al. (2011)]. Cross-domain approaches

are about that, and are classified into two classes: those that aggregate

knowledge from various auxiliary domains to perform recommendations

in a target domain, and those that link and transfer knowledge between

domains to support recommendations.

An example of knowledge aggregation for cross-domain recommendation

is described in [Berkovsky et al. (2007)]. Here, the authors present four

aggregation-based methods: (i) centralized prediction — the aggregated

knowledge consists of user preferences (i.e., ratings), (ii) distributed peer

identification — the aggregated knowledge is composed of user similarities,

(iii) distributed neighbourhood formation — the aggregated knowledge is

made up of user neighbourhoods, and (iv) distributed prediction — the

aggregated knowledge is composed of single-domain recommendations. The

authors show that the proposed methods can improve the accuracy of target

domain recommendations in case of data sparsity, however, these methods

can only be applied if the involved recommenders share some users or items

and secondly, they must use the same recommendation technique.

October 22, 2018 16:2 ws-rv9x6-9x6 Book Title 11131-08 page 265

User Preference Elicitation, Rating Sparsity and Cold Start 265

One example of a knowledge transfer approach for cross-domain rec-

ommendations is presented in [Enrich et al. (2013)]. This paper intro-

duces three novel cross-domain rating prediction models (UserItemTags,

UserItemRelTags and ItemRelTags), which are based on the SVD matrix

factorization model [Koren et al. (2009)]. They leverage the preference

knowledge contained in tag assignments in order to improve the rating pre-

diction task. The underlying hypothesis is that the information about how

users tag items in an auxiliary domain can be exploited to improve the

rating prediction accuracy in a different target domain, provided that there

is an overlap between the set of tags used in the two domains. All the

proposed models add tag factor vectors to the latent item vectors, which

are then combined with the latent user features to compute rating pre-

dictions. The difference between these models lies in the set of tags used

for rating prediction. UserItemTags and UserItemRelTags predict a tar-

get user rating by exploiting the tags this user has attached to the target

item, whereas, ItemRelTags considers all the tags assigned by any user on

the target item to predict ratings. To evaluate whether the exploitation

of user tags collected in one domain could be useful to improve the rating

prediction accuracy in a completely different domain, the authors carried

out a series of off line experiments using the MovieLens and LibraryThing

datasets. The obtained results indicate that the usage of tags is beneficial

and their proposed models outperform the traditional matrix factorization

model which only uses ratings [Koren et al. (2009)].

In another paper, Fernández-Tob́ıas et al. [Fernández-Tob́ıas et al.

(2016)] have studied the quality of cross-domain recommendations in terms

of accuracy, diversity and catalog coverage, by evaluating a number of al-

gorithms (i.e., popular items, user-based nearest neighbours, item-based

nearest neighbours, matrix factorization for positive-only feedback) on two

datasets with positive-only feedback. Their results show an increased rank-

ing accuracy in cold-start situations when cross-domain information is used.

The results for diversity varied across the two datasets, and hence the au-

thors conclude that in general the results depend on the target domain.

Finally, the results also indicate that a greater item diversity on the source

profile can harm the perform in the target domain.

8.2.3. Recommendation Based on Implicit Feedback

In many real-world scenarios explicit feedback can be difficult to obtain or

unavailable (e.g., news portals). In these cases, recommender systems can

October 22, 2018 16:2 ws-rv9x6-9x6 Book Title 11131-08 page 266

266 M. Elahi, M. Braunhofer, T. Gurbanov and F. Ricci

use implicit feedback. Indeed, they can monitor the users’ behaviour, such

as noting which items they browse or purchase, the duration of time spent

viewing an item and the search terms they use, and use these observations

in order to infer the user preferences regardless of the user’s willingness

to actively provide explicit evaluations, such as, ratings. In this scenario,

recommenders have been built either by leveraging implicit feedback data

only [Hu et al. (2008a); Rendle et al. (2009); Gurbanov et al. (2016)] or

by extending recommender models based on explicit feedback. A notable

example of this last category of approaches is SVD++ [Koren (2008)], which

extends the standard matrix factorization model by adding a new set of

item factor vectors in order to leverage preference information coming from

the items for which users provided implicit feedback. In particular, in this

model each user is characterized not only by a user factor vector, but with

additional factor vectors which represent the contribution of the implicit

feedback to the model of the user in the factors space.

We conclude this section by pointing out that approaches based on

implicit and explicit feedback are only applicable if feedback information

from users is available, which is not the case for newly registered users.

Hence, the applicability of these approaches in the new user scenario is in

both cases severely restricted.

8.2.4. Content-Based Recommendation

A classical approach for addressing the cold-start problem, and in particular

the new item problem suffered from standard collaborative filtering-based

recommenders, is to rely on preference information brought by the features

associated with the liked items (content). For example, if a user has posi-

tively rated a POI of type “hiking trails” then the system can predict that

other POIs of the same type too will be liked.

Among the many systems where content information is used, we men-

tion the work of Manzato [Manzato (2013)]. The proposed gSVD++ model

shows how content metadata can be directly incorporated into matrix fac-

torization and in particular into the SVD++ model proposed by Koren

[Koren (2008)]. This is achieved by introducing a new set of latent factor

vectors for content metadata (e.g., the type of a POI, the actors or the

genre of a movie) that are combined with the item’s latent factor vector.

To evaluate gSVD++, the author used the MovieLens 100k dataset, and

have found that it has lower MAE and RMSE than SVD++ and a previous

model proposed in [Manzato (2012)], which also performs factorization on

item’s metadata.

October 22, 2018 16:2 ws-rv9x6-9x6 Book Title 11131-08 page 267

User Preference Elicitation, Rating Sparsity and Cold Start 267

Fernández-Tobias and Cantador [Fernández-Tob́ıas and Cantador

(2014)] adapted gSVD++ by enhancing the items’ latent factor vectors

with additional latent factor vectors for the tags that were applied to them.

Likewise, the user’s latent factor vector is extended with additional latent

factor vectors representing the tags of the user, to better capture these

interests. These enhancements tackle the new item problem and the new

user problem. Moreover, it suffices that a tag is available for an item, but

not necessarily a rating, in order to make the item recommendable. This

happens in many situations, for instance, in the social bookmarking website

Delicious1, in which users can apply tags to their bookmarks, but are not

asked to rate the bookmarked website.

[Shi et al. (2014)] provides a comprehensive overview of collaborative

filtering recommender systems that integrate rich side information about

items and users as well. The authors mostly focused on social networks

and user-contributed information, such as user tags, geotags, multimedia

content and reviews/comments, which has become widely available since

the introduction of Web 2.0 technologies. Based on this focus, they have

identified two types of challenges for recommender system research: 1)

new conditions and tasks (e.g., social recommendation, group recommenda-

tion, long tail recommendation, cross-domain collaborative filtering); and

2) challenges due to the interaction between recommender systems and

other areas of research (e.g., search, interaction and economics).

To conclude, by incorporating content information, a recommender sys-

tem is capable of recommending items not yet rated by any user and hence

can overcome the new item problem. Nevertheless, it does not solve the

new user problem, since still enough ratings have to be collected before

the system can really understand the user preferences and provide accurate

recommendations.

8.2.5. Leveraging User Descriptions

A notable way to solve the new user problem is to utilize user attributes

(e.g., demographic data and personality characteristics) in the recommen-

dation process. In [Vozalis and Margaritis (2004)], the authors enhance tra-

ditional collaborative filtering by integrating in to the model demographic

information (i.e., age, gender, job and zip code). Specifically, when generat-

ing rating predictions, the authors propose to use not only the ratings-based

correlation, but also the demographic correlation between the active user

1https://del.icio.us/

October 22, 2018 16:2 ws-rv9x6-9x6 Book Title 11131-08 page 268

268 M. Elahi, M. Braunhofer, T. Gurbanov and F. Ricci

and a neighbour one. Demographic correlation is calculated by represent-

ing each user with a vector of 27 demographic features and applying vector

similarity on the generated demographic vectors.

The same idea is used also in the approach presented in [Koren et al.

(2009)]. Here, the authors extend their original SVD++ algorithm [Koren

(2008)] by incorporating known user attributes. In practice, they consider

Boolean attributes and a user u is described by the subset of their attributes

A(u). Attributes can, for instance, describe the gender, age group, zip code,

income level, and so on. Then, the proposed algorithm computes a distinct

factor vector ya ∈ IRf for each attribute of the user.

User personality has also been used in collaborative filtering [Fernan-

dez Tobias et al. (2016)]. In this article, the authors investigate three

different approaches: (a) personality-based collaborative filtering, which

directly improves the recommendation prediction model by incorporating

user personality information; (b) personality-based active learning, which

exploits personality information to first identify useful user preference data

to be elicited in a target domain, and then improve the recommendation

prediction model; and (c) personality-based cross-domain recommendation,

which utilizes personality information to enhance the usage of preference

data from auxiliary domains in order to compensate the lack of preference

data in the target domain. The results of their experiments on the myPer-

sonality dataset [Bachrach et al. (2012)] show that the proposed approaches

are viable methods for improving collaborative filtering to tackle the new

user problem.

To conclude, we note that the exploitation of user-related information

can help to generate better recommendations for new users, i.e., for which

none or a limited number of ratings is available. However, in general, recom-

mendations based only on user features are less accurate than those based

on user preferences. In fact, for instance, demographic factors account only

for a little part of the variance of the rating behaviour.

8.2.6. Better Using Existing Preference Knowledge

Instead of acquiring new information about either the user or the applica-

tion domain, as in the approaches illustrated in the previous sections, one

can simply try to better use the available information.

A popular solution moving in this direction is offered by hybrid rec-

ommender systems. These systems combine two or more recommenda-

tion techniques in order to improve their performance and to overcome the

October 22, 2018 16:2 ws-rv9x6-9x6 Book Title 11131-08 page 269

User Preference Elicitation, Rating Sparsity and Cold Start 269

limitations of the combined techniques [Burke (2007)]. For instance, the

new item problem, which is an issue for pure Collaborative Filtering (CF),

can be overcome by hybridizing CF with a content-based component. Ac-

cording to [Burke (2002)], it is possible to identify seven hybridization tech-

niques:

Weighted The scores of different recommendation components are com-

bined into a single weighted score.

Switching The system selects and applies a single recommender from

among its constituents based on the current recommendation situation.

Mixed Recommendations generated by different recommendation compo-

nents are presented side-by-side in a combined list.

Feature Combination Features derived from different recommenders are

combined and injected into a single recommendation algorithm.

Cascade Recommendation components are strictly hierarchically ordered

from the strongest to the weakest, with the ties observed by using a

technique are broken by the following one.

Feature Augmentation A feature or set of features computed by one

recommendation technique are passed as input to the next technique.

The idea of better using existing preference data is especially impor-

tant in context-aware recommenders. In fact, since these systems need

significantly more preference data than context-free ones, for CARS all the

available preference data should be exploited as much as possible. Hence,

some techniques have been proposed in the CARS literature aiming at bet-

ter exploiting the (usually sparse) set of contextually-tagged ratings. An

approach worth to be mentioned is the generalized pre-filtering approach

proposed by Adomavicius et al. [Adomavicius and Tuzhilin (2015)]. It

exploits hierarchical relationships between different contexts in order to

generalize a target context when the number of ratings acquired in that

particular context is small. For example, if we would like to identify which

POIs to recommend on a Monday, we may use not only the ratings for

POIs collected on Mondays, but also those obtained on other weekdays

(but not in the weekend). This results in a significantly better usage of the

existing rating dataset, and allows to build more robust and general rating

prediction models.

A similar idea to deal with the cold-start problem in context-aware

recommenders is used by Zheng et al. [Zheng et al. (2012)]. They also try

to increase the number of ratings used to generate predictions by defining

October 22, 2018 16:2 ws-rv9x6-9x6 Book Title 11131-08 page 270

270 M. Elahi, M. Braunhofer, T. Gurbanov and F. Ricci

a relaxed notion of match between the target context and the contexts

associated with ratings.

The main limitation of the two aforementioned approaches is that it

is necessary to choose the right level of generalization for contexts. This

might be easy for datasets with relatively dense in-context ratings, but

for datasets where only a small amount of in-context ratings is available,

finding the proper level of generalization remains problematic.

One possible solution, is offered by the Differential Context Weight-

ing (DCW) approach [Zheng et al. (2013)], which relies on the concept of

weighting vectors and similarity of contexts in order to weight the contri-

bution of individual contextual factors and ratings in the rating prediction

algorithm, respectively. More specifically, weighting vectors are used to

indicate the influential power of each contextual dimension in the various

components involved in the recommendation process, whereas similarities

are used to assess how much to weight a rating under a particular target

context. This allows to consider all (weighted) ratings in the rating pre-

diction process instead of completely filtering them out when they have

non-matching contexts.

Similarly, also Codina et al. [Codina et al. (2013)] show that, in the

recommendation process, instead of using only contextual ratings that ex-

actly match the target context, it is possible to reuse also those that were

provided in similar contexts. In their approach, two contexts are deemed

as similar if they are influencing the items’ (or users’) ratings in a similar

way.

Yet another example is the Contextual Sparse LInear Method (CSLIM)

approach of [Zheng et al. (2014, 2015)]. It also reuses ratings collected in

contexts that do not match the target context for rating prediction, i.e.,

by weighting them via the learned contextual rating deviation or similarity

(correlation) terms.

8.3. Tools & Datasets

In this section, we discuss tools and datasets that can be used to build RSs

that are resistant to the cold start and data sparsity problems. While it is

impossible to provide an exhaustive survey of the ever-growing number of

available resources, this selection should present a proper initial selection

and where tools and datasets might be headed next.

October 22, 2018 16:2 ws-rv9x6-9x6 Book Title 11131-08 page 271

User Preference Elicitation, Rating Sparsity and Cold Start 271

8.3.1. Tools

In general, there are two ways of integrating a RS into a product, either to

use a tool providing the RS as a service, i.e., Software as a Service (SaaS)

RS, or to use a software framework providing functionality that can be

incorporated into the source code of the product.

Yusp2 (former Gravity) provides one of the most well-known SaaS so-

lutions for RSs. The company offers to their customers a recommendation

engine that generates recommendations by collecting and utilizing data of

a customer’s users through an API. Customers can manage the engine set-

tings using a special dashboard. Similarly to many other SaaS products,

this recommendation engine is closed-source. To solve the cold start and the

data sparsity problems, Yusp collects knowledge from different resources3

and uses hybridization techniques4. The available hybridization strategies,

which are here called logics, can be selected from a list of the pre-defined

ones or can be created from scratch using the dashboard tool. The weight-

ing, switching or cascade strategies are available, but there are some more

[Burke (2007)]. For example, the “optimized more like this” strategy at-

tempts to make recommendations based on collaborative filtering, however,

if there is not enough behavioural data (e.g., clicks or views) for an item,

it “falls back” to content-based models. In addition, Yusp can distinguish

the users who come to the service only to browse from those who know

what they are looking for specific items5. Knowing the users’ intent the

recommendation method or the recommended items are further adapted.

For instance, if someone clicks on everything from phone cases to real estate

within a short period of time, the system will assume she is only there for

browsing and will not use their click history for recommendations.

Other companies, such as RetailRocket6, nosto7 or Relap8, provide rec-

ommendation functionality similar to those included in Yusp. However,

little or nothing is known about the recommendation techniques and meth-

ods used by these companies. The target application domains for SaaS RSs

are usually e-commerce, media and news.

2http://www.yusp.com/
3http://support.yusp.com/support/solutions/articles/5000717574-actions-what
4http://support.yusp.com/support/solutions/articles/

5000712803-select-a-recommendation-logic
5http://www.yusp.com/blog/cold-start-problem-recommender-systems/
6https://retailrocket.net/
7http://www.nosto.com/
8https://relap.io/

http://www.yusp.com/
http://support.yusp.com/support/solutions/articles/5000717574-actions-what
http://support.yusp.com/support/solutions/articles/5000712803-select-a-recommendation-logic
http://support.yusp.com/support/solutions/articles/5000712803-select-a-recommendation-logic
http://www.yusp.com/blog/cold-start-problem-recommender-systems/
https://retailrocket.net/
http://www.nosto.com/
https://relap.io/

October 22, 2018 16:2 ws-rv9x6-9x6 Book Title 11131-08 page 272

272 M. Elahi, M. Braunhofer, T. Gurbanov and F. Ricci

In comparison to SaaS solutions, almost all RS software frameworks

are open-source and well-documented, that makes them more attractive for

developers and researchers. The frameworks provide generic functionality

that can be further tailored to the application specific goals by additional

code written on top of the framework. Some of the frameworks, such as rrec-

sys [Çoba and Zanker (2016)], SurPRISE9, LibRec [Guo et al. (2015)], and

Hi-Rec10 [Elahi et al. (2017)] have been designed for rapid prototyping of

recommendation algorithms. These frameworks contain only basic recom-

mendation models. Others, such as Turi11, Apache Mahout12, Mortar13,

Seldon14 and Oryx 15, can be used for building large scale fully-fledged

recommendation engines that can cope with the cold start and the data

sparsity problems. In this section, we will consider only frameworks from

the second group.

To overcome the cold start and the data sparsity problems, frameworks,

as well as SaaS RSs, combine data from different knowledge sources. This

is done either by utilizing recommendation models that can work with

multiple data sources or by employing hybridization techniques. For ex-

ample, Apache Mahout generates recommendations by leveraging informa-

tion about actions of different types performed by users while interacting

with the product (clicks, views, purchases, etc.)16. The open-source recom-

mender engine Mortar uses a graph-based approach that can blend collab-

orative filtering with content-based recommendations and other signals17.

Finally, the Seldon recommender engine allows the product owners to

specify in a configuration file the set of models that must be used, the

order in which these models should be applied, and the priority of each

model18 (i.e., hybridize several recommendation models).

Table 8.1 summarizes the properties and features of the aforementioned

frameworks. The Specialization column contains a brief description of the

most specific feature of the frameworks. It can be noted that only Mor-

tar has been developed specifically for solving RS tasks. All the other

9http://surpriselib.com
10https://fmoghaddam.github.io/Hi-Rec/
11https://turi.com/
12http://mahout.apache.org/
13https://github.com/mortardata/mortar-recsys
14https://www.seldon.io/
15http://oryx.io/
16https://mahout.apache.org/users/algorithms/intro-cooccurrence-spark.html
17http://help.mortardata.com/data_apps/recommendation_engine/recommendation_

engine_basics
18http://docs.seldon.io/advanced-recommender-config.html

http://surpriselib.com
https://fmoghaddam.github.io/Hi-Rec/
https://turi.com/
http://mahout.apache.org/
https://github.com/mortardata/mortar-recsys
https://www.seldon.io/
http://oryx.io/
https://mahout.apache.org/users/algorithms/intro-cooccurrence-spark.html
http://help.mortardata.com/data_apps/recommendation_engine/recommendation_engine_basics
http://help.mortardata.com/data_apps/recommendation_engine/recommendation_engine_basics
http://docs.seldon.io/advanced-recommender-config.html

October 22, 2018 16:2 ws-rv9x6-9x6 Book Title 11131-08 page 273

User Preference Elicitation, Rating Sparsity and Cold Start 273

T
a
b

le
8
.1

.
P

ro
p

er
ti

es
a
n

d
fe

a
tu

re
s

o
f

th
e

fr
a
m

ew
o
rk

s.

F
ra

m
e
w

o
rk

s

A
p
a
ch

e

M
a
h
o
u
t

M
o
rt

a
r

O
ry

x
S
e
ld

o
n

T
u
ri

S
p

e
c
ia

li
z
a
ti

o
n

S
c
a
la

b
le

a
lg

o
ri

th
m

s
P

e
rs

o
n
a
li
z
e
d

re
c
o
m

.
a
t

sc
a
le

R
e
a
l-

ti
m

e

la
rg

e
sc

a
le

M
L

S
c
a
la

b
le

M
L

w
it

h
d
e
p
lo

y
m

e
n
t

E
n
d
-t

o
-e

n
d

la
rg

e
-s

c
a
le

d
a
ta

a
n
a
ly

si
s

a
n
d

d
a
ta

p
ro

d
u
c
t

d
e
v
e
lo

p
m

e
n
t

C
o
m

p
o
n
e
n
ts

A
p
a
ch

e
H

a
d
o
o
p
,

A
p
a
ch

e
S
p
a
rk

,

A
se

a
rc

h
e
n
g
in

e

M
o
rt

a
r

D
e
v
e
lo

p
m

e
n
t

F
ra

m
e
w

o
rk

A
p
a
ch

e
S
p
a
rk

,

A
p
a
ch

e
K

a
fk

a
,

A
p
a
ch

e
H

a
d
o
o
p
,

A
p
a
ch

e
Z

o
o
k
e
p

e
r

A
p
a
ch

e
S
p
a
rk

,

M
y
S
Q

L
,

K
u
b

e
rn

e
te

s

G
ra

p
h
la

b
C

re
a
te

,

T
u
ri

D
is

tr
ib

u
te

d

fr
a
m

e
w

o
rk

M
in

im
u
m

re
q
u
ir

e
m

e
n
ts

-

M
o
rt

a
r

a
c
c
o
u
n
t,

G
it

h
u
b

a
c
c
o
u
n
t,

A
W

S
a
c
c
o
u
n
t

H
a
d
o
o
p

c
lu

st
e
r

K
u
b

e
rn

e
te

s
c
lu

st
e
r

T
u
ri

li
c
e
n
se

M
a
in

la
n
g
u
a
g
e

J
a
v
a

P
ig

J
a
v
a

S
c
a
la

/
P

y
th

o
n

P
y
th

o
n

R
S

m
o
d
e
ls

It
e
m

-b
a
se

d
C

F
,

M
F

w
it

h
A

L
S
,

IM
F

,

S
V

D
+

+
,

C
o
n
te

n
t-

b
a
se

d

G
ra

p
h
-b

a
se

d
M

F
w

it
h

A
L

S
,

P
o
p
u
la

ri
ty

-b
a
se

d

M
F

w
it

h
A

L
S
,

U
se

r-
C

lu
st

e
re

d
M

F
,

P
o
p
u
la

ri
ty

-b
a
se

d

It
e
m

-b
a
se

d
C

F
,

C
o
n
te

n
t-

b
a
se

d
,

M
F

w
it

h

A
L

S
/
S
G

D
/
a
d
a
g
ra

d
,

IM
F

,

S
V

D
+

+
,

P
o
p
u
la

ri
ty

-b
a
se

d

A
c
ti

o
n
s

o
f

m
u
lt

ip
le

ty
p

e
s

Y
e
s

Y
e
s

N
o

N
o

N
o

R
e
c
o
m

m
e
n
d
a
ti

o
n
s

d
e
li
v
e
ry

H
a
d
o
o
p

c
o
m

m
a
n
d
-l

in
e

in
te

rf
a
c
e

S
to

re
s

a
ll

th
e

re
c
o
m

m
e
n
d
a
ti

o
n
s

in
D

y
n
a
m

o
D

B

H
T

T
P

A
P

I

S
e
ld

o
n

c
o
m

m
a
n
d
-l

in
e

in
te

rf
a
c
e
,

H
T

T
P

A
P

I

G
ra

p
h
la

b
S
D

K
,

H
T

T
P

A
P

I

A
n
o
n
y
m

o
u
s

u
se

r
N

o
N

o

Y
e
s,

u
se

r
is

d
e
fi

n
e
d

b
y

a
se

t
o
f

it
e
m

s

sh
e

in
te

ra
c
te

d
w

it
h

Y
e
s,

b
y

c
re

a
ti

n
g

a
h
y
b
ri

d
m

o
d
e
l

Y
e
s,

u
se

r
is

d
e
fi
n
e
d

b
y

a
se

t
o
f

it
e
m

s

sh
e

in
te

ra
c
te

d
w

it
h

D
iv

e
rs

it
y

N
o

Y
e
s

Y
e
s

N
o

Y
e
s

E
x
p
la

n
a
ti

o
n
s

N
o

Y
e
s

Y
e
s

N
o

N
o

October 22, 2018 16:2 ws-rv9x6-9x6 Book Title 11131-08 page 274

274 M. Elahi, M. Braunhofer, T. Gurbanov and F. Ricci

frameworks, even though they provide a range of prediction tasks employed

in RSs, they have been developed as scalable Machine Learning (ML) frame-

works for general purposes. The Components row shows additional tools

and frameworks that are used to support the target RS framework and let

it run on a computer cluster. In fact, all the frameworks can be run on

a computer cluster. To employ a framework some Minimum Requirements

should be met. For example, Oryx can be deployed only on Hadoop clus-

ter19, while Seldon requires Kubernetes20. The recommendation techniques

supported by the frameworks are listed in the RS models row. Turi provides

the largest set of techniques, including, matrix factorization (MF) [Koren

et al. (2009)], implicit feedback MF (IMF) [Hu et al. (2008a)], SVD++ [Ko-

ren (2008)], item-based CF [Deshpande and Karypis (2004)], content-based

and popularity-based models.

All the frameworks, except Oryx, allow filtering items using meta-

parameters, such as tags and content information (genres, categories, etc.).

Mortar and Apache Mahout can leverage information about user actions of

different types, but do not provide out-of-the-box HTTP API and cannot

provide recommendations for anonymous users.

When using Turi and Oryx the request to the RS can specify the set of

items that a user has observed or has interacted with21,22.

These items are used by the framework to generate the user’s profile on-

the-fly and, therefore, to generate recommendations for anonymous users

(often are cold users). Knowing the similarity between items, Oryx and

Mortar build recommendations containing diverse items, that can be use-

ful to acquire more information about users’ preferences. Moreover, they

provide functionality that can be used to explain the recommendations.

One framework only supports hybridization (cascading), this is Seldon.

And only one framework supports active learning, this is Oryx. It pro-

vides the “surprise me” functionality, which recommends items that a user

least-likely will interact with.

To sum up, though numerous RS tools and frameworks is currently

available, only few of them are equipped with functionality capable to mit-

igate the cold start and the data sparsity problems. The problems are

usually treated by using additional knowledge sources about the users, the

19http://hadoop.apache.org/
20https://kubernetes.io/
21http://oryx.io/apidocs/com/cloudera/oryx/app/serving/als/

RecommendToAnonymous.html
22https://github.com/turi-code/userguide/blob/master/recommender/

making-recommendations.md#making-recommendations-for-new-users

http://hadoop.apache.org/
https://kubernetes.io/
http://oryx.io/apidocs/com/cloudera/oryx/app/serving/als/RecommendToAnonymous.html
http://oryx.io/apidocs/com/cloudera/oryx/app/serving/als/RecommendToAnonymous.html
https://github.com/turi-code/userguide/blob/master/recommender/making-recommendations.md#making-recommendations-for-new-users
https://github.com/turi-code/userguide/blob/master/recommender/making-recommendations.md#making-recommendations-for-new-users

October 22, 2018 16:2 ws-rv9x6-9x6 Book Title 11131-08 page 275

User Preference Elicitation, Rating Sparsity and Cold Start 275

items or the contextual situations. For example, Apache Mahout, Turi and

Oryx use algorithmic solutions based on implicit feedback data, while Yusp

and Mortar employ content-based filtering. Beyond that, Yusp and Sel-

don provide hybridization and basic active learning techniques. Yusp offers

weighting, switching and cascading hybridization approaches, while Seldon

supports the lowest predicted (a.k.a. “surprise me”) AL strategy. Whilst

these solutions allow reducing the problems we believe that the efficient im-

plementation of more advanced hybridization and AL techniques described

in this chapter can significantly improve the existing tools.

8.3.2. Datasets

There are many publicly available datasets that can be used to conduct

research in the field of recommender systems; in particular, for analyzing,

testing and comparing existing recommenders. In this section, we will men-

tion datasets that can be employed to train models resistant to the cold

start and the data sparsity problems. Such datasets contain information

about interactions between users and items and satisfy at least one of the

following conditions:

• the dataset contains user and item metadata;

• the dataset contains additional interaction information (i.e., user ac-

tions of multiple types);

• the dataset reflects the real-time (or near real-time) changes in the user

behaviour.

The first two conditions are essential for building and testing systems

which are based on hybridization or use additional knowledge sources, while

the third one might be helpful in building an active learning, rating elici-

tation, process.

One of the most popular recommender system data sets is MovieLens

[Harper and Konstan (2015)]. The dataset comprises 5-star ratings and

free-text tags collected by a movie recommendation service. Using tags as-

signed by users to movies as well as movie genres one can build a content-

based recommender system. Other data sets containing item and user

metadata are Amazon product data [He and McAuley (2016)] and Yelp

dataset23. The first one includes reviews (ratings, text, helpfulness votes),

product metadata (descriptions, category information, price, brand, and

image features), and links (also viewed/also bought graphs) from Amazon.
23https://www.yelp.com/dataset/

https://www.yelp.com/dataset/

October 22, 2018 16:2 ws-rv9x6-9x6 Book Title 11131-08 page 276

276 M. Elahi, M. Braunhofer, T. Gurbanov and F. Ricci

The second one is a subset of Yelp’s businesses, reviews, and user data

that incorporates over 1.2 million business attributes like hours, parking,

availability, and ambiance. It also aggregates check-ins over time for each

of the 174, 000 businesses.

In addition to user and item metadata, datasets can include user (be-

havioral) data, such as information about personalty or actions of different

types performed by the users while interacting with the system. For in-

stance, My Personality dataset24 and STS dataset25 both contain the per-

sonality of the users together with other types of data. The RetailRocket26

as another dataset that contains logs of users’ actions, such as, clicks, add

to carts, and transactions, that were collected from the e-commerce website

over a period of 4.5 months. Another good example is XING’s dataset [Abel

et al. (2017)] which contains the logs of interactions performed by users on

job postings (see Chapter 17). These interactions include clicks, bookmarks,

replies, and deletes. It also includes reciprocal interactions, e.g., whether

or not a recruiter has showed his interest into a user by clicking on a candi-

date user’s profile. It is worth noting that the available XING dataset is a

semi-synthetic sample of another data set, and it is enriched with artificial

users whose presence contributes to the anonymization. Moreover, some

noise was added to the data: not all the users’ interactions are contained in

the dataset while some of the interactions are artificial (have actually not

been performed by the users). Four types of actions are contained in the

dataset: clicks, bookmarks, replies and deletes.

Moreover, recently a set of datasets have been published, called Mise-

en-scene [Deldjoo et al. (2016)]27 and MPEG-7 visual datasets28 [Deldjoo

et al. (2018)].

These datasets contain various types of visual features extracted from

movie trailers. The idea is that, for the new movie items in the extreme cold

start situation, where there is no data available, visual features can be used

to generate personalized recommendation. These features are descriptive of

the aesthetic elements (e.g., color, light, and motion), encapsulated within

the movies. The features are automatically extracted by analyzing frame-

by-frame of each movie and aggregating them over the entire movie.

24https://mypersonality.org
25https://www.researchgate.net/publication/305682479_Context-Aware_Dataset_

STS_-_South_Tyrol_Suggests_Mobile_App_Data
26https://www.kaggle.com/retailrocket/ecommerce-dataset
27https://www.researchgate.net/publication/305682388_Mise-en-Scene_Dataset_

Stylistic_Visual_Features_of_Movie_Trailers_description
28https://goo.gl/ZYij61

https://mypersonality.org
https://www.researchgate.net/publication/305682479_Context-Aware_Dataset_STS_-_South_Tyrol_Suggests_Mobile_App_Data
https://www.researchgate.net/publication/305682479_Context-Aware_Dataset_STS_-_South_Tyrol_Suggests_Mobile_App_Data
https://www.kaggle.com/retailrocket/ecommerce-dataset
https://www.researchgate.net/publication/305682388_Mise-en-Scene_Dataset_Stylistic_Visual_Features_of_Movie_Trailers_description
https://www.researchgate.net/publication/305682388_Mise-en-Scene_Dataset_Stylistic_Visual_Features_of_Movie_Trailers_description
https://goo.gl/ZYij61

October 22, 2018 16:2 ws-rv9x6-9x6 Book Title 11131-08 page 277

User Preference Elicitation, Rating Sparsity and Cold Start 277

Finally, Satori29 and webhose.io30 are services that allow collecting data

about social activity, e-commerce reviews, and news in near real-time. The

data can be used to explore the influence of different events on the users’

preferences. Using this knowledge one can separate the reviews which reflect

more stable user preferences from those that were mostly influenced by some

exogenous event.

8.4. Performance Comparison

In this section, we will summarize the experimental results contained in

research studies that focused on collaborative filtering systems in cold start

scenarios. However, preliminary, we would like to make a few important

observations.

First of all, most of the studies conducted in this particular research area

have adopted an off line evaluation setting and measured the rating predic-

tion error (e.g., Mean Absolute Error — MAE, or Root Mean Squared Error

— RMSE). Hence, we do not have any knowledge about how the surveyed

techniques may perform with respect to other important metrics, such as

those measuring ranking quality (e.g., Normalized Discounted Cumulative

Gain — NDCG, or Mean Average Precision — MAP). Moreover, the ma-

jority of the surveyed studies have focused on the movie recommendation

domain and used the well-known MovieLens and Netflix datasets.

Most importantly, in spite of the similarities among the adopted evalu-

ation methods, still there are some substantial differences, and hence, it is

almost impossible to draw any final conclusion, as well as to generalize the

results obtained in the experiments.

As summarized in Table 8.2 and described in more detail in this section,

the surveyed techniques for tackling the cold-start problem have their own

advantages and drawbacks and have been evaluated on different datasets31.

Please note that HLU refers to Half Life Utility and it measures the util-

ity of a recommendation list for every user, assuming that the likelihood

that she will notice and choose a recommended item decays exponentially

with respect to the ranking of the item’s [Breese et al. (1998); Pan et al.

29https://www.satori.com/
30https://webhose.io/
31MovieLens [Harper and Konstan (2016)], Netflix [Koren (2009)], STS [Braunhofer et al.

(2014)], EachMovie [GroupLens (2018)], MyPersonality [Kosinski et al. (2015)], Library-
Thing [Librarything (2018)], 7TV [Gurbanov et al. (2016)], Rossmann [Rendle et al.

(2009)], Adom [Adomavicius et al. (2005)], CoMoDa [Košir et al. (2011)], InCarMusic
[Baltrunas et al. (2011)], TripAdvisor [TripAdvisor (2018)], IMDB [IMDB (2018)].

https://www.satori.com/
https://webhose.io/

October 22, 2018 16:2 ws-rv9x6-9x6 Book Title 11131-08 page 278

278 M. Elahi, M. Braunhofer, T. Gurbanov and F. Ricci

T
a
b

le
8
.2

.
S

u
m

m
a
ry

o
f

th
e

p
er

fo
rm

a
n

ce
o
f

v
a
ri

o
u

s
co

ld
-s

ta
rt

so
lu

ti
o
n

s
o
n

d
iff

er
en

t
d

a
ta

se
ts

.

C
o
ld

-s
ta

rt
p

ro
b

le
m

M
et

ri
c

E
v
a
lu

a
ti

o
n

A
p

p
ro

a
ch

N
ew

u
se

r

N
ew

it
em

N
ew

co
n
te

x
t

R
M

S
E

,

M
A

E

P
re

ci
si

o
n

,

M
A

P

N
D

C
G

,

H
L

U
,

M
P

R

O
ffl

in
e

O
n

li
n

e
D

a
ta

se
ts

A
ct

iv
e

L
ea

rn
in

g
3

3
3

3
3

7
3

3
C

o
M

o
D

a
,

M
o
v
ie

L
en

s,
N

et
fl

ix
,

S
T

S
C

ro
ss

-d
o
m

a
in

re
co

m
m

en
d

a
ti

o
n

3
3

3
3

3
3

3
7

E
a
ch

M
o
v
ie

,

M
y
P

er
so

n
a
li
ty

,
M

o
v
ie

-
L

en
s,

L
ib

ra
ry

T
h

in
g

Im
p

li
ci

t
fe

ed
b

a
ck

7
7

7
3

3
3

3
7

7
T

V
,

M
y
P

er
so

n
a
li
ty

,

N
et

fl
ix

,
R

o
ss

m
a
n

n
C

o
n
te

n
t-

b
a
se

d
re

co
m

m
en

d
a
ti

o
n

7
3

7
3

3
3

3
7

M
o
v
ie

L
en

s,
L

ib
ra

ry
T

h
in

g

D
em

o
g
ra

p
h

ic
-b

a
se

d
re

co
m

m
en

d
a
ti

o
n

3
7

7
3

7
7

3
7

M
o
v
ie

L
en

s

H
y
b

ri
d

re
co

m
m

en
d

a
ti

o
n

3
3

3
3

3
7

3
7

IM
D

b
,

M
o
v
ie

L
en

s,

N
et

fl
ix

C
o
n
te

x
t-

a
w

a
re

m
o
d

el
s

o
p

ti
m

iz
ed

fo
r

d
a
ta

sp
a
rs

it
y

7
7

3
3

3
3

3
7

A
d

o
m

,
C

o
M

o
D

a
,

In
C

a
rM

u
si

c,
T

ri
p

A
d

v
is

o
r,

S
T

S

October 22, 2018 16:2 ws-rv9x6-9x6 Book Title 11131-08 page 279

User Preference Elicitation, Rating Sparsity and Cold Start 279

(2008); Schedl et al. (2018)]. Hence, greater value of HLU may correspond

to a superior recommendation performance. Additionally, MPR refers to

Mean Percentile Ranking and it is a metric that measures the user satisfac-

tion of the items in a ranked list of recommendations, and it is computed

as the average of the percentile ranking of the test items within the ranked

list of recommendations for every test user [Hu et al. (2008b); Schedl et al.

(2018)]. It is worth noting that the smaller MPR, the better recommenda-

tion performance.

First, let us consider Active Learning — it has been shown in offline

and online experiments that it can be used to effectively tackle the new

user, new item and new context problem by selecting informative items for

users to rate. More specifically, experimental results obtained in previous

research have provided evidence that a proper choice of an active learning

elicitation strategy allows to improve the performance of a recommender

system in terms of rating prediction and ranking accuracy for new users,

new items and new contextual situations [Rashid et al. (2002, 2008a); Elahi

et al. (2014); Odić et al. (2012); Braunhofer and Ricci (2016)]. However,

users may perceive active learning as tedious or even unpleasant, as it takes

time and effort for them to browse the proposed items and rate them.

Also cross-domain recommendation can be a compelling approach to

solve the cold-start problem. It has been shown that by exploiting cross-

domain recommendation techniques it is possible to improve the prediction

accuracy [Berkovsky et al. (2007); Enrich et al. (2013)] as well as the ranking

accuracy [Fernández-Tob́ıas et al. (2016)] in the target domain in various

cold-start situations. Cross-domain recommendation techniques, however,

require the co-existence of users, items and contextual situations across the

considered and different domains, which is not always the case. Otherwise,

wrong conclusions about the user preferences might be transferred from the

auxiliary domain to the target domain.

A similar comment holds for recommendation approaches that incor-

porate implicit feedback. Implicit feedback data is generally easier to col-

lect than explicit ratings data, and it has been shown that by extending

rating-based recommender models using implicit feedback it is possible to

achieve a higher recommendation performance [Koren (2008)]. However,

recommendation approaches based on implicit data fail on users, items and

contextual situations which were just entered into the system and for which

no implicit feedback is yet available.

The other techniques, i.e., content-based recommendation and

demographic-based recommendation, deal with just one specific type of

October 22, 2018 16:2 ws-rv9x6-9x6 Book Title 11131-08 page 280

280 M. Elahi, M. Braunhofer, T. Gurbanov and F. Ricci

cold-start problems. For instance, content-based techniques can lead to

a higher prediction and ranking accuracy for new items (new item prob-

lem) [Manzato (2013); Fernández-Tob́ıas and Cantador (2014)], whereas

demographic-based techniques can improve the prediction and ranking rec-

ommendation accuracy for new users (new user problem) [Koren et al.

(2009); Fernandez Tobias et al. (2016)].

As we have already mentioned in Section 8.2.6, the observed advan-

tages and drawbacks of these techniques motivated the development of hy-

brid approaches that exploit simultaneously more than one technique, and

adaptively use them for recommendation depending on their strengths and

weaknesses in a given (cold-start) situation.

8.4.1. Caveats

There are several important issues related to the evaluation of recommen-

dation techniques to deal with the cold-start problem that should also dis-

cussed. We list these aspects in the rest of this section.

Direct comparison of cold-start solutions. Different cold-start solutions

have been typically evaluated in isolation with each other, i.e., new active

learning solutions are compared to state-of-the-art active learning solutions,

newly proposed cross-domain recommendation algorithms are confronted

with other cross-domain recommendation algorithms, and so on. It is still

an open and important question which one is more effective, e.g., in terms

of recommendation accuracy, effort required from the users or simplicity of

implementation.

User-centric evaluation studies. Off line evaluations are the most com-

mon evaluation methods for cold-start solutions. Although they allow for

low-cost simulation of the behaviour of users when interacting with different

algorithms, they can not substitute on line evaluations. On line evaluations

are more costly, however, as they are carried out with real users in almost

real-life settings, they allow to draw more reliable conclusions about the

true merits of an algorithm.

Definition of benchmark results, evaluation procedures and public large-

scale datasets. The evaluation of cold-start solutions for recommender sys-

tems is complex for several reasons: (1) it requires large feedback datasets

with user and item attributes; otherwise it is difficult or even impossible to

test the effects of using user and item attributes in the prediction models;

(2) the evaluation must cover multiple perspectives, e.g., it must consider

new users, new items, new contextual situations, mixtures of elementary

October 22, 2018 16:2 ws-rv9x6-9x6 Book Title 11131-08 page 281

User Preference Elicitation, Rating Sparsity and Cold Start 281

cold-start cases, different degrees of coldness and different types of user and

item attributes available; and finally (3) the evaluations and results of the

cold-start solutions proposed so far are difficult to compare as there exists

no standard or reference evaluation procedure as well as metrics.

8.5. Guidelines

In this section, we suggest a number of practical guidelines that can be

adopted for the design and development of an operational collaborative

filtering system, resistant to cold start problem.

Algorithms should adapt to the time evolution of user/item profiles: one

of the important factors that could impact on the behavior of collaborative

filtering systems, is the temporal dynamics of the user preferences which

could be dependent on the application domain. As an example, the ratings

that the users provide to TV programmes or books are more stable than

the ones provided to news items, as the news items change more rapidly

[Picault et al. (2011)]. This is important to take into account when de-

signing the algorithms that can better adapt to the dynamic nature of the

reality of collaborative filtering systems. Adaptive algorithms can tackle

this issue by learning the temporal evolution of the user/item profile rec-

ognizing the different evolution patterns, e.g., stable profiles, progressive

profiles, fast changing profiles, etc. [Picault and Ribiere (2008); Hawalah

and Fasli (2015)].

Scalability of the recommender algorithm should be taken into account:

the computation load performed by collaborative filtering algorithms can

increase dramatically with the growth of the dimensions of the rating ma-

trix, i.e., the number of users and items in the dataset [Park et al. (2012)]. It

will also increase the sparsity of the data and hence create severe cold start

problem. Consequently, a recommendation algorithm that could operate

with a limited volume of users and items may fail to generate recommen-

dations in a reasonable time if a considerable number of new users and new

items are added to the dataset. Hence, in real world recommender sys-

tems, with huge databases (big data), it is crucial to adopt algorithms that

are capable of scaling up (see Chapters 11, 17, 21, and 14). For instance,

collaborative filtering algorithms based on Dimensionality Reduction meth-

ods (e.g., Singular Value Decomposition — SVD) are able to significantly

reduce the computational cost of a recommendation and still to generate

highly accurate recommendations [Koren and Bell (2015); Isinkaye et al.

(2015)].

October 22, 2018 16:2 ws-rv9x6-9x6 Book Title 11131-08 page 282

282 M. Elahi, M. Braunhofer, T. Gurbanov and F. Ricci

Ratings on recommended items can cause serious system bias: recom-

mender systems typically obtain ratings on items with the highest predicted

ratings (recommendations). This is due to the fact that it is more likely

that the users assess and rate recommended items which are supposed to

be interesting to them. However, it has been shown [Elahi et al. (2014)]

that ratings given for such items may inject in the data set a large number

of high ratings, which will ultimately cause a serious bias of the prediction

algorithm for high ratings (see Chapter 10). Therefore, it is also important

that the system adopts certain strategies in order to obtain ratings on items

that the users may dislike and would rate low.

Natural acquisition of ratings can strongly impact the system perfor-

mance: in operational recommender systems the ratings are added to

the system database through two different processes [McNee et al. (2003);

Carenini et al. (2003); Rashid et al. (2008b); Elahi et al. (2014)]: (i) the

system explicitly requests the user to rate a set of selected items (active

learning), or (ii) the user voluntary explores the item catalog and provides

some ratings (natural acquisition of ratings). The majority of the research

works have studied the performance of collaborative filtering systems in

cold start settings, under the assumption that the new ratings are added

only as a response to the system requests. However, in reality, user rat-

ings are generated by both processes with diverse impact on the system

performance. Hence, it is important to consider a mixed initiative sce-

nario [Rashid et al. (2008b); Pu et al. (2012)], by considering both rating

elicitation sources. This may provide a better prediction of the temporal

evolution of the system performance and a more realistic scenario [Elahi

et al. (2014, 2012)].

User ratings on random items could be beneficial: supporting users in

exploring items and providing ratings on random items has shown to be use-

ful in reducing the system bias. This could be more effective particularly

when the system contains very popular items that receive almost all the rat-

ings from the users. For systems that include rating elicitation in the sign-

up process, a small portion of randomly selected items can be included in

the lists the users are proposed to rate [Zhao et al. (2013); Christakopoulou

et al. (2016)].

Conversational interaction models could improve user profiling: the

standard preference elicitation model of current collaborative filtering sys-

tems, is mainly supporting the generation of the initial user profiling, during

the sign-up process; the system builds the user profile by requesting the user

to rate a set of items [Carenini et al. (2003)]). However, the user should be

October 22, 2018 16:2 ws-rv9x6-9x6 Book Title 11131-08 page 283

User Preference Elicitation, Rating Sparsity and Cold Start 283

able to update her profile (by ratings more items) whenever she likes. This

approach is analysed in [Carenini et al. (2003); Sun et al. (2013)]. Here the

user rates items (selected by the system) in the sign-up process, and later

on, she still gets notifications from the system motivating her to rate more

items, which are selected by the system. This process includes explanations

which clarify the benefits of providing more ratings. Therefore, the control

is still in the user’s hands, while a sense of co-operation between the user

and the system is formed.

Elicitation of contextual ratings are necessary for CARS: in context

aware recommender systems (CARS), the context of the user plays a sig-

nificant role in recommendation accuracy. While there are several types

of contextual information that can be automatically obtained from sen-

sors (e.g., weather, temperature, location, daytime, season, and weekday),

there are also contextual information that have to be specified by the user

(e.g., budget, companion, mood, and transport mean). However, not all

the contextual factors are equally useful for the system to improve the rec-

ommendation accuracy. Hence, actively selecting the contextual factors

that are the most informative to explain the rating given by the user to an

item is important and can potentially improve the system accuracy more

while being easier for the user to provide them. So, the application of ac-

tive learning in context-aware recommender systems is in order [Baltrunas

(2011)].

Hybridization can result in robustness: while collaborative filtering

approaches are considered powerful and effective in generating relevant

recommendations, they have several limitations, which are impacting on

their performance in cold start situations. For instance, if two items have

synonymous names, e.g., espresso machine and coffee maker, a collabora-

tive filtering systems may not consider these items similar until they are

similarly rated by the users [Isinkaye et al. (2015)]. Another example is

recommendation in the news domain where the items (news articles) may

get outdated quickly and the users may not be willing to read them any

more. As a consequence, there would be low overlap among the ratings of

users, and the recommendation quality may drop considerably. In both the

above-mentioned problems, hybridizing collaborative filtering with content-

based could provide an effective solution [Burke (2007)]. This is prob-

ably the reason why almost all real-world recommender systems employ

hybridization techniques in order to increase system robustness.

October 22, 2018 16:2 ws-rv9x6-9x6 Book Title 11131-08 page 284

284 M. Elahi, M. Braunhofer, T. Gurbanov and F. Ricci

8.6. Conclusions and Future Directions

As was mentioned previously, collaborative filtering suffer from the cold

start problem which occurs when the system is not capable of identifying

items that could be recommended to a new user or users that may receive a

recommendation for a new item. Moreover, when the system has collected

only a small percentage of all the potential ratings, the rating sparsity

problem may be observed. These problems are even worse in Context-

Aware Recommender Systems (CARSs) where the recommendations can

be requested for contextual situations under which the users did not rated

any item.

Various approaches for addressing the cold start and data sparsity prob-

lems and improving collaborative filtering have been proposed. These ap-

proaches can be split into two major groups. Solutions in the first group

exploit additional knowledge sources about the users, the items or the con-

textual situations, and incorporates active learning (AL), cross-domain, im-

plicit feedback, content-based and demographic-based approaches. While

solutions in the second group leverage hybrid approaches that try to make

a better use of the available information by combining two or more recom-

mendation techniques.

However, no solution is fully solving the considered problem and each

of them has drawbacks. For instance, one cannot leverage implicit feed-

back data in the new user scenario, because even this type of user/item

interactions are missing. Similar limitations can be found for the content-

based approach where a sufficient number of ratings have to be collected

before the system can understand the user preferences and provide accu-

rate recommendations. The demographic-based approaches are easier to

implement but less accurate than personalized recommendations, and the

cross-domain approaches require the co-existence of users, items and con-

textual situations across different domains, which is not always the case.

Meanwhile, users do not like to enter ratings requested by the system, as

this is tedious and takes time and effort. Finally, only basic active learning

and hybridization techniques are present in the existing tools and frame-

works for building RSs. Thus, by taking into account all these aspects,

we would like to close this chapter by briefly indicating possible future

directions for addressing the cold start and data sparsity problems.

As IT-technology gets more advanced, it becomes possible to collect and

process more information from different sources. For example, “Internet-of-

Things” devices, are capable of sensing their environment and collect users’

October 22, 2018 16:2 ws-rv9x6-9x6 Book Title 11131-08 page 285

User Preference Elicitation, Rating Sparsity and Cold Start 285

contextual and behavioural information [Tu et al. (2016)]. The availability

of data of different types (collected from various sources) entails the creation

of more advanced hybrid approaches.

Another direction is related to the recent development of artificial in-

telligence and its application in dialog systems (e.g., chatbots or smart

assistants). This type of technologies can transform conversational recom-

mender systems from a “bothersome process” to an enjoyable one, satisfying

both the system objectives and the user at the same time [Rubens et al.

(2015)].

Finally, the efficient implementation of the advanced hybridization and

active learning techniques in the existing systems tools and frameworks may

stimulate the research community to find even better solutions to solve to

the cold start and data sparsity problems.

References

Abel, F., Deldjoo, Y., Elahi, M. and Kohlsdorf, D. (2017). Recsys challenge
2017: Offline and online evaluation, in Proceedings of the Eleventh ACM
Conference on Recommender Systems (ACM), pp. 372–373.

Adomavicius, G., Sankaranarayanan, R., Sen, S. and Tuzhilin, A. (2005). Incor-
porating contextual information in recommender systems using a multidi-
mensional approach, ACM Transactions on Information Systems (TOIS)
23, 1, pp. 103–145.

Adomavicius, G. and Tuzhilin, A. (2005). Toward the next generation of rec-
ommender systems: A survey of the state-of-the-art and possible exten-
sions, IEEE Trans. on Knowl. and Data Eng. 17, 6, pp. 734–749, doi:
10.1109/TKDE.2005.99.

Adomavicius, G. and Tuzhilin, A. (2011). Context-aware recommender systems,
in Recommender Systems Handbook (Springer), pp. 217–253.

Adomavicius, G. and Tuzhilin, A. (2015). Context-aware recommender systems,
in Recommender Systems Handbook (Springer), pp. 191–226, doi:10.1007/
978-1-4899-7637-6 6.

Agarwal, D. and Chen, B.-C. (2009). Regression-based latent factor models,
in Proceedings of the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’09 (ACM, New York, NY,
USA), ISBN 978-1-60558-495-9, pp. 19–28, doi:10.1145/1557019.1557029,
http://doi.acm.org/10.1145/1557019.1557029.

Bachrach, Y., Kosinski, M., Graepel, T., Kohli, P. and Stillwell, D. (2012). Per-
sonality and patterns of facebook usage, in Proceedings of the 4th An-
nual ACM Web Science Conference, WebSci ’12 (ACM, New York, NY,
USA), ISBN 978-1-4503-1228-8, pp. 24–32, doi:10.1145/2380718.2380722,
http://doi.acm.org/10.1145/2380718.2380722.

http://doi.acm.org/10.1145/1557019.1557029
http://doi.acm.org/10.1145/2380718.2380722

October 22, 2018 16:2 ws-rv9x6-9x6 Book Title 11131-08 page 286

286 M. Elahi, M. Braunhofer, T. Gurbanov and F. Ricci

Baltrunas, L. (2011). Context-Aware Collaborative Filtering Recommender Sys-
tems, Ph.D. thesis, The Department of Computer Science, Free University
of Bozen-Bolzano.

Baltrunas, L., Kaminskas, M., Ludwig, B., Moling, O., Ricci, F., Aydin, A., Lüke,
K.-H. and Schwaiger, R. (2011). Incarmusic: Context-aware music recom-
mendations in a car, in International Conference on Electronic Commerce
and Web Technologies (Springer), pp. 89–100.

Baltrunas, L., Ludwig, B., Peer, S. and Ricci, F. (2012). Context relevance
assessment and exploitation in mobile recommender systems, Personal
Ubiquitous Comput. 16, 5, pp. 507–526, doi:10.1007/s00779-011-0417-x,
http://dx.doi.org/10.1007/s00779-011-0417-x.

Berkovsky, S., Kuflik, T. and Ricci, F. (2007). Distributed collaborative filtering
with domain specialization, in Proceedings of the 2007 ACM Conference
on Recommender Systems, RecSys ’07 (ACM, New York, NY, USA), ISBN
978-1-59593-730–8, pp. 33–40, doi:10.1145/1297231.1297238, http://doi.
acm.org/10.1145/1297231.1297238.

Blédaité, L. and Ricci, F. (2015). Pairwise preferences elicitation and exploitation
for conversational collaborative filtering, in Proceedings of the 26th ACM
Conference on Hypertext & Social Media, HT ’15 (ACM, New York,
NY, USA), ISBN 978-1-4503-3395-5, pp. 231–236, doi:10.1145/2700171.
2791049, http://doi.acm.org/10.1145/2700171.2791049.

Braunhofer, M. (2015). Techniques for Context-Aware and Cold-Start Recommen-
dations, Ph.D. thesis, Free University of Bozen-Bolzano.

Braunhofer, M., Elahi, M. and Ricci, F. (2014). Techniques for cold-starting
context-aware mobile recommender systems for tourism, Intelligenza Arti-
ficiale 8, 2, pp. 129–143, doi:10.3233/IA-140069.

Braunhofer, M., Elahi, M. and Ricci, F. (2015a). User personality and the new
user problem in a context-aware point of interest recommender system, in
Information and Communication Technologies in Tourism 2015 (Springer),
pp. 537–549.

Braunhofer, M., Fernández-Tob́ıas, I. and Ricci, F. (2015b). Parsimonious and
adaptive contextual information acquisition in recommender systems, in
IntRS@RecSys, CEUR Workshop Proceedings, Vol. 1438 (CEUR-WS.org),
pp. 2–8.

Braunhofer, M. and Ricci, F. (2016). Contextual information elicitation in travel
recommender systems, in Information and Communication Technologies in
Tourism 2016 (Springer), pp. 579–592.

Breese, J. S., Heckerman, D. and Kadie, C. (1998). Empirical analysis of pre-
dictive algorithms for collaborative filtering, in Proceedings of the 14th
Conference on Uncertainty in Artificial Intelligence, (Morgan Kaufmann
Publishers Inc), pp. 43–52.

Burke, R. (2000). Knowledge-based recommender systems, in Encyclopedia of
library and information science, 32 (CRC Press), pp. 181–201.

Burke, R. (2002). Hybrid recommender systems: Survey and experiments, User
Modeling and User-Adapted Interaction 12, 4, pp. 331–370, doi:10.1023/A:
1021240730564, http://dx.doi.org/10.1023/A:1021240730564.

http://dx.doi.org/10.1007/s00779-011-0417-x
http://doi.acm.org/10.1145/1297231.1297238
http://doi.acm.org/10.1145/1297231.1297238
http://doi.acm.org/10.1145/2700171.2791049
http://dx.doi.org/10.1023/A:1021240730564

October 22, 2018 16:2 ws-rv9x6-9x6 Book Title 11131-08 page 287

User Preference Elicitation, Rating Sparsity and Cold Start 287

Burke, R. (2007). The adaptive web, in P. Brusilovsky, A. Kobsa and W. Nejdl
(eds.), The Adaptive Web: Methods and Strategies of Web Personaliza-
tion, chap. Hybrid Web Recommender Systems (Springer-Verlag, Berlin,
Heidelberg), ISBN 978-3-540-72078-2, pp. 377–408, http://dl.acm.org/

citation.cfm?id=1768197.1768211.
Cantador, I. and Cremonesi, P. (2014). Tutorial on cross-domain recommender

systems, in Proceedings of the 8th ACM Conference on Recommender Sys-
tems, RecSys’14 (ACM, New York, NY, USA), ISBN 978-1-4503-2668-1,
pp. 401–402, doi:10.1145/2645710.2645777.

Carenini, G., Smith, J. and Poole, D. (2003). Towards more conversational and
collaborative recommender systems, in Proceedings of the 8th international
conference on Intelligent user interfaces, IUI ’03 (ACM, New York, NY,
USA), ISBN 1-58113-586-6, pp. 12–18, doi:10.1145/604045.604052.

Christakopoulou, K., Radlinski, F. and Hofmann, K. (2016). Towards conversa-
tional recommender systems, in Proceedings of the 22Nd ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, KDD ’16
(ACM, New York, NY, USA), ISBN 978-1-4503-4232-2, pp. 815–824, doi:10.
1145/2939672.2939746, http://doi.acm.org/10.1145/2939672.2939746.

Çoba, L. and Zanker, M. (2016). rrecsys: An r-package for prototyping recom-
mendation algorithms, in RecSys Posters.

Codina, V., Ricci, F. and Ceccaroni, L. (2013). Exploiting the semantic similarity
of contextual situations for pre-filtering recommendation, in User Modeling,
Adaptation, and Personalization (Springer), pp. 165–177.

Cremonesi, P., Tripodi, A. and Turrin, R. (2011). Cross-domain recommender
systems, in Data Mining Workshops (ICDMW), 2011 IEEE 11th Interna-
tional Conference on (IEEE), pp. 496–503.

Deldjoo, Y., Elahi, M., Cremonesi, P., Garzotto, F., Piazzolla, P. and Quad-
rana, M. (2016). Content-based video recommendation system based on
stylistic visual features, Journal on Data Semantics, pp. 1–15, doi:10.1007/
s13740-016-0060-9.

Deldjoo, Y., Elahi, M., Quadrana, M. and Cremonesi, P. (2018). Using visual
features based on mpeg-7 and deep learning for movie recommendation,
International Journal of Multimedia Information Retrieval.

Deshpande, M. and Karypis, G. (2004). Item-based top-n recommendation al-
gorithms, ACM Trans. Inf. Syst. 22, 1, pp. 143–177, doi:10.1145/963770.
963776, http://doi.acm.org/10.1145/963770.963776.

Ekstrand, M. D., Harper, F. M., Willemsen, M. C. and Konstan, J. A. (2014).
User perception of differences in recommender algorithms, in Proceedings of
the 8th ACM Conference on Recommender systems (ACM), pp. 161–168.

Elahi, M., Braunhofer, M., Ricci, F. and Tkalcic, M. (2013). Personality-based
active learning for collaborative filtering recommender systems, in Congress
of the Italian Association for Artificial Intelligence (Springer), pp. 360–371.

Elahi, M., Deldjoo, Y., Bakhshandegan Moghaddam, F., Cella, L., Cereda, S.
and Cremonesi, P. (2017). Exploring the semantic gap for movie recom-
mendations, in Proceedings of the Eleventh ACM Conference on Recom-
mender Systems, RecSys ’17 (ACM, New York, NY, USA), ISBN 978-1-

http://dl.acm.org/citation.cfm?id=1768197.1768211
http://dl.acm.org/citation.cfm?id=1768197.1768211
http://doi.acm.org/10.1145/2939672.2939746
http://doi.acm.org/10.1145/963770.963776

October 22, 2018 16:2 ws-rv9x6-9x6 Book Title 11131-08 page 288

288 M. Elahi, M. Braunhofer, T. Gurbanov and F. Ricci

4503-4652-8, pp. 326–330, doi:10.1145/3109859.3109908, http://doi.acm.
org/10.1145/3109859.3109908.

Elahi, M., Ricci, F. and Repsys, V. (2011). System-wide effectiveness of active
learning in collaborative filtering, in Proceedings of the International Work-
shop on Social Web Mining, Co-located with IJCAI, Barcelona, Spain (July
2011).

Elahi, M., Ricci, F. and Rubens, N. (2012). Adapting to natural rating acqui-
sition with combined active learning strategies, in ISMIS’12: Proceedings
of the 20th international conference on Foundations of Intelligent Systems
(Springer-Verlag, Berlin, Heidelberg), ISBN 978-3-642-34623-1, pp. 254–
263, doi:http://dx.doi.org/10.1007/978-3-642-34624-8 30.

Elahi, M., Ricci, F. and Rubens, N. (2014). Active learning strategies for rat-
ing elicitation in collaborative filtering: A system-wide perspective, ACM
Transactions on Intelligent Systems and Technology 5, 1, pp. 13:1–13:33,
doi:10.1145/2542182.2542195.

Elahi, M., Ricci, F. and Rubens, N. (2016). A survey of active learning in collab-
orative filtering recommender systems, Comput. Sci. Rev. 20, C, pp. 29–50,
doi:10.1016/j.cosrev.2016.05.002, http://dx.doi.org/10.1016/j.cosrev.
2016.05.002.

Enrich, M., Braunhofer, M. and Ricci, F. (2013). Cold-start management with
cross-domain collaborative filtering and tags, in E-Commerce and Web
Technologies - 14th International Conference, EC-Web 2013, Prague, Czech
Republic, August 27-28, 2013. Proceedings, pp. 101–112.

Fernandez Tobias, I., Braunhofer, M., Elahi, M., Ricci, F. and Ivan, C.
(2016). Alleviating the new user problem in collaborative filtering by ex-
ploiting personality information, User Modeling and User-Adapted Inter-
action (UMUAI) 26, Personality in Personalized Systems, doi:10.1007/
s11257-016-9172-z.

Fernández-Tob́ıas, I. and Cantador, I. (2014). Exploiting social tags in matrix
factorization models for cross-domain collaborative filtering, in CBRecSys@
RecSys, pp. 34–41.

Fernández-Tob́ıas, I., Tomeo, P., Cantador, I., Di Noia, T. and Di Sciascio, E.
(2016). Accuracy and diversity in cross-domain recommendations for cold-
start users with positive-only feedback, in Proceedings of the 10th ACM
Conference on Recommender Systems, RecSys ’16 (ACM, New York, NY,
USA), ISBN 978-1-4503-4035-9, pp. 119–122, doi:10.1145/2959100.2959175,
http://doi.acm.org/10.1145/2959100.2959175.

Ge, M., Elahi, M., Fernaández-Tob́ıas, I., Ricci, F. and Massimo, D. (2015).
Using tags and latent factors in a food recommender system, in Proceedings
of the 5th International Conference on Digital Health 2015, DH ’15 (ACM,
New York, NY, USA), ISBN 978-1-4503-3492-1, pp. 105–112, doi:10.1145/
2750511.2750528.

GroupLens (2018). Eachmovie, https://grouplens.org/datasets/eachmovie/.
Guo, G., Zhang, J., Sun, Z. and Yorke-Smith, N. (2015). Librec: A java library

for recommender systems, in UMAP Workshops.

http://doi.acm.org/10.1145/3109859.3109908
http://doi.acm.org/10.1145/3109859.3109908
http://dx.doi.org/10.1016/j.cosrev.2016.05.002
http://dx.doi.org/10.1016/j.cosrev.2016.05.002
http://doi.acm.org/10.1145/2959100.2959175
https://grouplens.org/datasets/eachmovie/

October 22, 2018 16:2 ws-rv9x6-9x6 Book Title 11131-08 page 289

User Preference Elicitation, Rating Sparsity and Cold Start 289

Gurbanov, T. and Ricci, F. (2017). Action prediction models for recommender
systems based on collaborative filtering and sequence mining hybridization,
in Proceedings of the Symposium on Applied Computing, SAC ’17 (ACM,
New York, NY, USA), ISBN 978-1-4503-4486-9, pp. 1655–1661, doi:10.
1145/3019612.3019759, http://doi.acm.org/10.1145/3019612.3019759.

Gurbanov, T., Ricci, F. and Ploner, M. (2016). Modeling and predicting user
actions in recommender systems, in Proceedings of the 2016 Conference
on User Modeling Adaptation and Personalization, UMAP ’16 (ACM,
New York, NY, USA), ISBN 978-1-4503-4368-8, pp. 151–155, doi:10.1145/
2930238.2930284, http://doi.acm.org/10.1145/2930238.2930284.

Harper, F. M. and Konstan, J. A. (2015). The movielens datasets: History and
context, ACM Trans. Interact. Intell. Syst. 5, 4, pp. 19:1–19:19, doi:10.
1145/2827872, http://doi.acm.org/10.1145/2827872.

Harper, F. M. and Konstan, J. A. (2016). The movielens datasets: History and
context, ACM Transactions on Interactive Intelligent Systems (TiiS) 5, 4,
p. 19.

Hawalah, A. and Fasli, M. (2015). Dynamic user profiles for web personalisation,
Expert Syst. Appl. 42, 5, pp. 2547–2569, doi:10.1016/j.eswa.2014.10.032,
http://dx.doi.org/10.1016/j.eswa.2014.10.032.

He, R. and McAuley, J. (2016). Ups and downs: Modeling the visual evolution
of fashion trends with one-class collaborative filtering, in Proceedings of
the 25th International Conference on World Wide Web, WWW ’16 (Inter-
national World Wide Web Conferences Steering Committee, Republic and
Canton of Geneva, Switzerland), ISBN 978-1-4503-4143-1, pp. 507–517, doi:
10.1145/2872427.2883037, https://doi.org/10.1145/2872427.2883037.

Herlocker, J. L., Konstan, J. A., Borchers, A. and Riedl, J. (1999). An algo-
rithmic framework for performing collaborative filtering, in Proceedings
of the 22nd Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’99 (ACM, New York,
NY, USA), ISBN 1-58113-096-1, pp. 230–237, doi:10.1145/312624.312682,
http://doi.acm.org/10.1145/312624.312682.

Hu, R. and Pu, P. (2009). A comparative user study on rating vs. personality
quiz based preference elicitation methods, in Proceedings of the 14th inter-
national conference on Intelligent user interfaces, IUI ’09 (ACM, New York,
NY, USA), ISBN 978-1-60558-168-2, pp. 367–372, doi:10.1145/1502650.
1502702.

Hu, R. and Pu, P. (2011). Enhancing collaborative filtering systems with
personality information, in Proceedings of the fifth ACM conference on
Recommender systems, RecSys ’11 (ACM, New York, NY, USA), ISBN
978-1-4503-0683-6, pp. 197–204, doi:10.1145/2043932.2043969.

Hu, Y., Koren, Y. and Volinsky, C. (2008a). Collaborative filtering for im-
plicit feedback datasets, in Proceedings of the 2008 Eighth IEEE Inter-
national Conference on Data Mining, ICDM ’08 (IEEE Computer Soci-
ety, Washington, DC, USA), ISBN 978-0-7695-3502-9, pp. 263–272, doi:
10.1109/ICDM.2008.22, http://dx.doi.org/10.1109/ICDM.2008.22.

http://doi.acm.org/10.1145/3019612.3019759
http://doi.acm.org/10.1145/2930238.2930284
http://doi.acm.org/10.1145/2827872
http://dx.doi.org/10.1016/j.eswa.2014.10.032
https://doi.org/10.1145/2872427.2883037
http://doi.acm.org/10.1145/312624.312682
http://dx.doi.org/10.1109/ICDM.2008.22

October 22, 2018 16:2 ws-rv9x6-9x6 Book Title 11131-08 page 290

290 M. Elahi, M. Braunhofer, T. Gurbanov and F. Ricci

Hu, Y., Koren, Y. and Volinsky, C. (2008b). Collaborative filtering for implicit
feedback datasets, in Proceedings of the 8th IEEE International Conference
on Data Mining (IEEE), pp. 263–272.

IMDB (2018). Internet movie database: Movies, tv and celebrities, http://www.
imdb.com/.

Isinkaye, F., Folajimi, Y. and Ojokoh, B. (2015). Recommendation systems:
Principles, methods and evaluation, Egyptian Informatics Journal 16, 3,
pp. 261–273.

Jones, N., Brun, A. and Boyer, A. (2011). Comparisons instead of ratings: To-
wards more stable preferences, in Proceedings of the 2011 IEEE/WIC/ACM
International Conferences on Web Intelligence and Intelligent Agent Tech-
nology - Volume 01, WI-IAT ’11 (IEEE Computer Society, Washington, DC,
USA), ISBN 978-0-7695-4513-4, pp. 451–456, doi:10.1109/WI-IAT.2011.13,
http://dx.doi.org/10.1109/WI-IAT.2011.13.

Kalloori, S., Ricci, F. and Tkalcic, M. (2016). Pairwise preferences based matrix
factorization and nearest neighbor recommendation techniques, in Proceed-
ings of the 10th ACM Conference on Recommender Systems, RecSys ’16
(ACM, New York, NY, USA), ISBN 978-1-4503-4035-9, pp. 143–146, doi:10.
1145/2959100.2959142, http://doi.acm.org/10.1145/2959100.2959142.

Kim, D., Park, C., Oh, J., Lee, S. and Yu, H. (2016). Convolutional matrix
factorization for document context-aware recommendation, in Proceedings
of the 10th ACM Conference on Recommender Systems, RecSys ’16 (ACM,
New York, NY, USA), ISBN 978-1-4503-4035-9, pp. 233–240, doi:10.1145/
2959100.2959165, http://doi.acm.org/10.1145/2959100.2959165.

Koren, Y. (2008). Factorization meets the neighborhood: A multifaceted collab-
orative filtering model, in Proceedings of the 14th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, KDD ’08
(ACM, New York, NY, USA), ISBN 978-1-60558-193-4, pp. 426–434, doi:10.
1145/1401890.1401944, http://doi.acm.org/10.1145/1401890.1401944.

Koren, Y. (2009). The bellkor solution to the netflix grand prize, Netflix prize
documentation 81, pp. 1–10.

Koren, Y. and Bell, R. (2011). Advances in Collaborative Filtering (Springer
US, Boston, MA), ISBN 978-0-387-85820-3, pp. 145–186, doi:10.1007/
978-0-387-85820-3 5, https://doi.org/10.1007/978-0-387-85820-3_5.

Koren, Y. and Bell, R. (2015). Advances in collaborative filtering, in
Recommender Systems Handbook (Springer), pp. 77–118, doi:10.1007/
978-1-4899-7637-6 3.

Koren, Y., Bell, R. and Volinsky, C. (2009). Matrix factorization techniques for
recommender systems, Computer 42, 8, pp. 30–37.

Kosinski, M., Matz, S. C., Gosling, S. D., Popov, V. and Stillwell, D. (2015). Face-
book as a research tool for the social sciences: Opportunities, challenges,
ethical considerations, and practical guidelines, American Psychologist 70,
6, p. 543.

Košir, A., Odic, A., Kunaver, M., Tkalcic, M. and Tasic, J. F. (2011). Database
for contextual personalization, Elektrotehnǐski vestnik 78, 5, pp. 270–274.

http://www.imdb.com/
http://www.imdb.com/
http://dx.doi.org/10.1109/WI-IAT.2011.13
http://doi.acm.org/10.1145/2959100.2959142
http://doi.acm.org/10.1145/2959100.2959165
http://doi.acm.org/10.1145/1401890.1401944
https://doi.org/10.1007/978-0-387-85820-3_5

October 22, 2018 16:2 ws-rv9x6-9x6 Book Title 11131-08 page 291

User Preference Elicitation, Rating Sparsity and Cold Start 291

Librarything (2018). Catalog your books online 2018,
https://www.librarything.com/.

Linden, G., Smith, B. and York, J. (2003). Amazon.com recommendations: Item-
to-item collaborative filtering, IEEE Internet Computing 7, 1, pp. 76–80,
doi:10.1109/MIC.2003.1167344.

Loepp, B., Hussein, T. and Ziegler, J. (2014). Choice-based preference elici-
tation for collaborative filtering recommender systems, in Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (ACM),
pp. 3085–3094.

Manzato, M. G. (2012). Discovering latent factors from movies genres for en-
hanced recommendation, in Proceedings of the Sixth ACM Conference
on Recommender Systems, RecSys ’12 (ACM, New York, NY, USA),
ISBN 978-1-4503-1270-7, pp. 249–252, doi:10.1145/2365952.2366006, http:
//doi.acm.org/10.1145/2365952.2366006.

Manzato, M. G. (2013). gsvd++: Supporting implicit feedback on recommender
systems with metadata awareness, in Proceedings of the 28th Annual ACM
Symposium on Applied Computing, SAC ’13 (ACM, New York, NY, USA),
ISBN 978-1-4503-1656-9, pp. 908–913, doi:10.1145/2480362.2480536, http:
//doi.acm.org/10.1145/2480362.2480536.

Massimo, D., Elahi, M., Ge, M. and Ricci, F. (2017). Item contents good, user tags
better: Empirical evaluation of a food recommender system, in Proceedings
of the 25th Conference on User Modeling, Adaptation and Personalization
(ACM), pp. 373–374.

McNee, S. M., Lam, S. K., Konstan, J. A. and Riedl, J. (2003). Interfaces for elic-
iting new user preferences in recommender systems, in Proceedings of the
9th international conference on User modeling, UM ’03 (Springer-Verlag,
Berlin, Heidelberg), ISBN 3-540-40381-7, pp. 178–187, http://dl.acm.

org/citation.cfm?id=1759957.1759988.
Neidhardt, J., Schuster, R., Seyfang, L. and Werthner, H. (2014). Eliciting the

users’ unknown preferences, in Proceedings of the 8th ACM Conference on
Recommender systems (ACM), pp. 309–312.

Nicholas, I. S. C. and Nicholas, C. K. (1999). Combining content and collaboration
in text filtering, in In Proceedings of the IJCAI’99 Workshop on Machine
Learning for Information Filtering, pp. 86–91.

Oard, D. W., Kim, J. et al. (1998). Implicit feedback for recommender systems,
in Proceedings of the AAAI workshop on recommender systems, pp. 81–83.

Odić, A., Tkalčič, M., Tasič, J. F. and Košir, A. (2012). Relevant context in a
movie recommender system: Users’ opinion vs. statistical detection, ACM
RecSys 2012, Proceedings of the 4th International Workshop on Context-
Aware Recommender Systems (CARS 2012).

Odić, A., Tkalčič, M., Tasič, J. F. and Košir, A. (2013). Predicting and detect-
ing the relevant contextual information in a movie-recommender system,
Interacting with Computers, p. iws003.

Pan, R., Zhou, Y., Cao, B., Liu, N. N., Lukose, R., Scholz, M. and Yang, Q.
(2008). One-class collaborative filtering, in Proceedings of the 8th IEEE
International Conference on Data Mining (IEEE), pp. 502–511.

https://www.librarything.com/
http://doi.acm.org/10.1145/2365952.2366006
http://doi.acm.org/10.1145/2365952.2366006
http://doi.acm.org/10.1145/2480362.2480536
http://doi.acm.org/10.1145/2480362.2480536
http://dl.acm.org/citation.cfm?id=1759957.1759988
http://dl.acm.org/citation.cfm?id=1759957.1759988

October 22, 2018 16:2 ws-rv9x6-9x6 Book Title 11131-08 page 292

292 M. Elahi, M. Braunhofer, T. Gurbanov and F. Ricci

Park, D. H., Kim, H. K., Choi, I. Y. and Kim, J. K. (2012). A literature review
and classification of recommender systems research, Expert Systems with
Applications 39, 11, pp. 10059–10072.

Picault, J. and Ribiere, M. (2008). An empirical user profile adaptation mecha-
nism that reacts to shifts of interests, in Proceedings of the European con-
ference in artificial intelligence (ECAI).

Picault, J., Ribiere, M., Bonnefoy, D. and Mercer, K. (2011). How to get the rec-
ommender out of the lab? in Recommender Systems Handbook (Springer),
pp. 333–365.

Pu, P., Chen, L. and Hu, R. (2012). Evaluating recommender systems from the
user’s perspective: survey of the state of the art, User Modeling and User-
Adapted Interaction 22, 4-5, pp. 317–355, doi:10.1007/s11257-011-9115-7.

Rashid, A. M., Albert, I., Cosley, D., Lam, S. K., McNee, S. M., Konstan, J. A.
and Riedl, J. (2002). Getting to know you: Learning new user preferences
in recommender systems, in Proceedings of the 7th International Conference
on Intelligent User Interfaces, IUI ’02 (ACM, New York, NY, USA), ISBN
1-58113-459-2, pp. 127–134, doi:10.1145/502716.502737, http://doi.acm.
org/10.1145/502716.502737.

Rashid, A. M., Karypis, G. and Riedl, J. (2008a). Learning preferences of
new users in recommender systems: An information theoretic approach,
SIGKDD Explor. Newsl. 10, 2, pp. 90–100, doi:10.1145/1540276.1540302,
http://doi.acm.org/10.1145/1540276.1540302.

Rashid, A. M., Karypis, G. and Riedl, J. (2008b). Learning preferences of
new users in recommender systems: an information theoretic approach,
SIGKDD Explor. Newsl. 10, pp. 90–100, doi:10.1145/1540276.1540302.

Rendle, S., Freudenthaler, C., Gantner, Z. and Schmidt-Thieme, L. (2009). Bpr:
Bayesian personalized ranking from implicit feedback, in Proceedings of
the twenty-fifth conference on uncertainty in artificial intelligence (AUAI
Press), pp. 452–461.

Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P. and Riedl, J. (1994). Grou-
plens: An open architecture for collaborative filtering of netnews, in Pro-
ceedings of the 1994 ACM Conference on Computer Supported Coopera-
tive Work, CSCW ’94 (ACM, New York, NY, USA), ISBN 0-89791-689-1,
pp. 175–186, doi:10.1145/192844.192905, http://doi.acm.org/10.1145/

192844.192905.
Ricci, F., Rokach, L. and Shapira, B. (2015). Recommender systems: Introduction

and challenges, in Recommender Systems Handbook (Springer US), pp. 1–
34, doi:10.1007/978-1-4899-7637-6 1.

Rubens, N., Elahi, M., Sugiyama, M. and Kaplan, D. (2015). Active learning in
recommender systems, in Recommender Systems Handbook - chapter 24:
Recommending Active Learning (Springer US), pp. 809–846, doi:10.1007/
978-1-4899-7637-6 24.

Sarwar, B., Karypis, G., Konstan, J. and Riedl, J. (2001). Item-based collabora-
tive filtering recommendation algorithms, in Proceedings of the 10th inter-
national conference on World Wide Web (ACM), pp. 285–295.

http://doi.acm.org/10.1145/502716.502737
http://doi.acm.org/10.1145/502716.502737
http://doi.acm.org/10.1145/1540276.1540302
http://doi.acm.org/10.1145/192844.192905
http://doi.acm.org/10.1145/192844.192905

October 22, 2018 16:2 ws-rv9x6-9x6 Book Title 11131-08 page 293

User Preference Elicitation, Rating Sparsity and Cold Start 293

Schedl, M., Zamani, H., Chen, C.-W., Deldjoo, Y. and Elahi, M. (2018).
Current challenges and visions in music recommender systems research,
International Journal of Multimedia Information Retrieval doi:10.1007/
s13735-018-0154-2, https://doi.org/10.1007/s13735-018-0154-2.

Schein, A. I., Popescul, A., Ungar, L. H. and Pennock, D. M. (2002). Methods
and metrics for cold-start recommendations, in SIGIR ’02: Proceedings
of the 25th annual international ACM SIGIR conference on Research and
development in information retrieval (ACM, New York, NY, USA), ISBN
1-58113-561-0, pp. 253–260, doi:10.1145/564376.564421.

Shardanand, U. and Maes, P. (1995). Social information filtering: Algorithms for
automating “word of mouth”, in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’95 (ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA), ISBN 0-201-
84705-1, pp. 210–217, doi:10.1145/223904.223931, http://dx.doi.org/10.
1145/223904.223931.

Shi, Y., Larson, M. and Hanjalic, A. (2014). Collaborative filtering beyond the
user-item matrix: A survey of the state of the art and future challenges,
ACM Comput. Surv. 47, 1, pp. 3:1–3:45, doi:10.1145/2556270, http://doi.
acm.org/10.1145/2556270.

Stern, D. H., Herbrich, R. and Graepel, T. (2009). Matchbox: Large scale on-
line bayesian recommendations, in Proceedings of the 18th International
Conference on World Wide Web, WWW ’09 (ACM, New York, NY,
USA), ISBN 978-1-60558-487-4, pp. 111–120, doi:10.1145/1526709.1526725,
http://doi.acm.org/10.1145/1526709.1526725.

Su, X. and Khoshgoftaar, T. M. (2009). A survey of collaborative filtering tech-
niques, Adv. in Artif. Intell. 2009, pp. 4:2–4:2, doi:10.1155/2009/421425,
http://dx.doi.org/10.1155/2009/421425.

Sun, M., Li, F., Lee, J., Zhou, K., Lebanon, G. and Zha, H. (2013). Learning
multiple-question decision trees for cold-start recommendation, in Proceed-
ings of the Sixth ACM International Conference on Web Search and Data
Mining, WSDM ’13 (ACM, New York, NY, USA), ISBN 978-1-4503-1869-3,
pp. 445–454, doi:10.1145/2433396.2433451.

Tkalcic, M., Kosir, A. and Tasic, J. (2013). The ldos-peraff-1 corpus of facial-
expression video clips with affective, personality and user-interaction meta-
data, Journal on Multimodal User Interfaces 7, 1-2, pp. 143–155, doi:
10.1007/s12193-012-0107-7.

Trevisiol, M., Aiello, L. M., Schifanella, R. and Jaimes, A. (2014). Cold-start news
recommendation with domain-dependent browse graph, in Proceedings of
the 8th ACM Conference on Recommender Systems, RecSys ’14 (ACM, New
York, NY, USA), ISBN 978-1-4503-2668-1, pp. 81–88, doi:10.1145/2645710.
2645726.

TripAdvisor (2018). Read reviews, compare prices and book, 2018, https://www.
tripadvisor.com/.

Tu, M., Chang, Y.-K. and Chen, Y.-T. (2016). A context-aware recommender
system framework for iot based interactive digital signage in urban space,
in Proceedings of the Second International Conference on IoT in Urban

https://doi.org/10.1007/s13735-018-0154-2
http://dx.doi.org/10.1145/223904.223931
http://dx.doi.org/10.1145/223904.223931
http://doi.acm.org/10.1145/2556270
http://doi.acm.org/10.1145/2556270
http://doi.acm.org/10.1145/1526709.1526725
http://dx.doi.org/10.1155/2009/421425
https://www.tripadvisor.com/
https://www.tripadvisor.com/

October 22, 2018 16:2 ws-rv9x6-9x6 Book Title 11131-08 page 294

294 M. Elahi, M. Braunhofer, T. Gurbanov and F. Ricci

Space, Urb-IoT ’16 (ACM, New York, NY, USA), ISBN 978-1-4503-4204-9,
pp. 39–42, doi:10.1145/2962735.2962736, http://doi.acm.org/10.1145/

2962735.2962736.
Vargas-Govea, B., González-Serna, G. and Ponce-Medellın, R. (2011). Effects

of relevant contextual features in the performance of a restaurant recom-
mender system, ACM RecSys 11.

Vartak, M., Thiagarajan, A., Miranda, C., Bratman, J. and Larochelle, H. (2017).
A meta-learning perspective on cold-start recommendations for items, in
Advances in Neural Information Processing Systems, pp. 6907–6917.

Vozalis, M. and Margaritis, K. G. (2004). Collaborative filtering enhanced by de-
mographic correlation, in in Proceedings of the AIAI Symposium on Profes-
sional Practice in AI, part of the 18th World Computer Congress, pp. 293–
402.

Zhao, X., Zhang, W. and Wang, J. (2013). Interactive collaborative filtering, in
Proceedings of the 22nd ACM international conference on Conference on
information & knowledge management, CIKM ’13 (ACM, New York,
NY, USA), ISBN 978-1-4503-2263-8, pp. 1411–1420, doi:10.1145/2505515.
2505690, http://doi.acm.org/10.1145/2505515.2505690.

Zheng, Y., Burke, R. and Mobasher, B. (2012). Differential context relaxation for
context-aware travel recommendation, in E-Commerce and Web Technolo-
gies (Springer), pp. 88–99.

Zheng, Y., Burke, R. and Mobasher, B. (2013). Recommendation with differen-
tial context weighting, in User Modeling, Adaptation, and Personalization
(Springer), pp. 152–164.

Zheng, Y., Mobasher, B. and Burke, R. (2014). Cslim: Contextual slim recom-
mendation algorithms, in Proceedings of the 8th ACM Conference on Rec-
ommender Systems, RecSys ’14 (ACM, New York, NY, USA), ISBN 978-1-
4503-2668-1, pp. 301–304, doi:10.1145/2645710.2645756, http://doi.acm.
org/10.1145/2645710.2645756.

Zheng, Y., Mobasher, B. and Burke, R. (2015). Integrating context similarity
with sparse linear recommendation model, in User Modeling, Adaptation
and Personalization (Springer), pp. 370–376.

http://doi.acm.org/10.1145/2962735.2962736
http://doi.acm.org/10.1145/2962735.2962736
http://doi.acm.org/10.1145/2505515.2505690
http://doi.acm.org/10.1145/2645710.2645756
http://doi.acm.org/10.1145/2645710.2645756

October 22, 2018 16:36 ws-rv9x6-9x6 Book Title 11131-09 page 295

Chapter 9

Offline and Online Evaluation of Recommendations

Alejandro Belloǵın† and Alan Said‡

†Universidad Autónoma de Madrid, Madrid, Spain
alejandro.bellogin@uam.es

‡University of Skövde, Skövde, Sweden

alansaid@acm.org

Recommender Systems have been a popular research topic within per-
sonalized systems and information retrieval since the mid nineties.
Throughout this time, various models of recommendation have been de-
veloped, e.g., approaches using collaborative filtering for purposes such
as retrieval of ranked lists of items for consumption, or for the rating pre-
diction task (which was made very popular through the Netflix prize).
Today, the use of recommender systems has spread to a very wide area of
topics, including personalized healthcare, online news portals, food, so-
cial networks, exercise, jobs, investment, transportation, shopping, etc.
Given the various situations recommendations can be applied to, it fol-
lows that evaluation of these systems needs to be tailored to the specific
setting, domain, user-base, context, etc. This chapter aims to give an
overview of some of the more commonly used evaluation methods and
metrics used for various types of recommendation techniques. We also
provide a summary of the available resources in this topic, in addition
to some practical considerations, experimental results, and future direc-
tions about evaluation in recommendation.

9.1. Introduction

The evaluation of Recommender Systems (RS) has been, and still is, the

subject of active research in the field, where open questions remain [Her-

locker et al. (2004); Gunawardana and Shani (2015)]. Since the advent

of the first RS, recommendation performance has been usually equated

to the accuracy of rating prediction, that is, estimated ratings are com-

pared against actual ratings, and differences between them are computed

by means of error-based metrics such as the Mean Absolute Error (MAE)

295

October 22, 2018 16:36 ws-rv9x6-9x6 Book Title 11131-09 page 296

296 A. Belloǵın and A. Said

or Root Mean Squared Error (RMSE). In terms of the effective utility of

recommendations for users, there is however an increasing realization that

the quality (precision) of a ranking of recommended items can be more

important than the accuracy in predicting specific rating values [Knijnen-

burg and Willemsen (2015)]. As a result, precision-oriented metrics are

being increasingly considered in the field, and a large amount of recent

work has focused on evaluating top-N ranked recommendation lists with

the above type of metrics. Precision in this context can be interpreted as

the relevance of the recommended item, i.e. the likelihood of the item being

watched, liked, or otherwise consumed by the user.

Nonetheless, the recent realization that high prediction accuracy might

not translate to a higher perceived appreciation from the users has brought

a plethora of novel metrics and methods, focusing on other aspects of rec-

ommendation [Said et al. (2013a); Castells et al. (2015)]. More specifically,

other dimensions apart from accuracy — such as coverage, diversity, nov-

elty, and serendipity — have been recently taken into account and analyzed

when considered what makes a good recommendation [Said et al. (2014b);

Cremonesi et al. (2011); McNee et al. (2006); Bollen et al. (2010); Mesas

and Belloǵın (2017)].

With this in mind comes the understanding that evaluation is the key

to identifying how well an algorithm or a system works. Deploying a new

algorithm in a new system will have an effect on the overall performance of

the system — in terms of accuracy and other types of metrics. Both prior

deploying the algorithm, and after the deployment, it is important to eval-

uate the system performance. However, the evaluation strategies, metrics,

and methodologies need to consider that the use of RSs has spread to a

very wide area of topics, including personalized healthcare [Elsweiler et al.

(2015); Luo et al. (2016)], online news portals [Said et al. (2014a)], food

[Elahi et al. (2015, 2014)], social networks [Guy (2015)], exercise [Berkovsky

et al. (2012)], jobs [Abel (2015)], investment [Zhao et al. (2015)], transporta-

tion [Bistaffa et al. (2015)], shopping [Jannach et al. (2015)], etc. and adapt

specifically to each use-case.

The rest of the chapter is organized as follows. Section 9.1.1 defines basic

concepts used when evaluating recommender systems, then, Sec. 9.1.2 and

Sec. 9.1.3 present in more detail the specifics of offline and online evaluation,

and Sec. 9.2 provides some algorithmic solutions specifically devoted for

evaluation in the areas described in the first part of this book. Then, Sec. 9.3

shows resources — such as datasets and libraries — currently available to

perform RS evaluation. Section 9.4 presents experimental results where

October 22, 2018 16:36 ws-rv9x6-9x6 Book Title 11131-09 page 297

Offline and Online Evaluation of Recommendations 297

we show how the different evaluation methodologies and metrics compare

against each other. And, finally, in Sec. 9.5 and Sec. 9.6 we discuss some

practical considerations about the problem of RS evaluation, and include

future directions worth of further involvement from the community.

9.1.1. Basic Concepts in Evaluation

The evaluation of RSs has been a major object of study in the field since

its earliest days, and it is still a topic of ongoing research, where open ques-

tions remain [Herlocker et al. (2004); Gunawardana and Shani (2015)]. It

is acknowledged that the evaluation of RSs should take into account the

goal of the system itself. For example, [Herlocker et al. (2004)] identify two

main user tasks: annotation in context and find good items. In these tasks

the users only care about errors in the item rank order provided by the

system, not the predicted rating value itself. Based on this consideration,

researchers have started to use precision-based metrics to evaluate recom-

mendations — as we shall see later — although most works also still report

error-based metrics for comparison with state of the art approaches. More-

over, other authors [Herlocker et al. (2004); Gunawardana and Shani (2015)]

encourage considering alternative performance criteria, like the novelty of

the suggested items and the item coverage of a recommendation method.

Throughout this chapter we describe these types of evaluation metrics.

However, not all the evaluation metrics can be computed under any ex-

perimental settings. Different evaluation protocols exist and they impose

constraints on the type of data that can be measured and analyzed. Two

main evaluation protocols are usually considered: offline and online evalu-

ation. These protocols present a clear tradeoff between effort (time, users,

etc.) and usefulness/trustworthiness of the results, which will be discussed

in the subsequent sections. We will also briefly introduce how user studies

fit in this context, a protocol with some advantages and disadvantages of

the two previously mentioned evaluation protocols.

9.1.2. Offline evaluation

Offline evaluation allows to compare a wide range of candidate algorithms

at a low cost, it is easy to conduct and does not require any interaction

with real users. However, user studies and online experiments are more

trustworthy — since the system is used by real users and interacted with in

real time — but care must be taken to consider biases in the experimental

design [Gunawardana and Shani (2015)].

October 22, 2018 16:36 ws-rv9x6-9x6 Book Title 11131-09 page 298

298 A. Belloǵın and A. Said

An important decision in the experimental configuration of RS evalua-

tion is the dataset partitioning strategy. How the datasets are partitioned

into training and test sets may have a considerable impact on the final per-

formance results, and may cause some recommenders to obtain better or

worse results depending on how the partitioning process is configured.

There are several choices to be made when considering offline evalua-

tion, first, we should choose whether or not to take time into account [Gu-

nawardana and Shani (2015)]. Time-based approaches require that user

interaction records have timestamps. A simple approach is to select a time

point in the available interaction data timeline, and to separate the data at

that point. The resulting data subsets can then be used as training data (all

interaction records prior to the time point) and test data (all interaction

dated after the split time point), a simple example is shown in Figure 9.1

(right). The split point can be set so as to, for instance, have a desired

training/test ratio in the experiment or defining a specific time window

for the training and test splits [Campos et al. (2014)]. The ratio between

training and test data can be global, with a single common split point for

all users, or user-specific, to ensure the same ratio per user. Time-based

approaches have the advantage of more realistically matching working ap-

plication scenarios, where ‘ “future”’ user likes (which would translate to

positive response to recommendations by the system) are to be predicted

based on past evidence.

September 29, 2018 17:49 09evaluation-export,ws-book9x6-9x6 Collaborative Recommendations: Algorithms, Practical
Challenges and Applications tikz09evaluation-export-figure0 page 4

users/time

it
em

s

September 29, 2018 17:49 09evaluation-export,ws-book9x6-9x6 Collaborative Recommendations: Algorithms, Practical
Challenges and Applications tikz09evaluation-export-figure1 page 4

time

it
em

s

Fig. 9.1. How the dataset would be split into training (blue) and test (red) sets, for
a random (left) and temporal (right) split. White cells denote unknown values in the

user-item matrix.

October 22, 2018 16:36 ws-rv9x6-9x6 Book Title 11131-09 page 299

Offline and Online Evaluation of Recommendations 299

In the case when time is not a factor, there are at least the following

three strategies to select which items are selected into the training data

and which are selected into the test data correspondingly. These are: a)

sample a fixed number (different) for each user; b) sample a fixed (but

the same for all) number for each user, also known as given n or all but

n protocols; c) sample a percentage of all the interactions using cross-

validation. Commonly, the last protocol is used [Goldberg et al. (2001)],

although several authors have also used the all but n protocol [Breese et al.

(1998)]. Figure 9.1 (left) shows an example of a random dataset partition

not taking time into consideration.

Recently, some researchers have started to prune the datasets by creat-

ing p-cores, where every user and item has at least p interactions [Jäschke

et al. (2007)], in order to reduce the inherent sparsity existing in RS

datasets. Nonetheless, independently from the dataset partitioning, it is

recognized that the goals for which an evaluation is performed may be

different for each situation, and thus, a different setting (and partitioning

protocol) should be developed [Herlocker et al. (2004); Gunawardana and

Shani (2015)]. If that is not the case, the results obtained in a particu-

lar setting would be biased and difficult to use in further experiments, for

instance, in an online experiment.

Regarding the actual evaluation process, there is a relation between

the evaluation protocol and the evaluation metrics that can be computed.

Error metrics require explicit ground truth values for every evaluated user-

item pair — that is, only items in the test set of each user will be con-

sidered. Ranked recommendations (using the metrics mentioned before),

on the other hand, require for a target user u to select two sets of items,

namely relevant and not relevant items. The following candidate generation

strategies, where Lu denotes the set of target items the recommender ranks

(candidate items), have been proposed (we follow the notation presented in

[Said and Belloǵın (2014)]):

UserTest (UT) This strategy takes the same target item sets as standard

error-based evaluation: for each user u, the list Lu consists of items

rated by u in the test set. The smallest set of target items for each

user is selected, including no unrated items. A relevance threshold

is used to indicate which of the items in the user’s test are con-

sidered relevant. Threshold variations can be static for all users

[Jambor and Wang (2010)], or per-user [Basu et al. (1998)].

October 22, 2018 16:36 ws-rv9x6-9x6 Book Title 11131-09 page 300

300 A. Belloǵın and A. Said

TrainItems (TI) Every rated item in the system is selected — except those

rated by the target user. This strategy is useful when simulating

a real system where no test is available, i.e. no need to look into

the test set to generate the rankings [Belloǵın et al. (2011)]. The

relevant items for each user consist of those included in her test

set; the use of a threshold to consider only highly rated items is

optional although recommended.

RelPlusN (RPN) For each user, a set of highly relevant items is selected

from the test set. Then, a set of non-relevant items is created

by randomly selecting N additional items. In [Cremonesi et al.

(2010)], N is set to 1, 000 stating that the non-relevant items are

selected from items in the test set not rated by u. Finally, for each

highly relevant item i, the recommender produces a ranking of the

union between this item and the non-relevant items.

As it was observed in [Belloǵın et al. (2011)] and [Said and Belloǵın

(2014)], each of these candidate generation strategies may produce a differ-

ent ranking of recommendation performance — TrainItems and RelPlusN

produce consistent results (although with different absolute values) whereas

UserTest obtains results closer to those from error-based metrics. Hence,

we should pay attention to the strategy used when ranking metrics are com-

puted, since the amount of relevant items considered can drastically change

the output of the experiment. In contrast to other fields such Information

Retrieval (IR), in RS we have to define training and test sets, whereas in

IR, we would have the whole dataset available, first, for the indexing task,

and then, for the retrieval and evaluation tasks. In RS, we need to separate

the data into training and test; the more training available, the better the

algorithm will learn the users’ preferences. However, the smaller the test

set, the smaller the confidence on the obtained results. This sparsity in the

ground truth dimension may produce biases in the evaluation results, as

observed in [Belloǵın et al. (2017)].

Once the splitting and evaluation methodology are decided, we can es-

timate the performance of the system by computing different evaluation

metrics on the results reported by the recommendation algorithm. As

mentioned before, depending on the selected methodology, it might not

be possible to compute some metrics. More importantly, depending on the

algorithm being tested some of the evaluation metrics that we are going to

present now cannot be applied.

October 22, 2018 16:36 ws-rv9x6-9x6 Book Title 11131-09 page 301

Offline and Online Evaluation of Recommendations 301

In the classical formulation of the recommendation problem, user pref-

erences for items are represented as numeric ratings, and the goal of a

recommendation algorithm consists of predicting unknown ratings based

on known ratings and, in some cases, additional information about users,

items, and the context. In this scenario, the accuracy of recommendations

has been commonly evaluated by measuring the error between predicted

and known ratings, using error metrics. Traditionally, the most popular

metrics to measure the accuracy of a RS have been the Mean Absolute

Error (MAE), and the Root Mean Squared Error (RMSE):

MAE =
1

|Te|
∑

(u,i)∈Te

|r̃(u, i)− r(u, i)| (9.1)

RMSE =

√√√√ 1

|Te|
∑

(u,i)∈Te

(r̃(u, i)− r(u, i))
2

(9.2)

where r̃ and r denote the predicted and real rating, respectively, and Te

corresponds to the test set. The RMSE metric is usually preferred to MAE

because it penalizes larger errors.

A critical limitation of these metrics is that they do not make any dis-

tinction between the errors made on the top items predicted by a system,

and the errors made for the rest of the items. Furthermore, they can only

be applied when the recommender predicts a score in the allowed range of

rating values. Because of that, implicit and some content-based and prob-

abilistic recommenders cannot be evaluated in this way, since r̃(u, i) would

represent a probability or, in general, a preference score, not a rating.

Although dominant in the literature, some authors have argued that the

error-based evaluation methodology is detrimental to the field since the rec-

ommendations obtained in this way are not the most useful for users [McNee

et al. (2006)]. Acknowledging this, recent work has evaluated top-N ranked

recommendation lists with precision-oriented metrics [Cremonesi et al.

(2010); McLaughlin and Herlocker (2004); Belloǵın et al. (2011)], drawing

from well studied evaluation methodologies in the IR field.

Among the wide range of precision-oriented metrics based on rankings,

the most typical ones are precision, recall, normalized discounted cumu-

lative gain, mean average precision, and mean reciprocal rank. Each of

these metrics captures the quality of a ranking from a slightly different an-

gle. More specifically, precision accounts for the fraction of recommended

items that are relevant, whereas recall is the fraction of the relevant items

that has been recommended. Both metrics are inversely related, since an

October 22, 2018 16:36 ws-rv9x6-9x6 Book Title 11131-09 page 302

302 A. Belloǵın and A. Said

improvement in recall typically produces a decrease in precision. They are

typically computed up to a ranking position or cutoff k, being denoted as

P@k and R@k [Baeza-Yates and Ribeiro-Neto (2011)]. Note that recall

has also been referred to as hit-rate in [Deshpande and Karypis (2004)].

Hit-rate has also been defined as the percentage of users with at least one

correct recommendation [Belloǵın et al. (2013)], corresponding to the suc-

cess metric (or first relevant score), as defined by TREC [Tomlinson (2012)].

The mean average precision (MAP) metric provides a single summary

of the user’s ranking by averaging the precision figures obtained after each

new relevant item is obtained [Baeza-Yates and Ribeiro-Neto (2011)]. Nor-

malized discounted cumulative gain (nDCG) uses graded relevance that is

accumulated starting at the top of the ranking and may be reduced, or dis-

counted, at lower ranks [Järvelin and Kekäläinen (2002)]. Using a different

discount function, the rank score or half-life utility metric [Breese et al.

(1998); Herlocker et al. (2004)] can be obtained from the nDCG formula-

tion. Mean reciprocal rank (MRR) favors rankings whose first correct result

occurs near the top ranking results [Baeza-Yates and Ribeiro-Neto (2011)].

This metric is similar to the average rank of correct recommendation (ARC)

proposed in [Burke (2004)] and to the average reciprocal hit-rank (ARHR)

defined in [Deshpande and Karypis (2004)].

In a more modern formulation of the recommendation problem, the rat-

ings are no longer important. Instead, the consumption of recommended

items by users is key, i.e., whether a recommended movie will be seen or

a music track listened to. In this context, it is important to ask oneself

what the recommender system should bring the user. If a recommendation

algorithm suggests an item that the user is already aware of, what is the

value of the system? Will this recommendation result in the consumption

of the item? The common assumption is that a recommender system, in

this context, should bring the user something she might not yet be familiar

with, i.e., something novel, unexpected, or serendipitous. Still, the novel,

unexpected, or serendipitous recommendations need to fulfill the require-

ment of the items being of actual interest to the user. These, so-called,

non-accuracy metrics focus on the variety, popularity, novelty and similar

aspects of the items, or lists of items, that are recommended [Castells et al.

(2015)].

Due to the nature of non-accuracy metrics, there are often various def-

initions of them, each tailored towards the context they are used in. Fur-

thermore, it is difficult to create a ground truth dataset to use with these

metrics. Hence, recommendation algorithms which are specifically tailored

October 22, 2018 16:36 ws-rv9x6-9x6 Book Title 11131-09 page 303

Offline and Online Evaluation of Recommendations 303

towards non-accuracy metrics will often perform badly in terms of accuracy-

based metrics [Said et al. (2013a)]; and symmetrically, if an algorithm is

tailored towards accuracy metrics, it will often perform badly in terms of

non-accuracy metrics.

Perhaps the most well-known non-accuracy metric, serendipity, at-

tempts to model what is often referenced to as a pleasant and unexpected

surprise. Serendipity is a compound metric of, among others, novelty and

diversity. Novelty expresses how new a recommended item is (for a user).

The underlying motivation for novelty being an interesting aspect of rec-

ommendation is that items which are old, or rather not new, can already

have been seen by the user. If this is the case, recommending items which

are already known by the user might not be of much value, since the rec-

ommendation does not actually present the user with something she could

not find herself. Novelty can be directly measured in online experiments by

asking users whether they are familiar with the recommended item [Celma

and Herrera (2008)]. However, it is also interesting to measure novelty in

an offline experiment, so as not to restrict its evaluation to costly and hard

to reproduce online experiments. While novelty often can have a nega-

tive effect on accuracy, diversity can often be increased without necessarily

sacrificing accuracy. Diversity expresses, as implied, the variety of the rec-

ommended items. There are multiple ways of measuring diversity in a set

of recommended items [Castells et al. (2015)], commonly this is done by

measuring the intra-list diversity (ILD) [Smyth and McClave (2001)] which

is defined as

ILD =
1

|R|(|R| − 1)

∑
i∈R

∑
j∈R

(1− s(i, j)) (9.3)

where R is the list of recommended items and s(i, j) is a similarity measure

reporting on the similarity of items i and j given some predefined set of

item features. In essence, what ILD calculates is the aggregate diversity of

the list of recommended items, i.e. the more similar (opposite of diverse)

the items in the list are (given the selected similarity measure), the lower

diversity will the list have. When using ILD as a measure, the goal is to

generate a list of recommended items that contains items that are both

accurate and diverse.

Furthermore, an often forgotten dimension of evaluation, at least in

academic research, are those metrics related to the development, and main-

tenance of the recommender system itself, such as CPU cost per recommen-

dation, storage cost, cost of re-training the model, etc. The coverage of the

October 22, 2018 16:36 ws-rv9x6-9x6 Book Title 11131-09 page 304

304 A. Belloǵın and A. Said

list of recommended items — i.e., how well does the list correspond to what

is currently in stock or elseways available — also fits in this dimension, and

it can be applied not only to the catalog of available items but to the users,

hence, an algorithm which can recommend very accurate items, but only for

a small portion of users might not be as “good” as a slightly less accurate

algorithm with a higher user coverage. In [Gunawardana and Shani (2015)]

two metrics are proposed for measuring item coverage: one based on the

Gini index, and another based on Shannon’s entropy. In [Ge et al. (2010)]

the authors propose simple ratio quantities to measure such metrics, and

to discriminate between the percentage of the items for which the system is

able to generate a recommendation (prediction coverage), and the percent-

age of the available items that are effectively ever recommended (catalog

coverage).

Finally, a last step once the results from the evaluation metrics have

been obtained is to perform some type of statistical testing. There exist

different options to check for significance on the results or on the differ-

ence between a method and a baseline: paired/unpaired tests, effect size,

confidence intervals, etc. [Sakai (2014)]. It is important to be as specific

as possible regarding which procedure was followed and the method used;

additionally, to facilitate the interpretation of the results, related statistics

such as the mean, variance, and population size of the samples should also

be reported.

More importantly, when performing any type of statistical testing

method, the data on which the method was computed must be speci-

fied, since, as with other aspects of the recommendation process, there is

no standard procedure yet, especially when running cross-validated splits,

where more than one test split is used and, hence, more than one perfor-

mance measurement is obtained, which could lead to inconsistent conclu-

sions about the significance of the results if performed in an split basis,

e.g., a significant difference is found in some folds but not in others. On

the other hand, if the results from each split (on a user basis, as it is done

in IR for queries) are concatenated one after the other, may distort the

test, because the data points are not independent (the same user appears

more than once) and the number of points increase substantially [Bouckaert

(2003); Kosir et al. (2013)].

October 22, 2018 16:36 ws-rv9x6-9x6 Book Title 11131-09 page 305

Offline and Online Evaluation of Recommendations 305

9.1.3. Online evaluation and User studies

Online evaluation, as opposed to traditional offline evaluation is performed

through direct involvement of a system’s users in order to establish a qual-

itative assessment of the system’s quality as perceived by the end users.

To illustrate one of the key differences between offline evaluation and on-

line evaluation, consider this top-N recommendation scenario: We have a

user-item interaction matrix, as shown in Table 9.1. The table shows a

matrix of 5 users and 6 items and their interactions, e.g., a 1 represents an

interaction (rating, purchase, etc.), a 0 the lack of such. The training/test

split is illustrated by the dashed line. In this case, an offline evaluation will

only recognize item i5 as a true positive recommendation for user u3 and

items i5 and i6 for user u4. Users u1, u2 and u5 will not have any true

positive recommendations since they have not interacted with any of the

items. The evaluation does not consider that the items might actually be

liked by the user, if recommended in a real-world situation. Similarly, the

fact that u3 has interacted with i5 does not need to imply that the item is

a good recommendation.

Table 9.1. A user-item matrix divided into a training set (above the dashed line) and a

test set (below the dashed line).

u1 u2 u3 u4 u5

i1 1 1 0 0 1

i2 1 0 1 1 1

i3 0 0 0 1 0
i4 1 0 1 0 1
i5 0 0 1 1 0

i6 0 0 0 1 0

In order to overcome this deficiency, online evaluation attempts to cap-

ture the quality of the recommendation as perceived by the users by an-

alyzing their interaction patterns with the system together with explicitly

asking questions [Gunawardana and Shani (2015); Pu et al. (2012); Kohavi

et al. (2009)]. Online evaluation sometimes involves a user study. Users can

be made aware or encouraged to participate, or participate unknowingly.

In real-life systems, the concept of A/B testing is readily used to estimate

different algorithms’ qualities [Kohavi et al. (2009)]. A/B testing involves

assigning a subset of a system’s users to the algorithm under evaluation.

In studies of real life systems, users are usually not made aware of their

October 22, 2018 16:36 ws-rv9x6-9x6 Book Title 11131-09 page 306

306 A. Belloǵın and A. Said

participation in tests [Kohavi et al. (2009)]. The interactions of the users

are then analyzed and compared to a baseline.

More elaborate user studies — including questionnaires and other ex-

plicitly collected information — serve as an alternative to A/B testing. This

type of studies commonly involve asking the users questions throughout, or

after, their interaction with the system. In studies like this, the partici-

pants are naturally aware of their participation in the study. In order to

be able to analyze the results quantitatively, the users are asked to agree

or disagree with a question in the form of a statement, or we can collect

data that is later analyzed at different granularity levels [Knijnenburg and

Willemsen (2015)].

There is no default, quality-related, set of questions to ask when per-

forming a recommender systems user study, instead questions are based

on the type of quality that is sought for; whether relating to the concepts

mentioned above or to rather technical qualities, e.g., time of recommen-

dation, number of items recommended, etc. This type of user studies need

to be meticulously planned and executed. If poorly executed, there is a

risk of changing the users’ opinions, e.g., through suggestive questions, or

excessive workload or time involved in answering the questions. Workload

and time-related issues can be mitigated by creating an incentive for the

users to fulfill the survey, e.g., raffling off vouchers, prizes, etc. If no incen-

tive is given, the time involved in answering the survey creates a decaying

effect on the fraction of users who complete the study. When the users are

given an incentive, there is a risk that some users will answer the questions

quickly (at random) in order to be eligible for the award. In order to mit-

igate these effects, the number of questions and work load should be kept

relatively low.

9.2. Algorithmic Solutions

9.2.1. Evaluating collaborative filtering algorithms

The process of evaluating traditional collaborative filtering recommender

systems follows the processes described in Sec. 9.1.1. Historically speak-

ing, collaborative filtering recommender algorithms have been the de facto

standard for recommendation. In this context, it is only natural that most

standard evaluation methods and strategies have been built with those in

mind.

The process of evaluating collaborative filtering recommendation

October 22, 2018 16:36 ws-rv9x6-9x6 Book Title 11131-09 page 307

Offline and Online Evaluation of Recommendations 307

algorithms is inherently tied to the setting of the recommendation, e.g.

whether the recommendation algorithm is intended to predict ratings or

whether it is intended to identify relevant items for the users. Knowing this

allows for further specification of evaluation settings, i.e. selecting whether

to perform the evaluation in an online or offline manner (as discussed in

Sec. 9.1.1). However, regardless of whether online or offline, the most cen-

tral selection to make in the evaluation is the objective function, i.e. RMSE

or MAE in a rating prediction scenario; accuracy or non-accuracy metric

in the top-N recommendation scenario, or more complex values such as

dwell-time or churn rate in online evaluation settings.

9.2.2. Evaluating social recommendation algorithms

Social recommendation algorithms take the end user’s social graph or other

social information into consideration. As such, the evaluation of social

recommendation algorithms can be performed identically to the evaluation

of traditional collaborative filtering algorithms (as discussed above), unless

the recommendation algorithms tailors to a non-trivial social context, such

as mutual recommendation of users (e.g. in dating apps). Let us focus on

the mutual recommendation scenario. Consider the social graph exemplified

in Figure 9.2. If a recommender were to recommend social connections in

this graph not knowing the edges seen in the figure. Identifying node 1 as

a recommendation to node 6 could be deemed a false positive knowing that

the social connection between the two nodes is unidirectional, i.e. node 1 is

connected to node 6 and not the other way around. Instead, if we consider

the case of nodes 3 and 4, a correct recommendation would be to recommend

both nodes to each other. However a recommendation algorithm might only

identify node 3 as a recommendation to node 4 (and not the analog inverse).

All of these cases need to be covered by the objective function selected

for the purpose of evaluating the social recommendations in this graph.

Whereas in the case of evaluating collaborative filtering recommendation

algorithms, traditional metrics such as precision and recall could be used

verbatim, in the case of evaluation of social recommendation, the metrics

need to be adapted (or aggregated) to fit the recommendation context. For

a more in-depth overview of this topic, see Chap. 16.

9.2.3. Evaluating group recommendation algorithms

Technically, the evaluation methods and metrics for single user item rec-

ommendations mentioned in Sec. 9.1 can be employed for evaluating group

October 22, 2018 16:36 ws-rv9x6-9x6 Book Title 11131-09 page 308

308 A. Belloǵın and A. Said

1 2

3

45

6

Fig. 9.2. Unidirectional (nodes 1–6) and bidirectional (nodes 3–4) recommendations.

recommendation algorithms. However, two fundamentally different strate-

gies are common for group recommender evaluation: (i) evaluation of rec-

ommendations based on individual user profiles with aggregation of items

recommended to each member of a group and (ii) recommendation based

on aggregated group profiles. Any common evaluation metric can be used

as long as the group is accounted for, by evaluating individual users first,

and averaging the evaluation scores for all users in a group, for instance.

An example of such an adaptation for the RMSE measure is given in Equa-

tion 9.4 where RMSEG is the RMSE value for the set of users belonging

to a group G, where |G| denotes the size of the group.

RMSEG =
1

|G|
∑
u∈G

RMSEu (9.4)

More details about group recommendation can be seen in Chap. 6.

9.2.4. Evaluating context-aware algorithms

Evaluation of context-aware algorithms requires either a tailored objective

function that is able to take into consideration the context of the recom-

mendation or a completely separate evaluation process for each possible

instance of our contextual variable. However, again, it is possible to use

a traditional evaluation method if certain preparations are done in terms

of the dataset. For instance, dividing the users or items into separate con-

textual profiles, i.e. consider that a user interacts with items on week days

and on the weekend. This user could be split up into two separate con-

textual users, one corresponding to the actions the user has taken on week

days, and one corresponding to the weekend activities as exemplified in

Table 9.2. Thus, when recommending an item for the weekend profile of

said user, only items in the users weekend catalog would be considered true

positive recommendations, and, hence, they would affect metrics such as

precision or recall.

October 22, 2018 16:36 ws-rv9x6-9x6 Book Title 11131-09 page 309

Offline and Online Evaluation of Recommendations 309

Table 9.2. An example of how a user-item rating matrix can be contextualized by, e.g.

dividing the users into separate profiles for ratings given during weekdays (wd), and

ratings given during weekends (we).

(a) Without context. (b) With context.

u1 u2 u3

i1 4 4 2

i2 3 2

i3 3

uwd
1 uwe

1 uwd
2 uwe

2 uwd
3 uwe

3

i1 4 4 2

i2 3 4

i3 3

9.3. Available Resources

In this section, we present some resources related to RS evaluation that

are publicly available, including APIs and libraries (Sec. 9.3.1), datasets

(Sec. 9.3.2), and competitions (Sec. 9.3.3). We do not consider general

tools or environments such as Amazon Mechanical Turk1 or Crowdflower2

because they are not specifically tailored to recommender systems exper-

imentation, but they are means to prepare experiments and obtain data

from. We do consider, however, frameworks developed in similar areas

such as Machine Learning or Information Retrieval where, either explic-

itly or implicitly, recommendation algorithms or evaluation metrics can be

computed or generated.

9.3.1. APIs and libraries for evaluation

In general, there are no known APIs that are used to evaluate provided

results, mostly because it would involve knowing everything about the rec-

ommendation system (users, items, features, etc.). There are, indeed, com-

panies based on serving recommendations as-a-service, but those are also

out of the scope of this chapter because the techniques used are gener-

ally not disclosed (some examples include BrainSins3, Criteo4, and YOO-

CHOOSE5). There are some services based on APIs open to researchers

such as plista6, but since a challenge was organized based on this data, the

following section will address this service in detail.

Regarding the software frameworks and libraries, Table 9.3 presents

1https://www.mturk.com/mturk, accessed October 2017.
2https://www.crowdflower.com, accessed October 2017.
3https://www.brainsins.com, accessed October 2017.
4https://www.criteo.com, accessed October 2017.
5https://yoochoose.com, accessed October 2017.
6https://www.plista.com, accessed October 2017.

https://www.mturk.com/mturk
https://www.crowdflower.com
https://www.brainsins.com
https://www.criteo.com
https://yoochoose.com
https://www.plista.com

October 22, 2018 16:36 ws-rv9x6-9x6 Book Title 11131-09 page 310

310 A. Belloǵın and A. Said

Table 9.3. An overview of some of the most common open source frameworks used for

recommender systems.

Name License Language Updated Link

CARSKit GPL v2 Java 2017 Source
CofiRank MPL C++ 2013 Source
Crab BSD Python 2012 Website
EasyRec GPL v2 Java 2016 Website
FastFM BSD 3 Python 2017 Website
Hi-Rec MIT Java 2018 Website
Implicit MIT Python 2018 Source
Lenskit LGPL v2.1 Java 2018 Website
LibFM GPL v 3 C++ 2018 Website
LibRec GPL v3 Java 2018 Website
LightFM Apache 2.0 Python 2018 Source
mrec BSD 3 Python 2016 Source
MyMediaLite GPL C# & Java 2017 Website
PREA BSD Java 2014 Source
Predictor MIT Ruby 2015 Source
Python-recsys N/A Python 2014 Source
RankSys MPL 2.0 Java 2017 Source
RapidMiner AGPL Java 2017 Website
RecDB BSD PostGreSQL 2018 Source
Recommendable MIT Ruby 2018 Source
Recommender 101 Custom Java 2015 Website
Recommenderlab GPL v2 R 2017 Website
RecSys.jl MIT Julia 2016 Source
RiVal Apache 2.0 Java 2017 Website
rrecsys GPL v3 R 2018 Source
SLIM Other C 2012 Website
Surprise BSD 3 Python 2018 Website
SVDFeature Apache 2.0 C++ 2014 Source
TagRec AGPL 3.0 Java 2018 Source
trec eval Other C 2016 Source
Turi Apache 2.0 C++ 2018 Website
Waffles LGPL C++ 2018 Source
WrapRec MIT C# 2018 Website
QMF Apache 2.0 C++ 2017 Source

a list of the most common open source frameworks that can be used at

different stages of the recommendation pipeline. Some of these frame-

works/libraries are focused on other fields (Machine Learning, Natural Lan-

guage Processing, or Information Retrieval) but they provide resources that

can be used for recommendation, such as clustering, nearest-neighbors, ma-

trix factorization, etc.

Depending on the application the framework was conceived for, the

evaluation techniques and tools could be more or less applicable to rec-

ommendation, in particular, when a specific task is aimed. For instance,

Machine Learning libraries typically implement error-based metrics such as

MAE (see Sec. 9.1.2), whereas Information Retrieval libraries are mostly

focused on precision-oriented metrics.

https://github.com/irecsys/CARSKit
https://github.com/markusweimer/cofirank
http://muricoca.github.io/crab/
http://easyrec.org/
http://ibayer.github.io/fastFM/
https://fmoghaddam.github.io/Hi-Rec/
https://github.com/benfred/implicit
http://www.lenskit.org
http://www.libfm.org/
http://www.librec.net
https://github.com/lyst/lightfm
https://github.com/mendeley/mrec
http://www.mymedialite.net
https://github.com/jnhwkim/PREA
https://github.com/Pathgather/predictor
https://github.com/ocelma/python-recsys
https://github.com/RankSys/RankSys
https://rapidminer.com
https://github.com/DataSystemsLab/recdb-postgresql
https://github.com/davidcelis/recommendable
http://ls13-www.cs.tu-dortmund.de/homepage/recommender101/index.shtml
http://lyle.smu.edu/IDA/recommenderlab/
https://github.com/abhijithch/RecSys.jl
http://rival.recommenders.net
https://github.com/ludovikcoba/rrecsys
http://glaros.dtc.umn.edu/gkhome/slim/overview
http://surpriselib.com/
https://github.com/Gnnng/SVDFeature
https://github.com/learning-layers/TagRec
https://github.com/usnistgov/trec_eval
https://turi.com/
https://github.com/mikegashler/waffles
http://babakx.github.io/WrapRec/
https://github.com/quora/qmf

October 22, 2018 16:36 ws-rv9x6-9x6 Book Title 11131-09 page 311

Offline and Online Evaluation of Recommendations 311

9.3.2. Datasets for evaluation

Public datasets including interactions between users and items are of

paramount importance in recommender systems research. They serve as

input for recommendation algorithms, as simulation data, or for evaluation

purposes. Despite their importance, publicly accessible datasets with rat-

ings, clicks, transactions, and so on, have not been abundantly available

until very recently, leaving researchers not many options besides classical

datasets such as MovieLens, focused on the movie domain.

Table 9.4 shows an heterogeneous list of datasets, including a large num-

ber of movie datasets. This might be attributed to historical reasons, since

the first public datasets were based on the MovieLens7 system [Harper and

Konstan (2016)] and most of the research developed since has been focused

on the movie rating prediction task, neglecting other tasks or domains un-

til recently, when researchers have had access to other, more diverse data

sources.

9.3.3. Competitions about evaluation

In 2006, one initiative, the Netflix Prize8, created a focus on recommender

systems and contributed to major advancements in the field during its three

year run. Similar initiatives have led to great improvements in related fields

— e.g., the Text Retrieval Conference9 in Information Retrieval, and the

KDD Cup10 in Machine Learning and Data Mining communities. Following

the success of these, different competitions related to recommendation have

appeared, one of them — the RecSys Challenge11 — organized in conjunc-

tion with the ACM Conference on Recommender Systems [Said (2016)].

Throughout the duration of the Netflix Prize, significant advancements

were made in the RS research field, e.g., establishing matrix factoriza-

tion methods such as SVD as state-of-the-art in recommendation. At the

2010 ACM RecSys conference, the seed for what would become the RecSys

Challenge was organized as the Challenge on Context-aware Movie Rec-

ommendation (CAMRa) [Adomavicius et al. (2010)]. CAMRa attracted a

moderate number of participants, but contributed to establishing the Rec-

Sys Challenge series.

7https://movielens.org, accessed October 2017.
8http://www.netflixprize.com
9http://trec.nist.gov, accessed October 2017.
10http://www.kdd.org/kdd-cup, accessed October 2017.
11http://www.recsyschallenge.com

https://movielens.org
http://www.netflixprize.com
http://trec.nist.gov
http://www.kdd.org/kdd-cup
http://www.recsyschallenge.com

October 22, 2018 16:36 ws-rv9x6-9x6 Book Title 11131-09 page 312

312 A. Belloǵın and A. Said

T
a
b

le
9
.4

.
D

a
ta

se
ts

co
m

m
o
n

ly
u

se
d

fo
r

re
co

m
m

en
d

er
sy

st
em

ev
a
lu

a
ti

o
n

,
su

m
m

a
ri

zi
n

g
th

e
n
u

m
b

er
o
f

u
se

rs
,

it
em

s,
a
n

d
ev

en
ts

(r
a
ti

n
g
s,

cl
ic

k
s,

o
r

in
te

ra
ct

io
n

s
in

g
en

er
a
l)

in
cl

u
d

ed
in

th
e

d
a
ta

se
t.

N
a
m

e
D
o
m

a
in

E
v
e
n
t
s

U
s
e
r
s

It
e
m

s
D
e
n
s
it
y

S
o
u
r
c
e

B
o
o
k
-c

ro
ss

in
g

B
o
o
k
s

1
.1
·1

0
6

2
.8
·1

0
5

2
.7
·1

0
5

0
.0

0
1
%

W
e
b
si

te

L
ib

im
S
e
T

i
D

a
ti

n
g

1
.7
·1

0
7

1
.4
·1

0
5

1
.7
·1

0
5

0
.0

7
6
%

W
e
b
si

te

X
in

g
(2

0
1
6
)

J
o
b
s

8
.8
·1

0
6

1
.4
·1

0
6

1
.4
·1

0
6

5
·1

0
−

6
%

W
e
b
si

te

J
e
st

e
r

J
o
k
e
s

4
.1
·1

0
6

7
.3
·1

0
4

1
0
2

5
6
.3

4
%

W
e
b
si

te

M
o
v
ie

p
il
o
t

(2
0
1
0
)

M
o
v
ie

s

4
.5
·1

0
6

1
.1
·1

0
5

2
.5
·1

0
4

0
.0

0
2
%

W
e
b
si

te
C

A
M

R
a
2
0
1
1

(M
o
v
ie

p
il
o
t)

4
.4
·1

0
6

1
.7
·1

0
5

3
.0
·1

0
4

0
.0

0
1
%

W
e
b
si

te
C

A
M

R
a
2
0
1
0

(F
il
m

ti
p
se

t
ti

m
e
)

5
.8
·1

0
6

3
.5
·1

0
4

5
.4
·1

0
4

0
.0

0
3
%

W
e
b
si

te
C

A
M

R
a
2
0
1
0

(F
il
m

ti
p
se

t
so

c
ia

l)
3
.1
·1

0
6

1
.7
·1

0
4

2
.4
·1

0
4

0
.0

0
8
%

W
e
b
si

te

M
is

e
-e

n
-s

c
è
n
e

1
.3
·1

0
7

1
.8
·1

0
5

1
.3
·1

0
4

6
·1

0
−

9
%

W
e
b
si

te
M

o
v
ie

L
e
n
s

1
0
0
k

1
.9
·1

0
5

1
0
3

1
.7
·1

0
3

6
.3

0
%

W
e
b
si

te
M

o
v
ie

L
e
n
s

1
M

1
0
6

6
.0
·1

0
3

3
.9
·1

0
3

4
.2

5
%

W
e
b
si

te
M

o
v
ie

L
e
n
s

1
0
M

1
0
7

7
.2
·1

0
4

1
.1
·1

0
4

1
.3

1
%

W
e
b
si

te
M

o
v
ie

L
e
n
s

2
0
M

2
·1

0
7

1
.4
·1

0
5

2
.7
·1

0
4

0
.0

5
%

W
e
b
si

te
M

o
v
ie

L
e
n
s

H
e
tR

e
c

8
.6
·1

0
5

2
.1
·1

0
3

1
0
4

0
.0

4
%

W
e
b
si

te
M

o
v
ie

T
w

e
e
ti

n
g
s

7
.0
·1

0
5

5
.3
·1

0
4

2
.6
·1

0
4

0
.0

4
%

W
e
b
si

te
N

e
tfl

ix
1
0
8

4
.8
·1

0
5

1
.8
·1

0
4

1
.1

7
%

W
e
b
si

te

L
a
st

.f
m

1
K

M
u
si

c

1
.9
·1

0
7

9
.9
·1

0
3

1
.8
·1

0
5

1
0
.9

1
%

W
e
b
si

te
L

a
st

.f
m

3
6
0
K

1
.7
·1

0
7

3
.6
·1

0
5

2
.9
·1

0
5

0
.0

1
6
%

W
e
b
si

te
L

a
st

.f
m

H
e
tR

e
c

9
.3
·1

0
4

1
.9
·1

0
3

1
.8
·1

0
4

0
.0

0
3
%

W
e
b
si

te
Y

a
h
o
o

M
u
si

c
(K

D
D

-c
u
p
’1

1
)

2
.6
·1

0
8

1
0
6

6
.2
·1

0
5

0
.0

4
2
%

W
e
b
si

te

S
o
u
th

T
y
ro

l
S
u
g
g
e
st

s
P

o
in

t
o
f

in
te

re
st

2
.5
·1

0
4

3
.3
·1

0
3

2
.5
·1

0
3

3
.1

%
W

e
b
si

te

D
e
li
c
io

u
s

T
a
g
s

4
.2
·1

0
8

1
0
3

1
.3
·1

0
8

3
·1

0
−

6
%

W
e
b
si

te
D

e
li
c
io

u
s

H
e
tR

e
c

4
.4
·1

0
5

1
.8
·1

0
3

6
.9
·1

0
4

0
.0

0
3
%

W
e
b
si

te

Y
O

O
C

H
O

O
S
E

R
e
ta

il
3
.3
·1

0
7

9
.2
·1

0
6

5
.3
·1

0
4

7
·1

0
−

5
%

W
e
b
si

te

http://www2.informatik.uni-freiburg.de/~cziegler/BX/
http://www.occamslab.com/petricek/data/
http://www.recsyschallenge.com/2016
http://goldberg.berkeley.edu/jester-data/
http://www.recsyschallenge.com/2010
http://www.recsyschallenge.com/2011
http://www.recsyschallenge.com/2010
http://www.recsyschallenge.com/2010
http://recsys.deib.polimi.it/?page_id=246
https://grouplens.org/datasets/movielens/100k/
https://grouplens.org/datasets/movielens/1m/
https://grouplens.org/datasets/movielens/10m/
https://grouplens.org/datasets/movielens/20m/
https://grouplens.org/datasets/hetrec-2011/
https://github.com/sidooms/MovieTweetings
https://netflixprize.com/
http://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/lastfm-1K.html
http://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/lastfm-360K.html
https://grouplens.org/datasets/hetrec-2011/
http://www.kdd.org/kdd2011/kddcup.shtml
https://www.researchgate.net/publication/305682479_Context-Aware_Dataset_STS_-_South_Tyrol_Suggests_Mobile_App_Data
http://www.dai-labor.de/en/irml/datasets/delicious/
https://grouplens.org/datasets/hetrec-2011/
http://2015.recsyschallenge.com/index.html

October 22, 2018 16:36 ws-rv9x6-9x6 Book Title 11131-09 page 313

Offline and Online Evaluation of Recommendations 313

Table 9.5. Events and initiatives related to recommender system evaluation.

Event Occurrence (first time) Link

ECMLPKDD Discovery Challenge Not fixed (2008) Website

Kaggle competitions Not fixed (2012) Website
KDD Cup Not fixed (2007) Website

NewsREEL Not fixed (2013) Website

Netflix Prize Once (2006) Website
RecSys Challenge Yearly (2010) Website

TREC Contextual Suggestion Yearly (2012) Website

WSDM challenge Not fixed (2018) Website

The RecSys Challenge has followed a similar structure since its incep-

tion: i) a dataset and problem are presented, ii) teams sign up and par-

ticipate, iii) participants submit their solutions in time for a deadline, iv)

participants submit papers outlining their approaches, v) during a work-

shop at the ACM RecSys conference participants present their approaches

and winners are announced. One of the main features of the challenge is

to make available a new real world dataset. This structure is common to

other competitions related to RS, such as those presented in Table 9.5.

The RecSys challenge has been constantly evolving to adapt to different

trends in the RS community. It has incorporated tasks different to rat-

ing prediction and integrating diverse domains — from identifying which

groups of users to recommend certain ad campaigns to user engagement

prediction in Twitter or e-commerce. Over the years, the challenge has

established itself as a benchmarking event for current recommender sys-

tem research. It has attracted participants from academia and industry,

allowing researchers and practitioners to learn from, and cooperate with

each other, in a community-driven event. Each yearly instance takes on

new research challenges based on ongoing trends in industry and academia,

which is also evidenced in some of the related events organized in parallel

in different venues, such as KDD or WSDM conferences.

Current and future research in RS acknowledge that certain recom-

mender system settings require online evaluation, i.e., an instantaneous

feedback loop between the users of the system and the algorithm. In some

instantiations of these competitions, a second stage (if available) usually

bring real interactions with users from the system. A special mention de-

serves the NewsREEL initiative, which allows researchers to receive real

recommendation requests by news providers, in the context of the plista

http://www.ecmlpkdd.org/
https://www.kaggle.com/competitions
http://www.kdd.org/kdd-cup
http://www.clef-newsreel.org
http://www.netflixprize.com
http://recsyschallenge.com
https://sites.google.com/site/treccontext
http://www.wsdm-conference.org/

October 22, 2018 16:36 ws-rv9x6-9x6 Book Title 11131-09 page 314

314 A. Belloǵın and A. Said

recommendation-as-a-service environment. This event started in 2013 as a

challenge associated to an ACM RecSys workshop on news recommenda-

tion, but has been organized independently since then.

9.4. Experimental Results

A large amount of recommender systems research is based on comparisons

of recommendation algorithm’s predictive accuracy: the better the evalua-

tion metrics (higher accuracy scores or lower predictive errors), the better

the recommender system. However, it is usually difficult to put in con-

text and compare these results, mostly because too many alternatives exist

when designing and implementing an evaluation strategy (more on this on

Sec. 9.5), and the actual implementation of a recommendation algorithm

sometimes diverges considerably from the well-known ideal formulation, fre-

quently due to manual tuning and modifications observed to work better

in some situations.

In [Said and Belloǵın (2014)], a thorough experimental comparison of

different evaluation techniques and recommendation algorithms was pre-

sented. In order to achieve comparable evaluation protocols when using

different recommendation frameworks and datasets, the authors had com-

plete control of the evaluation dimensions being benchmarked: data split-

ting, evaluation strategies, and evaluation metrics. The main result found

was that there is a large difference in recommendation accuracy across

frameworks and strategies, specifically, the same baseline method may per-

form orders of magnitude better or worse depending on the framework.

We include here more details about these results and their corresponding

discussion.

Figure 9.3 shows the catalog coverage and nDCG metrics computed

using a controlled evaluation protocol. These figures show a wide combina-

tion of strategies for data splitting, recommendation and candidate items

generation. We notice that, except for the UserTest candidate items strat-

egy, MyMediaLite outperforms Mahout and LensKit in terms of nDCG@10,

when using a matrix factorization algorithm (SVD in the figure) and a user-

based with Pearson similarity (UB Pea). This high precision comes at the

expense of lower coverage, specifically of the catalog (item) coverage. As

a consequence, MyMediaLite seems to be able to recommend at least one

item per user, but far from the complete set of items, in particular com-

pared to the other frameworks. In terms of nDCG@10, the best results are

obtained with the UserTest strategy, with noticeable differences between

October 22, 2018 16:36 ws-rv9x6-9x6 Book Title 11131-09 page 315

Offline and Online Evaluation of Recommendations 315

IB
 C

osIB
 P

ea
 SVD 1
0SVD 5
0

SVD s
qr

t(I
)

UB C
os

 1
0

UB C
os

 5
0

UB C
os

 sq
rt(

I)
UB P

ea
 1

0
UB P

ea
 5

0

UB P
ea

 sq
rt(

I)

AM
RPN

gl
cv

LK
RPN

gl
cv

MML
RPN

gl
cv

AM
TI
gl
cv

LK
TI
gl
cv

MML
TI
gl
cv

AM
UT
gl
cv

LK
UT
gl
cv

MML
UT
gl
cv

AM
RPN
pu
cv

LK
RPN
pu
cv

MML
RPN
pu
cv

AM
TI
pu
cv

LK
TI
pu
cv

MML
TI
pu
cv

AM
UT
pu
cv

LK
UT
pu
cv

MML
UT
pu
cv

AM
RPN

gl
rt

LK
RPN

gl
rt

MML
RPN

gl
rt

AM
TI
gl
rt

LK
TI
gl
rt

MML
TI
gl
rt

AM
UT
gl
rt

LK
UT
gl
rt

MML
UT
gl
rt

AM
RPN
pu
rt

LK
RPN
pu
rt

MML
RPN
pu
rt

AM
TI
pu
rt

LK
TI
pu
rt

MML
TI
pu
rt

AM
UT
pu
rt

LK
UT
pu
rt

MML
UT
pu
rt

25

50

75

100
Value

(a) Catalog coverage (in percent).

IB Cos
 IB Pea
 SVD 1
0SVD 5
0

SVD s
qrt

(I)
UB Cos

 10UB Cos
 50

UB Cos
 sq

rt(I
)

UB Pea
 10UB Pea
 50

UB Pea
 sq

rt(I
)

AM
RPN

gl
cv

LK
RPN

gl
cv

MML
RPN

gl
cv

AM
TI
gl
cv

LK
TI
gl
cv

MML
TI
gl
cv

AM
UT
gl
cv

LK
UT
gl
cv

MML
UT
gl
cv

AM
RPN
pu
cv

LK
RPN
pu
cv

MML
RPN
pu
cv

AM
TI
pu
cv

LK
TI
pu
cv

MML
TI
pu
cv

AM
UT
pu
cv

LK
UT
pu
cv

MML
UT
pu
cv

AM
RPN

gl
rt

LK
RPN

gl
rt

MML
RPN

gl
rt

AM
TI
gl
rt

LK
TI
gl
rt

MML
TI
gl
rt

AM
UT
gl
rt

LK
UT
gl
rt

MML
UT
gl
rt

AM
RPN
pu
rt

LK
RPN
pu
rt

MML
RPN
pu
rt

AM
TI
pu
rt

LK
TI
pu
rt

MML
TI
pu
rt

AM
UT
pu
rt

LK
UT
pu
rt

MML
UT
pu
rt

0.0

0.2

0.4

0.6

0.8

Value

(b) Normalized discounted cumulative gain at 10 (nDCG@10).

Fig. 9.3. Catalog coverage and nDCG for the controlled evaluation. RPN, TI and UT

refer to RelPlusN, TrainItems and UserTest strategies, IB and UB refer to item- and

user-based respectively; Pea and Cos to Pearson and Cosine; gl and pu to global and per
user; AM (Mahout), LK (LensKit), MML (MyMediaLite) to the frameworks; and cv, rt

to cross validation and ratio.

recommender types, i.e. IB performs poorly, SVD performs well, UB in

between, in accordance with, e.g., [Koren and Bell (2015)]. The splitting

strategy has little effect on the results in this setting.

Additionally, the results of a framework-dependent evaluation are shown

in Table 9.6. For this, we use each framework’s internal evaluation classes

and report the results obtained. Table 9.6a shows evaluation results in

terms of nDCG, generated by Mahout and LensKit, whereas Table 9.6b

shows the RMSE values from LensKit and MyMediaLite. We start by

studying the results presented in Table 9.6a, where it seems that LensKit

outperforms Mahout at several orders of magnitude. The highest nDCG

obtained by Mahout (0.2868) is less than one third of the lowest value

obtained by LensKit (0.9422). This should be taken in the context of each

framework’s evaluator. Note that Mahout’s evaluator will only consider

users with a certain minimum number of preferences (two times the level of

recall). Our level of recall was set to 50, meaning only users with at least

100 preferences are evaluated (corresponding only to circa 33% of the users

in this dataset).

Looking at the RMSE results obtained by LensKit and MyMediaLite

in Table 9.6b, the difference between the frameworks is not as large as in

the previous case. All RMSE results are between 7.5% (UBCos50) and

October 22, 2018 16:36 ws-rv9x6-9x6 Book Title 11131-09 page 316

316 A. Belloǵın and A. Said

Table 9.6. Results using the internal evaluation methods of each framework.

(a) nDCG for AM and LK. (b) RMSE values for LK and MML.

Alg. F.W. nDCG

IBCos
AM 0.000414780

LK 0.942192050

IBPea
AM 0.005169231
LK 0.924546132

SVD50
AM 0.105427298
LK 0.943464094

UBCos50
AM 0.169295451

LK 0.948413562

UBPea50
AM 0.169295451

LK 0.948413562

Alg. F.W. RMSE

IBCos
LK 1.01390931

MML 0.92476162

IBPea
LK 1.05018614
MML 0.92933246

SVD50
LK 1.01209290
MML 0.93074012

UBCos50
LK 1.02545490

MML 0.95358984

UBPea50
LK 1.02545490

MML 0.93419026

11.7% (UBCos10) of each other. In this case, both frameworks created

five instances of training/tests splits with an 80%-20% ratio. The splits are

randomly seeded, meaning that even though the frameworks only create five

training/test datasets, they are not the same between the two frameworks.

A further observation to be made is how the framework’s internal eval-

uation compares to our controlled evaluation. We see that the frameworks

perform better in the controlled environment than in the internal ditto. In

the case of nDCG (Table 9.6a), we see that Mahout’s values fluctuate more

in both versions of the controlled evaluation (RPN and UT) than in Ma-

hout’s own evaluation. The internal evaluation results consistently remain

lower than the corresponding values in the controlled setting — although

the RPN values are closer to Mahout’s own results. The UT (UserTest)

values obtained in the controlled evaluation are several orders of magni-

tude higher than in the internal setting, even though the setting resembles

Mahout’s own evaluation closer than the RPN setting. LensKit’s internal

evaluation consistently shows better results than the controlled setting. We

believe this could be an effect related to how the final averaged nDCG met-

ric is calculated, or how the training/test splitting is performed by each

framework, where some users might be ignored because of a low number of

preferences.

Given the widely differing results, it seems pertinent that in order to

perform an inter-framework benchmarking, the evaluation process needs to

be clearly defined and both recommendations and evaluations performed in

a controlled and transparent environment.

October 22, 2018 16:36 ws-rv9x6-9x6 Book Title 11131-09 page 317

Offline and Online Evaluation of Recommendations 317

9.5. Practical Considerations

In the light of the previous section, it stands clear that even though differ-

ent recommendation frameworks implement algorithms in a similar fash-

ion, the results are not comparable, i.e., the performance of an algorithm

implemented in one cannot be compared to the performance of the same

algorithm in another. Not only do there exist differences in algorithmic

implementations, but also in the evaluation methods themselves.

There are no de facto rules or standards on how to evaluate a recom-

mendation algorithm. This also applies to how recommendation algorithms

of a certain type should be realized (e.g., default parameter values, use of

backup recommendation algorithms, and other ad-hoc implementations).

However, this should perhaps not be seen as something negative per se.

Yet, when it comes to performance comparison of recommendation algo-

rithms, a standardized (or controlled) evaluation is crucial [Konstan and

Adomavicius (2013)]. Without which, the relative performance of two or

more algorithms evaluated under different conditions becomes essentially

meaningless. In order to objectively and definitively characterize the per-

formance of an algorithm, a controlled evaluation, with a defined evaluation

protocol is a prerequisite.

Next, we discuss three main issues that should be considered when im-

plementing and evaluating recommendation algorithms, besides performing

a controlled evaluation. First, in Sec. 9.5.1 we describe some typical prac-

tical considerations, mostly related to technical aspects and design issues.

Then, Sec. 9.5.2 summarizes some issues that have an impact on the repro-

ducibility of RS experimental results.

9.5.1. Design issues to evaluate recommender systems

One of the first and most obvious design issues that researchers typically

assume when evaluating RS is that a user will never consume an item more

than once. This results in test splits with no overlap with the training

split — as common practice in Machine Learning. Such hypothesis was

probably inherited from the most common domain used in the first years by

the community: the movie domain; here, the datasets would only contain

one interaction (i.e., a rating) once for each user-item pair. This is in

contrast with other domains such as music or e-commerce [Schedl et al.

(2015); Linden et al. (2003)], where repeated consumption is paramount

and encouraged by the system.

October 22, 2018 16:36 ws-rv9x6-9x6 Book Title 11131-09 page 318

318 A. Belloǵın and A. Said

Another constraint (somewhat artificially) imposed in many works when

evaluating RS is that of ignoring those users or items with few interactions.

This is a well-known problem known as cold start, and it is inherent to the

task of a real recommender system, where there will always exist recently

created items or users. Nonetheless, when those cases are ignored, it should

be made crystal clear and explicitly stated like that in the paper, otherwise

the validity of this comparison would not be fair. At the same time, it is

interesting to note that cold-start tailored evaluation methodologies have

been proposed [Kluver and Konstan (2014)], aiming to provide unbiased

measurements when evaluating users with a limited number of training

and test groundtruth information. Evaluation in such a scarce situation is

not easy, and hence, more studies should be devoted to properly understand

any deficiency that may arise in this context.

Additionally, multi-criteria recommendation poses the problem of how

to combine various metrics into something that can be optimized [Ado-

mavicius and Kwon (2015)]. Even though there is a significant body of

work on multi-criteria RS optimization, there is no clear guideline on how

to perform this type of evaluation [Jambor and Wang (2010); Ge et al.

(2010); Said et al. (2013b)]. State of the art methods in multi-criteria eval-

uation require a trade-off between the different metrics to be evaluated,

this can then be applied to offline evaluation. Online evaluation using sev-

eral criteria requires elaborate qualitative analyses of long term results of

recommendation approaches.

Finally, in very sparse datasets such as those used for music recom-

mendation or in location-based RS, it is possible to evaluate by surrogates,

which means that a recommendation is assessed as correct if some attribute

of the item matches the target item, instead of the actual item, due to the

task being extremely difficult and to find the correct item in large catalogs.

As stated in [Schedl et al. (2015)], evaluation in music RS has been carried

out for a long time using genre as proxy and modeling a genre prediction

task. Similarly, in location-aware recommendation, the item category has

been used as surrogate, assuming that a recommendation would be received

by the user in the same way if a museum was recommended, even though

that was not the actual museum she visited according to the data [Li et al.

(2012); Kumar et al. (2017)].

These examples evidence that other, more complex environments and

evaluation situations can, and should, be defined when evaluating recom-

mendation systems. Either new evaluation metrics, experimental method-

ologies, or data splitting techniques could be explored to bring closer the

RS evaluation to the actual tasks that want to be modeled.

October 22, 2018 16:36 ws-rv9x6-9x6 Book Title 11131-09 page 319

Offline and Online Evaluation of Recommendations 319

Additional issues related to offline evaluation focus on aspects of the

underlying data which is used for both training and evaluation of RSs. The

concept known as the magic barrier of RS [Herlocker et al. (2004)] concerns

the fact that user interactions are not concise, i.e., they contain noise and

other irregularities which make the data not fully trustworthy. The effect

of this is that when optimizing towards a certain metric, there is an upper

level, a threshold beyond which optimization is useless [Said et al. (2012)].

This threshold is unknown; at best, it can be estimated assuming there are

enough interactions provided by each user [Said and Belloǵın (2018)].

9.5.2. Reproducibility issues on evaluation

Evaluating recommender systems is not an easy task. In all fairness, it is

not a task, it is a set of several interconnected and standalone tasks that,

when viewed together, should result in one (or several) measure(s) which

then state the quality of the recommender. The challenge becomes, for

instance, what metrics to use when evaluating, or how many metrics to

use.

The results discussed in Sec. 9.4 highlight the differences in recommen-

dation accuracy between implementations of the same algorithms on dif-

ferent frameworks, distinct levels of accuracy and variations of evaluation

results on the same dataset and in the same framework when employing

various evaluation strategies. It is important to note, thus, that inter-

framework comparisons of recommendation quality can potentially point

to incorrect results and conclusions, unless performed with great caution

and in a controlled, framework independent, environment.

Furthermore, there are several aspects when designing and implement-

ing a recommender system that may affect its final results and hinder a

potential replication of the reported settings and insights, from using differ-

ent model parameters to how specific parts of the system are implemented.

For instance, the data splitting strategy may have a deep impact on the

final results being reported, making this an important aspect to take into

account when reporting details about an experiment. Moreover, there are

several aspects in recommendation algorithms that are not standard in the

community which, eventually, turn out to be implementation-dependent.

For example, the term kNN (to specify collaborative filtering algorithms

based on k-nearest neighbors) is usually linked to the user-based (UB)

variation of these methods, even though item-based (IB) algorithms are

also available and, in some situations, work better than user-based [Sarwar

October 22, 2018 16:36 ws-rv9x6-9x6 Book Title 11131-09 page 320

320 A. Belloǵın and A. Said

et al. (2001)]. Furthermore, there exist several different formulations for the

user-based kNN algorithm, none of which is regarded as the “standard” one.

Additionally, there are also different alternatives in the literature when

computing neighbors. Although the most typical one consists of taking

the top-k closest users to the target user, there are other techniques based

on thresholds that should be properly reported and specified when used in

experiments because of their unpopularity [Ning et al. (2015)]. Besides that,

a very important detail that is usually not reported is when the neighbors

are actually computed: at training or test (i.e., evaluation) time.

Finally, it is not difficult to find implementations where a capping is

applied after the score is predicted — probably inherited by the rating

prediction task, the most popular recommendation task for a long time — so

such score is bounded by the rating range. However, this may lead to further

problems when producing a ranking, since ties are more likely to occur

and, hence, tie-breaking strategies have to be implemented and reported,

something we have seldom found explicitly in the analyzed frameworks and

public implementations. At the same time, it is very important to report

what happens when a recommender cannot predict a score. This decision

has an impact on the coverage of the system — if a baseline recommender

is used instead, every algorithm will always have complete coverage —, but

also on how performance metrics are evaluated in those cases.

In summary, the issues of replication — obtaining the exact same re-

sults in the same setting — and reproducibility — obtaining comparable

results using a different setting — are very difficult challenges at the mo-

ment. They force researchers to reimplement the baseline algorithm they

want to compare their approach against, or to pay extra attention to ev-

ery algorithmic and evaluation detail, ignoring if the observed discrepancies

with respect to what already was published come from omitted details from

the original papers (parameters, methodologies, protocols, etc.) or a wrong

interpretation of any of these intermediate steps.

9.6. Future directions

The empirical evaluation of RS is acknowledged to be an open problem in

the field, with open issues yet to be addressed [Gunawardana and Shani

(2015)]. Many experimental approaches and metrics have been developed

over the years, which the community is well acquainted with, but key as-

pects and details in the design and application of available methodologies

are open to configuration and interpretation, where even apparently subtle

October 22, 2018 16:36 ws-rv9x6-9x6 Book Title 11131-09 page 321

Offline and Online Evaluation of Recommendations 321

details may create a considerable difference. This results in a significant

divergence in experimental practice, hindering the comparison and proper

assessment of contributions and advances to the field.

The discussion and definition of the basic elements of the experimen-

tal conditions (and their requirements) are critical to support continuous

innovation in any discipline. The offline evaluation of RS requires an im-

plementation of the algorithm or technique to be evaluated, a set of quality

measures for comparative evaluation, and an experimental protocol estab-

lishing how to handle the data and compute metrics in detail. Online

evaluation similarly requires an algorithm implementation and a popula-

tion of users to survey (by means of an A/B test, for instance). Here again,

perhaps even more importantly than in offline evaluation, an experimental

protocol needs to be established and adhered to.

In order to seek reproducibility and replication, several strategies can

be considered, such as source code sharing, standardization of agreed eval-

uation metrics and protocols, or releasing public experimental design soft-

ware, all of which have difficulties of their own. Furthermore, for online

evaluation, an extensive analysis of the population of test users should be

provided. While the problem of reproducibility and replication has been

recognized in the community, the need for a solution remains largely unmet.

Another open problem when evaluating RS is the relation between on-

line and offline experiments. Several authors have explored this issue in

some domains but no conclusive results have been obtained [Garcin et al.

(2014); Beel et al. (2013); de Souza Pereira Moreira et al. (2015)]. The main

question is how to align the offline evaluation to the online (usually, with

A/B tests) results. Some possibilities include designing a good evaluation

methodology or using a sensible evaluation metric to the problem at hand.

An interesting output that could be produced by a better understanding

of this issue is that offline evaluation would predict which methods, pa-

rameters, or configurations will work better when integrated and tested in

an online evaluation. Recent approaches apply counterfactual reasoning to

compute offline estimators of business metrics, by computing the expected

reward of a new method based on logs collected on a technique running in

production [Gilotte et al. (2018); Joachims and Swaminathan (2016)]; in

this way, we could answer what if? questions for a range of algorithms not

tested by the users with some level of certainty.

Additionally, there should be an increased effort in making metrics

meaningful, especially tailored to specific problems in RS, such as time-

aware recommendation, cross-domain, cold-start users and items, repeated

October 22, 2018 16:36 ws-rv9x6-9x6 Book Title 11131-09 page 322

322 A. Belloǵın and A. Said

consumption, and so on. We should also understand their inherent bi-

ases, where a more in-depth analysis and some solutions are surveyed in

Chap. 10. Furthermore, several algorithms exist for temporal contexts,

however, experimental evaluation methodologies have not been analyzed

until recently [Campos et al. (2014)], where evaluation dimensions such as

novelty and diversity remained largely unexplored, even though there exist

obvious relations between these concepts and time-aware recommendations

[Lathia et al. (2010)]. Similarly, there exist several approaches aiming to

exploit cross-domain patterns for recommendation [Cantador et al. (2015)],

however the evaluation of these systems has been limited to analyze the

sensitivity to the amount of user or item overlap, target domain density,

and user profile size, neglecting other properties such as the dependence

on the groundtruth sparsity levels on either the source or the target do-

mains, or even defining new metrics specifically tailored to this problem,

e.g., where the amount of knowledge that is transferred from the source

domain is considered inside the metric.

References

Abel, F. (2015). We know where you should work next summer: Job recom-
mendations, in Proceedings of the 9th ACM Conference on Recommender
Systems, RecSys 2015, Vienna, Austria, September 16-20, 2015 (ACM),
p. 230.

Adomavicius, G. and Kwon, Y. (2015). Multi-criteria recommender systems, in
Recommender Systems Handbook (Springer), pp. 847–880.

Adomavicius, G., Tuzhilin, A., Berkovsky, S., De Luca, E. W. and Said, A. (2010).
Context-awareness in recommender systems: research workshop and movie
recommendation challenge, in Proceedings of the 2010 ACM Conference on
Recommender Systems, RecSys 2010, Barcelona, Spain, September 26-30,
2010 (ACM), pp. 385–386.

Baeza-Yates, R. A. and Ribeiro-Neto, B. A. (2011). Modern Information Retrieval
- the concepts and technology behind search, Second edition (Pearson Edu-
cation Ltd., Harlow, England), ISBN 978-0-321-41691-9.

Basu, C., Hirsh, H. and Cohen, W. W. (1998). Recommendation as classification:
Using social and content-based information in recommendation, in Pro-
ceedings of the Fifteenth National Conference on Artificial Intelligence and
Tenth Innovative Applications of Artificial Intelligence Conference, AAAI
98, IAAI 98, July 26-30, 1998, Madison, Wisconsin, USA. (AAAI Press /
The MIT Press), pp. 714–720.

Beel, J., Genzmehr, M., Langer, S., Nürnberger, A. and Gipp, B. (2013).
A comparative analysis of offline and online evaluations and discussion
of research paper recommender system evaluation, in Proceedings of the

October 22, 2018 16:36 ws-rv9x6-9x6 Book Title 11131-09 page 323

Offline and Online Evaluation of Recommendations 323

International Workshop on Reproducibility and Replication in Recom-
mender Systems Evaluation, RepSys 2013, Hong Kong, China, October 12,
2013 (ACM), pp. 7–14.

Belloǵın, A., Cantador, I., Dı́ez, F., Castells, P. and Chavarriaga, E. (2013). An
empirical comparison of social, collaborative filtering, and hybrid recom-
menders, ACM TIST 4, 1, p. 14.

Belloǵın, A., Castells, P. and Cantador, I. (2011). Precision-oriented evaluation
of recommender systems: an algorithmic comparison, in Proceedings of the
2011 ACM Conference on Recommender Systems, RecSys 2011, Chicago,
IL, USA, October 23-27, 2011 (ACM), pp. 333–336.

Belloǵın, A., Castells, P. and Cantador, I. (2017). Statistical biases in information
retrieval metrics for recommender systems, Information Retrieval Journal.

Berkovsky, S., Freyne, J. and Coombe, M. (2012). Physical activity motivating
games: Be active and get your own reward, ACM Trans. Comput.-Hum.
Interact. 19, 4, pp. 32:1–32:41.

Bistaffa, F., Filippo, A., Chalkiadakis, G. and Ramchurn, S. D. (2015). Recom-
mending fair payments for large-scale social ridesharing, in Proceedings of
the 9th ACM Conference on Recommender Systems, RecSys 2015, Vienna,
Austria, September 16-20, 2015 (ACM), pp. 139–146.

Bollen, D. G. F. M., Knijnenburg, B. P., Willemsen, M. C. and Graus, M. P.
(2010). Understanding choice overload in recommender systems, in Pro-
ceedings of the 2010 ACM Conference on Recommender Systems, RecSys
2010, Barcelona, Spain, September 26-30, 2010 (ACM), pp. 63–70.

Bouckaert, R. R. (2003). Choosing between two learning algorithms based on
calibrated tests, in T. Fawcett and N. Mishra (eds.), Machine Learning,
Proceedings of the Twentieth International Conference (ICML 2003), Au-
gust 21-24, 2003, Washington, DC, USA (AAAI Press), pp. 51–58.

Breese, J. S., Heckerman, D. and Kadie, C. M. (1998). Empirical analysis of pre-
dictive algorithms for collaborative filtering, in UAI ’98: Proceedings of the
Fourteenth Conference on Uncertainty in Artificial Intelligence, University
of Wisconsin Business School, Madison, Wisconsin, USA, July 24-26, 1998
(Morgan Kaufmann), pp. 43–52.

Burke, R. D. (2004). Hybrid recommender systems with case-based components,
in Advances in Case-Based Reasoning, 7th European Conference, ECCBR
2004, Madrid, Spain, August 30 - September 2, 2004, Proceedings, Lecture
Notes in Computer Science, Vol. 3155 (Springer), pp. 91–105.

Campos, P. G., Dı́ez, F. and Cantador, I. (2014). Time-aware recommender sys-
tems: a comprehensive survey and analysis of existing evaluation protocols,
User Model. User-Adapt. Interact. 24, 1-2, pp. 67–119.

Cantador, I., Fernández-Tob́ıas, I., Berkovsky, S. and Cremonesi, P. (2015).
Cross-domain recommender systems, in Recommender Systems Handbook
(Springer), pp. 919–959.

Castells, P., Hurley, N. J. and Vargas, S. (2015). Novelty and diversity in recom-
mender systems, in Recommender Systems Handbook (Springer), pp. 881–
918.

October 22, 2018 16:36 ws-rv9x6-9x6 Book Title 11131-09 page 324

324 A. Belloǵın and A. Said

Celma, Ò. and Herrera, P. (2008). A new approach to evaluating novel recommen-
dations, in Proceedings of the 2008 ACM Conference on Recommender Sys-
tems, RecSys 2008, Lausanne, Switzerland, October 23-25, 2008 (ACM),
pp. 179–186.

Cremonesi, P., Garzotto, F., Negro, S., Papadopoulos, A. V. and Turrin, R.
(2011). Comparative evaluation of recommender system quality, in Pro-
ceedings of the International Conference on Human Factors in Computing
Systems, CHI 2011, Extended Abstracts Volume, Vancouver, BC, Canada,
May 7-12, 2011 (ACM), pp. 1927–1932.

Cremonesi, P., Koren, Y. and Turrin, R. (2010). Performance of recommender al-
gorithms on top-n recommendation tasks, in Proceedings of the 2010 ACM
Conference on Recommender Systems, RecSys 2010, Barcelona, Spain,
September 26-30, 2010 (ACM), pp. 39–46.

de Souza Pereira Moreira, G., de Souza, G. A. and da Cunha, A. M. (2015).
Comparing offline and online recommender system evaluations on long-
tail distributions, in Poster Proceedings of the 9th ACM Conference on
Recommender Systems, RecSys 2015, Vienna, Austria, September 16, 2015,
CEUR Workshop Proceedings, Vol. 1441 (CEUR-WS.org).

Deshpande, M. and Karypis, G. (2004). Item-based top-N recommendation algo-
rithms, ACM Trans. Inf. Syst. 22, 1, pp. 143–177.

Elahi, M., Ge, M., Ricci, F., Fernández-Tob́ıas, I., Berkovsky, S. and Massimo,
D. (2015). Interaction design in a mobile food recommender system, in Pro-
ceedings of the Joint Workshop on Interfaces and Human Decision Making
for Recommender Systems, IntRS 2015, co-located with ACM Conference
on Recommender Systems (RecSys 2015), Vienna, Austria, September 19,
2015, CEUR Workshop Proceedings, Vol. 1438 (CEUR-WS.org), pp. 49–52.

Elahi, M., Ge, M., Ricci, F., Massimo, D. and Berkovsky, S. (2014). Inter-
active food recommendation for groups, in Poster Proceedings of the 8th
ACM Conference on Recommender Systems, RecSys 2014, Foster City, Sil-
icon Valley, CA, USA, October 6-10, 2014, CEUR Workshop Proceedings,
Vol. 1247 (CEUR-WS.org).

Elsweiler, D., Harvey, M., Ludwig, B. and Said, A. (2015). Bringing the “healthy”
into food recommenders, in Proceedings of the 2nd International Workshop
on Decision Making and Recommender Systems, Bolzano, Italy, October 22-
23, 2015, CEUR Workshop Proceedings, Vol. 1533 (CEUR-WS.org), pp. 33–
36.

Garcin, F., Faltings, B., Donatsch, O., Alazzawi, A., Bruttin, C. and Huber,
A. (2014). Offline and online evaluation of news recommender systems at
swissinfo.ch, in Eighth ACM Conference on Recommender Systems, RecSys
’14, Foster City, Silicon Valley, CA, USA - October 06 - 10, 2014 (ACM),
pp. 169–176.

Ge, M., Delgado-Battenfeld, C. and Jannach, D. (2010). Beyond accuracy: eval-
uating recommender systems by coverage and serendipity, in Proceedings
of the 2010 ACM Conference on Recommender Systems, RecSys 2010,
Barcelona, Spain, September 26-30, 2010 (ACM), pp. 257–260.

October 22, 2018 16:36 ws-rv9x6-9x6 Book Title 11131-09 page 325

Offline and Online Evaluation of Recommendations 325

Gilotte, A., Calauzènes, C., Nedelec, T., Abraham, A. and Dollé, S. (2018). Of-
fline A/B testing for recommender systems, in Y. Chang, C. Zhai, Y. Liu
and Y. Maarek (eds.), Proceedings of the Eleventh ACM International Con-
ference on Web Search and Data Mining, WSDM 2018, Marina Del Rey,
CA, USA, February 5-9, 2018 (ACM), pp. 198–206.

Goldberg, K. Y., Roeder, T., Gupta, D. and Perkins, C. (2001). Eigentaste: A
constant time collaborative filtering algorithm, Inf. Retr. 4, 2, pp. 133–151.

Gunawardana, A. and Shani, G. (2015). Evaluating recommender systems, in
Recommender Systems Handbook (Springer), pp. 265–308.

Guy, I. (2015). Social recommender systems, in Recommender Systems Handbook
(Springer), pp. 511–543.

Harper, F. M. and Konstan, J. A. (2016). The movielens datasets: History and
context, TiiS 5, 4, pp. 19:1–19:19.

Herlocker, J. L., Konstan, J. A., Terveen, L. G. and Riedl, J. (2004). Evaluating
collaborative filtering recommender systems, ACM Trans. Inf. Syst. 22, 1,
pp. 5–53.

Jambor, T. and Wang, J. (2010). Optimizing multiple objectives in collabora-
tive filtering, in Proceedings of the 2010 ACM Conference on Recommender
Systems, RecSys 2010, Barcelona, Spain, September 26-30, 2010 (ACM),
pp. 55–62.

Jannach, D., Lerche, L. and Jugovac, M. (2015). Adaptation and evaluation of
recommendations for short-term shopping goals, in Proceedings of the 9th
ACM Conference on Recommender Systems, RecSys 2015, Vienna, Austria,
September 16-20, 2015 (ACM), pp. 211–218.

Järvelin, K. and Kekäläinen, J. (2002). Cumulated gain-based evaluation of IR
techniques, ACM Trans. Inf. Syst. 20, 4, pp. 422–446.

Jäschke, R., Marinho, L. B., Hotho, A., Schmidt-Thieme, L. and Stumme, G.
(2007). Tag recommendations in folksonomies, in Knowledge Discovery in
Databases: PKDD 2007, 11th European Conference on Principles and Prac-
tice of Knowledge Discovery in Databases, Warsaw, Poland, September
17-21, 2007, Proceedings, Lecture Notes in Computer Science, Vol. 4702
(Springer), pp. 506–514.

Joachims, T. and Swaminathan, A. (2016). Counterfactual evaluation and learn-
ing for search, recommendation and ad placement, in R. Perego, F. Sebas-
tiani, J. A. Aslam, I. Ruthven and J. Zobel (eds.), Proceedings of the 39th
International ACM SIGIR conference on Research and Development in In-
formation Retrieval, SIGIR 2016, Pisa, Italy, July 17-21, 2016 (ACM),
pp. 1199–1201.

Kluver, D. and Konstan, J. A. (2014). Evaluating recommender behavior for
new users, in Eighth ACM Conference on Recommender Systems, RecSys
’14, Foster City, Silicon Valley, CA, USA - October 06-10, 2014 (ACM),
pp. 121–128.

Knijnenburg, B. P. and Willemsen, M. C. (2015). Evaluating Recommender Sys-
tems with User Experiments (Springer US, Boston, MA), ISBN 978-1-4899-
7637-6, pp. 309–352.

October 22, 2018 16:36 ws-rv9x6-9x6 Book Title 11131-09 page 326

326 A. Belloǵın and A. Said

Kohavi, R., Longbotham, R., Sommerfield, D. and Henne, R. M. (2009). Con-
trolled experiments on the web: survey and practical guide, Data Min.
Knowl. Discov. 18, 1, pp. 140–181.

Konstan, J. A. and Adomavicius, G. (2013). Toward identification and adoption of
best practices in algorithmic recommender systems research, in Proceedings
of the International Workshop on Reproducibility and Replication in Rec-
ommender Systems Evaluation, RepSys 2013, Hong Kong, China, October
12, 2013 (ACM), pp. 23–28.

Koren, Y. and Bell, R. M. (2015). Advances in collaborative filtering, in Recom-
mender Systems Handbook (Springer), pp. 77–118.

Kosir, A., Odic, A. and Tkalcic, M. (2013). How to improve the statistical power
of the 10-fold cross validation scheme in recommender systems, in A. Bel-
loǵın, P. Castells, A. Said and D. Tikk (eds.), Proceedings of the Inter-
national Workshop on Reproducibility and Replication in Recommender
Systems Evaluation, RepSys 2013, Hong Kong, China, October 12, 2013
(ACM), pp. 3–6.

Kumar, G., Jerbi, H. and O’Mahony, M. P. (2017). Towards the recommendation
of personalised activity sequences in the tourism domain, in Proceedings of
the 2nd Workshop on Recommenders in Tourism co-located with 11th ACM
Conference on Recommender Systems (RecSys 2017), Como, Italy, August
27, 2017, CEUR Workshop Proceedings, Vol. 1906 (CEUR-WS.org), pp. 26–
30.

Lathia, N., Hailes, S., Capra, L. and Amatriain, X. (2010). Temporal diversity in
recommender systems, in Proceeding of the 33rd International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR
2010, Geneva, Switzerland, July 19-23, 2010 (ACM), pp. 210–217.

Li, W., Eickhoff, C. and de Vries, A. P. (2012). Want a coffee?: predicting users’
trails, in The 35th International ACM SIGIR conference on research and
development in Information Retrieval, SIGIR ’12, Portland, OR, USA, Au-
gust 12-16, 2012 (ACM), pp. 1171–1172.

Linden, G., Smith, B. and York, J. (2003). Amazon.com recommendations: Item-
to-item collaborative filtering, IEEE Internet Computing 7, 1, pp. 76–80.

Luo, L., Li, B., Berkovsky, S., Koprinska, I. and Chen, F. (2016). Who will
be affected by supermarket health programs? tracking customer behavior
changes via preference modeling, in Advances in Knowledge Discovery and
Data Mining - 20th Pacific-Asia Conference, PAKDD 2016, Auckland, New
Zealand, April 19-22, 2016, Proceedings, Part I, Lecture Notes in Computer
Science, Vol. 9651 (Springer), pp. 527–539.

McLaughlin, M. R. and Herlocker, J. L. (2004). A collaborative filtering algorithm
and evaluation metric that accurately model the user experience, in SIGIR
2004: Proceedings of the 27th Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, Sheffield, UK,
July 25-29, 2004 (ACM), pp. 329–336.

McNee, S. M., Riedl, J. and Konstan, J. A. (2006). Being accurate is not enough:
how accuracy metrics have hurt recommender systems, in Extended Ab-
stracts Proceedings of the 2006 Conference on Human Factors in Computing

October 22, 2018 16:36 ws-rv9x6-9x6 Book Title 11131-09 page 327

Offline and Online Evaluation of Recommendations 327

Systems, CHI 2006, Montréal, Québec, Canada, April 22-27, 2006 (ACM),
pp. 1097–1101.

Mesas, R. M. and Belloǵın, A. (2017). Evaluating decision-aware recommender
systems, in Proceedings of the Eleventh ACM Conference on Recommender
Systems, RecSys 2017, Como, Italy, August 27-31, 2017 (ACM), pp. 74–78.

Ning, X., Desrosiers, C. and Karypis, G. (2015). A comprehensive survey of
neighborhood-based recommendation methods, in Recommender Systems
Handbook (Springer), pp. 37–76.

Pu, P., Chen, L. and Hu, R. (2012). Evaluating recommender systems from the
user’s perspective: survey of the state of the art, User Model. User-Adapt.
Interact. 22, 4-5, pp. 317–355.

Said, A. (2016). A short history of the recsys challenge, AI Magazine 37, 4,
pp. 102–104.

Said, A. and Belloǵın, A. (2014). Comparative recommender system evaluation:
benchmarking recommendation frameworks, in Eighth ACM Conference on
Recommender Systems, RecSys ’14, Foster City, Silicon Valley, CA, USA
- October 06-10, 2014 (ACM), pp. 129–136.

Said, A. and Belloǵın, A. (2018). Coherence and inconsistencies in rating behavior:
estimating the magic barrier of recommender systems, User Modeling and
User-Adapted Interaction.

Said, A., Belloǵın, A., Lin, J. J. and de Vries, A. P. (2014a). Do recommendations
matter?: news recommendation in real life, in Computer Supported Coop-
erative Work, CSCW ’14, Baltimore, MD, USA, February 15-19, 2014,
Companion Volume (ACM), pp. 237–240.

Said, A., Fields, B., Jain, B. J. and Albayrak, S. (2013a). User-centric evaluation
of a k-furthest neighbor collaborative filtering recommender algorithm, in
Computer Supported Cooperative Work, CSCW 2013, San Antonio, TX,
USA, February 23-27, 2013 (ACM), pp. 1399–1408.

Said, A., Jain, B. J. and Albayrak, S. (2013b). A 3d approach to recommender
system evaluation, in Computer Supported Cooperative Work, CSCW 2013,
San Antonio, TX, USA, February 23-27, 2013, Companion Volume (ACM),
pp. 263–266.

Said, A., Jain, B. J., Narr, S. and Plumbaum, T. (2012). Users and noise: The
magic barrier of recommender systems, in User Modeling, Adaptation, and
Personalization - 20th International Conference, UMAP 2012, Montreal,
Canada, July 16-20, 2012. Proceedings, Lecture Notes in Computer Science,
Vol. 7379 (Springer), pp. 237–248.

Said, A., Tikk, D. and Cremonesi, P. (2014b). Benchmarking - A methodology
for ensuring the relative quality of recommendation systems in software en-
gineering, in Recommendation Systems in Software Engineering (Springer),
pp. 275–300.

Sakai, T. (2014). Statistical reform in information retrieval? SIGIR Forum 48,
1, pp. 3–12.

Sarwar, B. M., Karypis, G., Konstan, J. A. and Riedl, J. (2001). Item-based
collaborative filtering recommendation algorithms, in Proceedings of the
Tenth International World Wide Web Conference, WWW 10, Hong Kong,
China, May 1-5, 2001 (ACM), pp. 285–295.

October 22, 2018 16:36 ws-rv9x6-9x6 Book Title 11131-09 page 328

328 A. Belloǵın and A. Said

Schedl, M., Knees, P., McFee, B., Bogdanov, D. and Kaminskas, M. (2015). Mu-
sic recommender systems, in Recommender Systems Handbook (Springer),
pp. 453–492.

Smyth, B. and McClave, P. (2001). Similarity vs. diversity, in Case-Based Rea-
soning Research and Development, 4th International Conference on Case-
Based Reasoning, ICCBR 2001, Vancouver, BC, Canada, July 30 - Au-
gust 2, 2001, Proceedings, Lecture Notes in Computer Science, Vol. 2080
(Springer), pp. 347–361.

Tomlinson, S. (2012). Measuring robustness with first relevant score in the TREC
2012 microblog track, in Proceedings of The Twenty-First Text REtrieval
Conference, TREC 2012, Gaithersburg, Maryland, USA, November 6-9,
2012, Vol. Special Publication 500-298, (National Institute of Standards
and Technology (NIST)).

Zhao, X., Zhang, W. and Wang, J. (2015). Risk-hedged venture capital invest-
ment recommendation, in Proceedings of the 9th ACM Conference on Rec-
ommender Systems, RecSys 2015, Vienna, Austria, September 16-20, 2015
(ACM), pp. 75–82.

October 22, 2018 17:14 ws-rv9x6-9x6 Book Title 11131-10 page 329

Chapter 10

Recommendations Biases and Beyond-Accuracy Objectives in
Collaborative Filtering

Pasquale Lops, Fedelucio Narducci, Cataldo Musto, Marco de Gemmis,
Marco Polignano and Giovanni Semeraro

Department of Computer Science, University of Bari Aldo Moro,
Via E. Orabona 4 - I70126 Bari, Italy,

firstname.lastname@uniba.it

Recommender systems research, traditionally focused on accuracy, is currently
paying more and more attention to additional factors for evaluating the perceived
quality and usefulness of recommendation lists. In this paper, we present a survey
of the most important dimensions, other than accuracy, usually taken into account
in the collaborative filtering literature. We survey beyond-accuracy objectives,
i.e. novelty, diversity and serendipity, and the main techniques for increasing
them. Moreover, we discuss possible undesired biases occurring in collaborative
filtering algorithms, and how to effectively deal with them.

10.1. Introduction

Even though the primary goal of recommender systems is to find items that best
match the model of user preferences, in the last years there has been a huge atten-
tion to the analysis of what recommenders recommend, i.e. what they include in
the top-N recommendation lists [Jannach et al. (2015)]. This allows to take into
account additional factors, other than accuracy, which contribute to the perceived
quality and usefulness of recommendations, and at the same time this allows to
assess if recommendation lists exhibit possibly undesired biases in order to adopt
specific countermeasures to deal with them.

The importance of taking into account additional factors, other than accuracy,
is acknowledged and emphasized in several studies [Herlocker et al. (2004); Mc-
Nee et al. (2006); Ge et al. (2010); Hurley and Zhang (2011); Zhang et al. (2012);
de Gemmis et al. (2015); Castells et al. (2015); Kaminskas and Bridge (2016)].
Among the possible factors, most studies emphasize the importance of novelty,
i.e. how different a recommendation is with respect to what has been previously

329

October 22, 2018 17:14 ws-rv9x6-9x6 Book Title 11131-10 page 330

330 P. Lops et al.

seen or experienced by a user [Castells et al. (2015)], serendipity [Iaquinta et al.
(2008); Onuma et al. (2009); Kawamae (2010); Zhang et al. (2012); de Gemmis
et al. (2015)], i.e. the experience of receiving unexpected suggestions helping the
user to find surprisingly interesting items she might not have otherwise discov-
ered, and diversity [Hurley and Zhang (2011); Adomavicius and Kwon (2012);
Castells et al. (2015)], at the level of individual users [Ziegler et al. (2005)], or
aggregate across all users [Adomavicius and Kwon (2012)].

Those additional factors, such as the aforementioned novelty, serendipity or
diversity, have been recognized as a goal that often conflicts with accuracy [Fleder
and Hosanagar (2009)], therefore it is important that systems were designed and
evaluated by taking into account the need of properly balancing the different fac-
tors [Jugovac et al. (2017)]. Several optimization strategies have been proposed
for beyond accuracy objectives. Most of them focus on one specific objective,
even though recently the attention has been posed on assessing how optimization
strategies affect the different objectives, i.e. how different objectives relate one to
each other [Kaminskas and Bridge (2016)].

In this paper, we focus on the wider perspective of recommender systems aim-
ing at generating more valuable and useful recommendations, beyond the simple
prediction accuracy. In particular, we envisage a chapter describing the new di-
mensions of evaluation for collaborative-based recommender systems. In Sec-
tion 10.2, we discuss the main additional dimensions, other than accuracy, usually
taken into account in the Collaborative Filtering (CF) literature as well as some
possible observed biases. Then, strategies to adapt or extend CF recommenders to
take into account the new dimensions of evaluations or to deal with possible un-
desired biases are presented in Section 10.3. Finally, we describe some libraries
supporting the evaluation in terms of both accuracy and beyond-accuracy metrics
(Section 10.4), and close the chapter with a summary and discussion of the main
challenges and directions for future research (Section 10.5).

10.2. Popularity Bias and Beyond Accuracy Metrics

In this section, we discuss the popularity bias of CF systems and the beyond-
accuracy metrics usually taken into account in the evaluation, such as diversity,
novelty and serendipity. As regards CF techniques, we focus on:

• Neighborhood-based methods, both user-based [Ning et al. (2015)] and
item-based [Koren and Bell (2015)], whose key idea is to recommend a
user with items preferred in the past by like-minded users.

October 22, 2018 17:14 ws-rv9x6-9x6 Book Title 11131-10 page 331

Recommendations Biases and Beyond-Accuracy Objectives in Collaborative Filtering 331

• Matrix Factorization (MF), which trains a model by performing dimen-
sionality reduction on the user-item rating matrix, in order to represent
users and items into a subspace of latent factors, hopefully capturing im-
plicit properties of both users and items.

10.2.1. Popularity Bias

CF systems generate recommendations for the target user by exploiting informa-
tion about items that other users with similar tastes liked or bought in the past.
Thus, the similarity in taste is calculated based on the similarity of users’ rating
history [Ning et al. (2015)].

The main drawback of this approach is that users are more likely to provide
feedback on popular items than on niche ones, and this introduces a bias towards
popular items in the observed user feedback compared to the user’s true interests
[Steck (2011)]. Popularity follows Zipf’s Law, a power law that represents the dis-
crete form of the Pareto distribution, from which the well-known Pareto principle,
also known as the 80-20 rule, derives. For example, in the MovieLens1M dataset
[Harper and Konstan (2016)] the top 20% most popular items cumulatively have
many more ratings than the 80% items in the long tail. This leads to the creation
of a rich-get-richer effect for popular items and vice-versa for unpopular ones.
This problem is called popularity bias, and structural reasons for that bias are also
identified in [Cañamares and Castells (2017)], upon a probabilistic reformulation
of memory-based CF.

In offline evaluations, recommending popular items represents a very strong
baseline with respect to accuracy measures such as precision and recall [Cre-
monesi et al. (2010); Steck (2011); Bellogı́n et al. (2017)], although this could
lead towards recommendation of items interesting neither to users — possibly
disappointed by the recommender system — nor to content providers — often in-
terested in digital markets to boost sales of items in the long tail, i.e. less known
or niche items.

It has been shown by real-world studies that the recommendation of popu-
lar items might be misleading since it does not always lead to the desired sales
or persuasion effects [Jannach and Hegelich (2009)], rather it leads to undesired
blockbuster effects [Fleder and Hosanagar (2009)]. Indeed, recommendations
based on sales or ratings prevent recommendations of items with limited his-
torical data, even if they would be rated favorably. Moreover, popularity-based
recommendation could fail in the so-called bounded domains, i.e. those where
the same product or service can be consumed by a limited number of users
(e.g., hotel rooms) [Cremonesi et al. (2013)]. Hence, it becomes important that

October 22, 2018 17:14 ws-rv9x6-9x6 Book Title 11131-10 page 332

332 P. Lops et al.

recommender systems achieve a good balance between popular and less-popular
items [Abdollahpouri et al. (2017)].

In the literature, popularity is usually measured by counting the number of
ratings received by an item or, depending on specific application scenarios, by the
number of sales of a product, or the number of listens of a song, etc. This way
of measuring popularity does not take into account whether ratings assigned to
the items are positive or negative. This means that an item may be popular even
though it is disliked by most of the users. Hence, another popularity indicator is
the item’s average rating, even if this measure is not able to describe if the item is
liked or disliked by a large or small number of users.

Popularity is usually analyzed through other measures, e.g. aggregate diversity
(see Section 10.2.2), to assess the level of personalization provided by a recom-
mender system. As an example, a popularity-based recommendation algorithm
suggesting the same most popular items to all the users across the system will
have a very low aggregate diversity (low level of personalization), whereas a rec-
ommendation algorithm suggesting different top-N items to each user will have
a high aggregate diversity (high level of personalization). For this reason, in the
literature the analysis of popularity bias is often performed in combination with
aggregate diversity and concentration bias, i.e. the actual distribution of recom-
mended items, in order to capture inequalities with respect to how frequently cer-
tain items are recommended to users. To this purpose, the Gini index [Gini (1921)]
is often adopted, which takes values between 0 and 1, where 0 represents an equal
distribution of frequencies, i.e. all the items are recommended with the same fre-
quency, while 1 corresponds to maximal inequality, i.e. all the recommendations
are concentrated on a single item.

However, as discussed in literature and well summarized in [Bellogı́n et al.
(2017)], the offline evaluation settings for recommender systems, usually based
on Information Retrieval methodologies, involve subtle differences, which result
in substantial biases to the effectiveness measurements that may distort the em-
pirical observations and hinder comparison across systems and experiments. For
example, one of the main problem discussed in [Steck (2011)], is that ratings are
missing not at random (MNAR), and subject to biases affecting both the input for
algorithms and the data for evaluation.

10.2.2. Diversity

Diversity is one of the qualities considered particularly useful for improving the
user experience with a recommender system. Diversity is rooted in the Informa-
tion Retrieval (IR) research area [Kaminskas and Bridge (2016)]. The motivations

October 22, 2018 17:14 ws-rv9x6-9x6 Book Title 11131-10 page 333

Recommendations Biases and Beyond-Accuracy Objectives in Collaborative Filtering 333

behind the diversification of the results of an IR system is determined by the need
of effectively matching the user information need. For example, if the user query
contains an ambiguous word like apple and it is not possible to disambiguate the
user intention, a solution consists in producing a list of documents related to the
different meanings of the ambiguous query term [Clarke et al. (2008)]. In order to
accomplish this task, a measure for defining the differences between the retrieved
documents is thus required. This measure is actually a function that computes
how different two documents are and it can be based on the features the retrieved
documents share, such as metadata, topics, document types [Carbonell and Gold-
stein (1998); Clarke et al. (2008); Wang and Zhu (2009); Agrawal et al. (2009)].
This measure is the key concept in the diversity definition.

Similarly to the IR field, the goal of a recommender system is to produce a set
of recommendations that maximizes the utility of the target user. Some authors
express the diversity in terms of rarity of the items in the recommendation list
[Patil and Taillie (1982)], others define the diversity in terms of dissimilarity of all
pairs of items in a given set [Hurley and Zhang (2011)].

Inspired by the formulation in [Smyth and McClave (2001)], proposed for
computing the diversity between cases in case-based recommender systems,
Kaminskas and Bridge [Kaminskas and Bridge (2016)] generalize the formula
as follows:

Diversity(R) =
1

|R|(|R|−1) ∑
i∈R

∑
j∈R, j 6=i

dist(i, j) (10.1)

where R denotes the list of the recommended items, |R| denotes the number of
items in the list R (|R| > 1), and dist is a diversity measure (one of those previ-
ously introduced). Equation (10.1) computes the average diversity, also known as
intra-list diversity or individual diversity [Ziegler et al. (2005)] since it considers
diversity from an individual user perspective [Adomavicius and Kwon (2012)].

The distance between two items can be computed in several ways, and it is
usually defined as the complement of similarity [Smyth and McClave (2001)]. It
can be based on some item features [Ziegler et al. (2005)], or vector representation
of the items, e.g. in [Kelly and Bridge (2006)] the Hamming distance computed
on the binary rating vectors of the items is used as distance metric. In [Vargas and
Castells (2014)], a metric based on the genre diversification of items is defined.
The authors consider the random selection of items as the optimal strategy for
generating pure genre diversity. The proposed metric, called binomial diversity,
computes the distance of the genre distribution in the list of recommendations
with the distribution obtained by a random selection of the items. A similar idea
is proposed in [Di Noia et al. (2017)]. Here, a re-ranking methodology based

October 22, 2018 17:14 ws-rv9x6-9x6 Book Title 11131-10 page 334

334 P. Lops et al.

on multi-attribute diversification is based on the user propensity to diversity on a
specific attribute (e.g. genre, director, starring in the movie domain).

Bellogı́n et al. [Bellogı́n et al. (2013)] have adapted the metric α-nDCG pro-
posed by Clarke et al. in IR field [Clarke et al. (2008)] to the recommendation
scenario. α-nDCG accounts for relevance and diversity together and it is a vari-
ant of the nDGC which penalizes the documents sharing features with documents
ranked higher in the list. The α parameter is used to balance the emphasis between
relevance and diversity.

An example of three recommendation lists with different intra-list diversity is
reported in Fig. 10.1.

Fig. 10.1. Example of recommendation lists with different degree of diversity: the 1st list has very
low diversity since all the movies have the same actor (Javier Bardem) and the same genre (drama,
romance); in the 2nd list the actor is the same but there are different genres; the 3rd list as higher
diversity, in terms of both actor and genre.

October 22, 2018 17:14 ws-rv9x6-9x6 Book Title 11131-10 page 335

Recommendations Biases and Beyond-Accuracy Objectives in Collaborative Filtering 335

Opposite to individual diversity, aggregate diversity takes into account the rec-
ommendation diversity across all users [Brynjolfsson et al. (2011); Adomavicius
and Kwon (2012)], and it is measured as the total number of distinct items rec-
ommended across all users. Aggregate diversity is also called catalog coverage
since it measures the capability of a recommender system to cover the item cata-
log. For top-N recommendations, aggregate diversity is usually measured as the
total number of distinct items recommended across all users based on the top-N
recommended items lists. It is called DiversityInTopN and is formally defined as
follows:

DiversityInTopN =

∣∣∣∣∣⋃
u∈U

RN(u)

∣∣∣∣∣ (10.2)

where RN(u) is the list of the most highly ranked N items for the target user u.
It is worth to note that a high individual diversity does not imply a high ag-

gregate diversity. Indeed, a recommender that suggests the same list of diverse
items to all the users will have a high intra-list diversity, but the lowest aggregate
diversity.

Aggregate diversity represents an important quality dimension from both a
business and a user perspective since an increase of the catalog coverage and of
the distribution of the items across the users may increase both sales and user
satisfaction [Vargas and Castells (2014)].

There is now a large consensus that users are more satisfied when they re-
ceive diversified recommendations, even though this causes a physiological loss
in terms of accuracy [Ziegler et al. (2005); Shi et al. (2012); Vargas et al. (2014)].
For example, a higher accuracy can be achieved by recommending the most pop-
ular items, but this approach generates less personalized recommendations and,
consequently, a reduction in diversity (in particular aggregate diversity). Con-
versely, if the recommender tries to improve the diversity, it generally recom-
mends not popular items for which the prediction of the user liking is a hard task.
In [Adomavicius and Kwon (2012)] the authors carried out a simple experiment:
they compared the results in terms of accuracy and diversity in two extremely dif-
ferent settings: in the first one, only popular items were recommended to users,
while in the second one long-tail items were recommended. The experiment was
performed on the MovieLens dataset, where popularity-based recommendations
show a precision-in-top-1 of 0.82 by recommending 49 distinct items of the whole
catalog, whereas the long-tail recommendations achieve an accuracy of 0.68 with
695 distinct items. This very simple experiment demonstrates that it is possi-
ble to easily increase the diversity of the system by recommending less popular
items. However, the goal of a recommender system should be to improve diver-
sity without dramatically worsening accuracy. To sum up, the intuition is that a

October 22, 2018 17:14 ws-rv9x6-9x6 Book Title 11131-10 page 336

336 P. Lops et al.

recommendation algorithm should increase diversity without including too many
items that are not relevant to the user.

10.2.3. Novelty

The novelty of a piece of information generally refers to how different it is with
respect to what has been previously seen or experienced by a person [Castells
et al. (2015)].

Basically, there is a subtle connection between the concept of novelty and that
of diversity, since the former refers to the difference between the information a
person is currently enjoying and the information she enjoyed in the past, while the
latter is atemporal and rather related to the differences between the components of
something a person is currently experiencing (e.g., the differences between item
pairs in a recommendation list).

Similarly to diversity, the definition of novelty finds its roots in IR research.
The problem of providing users with novel information was first raised by Baeza-
Yates and Ribeiro-Neto [Baeza-Yates et al. (1999)], who proposed to calculate the
novelty of a set of retrieved documents as the fraction of relevant documents which
are unknown to the user. The higher the number of unknown (and relevant) doc-
uments which are retrieved, the higher the novelty. A similar idea was proposed
by Zhang et al. [Zhang et al. (2002)], who defined the novelty of a document
as the opposite of its redundancy, which can be in turn calculated as the average
distance between the current document and those the user previously consumed.
This vision was further investigated by Allan et al. [Allan et al. (2003)], who ex-
tended the concept of redundancy at a sentence level, by considering the amount
of non-redundant information contained in a single sentence of a document.

Recommender Systems literature inherited and extended these definitions,
since a novel recommendation is typically a recommendation which is unknown
to the user and different from the items she has consumed before. The main prob-
lem arising from this definition lies in the fact that it is not easy to precisely frame
what is unknown for the current user. The easiest way to tackle this problem is to
explicitly ask the users whether each item in her recommendation list is known or
not. Such a process requires that a huge (and costly) user study is arranged every
time a new recommendation list or a new recommendation algorithm has to be
evaluated, and this is not feasible for almost all scenarios.

As a consequence, most of the literature tried to handle this problem by ap-
proximating the concept of novelty, that is to say, by defining some metrics whose
goal is to estimate whether the user knows the item or not, without explicitly ask-
ing. Basically, two different visions have been proposed in literature [Vargas and

October 22, 2018 17:14 ws-rv9x6-9x6 Book Title 11131-10 page 337

Recommendations Biases and Beyond-Accuracy Objectives in Collaborative Filtering 337

Castells (2011)]: an identity-based novelty and a global novelty. In the first case,
novelty is calculated on the ground of previous behavior of the user (e.g., which
items she consumed). In the latter, the global behavior of the whole community
of the users is taken into account.

Most of the metrics proposed in literature fall into the first class: as an ex-
ample, in [Nakatsuji et al. (2010a)], Nakatsuji et al. calculate the novelty as the
distance between the present interests of the user and the items she received as
recommendations. Basically, the distance between two items a and b can be cal-
culated as the opposite of their similarity sim(a,b), which can be in turn calculated
as the number of overlapping properties describing the items (content-based sim-
ilarity) or as the difference between the ratings the users give them (rating-based
similarity).

By following a similar insight, Zhang [Zhang (2013)] points out that a novel
recommendation should have three characteristics: being unknown, being rele-
vant, being dissimilar from the previous recommendations. Kapoor [Kapoor et al.
(2015)] further extended this definition by also including the concept of temporal
novelty, which refers to those items which are known but forgotten, a very typi-
cal scenario for domains with frequent and repeated item consumption as music
recommendation.

In all these cases, the concept of novelty is focused on the experience of the
target user, since a novel item is an item which contains information different from
that she previously consumed. The opposite vision, which is typically referred to
as global novelty, relates the novelty of a document to its popularity among all
the users [Celma and Herrera (2008)]. In this case, only the items that are in
the so-called long-tail, i.e. the part of the item catalog seen (rated or purchased)
by a small part of the user community, are labeled as novel. According to this
definition, the novelty can be simply calculated as the opposite of the popularity.
In other terms, the less popular an item is, the more likely it is to be unknown
to the users. Clearly, as stated by Celma et al. [Celma and Herrera (2008)], the
unpopularity of an items is not always a good indication of its novelty. Indeed, a
user familiar with rare items would probably know other similar rare items, but
this simple calculation provides a good approximation for measuring the novelty
without arranging a long and costly user study. More recently, other heuristics to
approximate the popularity of an item have been proposed: as an example, Jambor
and Wang [Jambor and Wang (2010)] used rating variance in the dataset, while
Oh et al. [Oh et al. (2011)] exploited exogenous information sources, such as box
office earnings for movies, with the simple insight that the smaller the earnings,
the lower the popularity of a movie.

October 22, 2018 17:14 ws-rv9x6-9x6 Book Title 11131-10 page 338

338 P. Lops et al.

Recently, Vargas and Castells [Vargas and Castells (2011)] made an effort to
define a solid theoretical framework to model the concept of novelty. In their
work, several variants of novelty metrics were proposed. Specifically they defined
Mean Popularity Complement (MPC) as the opposite of popularity, and Mean In-
verse User Frequency (MIUF) as the logarithm of the average number of users
who consumed a specific item. Such a slight variation aims at giving more impor-
tance to very rare items.

Formally, given a set of recommendations R and given a function p(i) which
returns the popularity of an item i, MPC and MIUF are defined as follows:

MPC(R) =
1
|R|∑i∈R

1− p(i) (10.3)

MIUF(R) =
1
|R|∑i∈R

−log2 p(i) (10.4)

In order to evaluate recommendation techniques with respect to novelty, in
both cases the overall novelty is obtained by averaging the values of novelty over
all the recommendations generated by the algorithm.

10.2.4. Serendipity

Overspecialization is a typical problem of recommender systems which stems
from the fact that they aim at finding items that best match the model of user
preferences in order to improve accuracy, regardless of the actual usefulness of
the suggestions [McNee et al. (2006)]. For example, if the target user likes the
movie Star Trek into Darkness, user-based collaborative algorithms will suggest
movies liked by other people who liked that movie. Most of the target user’s
neighbors will probably be science-fiction fans, hence the user will be provided
with items within her existing range of interests and her tendency towards a cer-
tain behavior is reinforced by creating a self-referential loop. A possible solution
to this problem is to design recommendation algorithms which provide serendip-
itous suggestions helping the users find surprisingly interesting items they might
not have otherwise discovered, or that would have been really hard to discover
[Herlocker et al. (2004)].

Serendipity is a factor which contributes to improve the perceived quality of
recommendations [Zhang et al. (2012)]. According to McNee et al. [McNee
et al. (2006)], serendipity is the experience of receiving an unexpected and fortu-
itous item recommendation, while other authors associate serendipity to a positive
emotional response of the user about novel items, which involves also surprise
[Shani and Gunawardana (2011); Gunawardana and Shani (2015); de Gemmis

October 22, 2018 17:14 ws-rv9x6-9x6 Book Title 11131-10 page 339

Recommendations Biases and Beyond-Accuracy Objectives in Collaborative Filtering 339

et al. (2015)]. According to these definitions, serendipity in recommender sys-
tems is achieved by providing unexpected suggestions, while maintaining high
relevance. While relevance is usually determined in terms of closeness to the
user profile, the assessment of unexpectedness of recommendations is not imme-
diate. Previous studies agreed on defining unexpectedness as the deviation from a
benchmark model or primitive prediction method that generates expected recom-
mendations [Murakami et al. (2008); Ge et al. (2010)]. For instance, in case of
a movie recommender system, expected recommendations could be blockbusters
seen by many people, or movies related to those already seen by the user, such as
sequels, or those with same genre and director. A limitation of this approach is its
sensitivity to the choice of the primitive prediction method.

Furthermore, it is useful to point out the differences with related notions of
novelty and diversity. Continuing with movie recommendations, if the system
recommends a movie the user was not aware of, the movie will be novel, but
not serendipitous. On the other hand, a movie by a young, not very popular di-
rector is more likely to be serendipitous (and also novel). Although diversity is
very different from serendipity, a relationship between the two notions exists, in
the sense that providing the user with a diverse list can facilitate unexpectedness
[Adamopoulos and Tuzhilin (2011)]. We can reasonably assume that users could
be surprised to some extent when a romantic movie is recommended within a
list of science-fiction movies. However, the diversification of recommendations
does not necessarily imply serendipity because diverse items could all fall into the
range of user preferences.

Serendipity has been recognized as a goal that often conflicts with accuracy:
as an extreme case, let us consider random recommendations, which improve
serendipity but cause a drastic loss in accuracy, making the system actually in-
effective [Fleder and Hosanagar (2009)]. Therefore, it is important that systems
were designed and evaluated by taking into account the need of properly balancing
these two factors.

10.3. Algorithmic solutions

In this section, we review the techniques to deal with the popularity bias of CF
systems, and to increase diversity, novelty and serendipity. Algorithmic solutions
and the corresponding references are summarized in Table 10.1.

October 22, 2018 17:14 ws-rv9x6-9x6 Book Title 11131-10 page 340

340 P. Lops et al.

Table 10.1. Overview of algorithmic solutions for dealing with the popularity bias and for increasing
diversity, novelty and serendipity.

Goal Algorithmic solutions Main references Comment

D
ea

lin
g

w
ith

Po
pu

la
ri

ty
B

ia
s

Application of a

post-processing scheme

Ranking-based techniques to promote

long-tail (less popular) items, with a

small level of accuracy loss

[Adomavicius and Kwon (2012)]

Easy way to deal with

different biases of

different recommendation

algorithmsPersonalized Bias Adjustment (PBA) of

relevance scores to deal with user and

recommendation lists biases regarding

popular items [Jannach et al. (2015)]

Tuning hyperparameters of

recommendation algorithms

More iterations of gradient descent to

reduce popularity and concentration bias

of Funk-SVD [Jannach et al. (2015)]

No need to modify or

having in-depth knowledge

of inner working of

recommendation algorithms
Reducing regularization for

Factorization Machines with ALS

reduces the concentration bias

[Jannach et al. (2015)]

More factors for MF increase coverage,

diversity and novelty

[Kaminskas and Bridge (2016)]

Proper adaptation of

recommendation algorithms

Probabilistic neighbor-selection (k-PN)

for selecting similar but diverse

neighbors for k-NN methods

[Adamopoulos and Tuzhilin (2014)]

Possible not straightforward

adaptation of recommendation

algorithms to avoid the bias

Biasing sampling process of implicit

feedback statements in BPR algorithm

[Jannach et al. (2015)]

Adaptive BPR: learning also from

feedback coming from items browsed

by users in BPR [Pan et al. (2015)]

Fairness-aware regularization for

RankALS [Abdollahpouri et al. (2017)]

Recommendation neutrality

[Kamishima et al. (2014)]

October 22, 2018 17:14 ws-rv9x6-9x6 Book Title 11131-10 page 341

Recommendations Biases and Beyond-Accuracy Objectives in Collaborative Filtering 341

Table 10.1. (Continued).

Goal Algorithmic solutions Main references Comment

In
cr

ea
si

ng
D

iv
er

si
ty Re-ranking techniques

Re-ranking algorithms using an

objective function which combines

relevance and diversity

[Kaminskas and Bridge (2016)]

[Smyth and McClave (2001)]

[Ziegler et al. (2005)]

[Vargas and Castells (2014)]

Techniques that can be used

with any recommendation

algorithm

Pareto frontier to find the best

balance of recommendation algorithms

maximizing different qualities, such as

accuracy, diversity and novelty

[Ribeiro et al. (2012)]

Modeling techniques

Use of an objective function to balance

predicted relevance and variance of

the recommendation list, based on

latent factors coming from MF

[Shi et al. (2012)]

Recommendation algorithms

need to be properly extended

Definition of the Set Diversity Bias,

working at item-set level rather than

at single-item level. Prediction of an

item score based on both relevance

and diversity of the item set

[Su et al. (2013)]

Incorporate diversity into a personalized

ranking objective [Hurley (2013)]

Clustering based on

priority-modeoids [Boim et al. (2011)]

and multidimensional clustering

[Li and Murata (2012)]

October 22, 2018 17:14 ws-rv9x6-9x6 Book Title 11131-10 page 342

342 P. Lops et al.

Table 10.1. (Continued).

Goal Algorithmic solutions Main references Comment

In
cr

ea
si

ng
N

ov
el

ty

Re-ranking techniques

Use of an objective function

to balance relevance and novelty

of the recommendation

[Kaminskas and Bridge (2016)]

Techniques that can be used

with any recommendation

algorithm
Use of a distance measure to re-rank

recommendations by promoting

items far from those previously

consumed [Rao et al. (2013)]

Modeling techniques

Clustering long-tail items and

calculating prediction for such items

by leveraging ratings in the clusters

[Park and Tuzhilin (2008)]

Recommendation algorithms

need to be properly extended

Bipartite graph-based data model

with a spreading strategy to promote

items voted by less users

[Zhou et al. (2010)], or with the

assignment of a lower cost to edges

connecting less popular items

[Shi (2013)]

In
cr

ea
si

ng
Se

re
nd

ip
ity Finding unexpected

recommendations out of

the filter bubble

AURALIST defines the bubble as

the cluster of preferred artists and

recommends those outside

cluster groups [Zhang et al. (2012)]

Outside-The-Box defines the bubble

as region of interests and

recommends items not falling into

those regions [Abbassi et al. (2009)]

Analysis of data related

to users or items

Analysis of purchase logs of innovators,

i.e. users with similar preferences with

the active user who purchase the same

items earlier [Kawamae (2010)]

Knowledge infusion approach based

on content analysis of items able to

discover hidden and non-obvious

correlations not detectable using

standard similarity scores

[de Gemmis et al. (2015)]

October 22, 2018 17:14 ws-rv9x6-9x6 Book Title 11131-10 page 343

Recommendations Biases and Beyond-Accuracy Objectives in Collaborative Filtering 343

Table 10.1. (Continued).

Goal Algorithmic solutions Main references Comment

Analysis of relatedness

among users

K-NN recommendation algorithm

based on k-furthest neighbors, i.e.

users dissimilar to the target user

[Said et al. (2013)], or based on

relatedness among users computed

through random walk with restarts

on a user similarity graph

[Nakatsuji et al. (2010b)]

TANGENT leverages likeminded

users well connected to familiar items

and to unrelated others as well

[Onuma et al. (2009)]

10.3.1. Dealing with Popularity Bias

As reported in [Jannach et al. (2015)], recommendation algorithms tend to ex-
hibit different undesired biases, even though they implement very similar tech-
niques. For example, it has been shown that two factorization machines variants,
i.e. Alternating Least Squares (ALS) and Markov Chain Monte Carlo optimiza-
tion (MCMC) [Rendle (2012)], can lead to quite different results in terms of the
concentration bias even though they solely differ in terms of the optimization pro-
cedure.

In the next sections, we present possible approaches to deal with popularity
and concentration biases, specifically devised for CF methods.

10.3.1.1. Application of a post-processing scheme to deal with the
undesired bias

The easiest way to deal with undesired biases is to apply a proper post-processing
step to the results produced by state-of-the-art recommendation algorithms, aim-
ing at reducing or avoiding the biases. This can be achieved by implementing
very basic or more complex strategies. For example, in order to deal with the pop-
ularity bias, in the final recommendation list the predicted rating of very popular
items could be lowered, while the ratings of unpopular items could be increased,
in order to modify the ranking of items. Of course, the definition of the adjustment
of predicted ratings is an issue since it could lead to the promotion of irrelevant
items.

More general approaches apply proper post-processing methods on the rec-
ommendation lists generated using state-of-the-art recommendation algorithms,

October 22, 2018 17:14 ws-rv9x6-9x6 Book Title 11131-10 page 344

344 P. Lops et al.

usually optimized for Root Mean Squared Error (RMSE), in order to remove or
mitigate some biases. As described in Section 10.3.2, this approach has been al-
ready implemented to improve the aggregate diversity of recommender systems,
using ranking-based techniques [Adomavicius and Kwon (2012)]: even though
the main goal of the proposed techniques is to improve the trade-off between ac-
curacy and diversity, it has been shown that ranking approaches are able to deal
with the popularity bias since they recommend significantly more long-tail items
with a small level of accuracy loss.

Recently, a post-processing scheme based on user-specific rating adjustments
has been proposed in [Jannach et al. (2015)], in order to deal with the popular-
ity bias. The technique, called personalized bias adjustment (PBA), provides an
adjustment of relevance scores of rating prediction-based algorithms which takes
into account both the original rating bias in the user profile and that of the rec-
ommendation list. PBA assesses the 1) user’s bias, i.e. tendency of the user to
generally like or dislike popular items, by taking into account both the popularity
of items rated in the user profile as well as the ratings assigned to those items;
2) the recommendation list bias, computed in the same way as the user bias, by
considering the popularity of recommended items as well as their predicted rating.
PBA tries to make these biases aligned, i.e. smaller, through a proper optimization
function matching the list and user biases and a simple gradient descent approach
to solve the minimization problem. Experiments on the MovieLens400k dataset,
a subset of the MovieLens10M dataset used in [Jannach et al. (2015)], show that
applying PBA post-processing to matrix factorization (MF) [Koren (2010)] and
Factorization Machines with ALS does not lead to a change in the overall accu-
racy of the algorithms in terms of RMSE, precision and recall, but at the same
time leads to a decrease of the concentration bias.

The technique could be easily applied with different rating prediction algo-
rithms and could be applied to deal with different biases.

10.3.1.2. Tuning the hyperparameter settings of the recommendation
algorithm

The same recommendation algorithm configured with different hyperparameters
might generate different top-N recommendations and create undesired biases.

Funk-SVD algorithm [Funk (2006)], a state of the art MF technique using
gradient descent as an optimization procedure, exhibits a strong concentration
bias when the optimal number of iterations (training steps of the gradient descent)
in terms of RMSE is used [Jannach et al. (2015)]. The analysis carried out on
MovieLens shows that increasing the number of iterations leads on one hand to a

October 22, 2018 17:14 ws-rv9x6-9x6 Book Title 11131-10 page 345

Recommendations Biases and Beyond-Accuracy Objectives in Collaborative Filtering 345

small increase of RMSE due to the overfitting, and on the other hand to a reduction
of the concentration bias, to a lower popularity bias and also to more diverse
recommendations in terms of Intra-List Diversity (ILD) [Jannach et al. (2015)].

Changing the number of training steps does not influence factorization ma-
chines with ALS in terms of accuracy or other quality factors; on the contrary
they are sensible to the variation of the regularization hyperparameter λ used to
penalize model overfitting. Similarly to the results of the previous experiment,
in correspondence to the value of λ where the best RMSE is observed, the algo-
rithm shows a concentration bias. Reducing λ slightly increases the RMSE, but at
the same time reduces the concentration bias and increases the recommendation
diversity [Jannach et al. (2015)].

The influence of recommendation algorithms parameters on the difference
performance metrics is also acknowledged in [Kaminskas and Bridge (2016)],
where the authors performed an analysis on the MovieLens dataset, in order to
assess the influence of the number of factors for a MF algorithm, and of the neigh-
borhood size for CF algorithms, on different performance metrics, such as recall,
coverage, novelty and diversity. For MF, increasing the number of factors leads
to a loss of recall, and to an increase in terms of coverage, diversity and nov-
elty, while for CF a higher number of neighbors leads to a decrease of coverage,
diversity and novelty, and to an increase of recall.

The practical implication of this analysis is that a proper tuning of the hyper-
parameters may help to reduce potential concentration or popularity biases, by
accepting a small loss of accuracy, without the need of modifying the recommen-
dation algorithms or also having an in-depth knowledge of their inner working.

10.3.1.3. Adaptation of the recommendation algorithm in order to avoid
a certain bias

In case the tuning of hyperparameters is not feasible in terms of complexity or
does not report the expected outcomes, it could be useful to understand the inner
logic of the recommendation algorithm, in particular which characteristics lead
to the undesired bias, in order to design a solution to avoid that bias. The main
problems with this approach are its requirement in terms of in-depth knowledge
of the recommendation mechanisms, whose complexity depends on the algorithm,
and the definition of countermeasures which can be algorithm-specific.

For classical k-NN methods, a possible countermeasure for avoiding the pop-
ularity and concentration bias is reported in [Adamopoulos and Tuzhilin (2014)],
which describes an alternative neighbor selection scheme, called probabilistic
neighbor selection (k-PN). The rating estimation is obtained by aggregating the

October 22, 2018 17:14 ws-rv9x6-9x6 Book Title 11131-10 page 346

346 P. Lops et al.

ratings of the k probabilistically selected neighbors rather than those of the k most
similar neighbors. The main intuition is that similar but diverse neighbors should
be used in neighborhood-based methods, since leveraging the most similar neigh-
bors might lead to obvious recommendations. The theoretical motivation behind
this intuition is based on the phenomenon of hubness [Radovanovic et al. (2010)],
where hubs are users (items) which appear in many more k-NN lists than other
users (items), as well as to the ensemble learning theory, where it is known that
the decrease of the generalization error of the model is obtained with estimators
of the ensemble which are negatively correlated. The problem of hubness can
be alleviated by a more equal distribution of the number of times each user (or
item) is included in a neighborhood, while the need of negatively correlated esti-
mators is obtained by considering neighbors as estimators, and by reducing their
covariance [Adamopoulos and Tuzhilin (2013)]. Experiments on RecSys HetRec
2011 MovieLens [Cantador et al. (2011)], MovieTweetings [Dooms et al. (2013)]
and Amazon [McAuley and Leskovec (2013)] datasets showed that systematically
selecting diverse sets of neighbors allows to reduce the concentration bias while
preserving a high accuracy.

For a more complex algorithm, such as Bayesian Personalized Ranking (BPR),
which learns to rank items based on implicit feedback [Rendle et al. (2009)], a
similar strategy based on the adaptation of the inner working of the algorithm is
explained in [Jannach et al. (2015)]. It has been shown that the popularity bias in
BPR is originated by the non-uniform distribution of implicit feedback statements
used to optimize the model parameters through the gradient descent. Implicit
feedback statements are in the form (u, i, j), which means that user u prefers item
i more than j, and the bias is generated by the random sampling strategy, which
leads to the selection of statements with high popular i and less popular j. A pos-
sible countermeasure is to bias the sampling process of items i and j, in order to
sample statements where i is less popular and j is more popular, i.e. learning from
feedback where the user liked an item i more than a generally popular item j,
which is more informative in terms of user preferences. Several experiments have
been performed on MovieLens400k and Yahoo!Movies datasets, using different
distribution functions to determine the sampling strategy. Generally the method
seems to be able to balance accuracy, popularity and concentration bias of BPR
[Jannach et al. (2015)]. Other authors worked on the improvement of the inner
logic of BPR, even though they did not take into account possible biases gener-
ated by the algorithm. In [Pan et al. (2015)], the authors extend implicit feedback
coming from transactions, i.e. items bought, with that coming from examination
records, i.e. items browsed (of high uncertainty w.r.t. the user’s true preference),
learn a confidence for each uncertain feedback in an adaptive manner, and propose

October 22, 2018 17:14 ws-rv9x6-9x6 Book Title 11131-10 page 347

Recommendations Biases and Beyond-Accuracy Objectives in Collaborative Filtering 347

a novel preference learning algorithm called Adaptive Bayesian Personalized
Ranking (ABPR) able to leverage both the types of implicit feedback. Empiri-
cally, ABPR shows very promising recommendation results on MovieLens and
Netflix in terms of ranking oriented evaluation metrics.

Other approaches propose more straightforward adaptations of recommen-
dation algorithms. The method in [Abdollahpouri et al. (2017)] is based on
the use of regularization to control the popularity bias of a recommender sys-
tem based on a learning to rank setting, such as RankALS [Takács and Tikk
(2012)]. The regularization term of the objective function is defined so that it
will be minimized when the distribution of recommendations is fair, i.e. a list that
achieves 50/50 balance between popular items and those in the long tail. The tech-
nique is called fairness-aware regularization, it could be applied to any learning
algorithm in which the objective function is formulated as a pairwise function of
items (e.g. BPR), and could be extended by defining a different distribution be-
tween popular and long tail items. Experiments on MovieLens1M and Epinions
datasets show that the approach is able to provide a tunable mechanism for con-
trolling the trade-off between accuracy and coverage.

Finally, another way to correct the popularity bias in CF is obtained by en-
hancing recommendation neutrality [Kamishima et al. (2014)], where neutrality
is specified with respect to a specific viewpoint. If the viewpoint is that users
have no interest in the popularity of items and wish to ignore this information,
they can obtain recommendations that are neutral with respect to that aspect. The
algorithm is based on a variant of the probabilistic MF model, where a constraint
term is adopted to enhance neutrality by enforcing the statistical independence be-
tween the target viewpoint and a rating. Experiments on the Flixster dataset show
that the method was able to correct the popularity bias with a not significantly
worsening of prediction error in terms of MAE.

This analysis makes clear that the adaptation of the recommendation algorithm
to avoid a certain bias might be very complex. Indeed, a preliminary analysis of
the algorithm is needed to understand both the reasons for the bias and which
part of the algorithm is responsible for that. Depending on the recommendation
algorithm, the design of a variant of the algorithm to avoid the bias could be not
straightforward.

10.3.2. Increasing Diversity

Similarly to the strategies that can be adopted to deal with the popularity bias
of recommender systems, the techniques used for optimizing the diversity can
be split in two main types: 1) techniques that do not modify the behavior of the

October 22, 2018 17:14 ws-rv9x6-9x6 Book Title 11131-10 page 348

348 P. Lops et al.

recommendation algorithm, but adopt a post-processing step on the results (i.e. re-
ranking), and 2) techniques that try to induce the diversity by directly generating
diversified recommendations.

The main characteristic of the first type of techniques is that they can be ap-
plied to every algorithm and do not modify the recommendation process since the
diversification is performed by a re-ranking step. The rank of the items is modi-
fied in order to avoid the occurrence of too similar items in the first positions of
the list. The second type of techniques extends the recommendation algorithm
for optimizing the diversity when the recommendations are generated. So, there
is not a re-ranking step, and the list of recommended items is already diversified
according to some criteria.

10.3.2.1. Re-ranking Techniques

Most of recommender systems rank the items to be shown to the user according
to a relevance score (i.e., the predicted rating) computed by the recommendation
algorithm. Indeed, a simple method is to compute the rank of an item as the
reciprocal of its predicted rating. Therefore the top-N recommendation list will be
composed of items with the highest predicted rating value. This ranking strategy
is defined as standard ranking [Adomavicius and Kwon (2012)] and is shared also
with IR systems that rank the retrieved documents in order of decreasing relevance
score [Robertson (1977)].

More formally, the standard rank is computed as follow:

rankstandard(i) =
1

r(u, i)
(10.5)

where r(u, i) is the relevance score computed by the recommender system on the
item i for the user u. Since the recommendation algorithm is generally pro-
grammed for optimizing recommendation accuracy, standard ranking does not
consider diversification of the recommendations. In [Adomavicius and Kwon
(2012)], standard ranking is compared with popularity-based ranking in order
to evaluate the impact on the diversity of these two different ranking approaches.
Popularity-based ranking is defined as follows:

rankpopularity(i) = |U(i)| (10.6)

where U(i) is the number of users who rated the item i. Accordingly, the larger
the number of users who rated an item, the higher the position in the ranked rec-
ommendation list. In that comparison, Adomavicius and Kwon demonstrated that
popularity-based ranking increased aggregate diversity by 3.6 times compared to
the standard ranking approach, using the MovieLens dataset and item-based CF.

October 22, 2018 17:14 ws-rv9x6-9x6 Book Title 11131-10 page 349

Recommendations Biases and Beyond-Accuracy Objectives in Collaborative Filtering 349

Hence, recommending the most popular items is a simple strategy to increase the
diversity, even though they observed an accuracy loss of 20%. To overcome this
problem, a parameterized version of the ranking function is proposed, where the
parameter is a rating threshold which allows to consider only the items that were
predicted above the predefined threshold to ensure an acceptable level of accuracy,
as is typically done in recommender systems. If the user desires a high accuracy,
the threshold could be set close to the maximum rating available, otherwise by
decreasing the threshold more diversified recommendations could be obtained.

In [Kaminskas and Bridge (2016)], the authors describe a greedy re-ranking
algorithm based on the idea of defining an objective function which is a combina-
tion of relevance and diversity of a given item. At each step the algorithm puts into
the recommendation list the item which maximizes the objective function. This
approach was originally proposed in the IR literature by Carbonell and Goldstein
[Carbonell and Goldstein (1998)], who defined the Maximum Marginal Relevance
(MMR) approach. MMR defined the objective function as a linear combination of
the item’s relevance and the negative of its maximum similarity to items already in
the result list. Several recommendation algorithms [Smyth and McClave (2001);
Ziegler et al. (2005)] defined the objective function as a linear combination of
the relevance and average distance to the items in the recommendation list. More
formally:

fob jective(i,R) = α · rel(i)+(1−α) · 1
|R| ∑j∈R

dist(i, j) (10.7)

where α is the weight that allows to control the impact of relevance and dis-
tance in the re-ranking process, similarly to the role of the above mentioned
rating threshold; rel(i) is the relevance score for the item i, and dist(i, j) is the
diversity function between two items. Smyth and McClave [Smyth and McClave
(2001)] tested their algorithm on the Travel case base1 and demonstrated that re-
trieval diversity can be improved without sacrificing retrieval similarity. Ziegler
et al. [Ziegler et al. (2005)] conducted a large scale user survey and showed
that the user’s overall liking of recommendation lists goes beyond accuracy and
involves other factors (e.g., the users’ perceived list diversity). A different ap-
proach has been proposed in [Barraza-Urbina et al. (2015)], where the objective
function computes the diversity between the recommended item and the items in
the user profile. An experimental evaluation carried out on the MovieLens100k
dataset demonstrated that the approach can be tuned towards more exploitative
diverse results or more explorative diverse results with controlled sacrifice over
relevance. A greedy strategy is also used in [Vargas and Castells (2014)]. Here a
1http://www.ai-cbr.org

October 22, 2018 17:14 ws-rv9x6-9x6 Book Title 11131-10 page 350

350 P. Lops et al.

greedy re-ranking approach optimizes the ranking by defining an objective func-
tion that linearly combines relevance and binomial diversity (see Section 10.2.2).
Experimental results on the Netflix Prize dataset2 and on the Million Song Dataset
Challenge [McFee et al. (2012)] confirmed the effectiveness of their proposals. In
[Zhang and Hurley (2008)], the authors do not apply a greedy approach but tackle
the issue as a binary optimization problem, to control the diversity and matching
quality of recommendation lists. The evaluation was performed on the Movie-
Lens1M dataset and it has been shown that the method can increase the likelihood
to recommend novel items, while maintaining good performance.

Finally, in [Ribeiro et al. (2012)], similarly to a hybrid recommendation ap-
proach, the recommendation list is composed by merging the items generated
by different recommendation algorithms. More specifically, the recommen-
dations are generated by user-based and item-based nearest neighbor ap-
proaches, popularity-based approach, content-based and demographic-based
nearest-neighbor approaches. The Pareto frontier is used for finding the best bal-
ance of the three recommendation objectives: accuracy, diversity, and novelty.
The idea is that each recommendation algorithm maximizes a recommendation
quality, so the proposed model finds the best balance (i.e. the Pareto frontier)
where none of the three qualities can be improved without penalizing the other
two. Experiments conducted on the MovieLens and LastFM datasets showed that
it is possible to combine different algorithms in order to produce better recommen-
dations and to control the desired balance between accuracy, novelty and diversity.

10.3.2.2. Modeling Techniques

In the previous section we analyzed re-ranking techniques that can be used with
any recommendation algorithm. In this section we present some approaches which
extend the recommendation algorithms in order to generate diversified recommen-
dations.

In [Shi et al. (2012)], a combination of MF and portfolio theory is proposed.
The portfolio theory of IR [Wang and Zhu (2009)], inspired by the Modern Portfo-
lio Theory which deals with investments on financial markets, argues that ranking
under uncertainty does not consist only in retrieving individual relevant docu-
ments, but also in choosing the right combination of relevant documents. Accord-
ingly, the list of the retrieved documents will satisfy an expected overall relevance
and variance. An optimal ranking balances the overall relevance against the vari-
ance. Shi et al. [Shi et al. (2012)] defined an objective function that balances
the predicted relevance and the variance of the recommendation list, where the

2http://www.netflixprize.com/

October 22, 2018 17:14 ws-rv9x6-9x6 Book Title 11131-10 page 351

Recommendations Biases and Beyond-Accuracy Objectives in Collaborative Filtering 351

variance is based on latent factor vectors obtained from the MF approach. This
model is able to adapt the diversification level to the user tastes. Indeed, if a user
generally rates diverse items, the corresponding latent factors will have higher
variance than a user who generally rates similar items. An experimental evalu-
ation carried out on the MovieLens1M dataset demonstrated the effectiveness of
the approach for adapting result diversification to the users’ needs without access-
ing to explicit item properties. In addition, they also showed that the proposed
approach is capable of effectively adjusting the trade-off between the relevance
and the diversity of recommended items, and thus could further contribute to the
overall recommendation quality. This idea to analyze the tendencies of the indi-
vidual users based on their past behavior in order to adapt the diversification of
the recommendations is also adopted in [Jugovac et al. (2017)], even though in
that work a re-ranking approach is exploited.

A set-oriented CF model for diversified top-N recommendations is proposed
in [Su et al. (2013)]. The authors integrate the diversity concept into a traditional
MF model. This model works at item-set level rather than at single-item level
by defining the new concept of Set Diversity Bias. The set-oriented CF model
predicts the score on a given item by considering both relevance and diversity of
the item set. It is possible to control the weight of diversity in the model through
a parameter. The diversity of an item set is associated with the latent factors of
the items in it. The experimental evaluation on the MovieLens1M dataset showed
that the model outperforms traditional models in terms of personalized diversity
and maintains good performance on relevance prediction.

A method to incorporate diversity into a personalized ranking objective in the
context of ranking-based recommendation using implicit feedback is proposed in
[Hurley (2013)]. The idea is to learn a prediction formula as the product of user
and item feature vectors modified to weight the difference in ratings between two
items by their dissimilarity. Promising results were obtained on the MovieLens1M
dataset in terms of intra-list diversity with just a small loss in relevance.

Other techniques are based on clustering for diversifying the recommenda-
tions. The model proposed in [Boim et al. (2011)] is based on the notion of
priority-medoids. The medoid of a given cluster is an element in the cluster
for which the sum of the distances from it to the other items in the cluster is
minimal. The priority-medoids adds the requirement that the representatives (i.e.
the medoids) are the ones having highest rating in their corresponding clusters.
Thus the clusters based on priority-medoids are different than the clusters formed
when considering standard medoids. Experiments carried out on the Netflix Prize
dataset demonstrated the effectiveness of the model.

October 22, 2018 17:14 ws-rv9x6-9x6 Book Title 11131-10 page 352

352 P. Lops et al.

In [Li and Murata (2012)] the authors propose a model based on multidimen-
sional clustering and collaborative filtering. Multidimensional factors are used for
ranking the recommendation list to substantially increase diversity while main-
taining comparable levels of accuracy. The similarity between items is thus com-
bined with multidimensional data clusters. This helps in the exploration of other
clusters, which have similarity closer to the target user and provide him with good
set of recommendations. The proposed approach performs better than traditional
two-dimensional approaches in terms of improving quality of recommendations
on the MovieLens100K dataset.

10.3.3. Increasing Novelty

Bellogin et al. [Bellogı́n et al. (2013)] showed that CF algorithms tend to have a
lower novelty when compared with content-based counterparts. This behavior is
also confirmed by Pampin et al. [Pampın et al. (2015)]: in their work they investi-
gated beyond-accuracy metrics and they noted that the algorithm with the lowest
novelty is the item-based k-NN. Conversely, in their experiments user-based k-NN
shows a small improvement in terms of novelty, especially when the parameter k
(number of neighbors) is small. However, this is a not a general behavior since
other results [Kaminskas and Bridge (2016)] showed that item-based can over-
come user-based k-NN on some datasets.

Regardless these little differences, the clear trend which emerges from all these
empirical comparisons is that CF algorithms generally have a lower novelty than
other techniques. This is confirmed also by a a large-scale evaluation conducted
by Celma and Herrera [Celma and Herrera (2008)] on Last.fm, who showed that
CF approach produces recommendations which are more familiar to the user. This
issue is partially due to the new item problem which is typical of CF. Indeed, when
an item receives just a few ratings it is very difficult to make it included in the
recommendation lists, which are typically oriented towards more popular items
(see Section 10.2.1).

As a consequence, several methodologies to generate more novel recommen-
dations have been proposed in literature. The easiest (and trivial) way to provide
users with novel recommendations is to filter out all the items she already rated or
used. Obviously, such a trivial approach does not fulfill the goal, since in every
recommendation scenario it is not realistic to ask the user to rate all the items she
knows, thus it is necessary to think about other methodologies.

A very simple and empirical approach for promoting novel items has been
proposed by Herlocker et al. [Herlocker et al. (2004)]. In their work the authors
suggest to create a list of obvious recommendations and to remove such items

October 22, 2018 17:14 ws-rv9x6-9x6 Book Title 11131-10 page 353

Recommendations Biases and Beyond-Accuracy Objectives in Collaborative Filtering 353

from the recommendation lists generated by the algorithm. However, also this
approach is not fully convincing, since the set of obvious items might be different
for each user.

A more sophisticated technique was proposed by Hijikata et al. [Hijikata et al.
(2009)], who designed a CF algorithm relying on two different rating profiles:
the traditional one, based on the explicit ratings given by the users, and an ac-
quaintance one, where the user express her familiarity (that is to say, known or
unknown) with each item. Next, several hybridization strategies which combine
both the profiles are proposed by the authors. However, even if the experiments
confirmed the effectiveness of the approach, such a very simple technique has
the important issue of doubling the cognitive load of the user, since two different
profiles have to be constructed in order to get novel recommendations.

Generally speaking, the techniques to provide users with novel recommenda-
tions can be roughly split in two classes, which are the same classes we already
introduced for the discussion of the diversity: re-ranking techniques and model-
based techniques. In the first case, a set of candidate recommendations that have
been selected on the basis of relevance are re-ranked in order to improve the nov-
elty of the recommendations. In the latter, some shrewdness aiming at promoting
novel items is directly injected in the recommendation model.

Re-ranking approaches for generating novel recommendation follow the same
insight which is used to diversify a recommendation list. As previously shown, a
very common way to generate different recommendations is to define a new objec-
tive function that combines the relevance of the item with other criteria. Formally,
a simple variant of Equation (10.7) is proposed:

fob jective(i,R) = α · rel(i)+(1−α) ·novelty(i) (10.8)

As discussed in [Kaminskas and Bridge (2016)], novelty(i) can be defined
through the Mean Popularity Complement (MPC) and the Mean Inverse User Fre-
quency (MIUF), as defined in Equations (10.3) and (10.4), respectively. In both
cases, items which are both relevant and not popular among the users are provided
with a higher overall score and are more likely to be recommended. As shown by
the authors, even such a simple approach based on linear combination of differ-
ent objective functions leads to good experimental results on both MovieLens and
Last.fm data, since in all the cases the resulting novelty got a significant increase
thanks to these formulas. Another attempt is proposed in [Rao et al. (2013)],
where the authors exploit a distance measure based on a taxonomy of the con-
cepts mentioned in a set of news articles in order to re-rank a recommendation list
by promoting more novel items, i.e. far from those the user previously consumed.

October 22, 2018 17:14 ws-rv9x6-9x6 Book Title 11131-10 page 354

354 P. Lops et al.

On the other side, the main goal of model-based techniques was to adapt the
behavior of recommendation algorithms in order to promote novel items. As an
example, Park and Tuzhilin [Park and Tuzhilin (2008)] focused on long-tail items
and proposed an algorithm to specifically improve the prediction accuracy on such
items, in order to increase the likelihood of putting them in the recommendation
lists. Their approach is based on the idea of clustering long-tail items and of cal-
culating the prediction for such items by exploiting all the ratings in the clusters.
Experiments on MovieLens and Bookcrossing datasets showed that such an ap-
proach can actually reduce the prediction error, but it cannot guarantee that novel
items are introduced in the recommendation list.

An alternative approach was proposed by Zhou et al. [Zhou et al. (2010)].
In this work the authors define a bipartite graph-based data model representing
users and items and introduce a weight spreading strategy specifically oriented at
promoting novel recommendations by just giving more weight to the items voted
by less users. A similar attempt was also proposed by Shi [Shi (2013)], who
defined a graph-based data model and introduced the concept of edge transition
costs, aiming at giving more importance to novel items by assigning a lower cost
to the edges which connect less popular items. In both the works, the experiments
carried out on MovieLens100k and Last.fm datasets, showed that these techniques
are able to improve the overall novelty of the algorithms.

Finally, a very relevant attempt towards the generation of novel recommenda-
tions was proposed by Oh et al. [Oh et al. (2011)], who introduced the concept of
personal popularity tendency in order to identify the subset of users that are more
willing of receiving novel recommendations and further personalize their ranking
by penalizing the items which are very popular in the community.

10.3.4. Increasing Serendipity

The idea of introducing serendipity in information seeking systems in an op-
erational way was proposed in the early 2000s [Toms (2000); Campos and
de Figueiredo (2001); Erdelez (2004); Foster and Ford (2003)].

One of the most common strategies of programming for serendipity is de-
termining the filter bubble of the user, i.e. the familiar information that a per-
sonalized filter (such as a recommender system) creates for each of us, and then
finding unexpected recommendations out of the bubble. For instance, the Au-
ralist system finds musical bubbles, i.e. clusters of artists the user usually listens
to, in order to recommend artists outside established cluster groups [Zhang et al.
(2012)]. Evaluation performed over 360k Last.fm users and a proper user study
show that Auralist’s emphasis on serendipity indeed improves user satisfaction.

October 22, 2018 17:14 ws-rv9x6-9x6 Book Title 11131-10 page 355

Recommendations Biases and Beyond-Accuracy Objectives in Collaborative Filtering 355

The Outside-The-Box system [Abbassi et al. (2009)] suggests items which do not
fall into regions of interests (the bubble) the user is familiar with. Unfamiliarity
can arise either when a user does not like items in that region and chooses not to
rate them, or when the user has not been exposed enough to the region. In the
latter case that region is likely to contain serendipitous items. Experiments on
the MovieLens10M dataset show that, compared to a standard CF approach, most
of the recommendations rank higher up in the returned list which makes them
different and novel, hence, potentially useful.

Among collaborative approaches, in [Kawamae (2010)] the authors propose
a strategy for suggesting surprisingly interesting items to a user by identifying
purchase history logs of users who have similar preferences and a high degree of
purchase precedence (i.e., purchasing the same items earlier) relative to that user.
These users are called “innovators” since they become aware of items well before
their release, and purchase them just after their release. The method assigns higher
weights to innovators, and can rank these novel items first in the recommendation
list. This should help to find items that match the latest user preferences, but also
items she might not have otherwise discovered. Experiments on the Netflix Prize
dataset and on two other datasets consisting of purchase histories obtained from
real on-line music and video download services in Japan demonstrate that this
algorithm offers a high degree of recommendation serendipitousness.

An item-item approach is described in [de Gemmis et al. (2015)], where the
authors define a knowledge infusion process based on item content analysis able
to discover hidden and non-obvious correlations between items which cannot be
detected by using standard similarity scores, such as the number of users that
co-rated the items. The approach computes a correlation score used to fill in an
item-item correlation matrix that can be used by any recommendation method. Of-
fline experiments on a subset of the HetRec2011-MovieLens-2K dataset demon-
strate that the proposed algorithm produces more serendipitous suggestions than
other collaborative or content-based recommendation algorithms, showing bet-
ter balancing of relevance and unexpectedness. Furthermore, a preliminary user
study was performed to assess both the acceptance and the actual perception of
serendipity of recommendations, through the administration of questionnaires and
the analysis of users’ emotions, respectively. Results showed that the presence of
positive emotions, such as happiness and surprise, could help to assess the actual
perception of serendipity.

In [Said et al. (2013)], the authors propose a k-furthest neighbor recom-
mendation algorithm, that overcomes the bias towards popular items of classical
k-NN approaches by suggesting items coming from neighborhoods of users dis-
similar to the target user. A similar approach is suggested by Nakatsuji et al.

October 22, 2018 17:14 ws-rv9x6-9x6 Book Title 11131-10 page 356

356 P. Lops et al.

[Nakatsuji et al. (2010b)], whose k-NN algorithm calculates ratings based on re-
latedness among users, inferred by running random walk with restarts on a user
similarity graph. Another user-based approach is the one adopted by TANGENT
[Onuma et al. (2009)], which detects groups of likeminded users and suggests
items relevant to users from different groups. Likeminded users are grouped by
selecting nodes in a graph connecting users with movies they like, giving high
scores to nodes that are well connected to the older choices of the user, and at the
same time well connected to unrelated choices, in order to broaden the user hori-
zons. This strategy allows the recommendation of items close enough to a user’s
current interests, but also towards a new area that the user has not discovered yet.

A serendipity-oriented recommendation mechanism that models unexpected-
ness by combining the concepts of item rareness and dissimilarity is proposed in
[Zheng et al. (2015)]. An unexpected item is assumed to show low popularity as
well as low distance from a user’s profile. PureSVD, (variation of singular value
decomposition) is adopted to compute recommendations.

10.4. Available resources

Initially the typical evaluation of recommender systems has been focused on clas-
sical accuracy metrics, and for this reason the vast majority of libraries or re-
sources to perform evaluations allowed to only consider these aspects, without
taking into account the variety of beyond-accuracy metrics. Diversity, novelty, or
serendipity are often tested individually, and there is a lack of systems which allow
to perform comparative studies taking into account accuracy and beyond-accuracy
metrics at the same time.

In this section, we describe the common and widely adopted libraries for
implementing and testing recommender systems, with a specific focus on the
beyond-accuracy evaluation, if supported.

• MyMediaLite [Gantner et al. (2011)]3. The framework is implemented
in C#, is available to developers under the terms of the GNU General
Public License (GPL), and can be easily included in programs written in
Ruby, Python and partially in Java. It addresses the two most common
scenarios in CF, i.e. rating prediction, and item prediction from positive-
only feedback (e.g. from clicks, likes, or purchase actions). Among a va-
riety of algorithms, for rating prediction it implements different variants
of k-NN models, a method for MF and simple baseline methods, such as
Slope-One and averages, while for item prediction it implements simple

3http://www.mymedialite.net/index.html

October 22, 2018 17:14 ws-rv9x6-9x6 Book Title 11131-10 page 357

Recommendations Biases and Beyond-Accuracy Objectives in Collaborative Filtering 357

baselines as random and most popular items, and advanced MF models,
such as BPRMF (Bayesian Personalized Ranking Matrix Factorization),
and BPRSLIM (Sparse Linear Methods). Moreover, it includes evalua-
tion routines for the most common evaluation metrics: Mean Absolute
Error (MAE) and Root Mean Squared Error (RMSE) for the rating pre-
diction task, and Area under the ROC-curve (AUC), Precision@N, Mean
Average Precision (MAP), and normalized Discounted Cumulative Gain
(nDCG) for item prediction. The framework allows to perform cross-
validation and hyperparameter selection using grid search, but it does
not support the evaluation of beyond-accuracy metrics.
• LensKit [Ekstrand et al. (2011)]4. It has been developed as a flexible

platform for reproducible recommender systems research. It is imple-
mented in Java, and it can be used through command line or included
in an external project. It provides the most common recommendation
algorithms, such as k-NN models, matrix factorization (e.g. Funk-SVD)
and Slope-One. LensKit provides a flexible framework for offline evalu-
ations. Currently, train-test evaluation of recommender prediction accu-
racy is supported, with several metrics for measuring accuracy, such as
MAE, RMSE, nDCG, and coverage.
• Mahout [Owen et al. (2012)]5. It is a Java-based environment for imple-

menting machine learning applications and Recommender Systems. It is
supported by the Apache Software Foundation, and it is based on Apache
Hadoop for managing data distribution for scalable applications. The
Apache support makes the environment stable and efficient. It supports
k-NN models, and Matrix factorization with Alternating Least Squares
(also on implicit feedback), and provides routines for the evaluation in
terms of MAE, RMSE, Precision, Recall and nDCG.
• rrecSys [Çoba and Zanker (2016)]6. It is an open source extension

package in R for rapid prototyping and assessment of recommender sys-
tem algorithms, specifically designed for education purposes. It supports
both rating predictions and lists of recommended items, and includes
average-based baselines, Slope-One, k-NN models, FunkSVD, BPR and
weighted Alternating Least Squares. The algorithms can be evaluated
in terms of MAE, RMSE, Precision, Recall, AUC, nDCG, and coverage
measures.

4http://lenskit.org/
5https://mahout.apache.org
6https://cran.r-project.org/web/packages/rrecsys/index.html

October 22, 2018 17:14 ws-rv9x6-9x6 Book Title 11131-10 page 358

358 P. Lops et al.

• RankSys [Castells et al. (2015)]7. RankSys is a new framework for
the implementation and evaluation of recommendation algorithms and
techniques, specifically devised for the assessment and enhancement of
novelty and diversity. It contains implementations of the novelty and
diversity metrics and re-ranking strategies based on 1) a direct re-scoring
of the scores provided by the original recommendation ranking, and 2)
a greedy selection in which some set-wise magnitude is maximized by
iteratively selecting those items that maximize it. The code is licensed
under the Mozilla Public License (MPL) 2.08.

Even though the evaluation of the beyond-accuracy metrics is deemed crucial
in the recommender systems community, at the moment RankSys is the only li-
brary which supports that kind of evaluation, while the other platforms still do not
provide any support for it.

Besides the evaluation of accuracy and beyond-accuracy objectives, another
aspect which is considered challenging in the recommender systems community
concerns the fair evaluation of results, specifically in very complex experiments
where different dimensions usually take place. This complexity makes difficult
the comparison of results across different recommendation frameworks, since it is
not unusual that the reported accuracy of an algorithm in one framework differs
from the same algorithm in a different framework [Said and Bellogı́n (2014)]. To
this purpose, it is possible to use benchmark frameworks which allow to lever-
age a common evaluation pipeline. Recently, RiVal [Said and Bellogı́n (2014)]9

emerged as a new toolkit for evaluation benchmark of recommender systems. It al-
lows for fine-grained control of the evaluation methodology to obtain results com-
parable across different recommendation frameworks. It is open source, written in
Java, and distributed by a Creative Commons Attribution 3.0 Unported license. It
does not include recommendation algorithms, rather it provides wrappers for in-
corporating recommendations obtained with MyMediaLite, LensKit, and Apache
Mahout. The evaluation pipeline proposed by RiVal is based on three phases: 1)
dataset splitting, 2) selection of candidate items to evaluate, 3) evaluation of re-
sults. The dataset splitting allows to define the approaches for subdividing the
dataset into a training and test set. Standard approaches based on time, cross-
validation, random selection and percent ratio splitting are implemented. The data
are then shared with the framework which generates the recommendations in or-
der to obtain the predicted rating or the list of recommended items. The candidate

7http://ranksys.org/
8https://www.mozilla.org/en-US/MPL/2.0/
9http://rival.recommenders.net/

October 22, 2018 17:14 ws-rv9x6-9x6 Book Title 11131-10 page 359

Recommendations Biases and Beyond-Accuracy Objectives in Collaborative Filtering 359

items obtained are then opportunely formatted, and information about the possible
ground truth is extracted. Finally in the evaluation step, the framework uses the
configured metrics (e.g., RMSE, MAE, nDCG, Precision, Recall, MAP) for eval-
uating the items and to provide results. There is no support for beyond-accuracy
metrics.

10.5. Challenges and Future directions

In this chapter, we have reviewed the state-of-the-art research on beyond-accuracy
objectives, with a specific focus on collaborative recommender systems. We have
focused on how to measure and possibly increase diversity, novelty and serendip-
ity, and on how to deal with possible undesired biases occurring in CF systems.

In our opinion, there are the following interesting challenges to address:

Adaptation of beyond-accuracy objectives to specific recommendation do-
mains. An important challenge in beyond-accuracy research is to devise solutions
tailored to specific recommendation domains. There are domains where users
may be particularly interested in consuming items already consumed in the past
[Mourão et al. (2017)]: this happens for example for music or restaurants, while
this may be not useful for items such as books. In [Mourão et al. (2017)], subsets
of items that were already consumed long ago are proposed as good candidates
for reconsumption. Indeed, they are usually neglected by recommender systems,
they could improve unexpectedness and serendipity since users do not expect to
consume them presently, and finally, they may enhance the user experience by
improving diversity. Experiments demonstrated that the long-term history of each
user can be effectively exploited as a new source of unexpectedness and diversity.

Adaptation of beyond-accuracy objectives to individual users. Each specific
beyond-accuracy objective could be different and tailored to each individual user,
according to her needs and preferences. For example, different users could be
inclined to diversifying only with respect to some specific item dimensions (e.g.,
director and year in the movie domain) and not be interested in diverse sugges-
tions related to other ones (e.g. genre in the movie domain). As in [Di Noia et al.
(2017)], this may allow to define an adaptive multi-attribute diversification ap-
proach able to customize the degree of individual diversity by taking into account
the inclination of each user to diversifying over different content-based item di-
mensions. In general, the challenge is to look at the tendencies of the individual
users based on their past behavior, in order to emulate these tendencies in the final
recommendation lists [Jugovac et al. (2017)].

October 22, 2018 17:14 ws-rv9x6-9x6 Book Title 11131-10 page 360

360 P. Lops et al.

Finally, another aspect worth to be investigated is the development of proper
software libraries for implementing and evaluating the optimization strategies for
the beyond-accuracy objectives, and for properly balancing the trade-off between
accuracy and beyond-accuracy metrics.

References

Abbassi, Z., Amer-Yahia, S., Lakshmanan, L. V. S., Vassilvitskii, S. and Yu, C. (2009).
Getting Recommender Systems to Think Outside the Box, in Proceedings of the
ACM Conference on Recommender Systems, RecSys 2009, New York, USA (ACM),
ISBN 978-1-60558-435-5, pp. 285–288.

Abdollahpouri, H., Burke, R. and Mobasher, B. (2017). Controlling popularity bias in
learning-to-rank recommendation, in P. Cremonesi, F. Ricci, S. Berkovsky and
A. Tuzhilin (eds.), Proceedings of the Eleventh ACM Conference on Recommender
Systems, RecSys 2017, Como, Italy, August 27-31, 2017 (ACM), ISBN 978-1-4503-
4652-8, pp. 42–46, doi:10.1145/3109859.3109912.

Adamopoulos, P. and Tuzhilin, A. (2011). On Unexpectedness in Recommender Systems:
Or How to Expect the Unexpected, in P. Castells, J. Wang, R. Lara and D. Zhang
(eds.), Proceedings of the ACM RecSys 2011 Workshop on Novelty and Diversity in
Recommender Systems (DiveRS), CEUR Workshop Proceedings, Vol. 816 (CEUR-
WS.org), pp. 11–18.

Adamopoulos, P. and Tuzhilin, A. (2013). Probabilistic neighborhood selection in col-
laborative filtering systems, Working paper: CBA-13-04, NYU, http://hdl.
handle.net/2451/31988.

Adamopoulos, P. and Tuzhilin, A. (2014). On over-specialization and concentration bias
of recommendations: probabilistic neighborhood selection in collaborative filter-
ing systems, in A. Kobsa, M. X. Zhou, M. Ester and Y. Koren (eds.), Eighth ACM
Conference on Recommender Systems, RecSys ’14, Foster City, Silicon Valley, CA,
USA - October 06-10, 2014 (ACM), ISBN 978-1-4503-2668-1, pp. 153–160, doi:
10.1145/2645710.2645752.

Adomavicius, G. and Kwon, Y. (2012). Improving aggregate recommendation di-
versity using ranking-based techniques, IEEE Trans. Knowl. Data Eng. 24,
5, pp. 896–911, doi:10.1109/TKDE.2011.15, https://doi.org/10.1109/
TKDE.2011.15.

Agrawal, R., Gollapudi, S., Halverson, A. and Ieong, S. (2009). Diversifying search results,
in Proceedings of the Second ACM International Conference on Web Search and
Data Mining, WSDM ’09 (ACM, New York, NY, USA), ISBN 978-1-60558-390-7,
pp. 5–14, doi:10.1145/1498759.1498766, http://doi.acm.org/10.1145/
1498759.1498766.

Allan, J., Wade, C. and Bolivar, A. (2003). Retrieval and novelty detection at the sentence
level, in Proceedings of the 26th annual international ACM SIGIR conference on
Research and development in informaion retrieval (ACM), pp. 314–321.

Baeza-Yates, R., Ribeiro-Neto, B. et al. (1999). Modern information retrieval, Vol. 463
(ACM Press New York).

http://hdl.handle.net/2451/31988
http://hdl.handle.net/2451/31988
https://doi.org/10.1109/TKDE.2011.15
https://doi.org/10.1109/TKDE.2011.15
http://doi.acm.org/10.1145/1498759.1498766
http://doi.acm.org/10.1145/1498759.1498766

October 22, 2018 17:14 ws-rv9x6-9x6 Book Title 11131-10 page 361

Recommendations Biases and Beyond-Accuracy Objectives in Collaborative Filtering 361

Barraza-Urbina, A., Heitmann, B., Hayes, C. and Ramos, A. C. (2015). Xplodiv: An
exploitation-exploration aware diversification approach for recommender systems,
in FLAIRS Conference, pp. 483–488.

Bellogı́n, A., Cantador, I. and Castells, P. (2013). A comparative study of heterogeneous
item recommendations in social systems, Inf. Sci. 221, pp. 142–169, doi:10.1016/j.
ins.2012.09.039, http://dx.doi.org/10.1016/j.ins.2012.09.039.

Bellogı́n, A., Cantador, I., Dı́ez, F., Castells, P. and Chavarriaga, E. (2013). An empiri-
cal comparison of social, collaborative filtering, and hybrid recommenders, ACM
Transactions on Intelligent Systems and Technology (TIST) 4, 1, p. 14.

Bellogı́n, A., Castells, P. and Cantador, I. (2017). Statistical biases in information retrieval
metrics for recommender systems, Inf. Retr. Journal 20, 6, pp. 606–634, doi:10.
1007/s10791-017-9312-z.

Boim, R., Milo, T. and Novgorodov, S. (2011). Diversification and refinement in collab-
orative filtering recommender, in Proceedings of the 20th ACM International Con-
ference on Information and Knowledge Management, CIKM ’11 (ACM, New York,
NY, USA), ISBN 978-1-4503-0717-8, pp. 739–744, doi:10.1145/2063576.2063684,
http://doi.acm.org/10.1145/2063576.2063684.

Brynjolfsson, E., Hu, Y. and Simester, D. (2011). Goodbye pareto principle, hello long
tail: The effect of search costs on the concentration of product sales, Management
Science 57, 8, pp. 1373–1386.

Campos, J. and de Figueiredo, A. D. (2001). Searching the Unsearchable: Inducing
Serendipitous Insights, in Proceedings of the Workshop Program at the Fourth In-
ternational Conference on Case-Based Reasoning (ICCBR), pp. 159–164.

Cañamares, R. and Castells, P. (2017). A probabilistic reformulation of memory-based
collaborative filtering: Implications on popularity biases, in N. Kando, T. Sakai,
H. Joho, H. Li, A. P. de Vries and R. W. White (eds.), Proceedings of the 40th
International ACM SIGIR Conference on Research and Development in Information
Retrieval, Shinjuku, Tokyo, Japan, August 7-11, 2017 (ACM), ISBN 978-1-4503-
5022-8, pp. 215–224.

Cantador, I., Brusilovsky, P. and Kuflik, T. (2011). 2nd workshop on information hetero-
geneity and fusion in recommender systems (hetrec 2011), in Proceedings of the 5th
ACM conference on Recommender systems, RecSys 2011 (ACM, New York, NY,
USA).

Carbonell, J. and Goldstein, J. (1998). The use of mmr, diversity-based reranking for re-
ordering documents and producing summaries, in Proceedings of the 21st Annual
International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, SIGIR ’98 (ACM, New York, NY, USA), ISBN 1-58113-015-5,
pp. 335–336, doi:10.1145/290941.291025, http://doi.acm.org/10.1145/
290941.291025.

Castells, P., Hurley, N. J. and Vargas, S. (2015). Novelty and diversity in rec-
ommender systems, in F. Ricci, L. Rokach and B. Shapira (eds.), Recom-
mender Systems Handbook (Springer), ISBN 978-1-4899-7636-9, pp. 881–918,
doi:10.1007/978-1-4899-7637-6 26,
https://doi.org/10.1007/978-1-4899-7637-6_26.

Celma, Ò. and Herrera, P. (2008). A new approach to evaluating novel recommendations,
in Proceedings of the 2008 ACM conference on Recommender systems (ACM),
pp. 179–186.

http://dx.doi.org/10.1016/j.ins.2012.09.039
http://doi.acm.org/10.1145/2063576.2063684
http://doi.acm.org/10.1145/290941.291025
http://doi.acm.org/10.1145/290941.291025
https://doi.org/10.1007/978-1-4899-7637-6_26

October 22, 2018 17:14 ws-rv9x6-9x6 Book Title 11131-10 page 362

362 P. Lops et al.

Clarke, C. L., Kolla, M., Cormack, G. V., Vechtomova, O., Ashkan, A., Büttcher, S. and
MacKinnon, I. (2008). Novelty and diversity in information retrieval evaluation, in
Proceedings of the 31st Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’08 (ACM, New York, NY, USA),
ISBN 978-1-60558-164-4, pp. 659–666, doi:10.1145/1390334.1390446, http://
doi.acm.org/10.1145/1390334.1390446.

Çoba, L. and Zanker, M. (2016). rrecsys: An R-package for Prototyping Recommenda-
tion Algorithms, in I. Guy and A. Sharma (eds.), Proceedings of the Poster Track of
the 10th ACM Conference on Recommender Systems (RecSys 2016), Boston, USA,
September 17, 2016, CEUR Workshop Proceedings, Vol. 1688 (CEUR-WS.org),
http://ceur-ws.org/Vol-1688.

Cremonesi, P., Garzotto, F. and Quadrana, M. (2013). Evaluating top-n recommenda-
tions “when the best are gone”, in Q. Yang, I. King, Q. Li, P. Pu and G. Karypis
(eds.), Seventh ACM Conference on Recommender Systems, RecSys ’13, Hong Kong,
China, October 12-16, 2013 (ACM), ISBN 978-1-4503-2409-0, pp. 339–342, doi:
10.1145/2507157.2507225.

Cremonesi, P., Koren, Y. and Turrin, R. (2010). Performance of recommender algo-
rithms on top-n recommendation tasks, in X. Amatriain, M. Torrens, P. Resnick
and M. Zanker (eds.), Proceedings of the 2010 ACM Conference on Recommender
Systems, RecSys 2010, Barcelona, Spain, September 26-30, 2010 (ACM), ISBN 978-
1-60558-906-0, pp. 39–46, doi:10.1145/1864708.1864721.

de Gemmis, M., Lops, P., Semeraro, G. and Musto, C. (2015). An investigation on the
serendipity problem in recommender systems, Inf. Process. Manage. 51, 5, pp. 695–
717, doi:10.1016/j.ipm.2015.06.008, https://doi.org/10.1016/j.ipm.
2015.06.008.

Di Noia, T., Rosati, J., Tomeo, P. and Di Sciascio, E. (2017). Adaptive multi-attribute
diversity for recommender systems, Information Sciences 382, pp. 234–253.

Dooms, S., Pessemier, T. D. and Martens, L. (2013). Movietweetings: a movie rating
dataset collected from twitter, in Workshop on Crowdsourcing and Human Com-
putation for Recommender Systems, RecSys 2013.

Ekstrand, M. D., Ludwig, M., Konstan, J. A. and Riedl, J. T. (2011). Rethinking the recom-
mender research ecosystem: reproducibility, openness, and lenskit, in Proceedings
of the fifth ACM conference on Recommender systems (ACM), pp. 133–140.

Erdelez, S. (2004). Investigation of Information Encountering in the Controlled Research
Environment, Information Processing and Management 40, 6, pp. 1013–1025.

Fleder, D. and Hosanagar, K. (2009). Blockbuster Culture’s Next Rise or Fall: The Impact
of Recommender Systems on Sales Diversity, Management Science 55, 5, pp. 697–
712.

Foster, A. and Ford, N. (2003). Serendipity and Information Seeking: an Empirical Study,
Journal of Documentation 59, 3, pp. 321–340.

Funk, S. (2006). Netflix Update: Try This At Home, URL: http://sifter.org/
simon/journal/20061211.html.

Gantner, Z., Rendle, S., Freudenthaler, C. and Schmidt-Thieme, L. (2011). Mymedialite:
A free recommender system library, in Proceedings of the fifth ACM conference on
Recommender systems (ACM), pp. 305–308.

http://doi.acm.org/10.1145/1390334.1390446
http://doi.acm.org/10.1145/1390334.1390446
http://ceur-ws.org/Vol-1688
https://doi.org/10.1016/j.ipm.2015.06.008
https://doi.org/10.1016/j.ipm.2015.06.008
http://sifter.org/simon/journal/20061211.html
http://sifter.org/simon/journal/20061211.html

October 22, 2018 17:14 ws-rv9x6-9x6 Book Title 11131-10 page 363

Recommendations Biases and Beyond-Accuracy Objectives in Collaborative Filtering 363

Ge, M., Delgado-Battenfeld, C. and Jannach, D. (2010). Beyond Accuracy: Evaluating
Recommender Systems by Coverage and Serendipity, in X. Amatriain, M. Torrens,
P. Resnick and M. Zanker (eds.), Proceedings of the ACM Conference on Recom-
mender Systems (ACM), ISBN 978-1-60558-906-0, pp. 257–260.

Gini, C. (1921). Measurement of Inequality and Incomes, The Economic Journal 31,
pp. 124–126.

Gunawardana, A. and Shani, G. (2015). Evaluating recommender systems, in
F. Ricci, L. Rokach and B. Shapira (eds.), Recommender Systems Handbook
(Springer), pp. 265–308, doi:10.1007/978-1-4899-7637-6 8, https://doi.
org/10.1007/978-1-4899-7637-6_8.

Harper, F. M. and Konstan, J. A. (2016). The MovieLens Datasets: History and Context,
TiiS 5, 4, pp. 19:1–19:19, doi:10.1145/2827872, http://doi.acm.org/10.
1145/2827872.

Herlocker, L., Konstan, J. A., Terveen, L. G. and Riedl, J. T. (2004). Evaluating Collabo-
rative Filtering Recommender Systems, ACM Transactions on Information Systems
22, 1, pp. 5–53.

Hijikata, Y., Shimizu, T. and Nishida, S. (2009). Discovery-oriented collaborative filtering
for improving user satisfaction, in Proceedings of the 14th international conference
on Intelligent user interfaces (ACM), pp. 67–76.

Hurley, N. and Zhang, M. (2011). Novelty and Diversity in Top-N Recommendation - Anal-
ysis and Evaluation, ACM Trans. Internet Techn. 10, 4, pp. 14:1–14:30, doi:10.1145/
1944339.1944341, http://doi.acm.org/10.1145/1944339.1944341.

Hurley, N. J. (2013). Personalised ranking with diversity, in Proceedings of the 7th ACM
Conference on Recommender Systems, RecSys ’13 (ACM, New York, NY, USA),
ISBN 978-1-4503-2409-0, pp. 379–382, doi:10.1145/2507157.2507226, http://
doi.acm.org/10.1145/2507157.2507226.

Iaquinta, L., de Gemmis, M., Lops, P., Semeraro, G., Filannino, M. and Molino, P. (2008).
Introducing Serendipity in a Content-Based Recommender System, in F. Xhafa,
F. Herrera, A. Abraham, M. Köppen and J. M. Benı́tez (eds.), 8th International
Conference on Hybrid Intelligent Systems (IEEE Computer Society), ISBN 978-0-
7695-3326-1, pp. 168–173.

Jambor, T. and Wang, J. (2010). Optimizing multiple objectives in collaborative filtering,
in Proceedings of the fourth ACM conference on Recommender systems (ACM),
pp. 55–62.

Jannach, D. and Hegelich, K. (2009). A case study on the effectiveness of recommenda-
tions in the mobile internet, in L. D. Bergman, A. Tuzhilin, R. D. Burke, A. Felfernig
and L. Schmidt-Thieme (eds.), Proceedings of the 2009 ACM Conference on Rec-
ommender Systems, RecSys 2009, New York, NY, USA, October 23-25, 2009 (ACM),
ISBN 978-1-60558-435-5, pp. 205–208, doi:10.1145/1639714.1639749.

Jannach, D., Lerche, L., Kamehkhosh, I. and Jugovac, M. (2015). What recommenders rec-
ommend: an analysis of recommendation biases and possible countermeasures, User
Model. User-Adapt. Interact. 25, 5, pp. 427–491, doi:10.1007/s11257-015-9165-3,
https://doi.org/10.1007/s11257-015-9165-3.

Jugovac, M., Jannach, D. and Lerche, L. (2017). Efficient optimization of multiple rec-
ommendation quality factors according to individual user tendencies, Expert Syst.
Appl. 81, C, pp. 321–331, doi:10.1016/j.eswa.2017.03.055, https://doi.org/
10.1016/j.eswa.2017.03.055.

https://doi.org/10.1007/978-1-4899-7637-6_8
https://doi.org/10.1007/978-1-4899-7637-6_8
http://doi.acm.org/10.1145/2827872
http://doi.acm.org/10.1145/2827872
http://doi.acm.org/10.1145/1944339.1944341
http://doi.acm.org/10.1145/2507157.2507226
http://doi.acm.org/10.1145/2507157.2507226
https://doi.org/10.1007/s11257-015-9165-3
https://doi.org/10.1016/j.eswa.2017.03.055
https://doi.org/10.1016/j.eswa.2017.03.055

October 22, 2018 17:14 ws-rv9x6-9x6 Book Title 11131-10 page 364

364 P. Lops et al.

Kaminskas, M. and Bridge, D. (2016). Diversity, serendipity, novelty, and coverage: A
survey and empirical analysis of beyond-accuracy objectives in recommender sys-
tems, ACM Trans. Interact. Intell. Syst. 7, 1, pp. 2:1–2:42, doi:10.1145/2926720,
http://doi.acm.org/10.1145/2926720.

Kamishima, T., Akaho, S., Asoh, H. and Sakuma, J. (2014). Correcting popularity bias
by enhancing recommendation neutrality, in L. Chen and J. Mahmud (eds.), Poster
Proceedings of the 8th ACM Conference on Recommender Systems, RecSys 2014,
Foster City, Silicon Valley, CA, USA, October 6-10, 2014, CEUR Workshop Pro-
ceedings, Vol. 1247 (CEUR-WS.org), http://ceur-ws.org/Vol-1247/
recsys14_poster10.pdf.

Kapoor, K., Kumar, V., Terveen, L., Konstan, J. A. and Schrater, P. (2015). I like to explore
sometimes: Adapting to dynamic user novelty preferences, in Proceedings of the 9th
ACM Conference on Recommender Systems (ACM), pp. 19–26.

Kawamae, N. (2010). Serendipitous Recommendations Via Innovators, in F. Crestani,
S. Marchand-Maillet, H.-H. Chen, E. N. Efthimiadis and J. Savoy (eds.), Proceed-
ings of the 33rd International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval (ACM), ISBN 978-1-4503-0153-4, pp. 218–225.

Kelly, J. P. and Bridge, D. (2006). Enhancing the diversity of conversational collaborative
recommendations: a comparison, Artificial Intelligence Review 25, 1, pp. 79–95.

Koren, Y. (2010). Factor in the neighbors: Scalable and accurate collaborative fil-
tering, ACM Transactions on Knowledge Discovery from Data (TKDD) 4,
1, pp. 1:1–1:24, doi:10.1145/1644873.1644874, http://doi.acm.org/10.
1145/1644873.1644874.

Koren, Y. and Bell, R. M. (2015). Advances in collaborative filtering, in F. Ricci, L. Rokach
and B. Shapira (eds.), Recommender Systems Handbook (Springer), ISBN 978-1-
4899-7636-9, pp. 77–118.

Li, X. and Murata, T. (2012). Multidimensional clustering based collaborative filtering ap-
proach for diversified recommendation, in Computer Science & Education (ICCSE),
2012 7th International Conference on (IEEE), pp. 905–910.

McAuley, J. J. and Leskovec, J. (2013). Hidden factors and hidden topics: understanding
rating dimensions with review text, in Q. Yang, I. King, Q. Li, P. Pu and G. Karypis
(eds.), Seventh ACM Conference on Recommender Systems, RecSys ’13, Hong Kong,
China, October 12-16, 2013 (ACM), pp. 165–172, doi:10.1145/2507157.2507163.

McFee, B., Bertin-Mahieux, T., Ellis, D. P. and Lanckriet, G. R. (2012). The million song
dataset challenge, in Proceedings of the 21st International Conference on World
Wide Web, WWW ’12 Companion (ACM, New York, NY, USA), ISBN 978-1-4503-
1230-1, pp. 909–916, doi:10.1145/2187980.2188222, http://doi.acm.org/
10.1145/2187980.2188222.

McNee, S. M., Riedl, J. and Konstan, J. A. (2006). Being Accurate is not Enough: How
Accuracy Metrics have Hurt Recommender Systems, in G. M. Olson and R. Jeffries
(eds.), Extended Abstracts Proceedings of the 2006 Conference on Human Factors
in Computing Systems (ACM), pp. 1097–1101.

Mourão, F., da Rocha, L. C., Araujo, C. S., Jr., W. M. and Konstan, J. A. (2017). What
surprises does your past have for you? Inf. Syst. 71, pp. 137–151.

http://doi.acm.org/10.1145/2926720
http://ceur-ws.org/Vol-1247/recsys14_poster10.pdf
http://ceur-ws.org/Vol-1247/recsys14_poster10.pdf
http://doi.acm.org/10.1145/1644873.1644874
http://doi.acm.org/10.1145/1644873.1644874
http://doi.acm.org/10.1145/2187980.2188222
http://doi.acm.org/10.1145/2187980.2188222

October 22, 2018 17:14 ws-rv9x6-9x6 Book Title 11131-10 page 365

Recommendations Biases and Beyond-Accuracy Objectives in Collaborative Filtering 365

Murakami, T., Mori, K. and Orihara, R. (2008). Metrics for Evaluating the Serendipity
of Recommendation Lists, in K. Satoh, A. Inokuchi, K. Nagao and T. Kawamura
(eds.), New Frontiers in Artificial Intelligence, Lecture Notes in Computer Science,
Vol. 4914 (Springer), ISBN 978-3-540-78196-7, pp. 40–46.

Nakatsuji, M., Fujiwara, Y., Tanaka, A., Uchiyama, T., Fujimura, K. and Ishida, T. (2010a).
Classical music for rock fans?: novel recommendations for expanding user interests,
in Proceedings of the 19th ACM international conference on Information and knowl-
edge management (ACM), pp. 949–958.

Nakatsuji, M., Fujiwara, Y., Tanaka, A., Uchiyama, T., Fujimura, K. and Ishida, T. (2010b).
Classical music for rock fans?: Novel recommendations for expanding user inter-
ests, in Proceedings of the 19th ACM International Conference on Information and
Knowledge Management, CIKM ’10 (ACM, New York, NY, USA), ISBN 978-1-
4503-0099-5, pp. 949–958, doi:10.1145/1871437.1871558, http://doi.acm.
org/10.1145/1871437.1871558.

Ning, X., Desrosiers, C. and Karypis, G. (2015). A comprehensive survey of neighborhood-
based recommendation methods, in F. Ricci, L. Rokach and B. Shapira (eds.), Rec-
ommender Systems Handbook (Springer), ISBN 978-1-4899-7636-9, pp. 37–76, doi:
10.1007/978-1-4899-7637-6 2.

Oh, J., Park, S., Yu, H., Song, M. and Park, S.-T. (2011). Novel recommendation based
on personal popularity tendency, in Data Mining (ICDM), 2011 IEEE 11th Interna-
tional Conference on (IEEE), pp. 507–516.

Onuma, K., Tong, H. and Faloutsos, C. (2009). TANGENT: A Novel, ‘Surprise me’, Rec-
ommendation Algorithm, in J. F. Elder IV, F. Fogelman-Soulié, P. A. Flach and
M. J. Zaki (eds.), Proceedings of the 15th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (ACM), ISBN 978-1-60558-495-9,
pp. 657–666.

Owen, S., Anil, R., Dunning, T. and Friedman, E. (2012). Mahout in action (Manning
Shelter Island, NY).

Pampın, H. J. C., Jerbi, H. and O’Mahony, M. P. (2015). Evaluating the relative perfor-
mance of collaborative filtering recommender systems, Journal of Universal Com-
puter Science 21, 13, pp. 1849–1868.

Pan, W., Zhong, H., Xu, C. and Ming, Z. (2015). Adaptive bayesian personalized ranking
for heterogeneous implicit feedbacks, Knowl.-Based Syst. 73, pp. 173–180, doi:10.
1016/j.knosys.2014.09.013.

Park, Y.-J. and Tuzhilin, A. (2008). The long tail of recommender systems and how to
leverage it, in Proceedings of the 2008 ACM conference on Recommender systems
(ACM), pp. 11–18.

Patil, G. and Taillie, C. (1982). Diversity as a concept and its measurement, Journal of the
American statistical Association 77, 379, pp. 548–561.

Radovanovic, M., Nanopoulos, A. and Ivanovic, M. (2010). Hubs in space: Popular
nearest neighbors in high-dimensional data, Journal of Machine Learning Re-
search 11, pp. 2487–2531, http://portal.acm.org/citation.cfm?id=
1953015.

Rao, J., Jia, A., Feng, Y. and Zhao, D. (2013). Taxonomy based personalized news recom-
mendation: Novelty and diversity, in International Conference on Web Information
Systems Engineering (Springer), pp. 209–218.

http://doi.acm.org/10.1145/1871437.1871558
http://doi.acm.org/10.1145/1871437.1871558
http://portal.acm.org/citation.cfm?id=1953015
http://portal.acm.org/citation.cfm?id=1953015

October 22, 2018 17:14 ws-rv9x6-9x6 Book Title 11131-10 page 366

366 P. Lops et al.

Rendle, S. (2012). Factorization machines with libfm, ACM TIST 3, 3, pp. 57:1–57:22,
doi:10.1145/2168752.2168771,
http://doi.acm.org/10.1145/2168752.2168771.

Rendle, S., Freudenthaler, C., Gantner, Z. and Schmidt-Thieme, L. (2009). BPR: bayesian
personalized ranking from implicit feedback, in J. A. Bilmes and A. Y. Ng (eds.),
UAI 2009, Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial
Intelligence, Montreal, QC, Canada, June 18-21, 2009 (AUAI Press), pp. 452–461.

Ribeiro, M. T., Lacerda, A., Veloso, A. and Ziviani, N. (2012). Pareto-efficient hybridiza-
tion for multi-objective recommender systems, in Proceedings of the sixth ACM con-
ference on Recommender systems (ACM), pp. 19–26.

Robertson, S. E. (1977). The probability ranking principle in ir, Journal of documentation
33, 4, pp. 294–304.

Said, A. and Bellogı́n, A. (2014). Rival: a toolkit to foster reproducibility in recommender
system evaluation, in Proceedings of the 8th ACM Conference on Recommender
systems (ACM), pp. 371–372.

Said, A., Fields, B., Jain, B. J. and Albayrak, S. (2013). User-centric evaluation of a k-
furthest neighbor collaborative filtering recommender algorithm, in Proceedings of
the 2013 Conference on Computer Supported Cooperative Work, CSCW ’13 (ACM,
New York, NY, USA), ISBN 978-1-4503-1331-5, pp. 1399–1408, doi:10.1145/
2441776.2441933, http://doi.acm.org/10.1145/2441776.2441933.

Shani, G. and Gunawardana, A. (2011). Evaluating Recommendation Systems, in F. Ricci,
L. Rokach, B. Shapira and P. B. Kantor (eds.), Recommender Systems Handbook
(Springer), ISBN 978-0-387-85819-7, pp. 257–297.

Shi, L. (2013). Trading-off among accuracy, similarity, diversity, and long-tail: A graph-
based recommendation approach, in Proceedings of the 7th ACM conference on Rec-
ommender systems (ACM), pp. 57–64.

Shi, Y., Zhao, X., Wang, J., Larson, M. and Hanjalic, A. (2012). Adaptive diversifica-
tion of recommendation results via latent factor portfolio, in Proceedings of the
35th International ACM SIGIR Conference on Research and Development in In-
formation Retrieval, SIGIR ’12 (ACM, New York, NY, USA), ISBN 978-1-4503-
1472-5, pp. 175–184, doi:10.1145/2348283.2348310, http://doi.acm.org/
10.1145/2348283.2348310.

Smyth, B. and McClave, P. (2001). Similarity vs. diversity, in Proceedings of the
4th International Conference on Case-Based Reasoning: Case-Based Reasoning
Research and Development, ICCBR ’01 (Springer-Verlag, London, UK), ISBN
3-540-42358-3, pp. 347–361, http://dl.acm.org/citation.cfm?id=
646268.758890.

Steck, H. (2011). Item popularity and recommendation accuracy, in B. Mobasher,
R. D. Burke, D. Jannach and G. Adomavicius (eds.), Proceedings of the 2011 ACM
Conference on Recommender Systems, RecSys 2011, Chicago, IL, USA, October
23-27, 2011 (ACM), ISBN 978-1-4503-0683-6, pp. 125–132, doi:10.1145/2043932.
2043957.

Su, R., Yin, L., Chen, K. and Yu, Y. (2013). Set-oriented personalized ranking for diver-
sified top-n recommendation, in Proceedings of the 7th ACM Conference on Rec-
ommender Systems, RecSys ’13 (ACM, New York, NY, USA), ISBN 978-1-4503-
2409-0, pp. 415–418, doi:10.1145/2507157.2507207, http://doi.acm.org/
10.1145/2507157.2507207.

http://doi.acm.org/10.1145/2168752.2168771
http://doi.acm.org/10.1145/2441776.2441933
http://doi.acm.org/10.1145/2348283.2348310
http://doi.acm.org/10.1145/2348283.2348310
http://dl.acm.org/citation.cfm?id=646268.758890
http://dl.acm.org/citation.cfm?id=646268.758890
http://doi.acm.org/10.1145/2507157.2507207
http://doi.acm.org/10.1145/2507157.2507207

October 22, 2018 17:14 ws-rv9x6-9x6 Book Title 11131-10 page 367

Recommendations Biases and Beyond-Accuracy Objectives in Collaborative Filtering 367

Takács, G. and Tikk, D. (2012). Alternating least squares for personalized ranking,
in P. Cunningham, N. J. Hurley, I. Guy and S. S. Anand (eds.), Sixth ACM
Conference on Recommender Systems, RecSys ’12, Dublin, Ireland, September 9-13,
2012 (ACM), ISBN 978-1-4503-1270-7, pp. 83–90, doi:10.1145/2365952.2365972.

Toms, E. (2000). Serendipitous Information Retrieval, in Proceedings of DELOS Work-
shop: Information Seeking, Searching and Querying in Digital Libraries (ERCIM
Workshop Proceedings - No. 01/W001).

Vargas, S., Baltrunas, L., Karatzoglou, A. and Castells, P. (2014). Coverage, redundancy
and size-awareness in genre diversity for recommender systems, in Proceedings of
the 8th ACM Conference on Recommender systems (ACM), pp. 209–216.

Vargas, S. and Castells, P. (2011). Rank and relevance in novelty and diversity metrics for
recommender systems, in Proceedings of the fifth ACM conference on Recommender
systems (ACM), pp. 109–116.

Vargas, S. and Castells, P. (2014). Improving sales diversity by recommending users to
items, in A. Kobsa, M. X. Zhou, M. Ester and Y. Koren (eds.), Eighth ACM Con-
ference on Recommender Systems, RecSys ’14, Foster City, Silicon Valley, CA,
USA - October 06-10, 2014 (ACM), ISBN 978-1-4503-2668-1, pp. 145–152, doi:
10.1145/2645710.2645744.

Wang, J. and Zhu, J. (2009). Portfolio theory of information retrieval, in Proceedings
of the 32Nd International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’09 (ACM, New York, NY, USA), ISBN 978-1-
60558-483-6, pp. 115–122, doi:10.1145/1571941.1571963, http://doi.acm.
org/10.1145/1571941.1571963.

Zhang, L. (2013). The definition of novelty in recommendation system, Journal of Engi-
neering Science & Technology Review 6, 3.

Zhang, M. and Hurley, N. (2008). Avoiding monotony: improving the diversity of rec-
ommendation lists, in Proceedings of the 2008 ACM conference on Recommender
systems (ACM), pp. 123–130.

Zhang, Y., Callan, J. and Minka, T. (2002). Novelty and redundancy detection in adaptive
filtering, in Proceedings of the 25th annual international ACM SIGIR conference on
Research and development in information retrieval (ACM), pp. 81–88.

Zhang, Y. C., Séaghdha, D. Ó., Quercia, D. and Jambor, T. (2012). Auralist: introduc-
ing serendipity into music recommendation, in E. Adar, J. Teevan, E. Agichtein
and Y. Maarek (eds.), Proceedings of the Fifth International Conference on Web
Search and Web Data Mining, WSDM 2012, Seattle, WA, USA, February 8-12,
2012, ISBN 978-1-4503-0747-5, pp. 13–22, doi:10.1145/2124295.2124300, http:
//doi.acm.org/10.1145/2124295.2124300.

Zheng, Q., Chan, C. and Ip, H. H. S. (2015). An unexpectedness-augmented utility
model for making serendipitous recommendation, in Advances in Data Mining:
Applications and Theoretical Aspects - 15th Industrial Conference, ICDM 2015,
Hamburg, Germany, July 11-24, 2015, Proceedings, Lecture Notes in Computer
Science, Vol. 9165 (Springer), pp. 216–230, doi:10.1007/978-3-319-20910-4 16,
https://doi.org/10.1007/978-3-319-20910-4_16.

Zhou, T., Kuscsik, Z., Liu, J.-G., Medo, M., Wakeling, J. R. and Zhang, Y.-C. (2010). Solv-
ing the apparent diversity-accuracy dilemma of recommender systems, Proceedings
of the National Academy of Sciences 107, 10, pp. 4511–4515.

http://doi.acm.org/10.1145/1571941.1571963
http://doi.acm.org/10.1145/1571941.1571963
http://doi.acm.org/10.1145/2124295.2124300
http://doi.acm.org/10.1145/2124295.2124300
https://doi.org/10.1007/978-3-319-20910-4_16

October 22, 2018 17:14 ws-rv9x6-9x6 Book Title 11131-10 page 368

368 P. Lops et al.

Ziegler, C.-N., McNee, S. M., Konstan, J. A. and Lausen, G. (2005). Improving Rec-
ommendation Lists through Topic Diversification, in A. Ellis and T. Hagino (eds.),
Proceedings of the 14th International Conference on World Wide Web, WWW 2005
(ACM), ISBN 1-59593-046-9, pp. 22–32.

October 22, 2018 17:47 ws-rv9x6-9x6 Book Title 11131-11 page 369

Chapter 11

Scalability and Distribution of

Collaborative Recommenders

Evangelia Christakopoulou

Computer Science & Engineering
University of Minnesota, Minneapolis, MN

evangel@cs.umn.edu

Shaden Smith

Computer Science & Engineering
University of Minnesota, Minneapolis, MN

shaden@cs.umn.edu

Mohit Sharma

Computer Science & Engineering
University of Minnesota, Minneapolis, MN

mohit@cs.umn.edu

Alex Richards

Department of Computer Engineering
San José State University

alexander.richards@sjsu.edu

David Anastasiu

Department of Computer Engineering
San José State University

david.anastasiu@sjsu.edu

George Karypis

Computer Science & Engineering
University of Minnesota, Minneapolis, MN

karypis@cs.umn.edu

369

October 22, 2018 17:47 ws-rv9x6-9x6 Book Title 11131-11 page 370

370 E. Christakopoulou et al.

Recommender systems are ubiquitous; they are foundational to a wide
variety of industries ranging from media companies such as Netflix to
e-commerce companies such as Amazon. As recommender systems con-
tinue to permeate the marketplace, we observe two major shifts which
must be addressed. First, the amount of data used to provide quality
recommendations grows at an unprecedented rate. Secondly, modern
computer architectures display great processing capabilities that signif-
icantly outpace memory speeds. These two trend shifts must be taken
into account in order to design recommendation systems that can ef-
ficiently handle the amount of available data by distributing computa-
tions in order to take advantage of modern parallel architectures. In this
chapter, we present ways to scale popular collaborative recommendation
methods via parallel computing.

11.1. Introduction

Recommender systems are ubiquitous; they are foundational to a wide

variety of industries ranging from media companies such as Netflix to e-

commerce companies such as Amazon. Their popularity is attributed to

their ability to effectively navigate users through a plethora of product

options which would otherwise go unexplored. As recommender systems

continue to permeate the marketplace, we observe two major shifts which

must be addressed.

First, the amount of data used to provide quality recommendations

grows at an unprecedented rate. For example, companies such as Netflix

stream millions of movies each day. Secondly, modern computer archi-

tectures forego great changes. The last two decades have seen available

processing capabilities significantly outpace memory speeds. This disparity

has shifted the cost of many computations from mathematical operations

to data movements. In consequence, algorithm designers must now expose

large amounts of parallelism while reducing data movement costs. These

two trend shifts must be taken into account in order to design recommen-

dation systems that can efficiently handle the amount of available data by

distributing computations in order to take advantage of modern parallel

architectures.

Unfortunately, designing successful recommendation systems that can

effectively utilize modern parallel architectures is not always straightfor-

ward. Most popular recommendation algorithms are inherently unstruc-

tured, meaning that data accesses are not known apriori because they

are determined by the structure of the input data. The unstructured na-

ture of the underlying computations is further complicated by non-uniform

October 22, 2018 17:47 ws-rv9x6-9x6 Book Title 11131-11 page 371

Scalability and Distribution of Collaborative Recommenders 371

distributions exhibited by real-world ratings datasets. A small number of

popular items and prolific users cause the data to follow a power-law dis-

tribution, which presents challenges when partitioning work to processing

cores in a balanced manner.

In this chapter, we present ways to scale popular collaborative recom-

mendation methods via parallel computing. The methods we present span

both of the primary recommendation tasks: the top-N recommendation

task, where we are interested in whether a user will likely purchase an item,

and the rating prediction task, which focuses on determining how much a

user would enjoy a product. The nearest neighbor methods presented in

Section 11.2 are used for both tasks. The sparse linear methods presented

in Section 11.3 are oriented towards the top-N recommendation task. Fi-

nally, the matrix and tensor factorization methods presented in Section 11.4

can be used for both tasks, but for the purposes of this chapter, they are

primarily viewed in the context of rating prediction.

The presented methods are very different from each other and exhibit

different parallelization opportunities. For each method, an overview is

presented, along with a discussion of how it can be scaled and experimental

results showing the runtimes and speedup achieved on the MovieLens 10M

(ML10M) dataset.

The rest of the chapter has the following structure: Subsections 11.1.1

and 11.1.2 present the notation and evaluation methodology used in the

rest of the chapter. Section 11.2 presents methods to efficiently identify

neighbors in the nearest-neighbor approaches. Section 11.3 describes sparse

linear methods, where both the neighbors to a target item and their similar-

ities are estimated through solving an optimization problem and discusses

their scalability. Finally, Section 11.4 gives an overview and discusses the

efficiency of matrix and tensor factorization approaches.

11.1.1. Notation

In the rest of the chapter, we will use bold capital letters to refer to matrices

(e.g., A) and bold lower case letters to refer to vectors (e.g., p). The vectors

are assumed to be column vectors. Thus, ai refers to the ith column of

matrix A and we will use the transpose (aT
i) to describe row vectors.

We note the rating matrix, which contains the feedback given by n users

to m items as R. The dimensions of R are n ×m. We will use the term

u to note a user, and i to note an item. The rating given by a user u to

an item i will be noted by rui and with a slight abuse of notation will be

October 22, 2018 17:47 ws-rv9x6-9x6 Book Title 11131-11 page 372

372 E. Christakopoulou et al.

used to show both the explicit rating that user u gave to item i and/or the

implicit feedback (purchase/like) from u to i. We will use the notation r̂ui
to refer to the predicted rating. Finally, we use the notation | · | to refer to

the number of non-zeros in the corresponding matrix or vector.

11.1.2. Evaluation

Dataset Throughout this chapter, we will demonstrate the efficiency and

effectiveness of different recommender methods using the MovieLens 10

Million (ML10M) [Harper and Konstan (2015)] ratings dataset. ML10M

consists of 10 million ratings provided to 10677 movies by 69878 users. Each

rating is accompanied by a timestamp. The timestamps span 158 months

and are used in tensor factorization approaches in Section 11.4.

Evaluation In order to evaluate the performance of the methods, we

employ a leave-one-out validation scheme. For every user, we leave out

one rating and we train the model on the rest of the user’ ratings. All

the left-out ratings comprise the test set. We repeat this procedure three

times, thus resulting in three folds (three train sets and three associated

test sets). In the end, for every method, we report the average time taken

and the average performance of the folds.

As the exact rating is not used in top-N methods, the implicit feedback

of the ML10M dataset is used instead in Section 11.3. In this scenario,

non-zero rating values in R are replaced with 1s, signifying the existence

of a rating given by a user to an item in the original data. To evaluate

top-N recommendation methods, we need to investigate whether the item

of the user that belongs to the test set is included in the list of top-N

recommendations to the user, and in which position. Therefore, we use two

performance metrics: HR and ARHR, where:

HR =
#hits

#users
, (11.1)

and

ARHR =

#hits∑
i=1

1

pi
. (11.2)

The #hits denotes the number of times that the test items were included

in the top-N recommendation list and pi is the position of the test item in

the recommended list, with pi = 1 being the top position. In this chapter,

October 22, 2018 17:47 ws-rv9x6-9x6 Book Title 11131-11 page 373

Scalability and Distribution of Collaborative Recommenders 373

we have evaluated the top-N recommendation methods by computing HR

and ARHR for N = 10.

In the rating prediction methods, the explicit ratings are used. Also,

when presenting the tensor factorization methods in Section 11.4, the as-

sociated timestamps are used beyond the ratings. To evaluate the rating

prediction methods, we need to see how similar or different the predicted

values of the ratings are with the actual ratings. We employ the Root Mean

Squared Error (RMSE) to do that:

RMSE =

√∑
u

∑
i (rui − r̂ui)2
|R|

. (11.3)

More details on RMSE, HR, ARHR and other evaluation measures can

be found in Chapter 9. A thorough explanation of the difference between

explicit and implicit feedback can be found in Chapter 7.

System characteristics For consistency and comparison purposes, all

experiments are executed on the same system1 consisting of identical nodes

equipped with 64 GB RAM and two twelve-core 2.5 GHz Intel Xeon E5-

2680v3 (Haswell) processors. Each core is equipped with 32 KB L1 cache

and 256 KB of L2 cache, and the 12 cores on each socket share 30 MB of

L3 cache.

11.2. Scaling up nearest-neighbor approaches

A number of recommender systems rely on finding nearest neighbors among

users or items as an integral part of deriving recommendations or training

a predictive recommendation model. More details on nearest-neighbor ap-

proaches can be found in Chapter 1. A neighbor is defined as a user/item

who is similar to the target user/item, based on a similarity notion (e.g.

the target user and the neighbor user have co-rated a lot of items). The

symbol Ni(u) represents the set of neighbors of the item i rated by the

user u. Similarly, the symbol Nu(i) represents the set of neighbors of user

u, who have rated item i. In this section, we discuss approaches to speed

up neighborhood identification, which directly affects recommendation ef-

ficiency.

1https://www.msi.umn.edu/content/mesabi

https://www.msi.umn.edu/content/mesabi

October 22, 2018 17:47 ws-rv9x6-9x6 Book Title 11131-11 page 374

374 E. Christakopoulou et al.

11.2.1. Use of neighborhoods in Recommender Systems

Collaborative filtering based recommenders, such as the user-based neigh-

borhood method [Konstan et al. (1997)] or item-based neighborhood meth-

ods [Sarwar et al. (2001); Deshpande and Karypis (2004)], first identify a

set of neighbors and then use the ratings associated with those neighbors

to derive the predicted rating for the user in question. User-based methods

identify a set of users similar to target user u and predict the rating of user

u on item i as

r̂ui = µu +

∑
v∈Nu(i)

sim(u, v)(rvi − µv)∑
v∈Nu(i)

sim(u, v)
,

where sim(u, v) denotes the similarity between the users u and v, and µu

and µv are the means of the ratings provided by users u and v, respectively.

Item-based neighborhood methods, however, derive the rating of user u

on target item i by considering other items that have been rated (generally

high) by the user u. The predicted rating of u on i is given by

r̂ui = µi +

∑
j∈Ni(u)

sim(i, j)(ruj − µj)∑
j∈Ni(u)

sim(i, j)
.

where sim(i, j) denotes the similarity between the items i and j, and µi

and µj are the means of the ratings received by items i and j, respectively.

A number of different recommenders can be designed given different

choices in applying the formulas above with respect to user and item repre-

sentations, similarity function, or neighborhood construction. The standard

approach is to represent user u as the sparse vector of ratings for items rated

by the user (row u in the ratings matrix R) and item i as the vector of all

ratings given to item i by users (column i in R). Given a vector represen-

tation of users and items, the similarity between users or between items is

most often computed as the cosine similarity or Pearson correlation coef-

ficient between their respective vectors. Finally, the neighborhoods Nu(i)

and Ni(u) can be constructed by finding all neighbors with a similarity

above some minimum threshold ε, or one may consider only the k closest

neighbors to the target user or item.

Beyond deriving recommendations by relying on similar users or items,

some optimization-based recommenders learn a recommendation model by

focusing only on the ratings of similar users or items during the learning

process (e.g., the fs-SLIM model [Ning and Karypis (2011)]).

Näıve approaches will compare each user to every other user, thus lead-

ing to quadratic complexity in the number of computed similarities. In the

October 22, 2018 17:47 ws-rv9x6-9x6 Book Title 11131-11 page 375

Scalability and Distribution of Collaborative Recommenders 375

remainder of this section, we will discuss efficient methods that identify

nearest neighbors given user-item ratings. The methods rely on aggressive

pruning of the search space by identifying pairs of users or items that can-

not be similar enough based on theoretic upper bounds on their computed

similarity. Additional performance gains are achieved via efficient use of

the memory hierarchy of modern computing systems and shared-memory

parallelism.

We focus our discussion on two nearest neighbor problems useful in

the recommender systems context. The ε-nearest neighbor graph (εNNG)

construction problem, also known as all-pairs similarity search (APSS) or

similarity join, identifies, for each user/item in a set, all other users/items

with a similarity of at least ε. On the other hand, the k-nearest neighbor

graph (kNNG) construction constrains each identified neighborhood to the

k users/items closest to the target user/item. To simplify the discussion,

we will describe the methods in the context of constructing item neighbor-

hoods. The same methods can be applied to find user-based neighbors.

11.2.2. ε-nearest neighbor graph construction

Recently, several methods have been proposed that efficiently construct

the εNNG by filtering (or ignoring) pairs of items that cannot be neighbors

[Bayardo et al. (2007); Anastasiu and Karypis (2014, 2015b); Anastasiu

(2017)]. Item rating profile vectors are inherently sparse, as few users may

consume and rate each item. The proposed methods take advantage of

this sparsity and use data structures and processing strategies designed to

eliminate unnecessary memory accesses and multiplication operations. The

L2-norm All Pairs (L2AP) [Anastasiu and Karypis (2014)] and Parallel L2-

norm All Pairs (pL2AP) [Anastasiu and Karypis (2015b)] methods con-

struct an exact neighborhood graph, finding the same neighbors as those

found by a brute-force method that compares each user/item against all

other users/items. Cosine Approximate Nearest Neighbors (CANN) [Anas-

tasiu (2017)], on the other hand, finds most but not necessarily all of the

neighbors with a similarity of at least ε.

These methods use an inverted index data structure to eliminate unnec-

essary comparisons. The inverted index is represented by the sparse user

rating profiles. It consists of a set of lists, one for each user, such that

the uth list contains pairs (i, rui) for all items i that have a non-zero rui
rating. Many unnecessary memory accesses and similarity computations

can be avoided by only comparing an item against the set of items found

October 22, 2018 17:47 ws-rv9x6-9x6 Book Title 11131-11 page 376

376 E. Christakopoulou et al.

in the inverted index lists for the users that rated it. In this way, two

items that have not been rated by any common user will never have their

similarity computed.

Additional savings can be achieved by taking advantage of the input

similarity threshold ε. Note that cosine similarity measures the cosine of

the angle between the two vectors and is thus independent of the vector

lengths. A standard preprocessing step in computing cosine similarity is to

normalize the vectors with respect to their L2-norm, which reduces com-

puting the cosine similarity of two vectors to finding their dot-product. The

methods compute only part of the dot-product of profile vectors for most

pairs of items, e.g., using only the tail-end features in the profile vector.

Several theoretic upper bounds of vector dot-products are used to estimate

the portion of the dot-product for the leading features. If the sum of the

estimate and computed portions of the dot-product is below ε, the items

cannot be similar enough and are pruned.

Many item comparisons are completely avoided through a partial index-

ing strategy. Only a few of the leading features of the profile of an item i

are indexed, enough to ensure that any item j with a similarity of at least

ε will be found by traversing the partial index. This strategy leads to a two

phase process for constructing the exact εNNG. First, partial similarities

(dot-products) are computed using values stored in the inverted index lists

for users that rated item i, which are called candidates. In the second phase,

the un-indexed portion of each of the candidate profile vectors is used to

finish computing similarities only for those items with non-zero similarity

after the first phase. In both phases, additional similarity upper-bounds

are used to eliminate candidates that cannot be similar enough.

Parallelization of pL2AP focuses on a cache-tiling strategy that aims to

fit critical data structures used during similarity search in the high-speed

yet limited cache memory of the system. The method splits the set of items

such that each subset has a partial inverted index that can fit in cache

memory. Each core is then assigned small sets of neighborhood searches for

20 consecutive items, which could be independently executed. Additionally,

a small-memory footprint hash table data structure is proposed which is

uniquely suited to the memory access patterns in pL2AP and provides

fast access to profile vector values and meta-data necessary for computing

similarity upper bounds. Algorithm 1 provides a sketch of the pL2AP

processing pipeline. Additional details for the algorithm and the different

similarity upper-bounds used in the filtering process in pL2AP can be found

in [Anastasiu and Karypis (2014, 2015b); Anastasiu (2017)].

October 22, 2018 17:47 ws-rv9x6-9x6 Book Title 11131-11 page 377

Scalability and Distribution of Collaborative Recommenders 377

Algorithm 1 pL2AP

1: Normalize profiles for every item i.

2: for all items i in parallel do

3: Identify prefix to be indexed.

4: end for

5: Split items to index into tiles based on cumulative prefix size.

6: for all index tiles in parallel do

7: Create partial inverted index for assigned tile items.

8: end for

9: for all index tiles do

10: for all items not in already processed index tiles in parallel do

11: Use partial inverted index to identify candidate neighbors.

12: Filter some candidates based on similarity upper-bound estimates.

13: Use un-indexed portion of candidate vectors to finish computing

their similarity, while continuing to filter those with estimates be-

low ε.

14: Output un-filtered candidates with similarity ≥ ε.
15: end for

16: end for

Table 11.1 and Figure 11.1 show the runtime and parallel speedups of

pL2AP, when building the εNNG for items in the ML10M training datasets,

given ε ranging between 0.1 and 0.9. The method pL2AP is compared

against pij, a baseline that uses similar cache-tiling strategies as pL2AP

but does not prune the search space. Instead, it computes similarities for

all items co-rated by at at least one user. The left graph of Figure 11.1 shows

execution times in seconds, averaged over all three training folds, while the

right one shows strong scaling results for the two methods, measuring the

speedup of each method against their own serial execution. Strong scaling

is when the problem size remains the same but the amount of parallelism

increases. By effectively eliminating unnecessary similarity computations,

pL2AP is able to achieve 4.24x–29.27x speedup over pij for different simi-

larity thresholds ε.

11.2.3. k-nearest neighbor graph construction

One potential problem with using the εNNG to derive recommendations

is that, given a high enough value for ε, some neighborhoods may not

October 22, 2018 17:47 ws-rv9x6-9x6 Book Title 11131-11 page 378

378 E. Christakopoulou et al.

Table 11.1. Runtime and speedup of pL2AP over pij on the ML10M dataset, when

executed using 24 cores.

Method ε = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

time (s)

pij 3.22 3.22 3.22 3.22 3.22 3.22 3.22 3.23 3.22

pL2AP 0.76 0.55 0.42 0.34 0.26 0.21 0.15 0.13 0.11

speedup

pL2AP 4.24 5.85 7.67 9.38 12.38 15.60 21.47 24.82 29.27

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0

0.5

1.0

1.5

2.0

2.5

3.0

tim
e

(s
)

pL2AP pij

1 2 4 8 12 16 20 24
cores

1
2
4

8

12

16

20

24
sp

ee
du

p
pL2AP pij ideal

Fig. 11.1. Runtime (left) and strong scaling (right) of pL2AP and the näıve baseline

pij when executed on the ML10M dataset.

contain any neighbors. The kNNG provides a guaranteed estimate of lo-

cal preferences by retrieving the k nearest neighbors for each item in the

set. L2Knng [Anastasiu and Karypis (2015a)] and pL2Knng [Anastasiu

and Karypis (2016)] have been proposed for the purpose of efficiently con-

structing the exact kNNG. The main idea in L2Knng is to bootstrap the

similarity search with a quickly constructed approximate graph. The min-

imum similarities in the approximate neighborhoods can then be used as

filtering criteria in a search framework similar to the one in L2AP.

In the first phase of constructing the kNNG, L2Knng efficiently finds

most, but not necessarily all of the k items closest to each target item,

heuristically choosing a finite set of comparison items that are likely to be in

the exact neighborhood. First, L2Knng identifies items that have high-value

ratings in common with the target item, building an initial approximate

kNNG. This graph is then iteratively improved by looking for neighbors

October 22, 2018 17:47 ws-rv9x6-9x6 Book Title 11131-11 page 379

Scalability and Distribution of Collaborative Recommenders 379

among the neighbors of current neighbors. Finally, a filtering framework

similar to the one described in Section 11.2.2 is employed to construct the

exact kNNG. Unlike L2AP, L2Knng does not have an input threshold ε that

could be used for pruning. Instead, it relies on the idea that any item that

has the potential to be in the exact neighborhood of the target must have a

similarity greater than the minimum similarity of the target with any item

in its current approximate neighborhood. These minimum neighborhood

similarities are used to forgo most of the item pair comparisons.

Similar to pL2AP, parallelization in pL2Knng focuses on cache-tiling

and strategies for maximizing load balance among the cores. Unlike pL2AP,

neighborhood searches are not independent. Given that cosine similarity

is commutative, a neighbor j that the method finds for an item i could

also benefit from the search if item i is not yet in j’s neighborhood and

the similarity between i and j is greater than the minimum neighborhood

similarity in j’s neighborhood. A lock-free update strategy is used for the

in-memory shared neighborhood graph to address the potential resource

contention encountered when items i and j are being processed by different

cores. Algorithm 2 provides a high-level sketch of the pL2Knng method.

Additional details regarding the initial approximate graph construction and

filtering used to build the exact kNNG solution can be found in [Anastasiu

and Karypis (2015a, 2016); Anastasiu (2017)].

Table 11.2 and Figure 11.2 show the efficiency of the parallel method,

pL2Knng, when building the kNNG for items in the ML10M training

datasets, given k ranging between 5 and 50. Our method, pL2Knng, is

compared against pkij, a similar baseline to pij that uses similar cache-

tiling strategies but does not prune the search space. The left graph

of Figure 11.2 shows execution times in seconds, averaged over all three

training folds, while the right one shows strong scaling results for the

two methods, measuring the speedup of each method against their own

serial execution. By effectively eliminating unnecessary similarity compu-

tations, pL2Knng is able to achieve 2.2x–2.97x speedup over pkij for differ-

ent k values. Given larger datasets, such as one containing 1M pages from

the English Wikipedia Web site, containing almost half a billion non-zero

values, pL2Knng has been shown to outperform pkij by 7.3x–11.5x for

k ≤ 50 [Anastasiu and Karypis (2015b)]. The results show the value of

pruning the search space as a means to improve the efficiency of nearest

neighbor identification.

October 22, 2018 17:47 ws-rv9x6-9x6 Book Title 11131-11 page 380

380 E. Christakopoulou et al.

Algorithm 2 pL2Knng

1: Normalize profiles for every item i.

2: for all items i in parallel do

3: Choose µ ≥ k candidates highly co-rated with i by some user.

4: Compute candidate similarities and keep top-k candidates.

5: end for

6: for all items i in parallel do

7: Choose µ candidates from the neighborhoods of the current k neigh-

bors.

8: Compute candidate similarities and update ith neighborhood as nec-

essary.

9: end for

10: Use minimum neighborhood similarities to define partial inverted index

tiles.

11: for all index tiles do

12: for all items i not in already processed index tiles in parallel do

13: Use partial inverted index to identify candidate neighbors.

14: Filter some candidates based on similarity upper-bound estimates.

15: Use un-indexed portion of candidate vectors to finish computing

their similarity, while continuing to filter those with estimates be-

low minimum similarities in the candidate or i’s neighborhoods.

16: Update neighborhoods of i and un-filtered candidates as necessary.

17: end for

18: end for

Table 11.2. Execution times and speedup of pL2Knng over pkij

on the ML10M dataset, when executed using 24 cores.

Method k=5 10 20 30 40 50

time (s)

pKij 3.23 3.235 3.237 3.198 3.24 3.247

pL2Knng 1.089 1.136 1.228 1.324 1.408 1.479

speedup

pL2Knng 2.97 2.85 2.64 2.42 2.3 2.2

October 22, 2018 17:47 ws-rv9x6-9x6 Book Title 11131-11 page 381

Scalability and Distribution of Collaborative Recommenders 381

5 10 20 30 40 50
k

0.0

0.5

1.0

1.5

2.0

2.5

3.0

tim
e

(s
)

pL2Knng pkij

1 2 4 8 12 16 20 24
cores

1
2
4

8

12

16

20

24

sp
ee

du
p

pL2Knng pkij ideal

Fig. 11.2. Runtime (left) and strong scaling (right) of pL2Knng and the näıve baseline

pkij when executed on the ML10M dataset.

11.3. Efficiently Estimating Item-Item Similarities by

solving an Optimization Problem

11.3.1. Sparse LInear Methods for Top-N Recommendation

(SLIM)

In contrast to the standard item-based methods which use a predefined

similarity measure like cosine or Pearson correlation, Sparse LInear Meth-

ods (SLIM) [Ning and Karypis (2011)] learn the item-item relationships

from the user-item feedback matrix R instead. SLIM is a popular method

for top-N recommendation, as it has been shown to provide high-quality

recommendations [Ning and Karypis (2011)]. In SLIM, the rating for an

item is predicted as a sparse aggregation of the existing ratings provided

by the user:

r̂ui = rTu si,

where rTu is the uth row of the rating matrix R and si is a sparse vec-

tor containing non-zero aggregation coefficients over all items. The sparse

aggregation coefficient matrix S of size m × m, capturing the item-item

relationships is estimated by solving the following optimization problem:

minimize
S

1

2
||R−RS||2F +

β

2
||S||2F + λ||S||1

subject to S ≥ 0

diag(S) = 0.

(11.4)

October 22, 2018 17:47 ws-rv9x6-9x6 Book Title 11131-11 page 382

382 E. Christakopoulou et al.

The optimization problem of Equation 11.4 tries to minimize the train-

ing error, denoted by ||R − RS||2F , while also regularizing the matrix S.

The problem uses two regularizers. The first one is the Frobenius norm of

the matrix S (noted by ||S||2F), which is controlled by the parameter β, in

order to prevent overfitting. The other regularizer is the l1 norm of the

matrix S (noted by ||S||1), which is controlled by the parameter λ, in order

to promote sparsity [Tibshirani (1996)]. Larger values of β and λ leads to

more severe regularization. The use of both lF and l1 regularization makes

the optimization problem of Equation 11.4 an elastic net problem [Zou and

Hastie (2005)].

The non-negativity constraint on S imposes the item-item relations to

be positive. The constraint diag(S) = 0 is added to avoid trivial solutions

(e.g., S corresponding to the identity matrix) and ensure that rui is not

used to compute r̂ui.

11.3.1.1. Parallelizing SLIM

Equation 11.4 can be accelerated by learning similarities in parallel for every

target item i, as every column of S can be learned independently from the

other columns. Then the optimization problem of Equation 11.4 changes

to a set of optimization problems of the form:

minimize
si

1

2
||ri −Rsi||22 +

β

2
||si||22 + λ||si||1

subject to si ≥ 0

sii = 0,

which allows us to estimate the ith column of S, noted by si. The term ri
refers to the ith column of the training matrix R. The problem is solved

with the use of coordinate descent and soft thresholding [Friedman et al.

(2010)].

The software implementation of SLIM provided by the author Xia Ning2

utilizes the property that different columns of the sparse aggregation coef-

ficient matrix can be solved independently and allows the users to specify

which columns of the sparse aggregation coefficient matrix they would like

to estimate. The software is implemented with the use of the Bound Con-

strained Least Squares (BCLS) library3.

In order to fully utilize the benefits from the parallel estimation of dif-

ferent columns of S, we use a multithreaded implementation of SLIM which
2http://www-users.cs.umn.edu/∼xning/slim/html/
3http://www.cs.ubc.ca/∼mpf/bcls/index.html

http://www-users.cs.umn.edu/~xning/slim/html/
http://www.cs.ubc.ca/~mpf/bcls/index.html

October 22, 2018 17:47 ws-rv9x6-9x6 Book Title 11131-11 page 383

Scalability and Distribution of Collaborative Recommenders 383

relies on OpenMP. This allows us to have parallelism within a multi-core

node. Each thread is assigned a set of columns i and estimates the as-

sociated sparse aggregation coefficient vectors si. After all the threads

have estimated the set of si vectors, the vectors are combined into the

overall sparse aggregation coefficient matrix S. We will refer to the mul-

tithreaded implementation of SLIM, as mt-SLIM. Figure 11.3 shows the

speedup achieved by mt-SLIM on the ML10M dataset, with respect to the

serial runtime (cores = 1). The results shown correspond to the time taken

for model estimation and they correspond to the average of three folds.

0 10 20
Cores

0

5

10

15

20

25

Sp
ee

du
p

mt-SLIM
ideal

Fig. 11.3. The speedup achieved by mt-SLIM on the ML10M dataset, while increasing

the number of cores (strong scaling).

As both the rating matrix and the estimated sparse aggregation coeffi-

cient matrix are sparse, they are stored in CSR (Compressed Sparse Row)

format, in which three one-dimensional arrays are stored, that contain the

non-zero values, with their associated row and column indices.

11.3.1.2. Accelerating the training time of SLIM during parameter

search

In order to find the pair of regularization parameters β and λ that give the

best results, a parameter search needs to be conducted. However, the num-

ber of models to estimate increases quadratically with the number of values

of the regularization parameters β and λ explored. In order to be able to

estimate the models more efficiently, mt-SLIM utilizes ‘warm-start’. This

means that with the exception of the model estimated with the very first

choice of parameters, every subsequent model is initialized with the previous

October 22, 2018 17:47 ws-rv9x6-9x6 Book Title 11131-11 page 384

384 E. Christakopoulou et al.

model estimated with a different choice of regularization parameters, in-

stead of being initialized with zero values.

Figure 11.4 compares the time spent by mt-SLIM without initialization

and mt-SLIM with warm start, for the same number of cores and and for

the same choice of regularization parameters (β = 10, λ = 1). We can see

that mt-SLIM with warm start is on average 15 times faster than mt-SLIM

with no initialization.

1 2 4 8 16 24
Cores

101

102

103

Ti
m

e
(m

in
)

No initialization
Warm start

Fig. 11.4. The time in minutes achieved by mt-SLIM with and without warm start on
the ML10M dataset for β = 10 and λ = 1, while increasing the number of cores (strong

scaling).

By evaluating the performance of mt-SLIM with no initialization and

with warm start, we get the same performance results, which shows that

with warm start, we gain in estimation times, without compromising the

quality of the performance.

11.3.2. Global and Local Sparse LInear Methods for Top-N

Recommendation (GLSLIM)

A limitation of SLIM is that it estimates only a single model for all the

users. In many cases, there are differences in users’ behavior, who can

have diverse preferences. These cannot be captured by a single model.

Recently, GLSLIM [Christakopoulou and Karypis (2016)] was proposed,

which utilizes both user-subset specific models and a global model, and

was shown to improve the top-N recommendation quality. The models,

(which are estimated with SLIM) are jointly optimized and combined in a

personalized way. Also, GLSLIM automatically identifies the appropriate

user subsets. If we note the global model as S and the local user-subset

specific models as Spu , where pu ∈ {1..k} denotes the user subset, then

the predicted rating of user u, who belongs to subset pu for item i, will be

October 22, 2018 17:47 ws-rv9x6-9x6 Book Title 11131-11 page 385

Scalability and Distribution of Collaborative Recommenders 385

estimated as:

r̂ui =
∑
l∈Ru

gusli + (1− gu)spu

li , (11.5)

where sli shows the global item-item similarity between the lth item rated

by the user u and the target item i and spu

li shows the pu user-subset specific

similarity between the lth rated item by u and the target item i. The term

gu is the personalized weight which controls the interplay between the global

and the local model and ranges between 0 and 1.

GLSLIM is an iterative algorithm which jointly optimizes the global

and local models, the user assignment and the personalized weights. The

global and local models are estimated by solving an elastic net optimization

problem. Following SLIM, GLSLIM can estimate the columns of its global

and local models independent of the other columns. Separate regulariza-

tion is enforced on the global and on the local models, in order to allow

more flexibility in model estimation: we thus have the global l2 regulariza-

tion parameter βg, the global l1 regularization parameter λg, the local l2
regularization parameter βl and the local l1 regularization parameter λl.

Initially, the users are assigned to clusters. In each iteration, every user

is assigned to the subset that resulted in the smallest training error, and

his personalized weight is updated accordingly. The models and the user

assignment with the personalized weights are updated iteratively, until con-

vergence (the algorithm converges when the users switching subsets are less

than one percent). An overview of the algorithm is shown in Algorithm 3.

After having completed the training, the top-N recommendation is per-

formed in the following way: for user u, the ratings of all the unrated items i

are estimated with Equation 11.5, and the items with the N highest ratings

are recommended to the user.

11.3.2.1. Parallelizing GLSLIM

We can see from Algorithm 3 that every iteration has two parts: estimating

the global and local models (line 4) and user refinement (lines 5−11). Both

parts allow for parallelization, each in its own way. The model estimation

part can be parallelized with respect to the items, since every column of the

models can be estimated independently of the others. The user refinement

part can be parallelized with respect to the users, as provided the models

are fixed, the assignment and personalized weight of each user does not

depend on the other users.
4http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview

http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview

October 22, 2018 17:47 ws-rv9x6-9x6 Book Title 11131-11 page 386

386 E. Christakopoulou et al.

Algorithm 3 GLSLIM

1: Assign gu = 0.5, to every user u.

2: Compute the initial clustering of users with CLUTO4.

3: while number of users who switched clusters > 1% of the total number

of users do

4: Estimate S and Spu , ∀pu ∈ {1, . . . , k}. The estimation is initialized

in all iterations but the first one with the corresponding matrices S

and Spu , ∀pu ∈ {1, . . . , k} computed in the previous iteration.

5: for all user u do

6: for all cluster pu do

7: Compute gu for cluster pu by minimizing the squared error.

8: Compute the training error.

9: end for

10: Assign user u to the cluster pu that has the smallest training error

and update gu to the corresponding one for cluster pu.

11: end for

12: end while

Taking advantage of these parallelization opportunities, there is an MPI-

based GLSLIM software5, which we use for our subsequent experiments.

GLSLIM relies on MPI, instead of OpenMP which was used for mt-SLIM,

as it requires more computations than SLIM. SLIM solves one elastic net

problem for the whole training matrix R, while GLSLIM is iterative and

in each iteration, a new elastic net problem is solved for the global matrix

and for all user subsets. Thus, the distributed framework MPI is employed,

which allows model estimation and user refinement to be done in a dis-

tributed way, thus taking advantage of multiple nodes (where each node

consists of cores).

Figure 11.5 shows the speedup achieved by GLSLIM on different nodes,

with respect to the time taken by GLSLIM on one node (which consists of

24 cores in our shown results), for the ML10M dataset.

11.3.2.2. Accelerating the training time of GLSLIM during

parameter search

GLSLIM has many parameters, for which a parameter search needs to be

conducted in order to find the set of them that gives the best performance:

the regularization parameters βg, λg, βl, λl, and the number of user subsets

5http://www-users.cs.umn.edu/∼evangel/code.html

http://www-users.cs.umn.edu/~evangel/code.html

October 22, 2018 17:47 ws-rv9x6-9x6 Book Title 11131-11 page 387

Scalability and Distribution of Collaborative Recommenders 387

0 10 20 30
Nodes (x24 cores)

0

5

10

15

20

25

30

Sp
ee

du
p

GLSLIM
ideal

Fig. 11.5. The speedup achieved by GLSLIM on the ML10M dataset, while increasing
the number of nodes. The speedup is computed with respect to the time of running

GLSLIM on one node.

k. We can see that the cost of finding the best possible set of parameters

increases exponentially. It is thus crucial to be able to run GLSLIM as

efficiently as possible.

In order to do so, we again employ warm start. This is done in the

following way: When estimating a model with a new choice of parameters,

we use another model learned with a different choice of parameters as its

initialization. Thus, the only time it is needed to estimate a model with

no initialization is when estimating the very first model for this dataset

(model of the first iteration with the first choice of parameters). After it is

estimated, the models of the subsequent iterations get initialized with the

models of the previous iterations. Then, when moving on to a new choice

of parameters, the model of the first iteration is initialized with the model

estimated with the previous choice of parameters and so on.

Figure 11.6 shows the time taken in minutes to run GLSLIM on ML10M

with ‘warm start’ and with ‘no initialization’. Figure 11.6 shows the to-

tal time for all iterations when run with k = 5 user subsets and with l2
regularizations parameters βg = βl = 10 and l1 regularization parameters

λg = λl = 1. Note that four iterations were needed until convergence. Also

note that the greatest part of the time shown corresponds to the model

estimations, as the user refinement does not take more than a couple of

seconds (in this example, the user refinement part took fourteen seconds

when run on one node). A speedup of 4× is achieved by employing warm

start.

October 22, 2018 17:47 ws-rv9x6-9x6 Book Title 11131-11 page 388

388 E. Christakopoulou et al.

1 2 4 8 16 32
Nodes (x24 cores)

0

50

100

150

200

Ti
m

e
(m

in
)

No initialization
Warm start

Fig. 11.6. The total time in minutes achieved by GLSLIM with and without warm start
on the ML10M dataset, while increasing the number of nodes.

Table 11.3. Comparison of SLIM with GLSLIM in

terms of top-N performance and training time.

Method HR ARHR Time (min)

SLIM 0.310 0.152 2.56

GLSLIM 0.336 0.167 51.72

Time corresponds to ‘warm start’ time in minutes, and
corresponds to the time taken on one node (24 cores).
GLSLIM time corresponds to total time of all iterations
until convergence.

Table 11.3 shows the top-N recommendation performance and training

times of SLIM and GLSLIM with warm start, when run with the same

parameters β = βg = βl = 10 and λ = λg = λl = 1. Five user sub-

sets were used for GLSLIM. The top-N performance is measured in terms

of HR (Equation 11.1) and ARHR (Equation 11.2). The reported time

corresponds to running SLIM and GLSLIM on one node (24 cores). This

is done for fairness of comparison between the two methods. The shown

times correspond to the warm-start right-most column of Figure 11.4 and

the warm-start left-most column of Figure 11.6. We can see that GLSLIM

has an average performance gain of 9.5% over SLIM, while requiring more

time-consuming training; although higher number of nodes used allows for

great decrease in running time.

11.4. Scaling up latent factor approaches

Latent factor approaches are a class of methods that map users and items to

vectors in a common low-rank space known as the latent space. A detailed

overview of latent space approaches can be found in Chapter 2. Latent

October 22, 2018 17:47 ws-rv9x6-9x6 Book Title 11131-11 page 389

Scalability and Distribution of Collaborative Recommenders 389

factor approaches are perhaps the most popular techniques used for rating

prediction. The success of these approaches has led to a wealth of research

on developing algorithms to facilitate high-quality recommendations from

massive training datasets. These algorithms exhibit complex tradeoffs in

terms of computational characteristics, convergence rate, and available par-

allelism.

11.4.1. Overview of matrix and tensor factorization

Matrix factorization approaches [Koren (2008)] are state-of-the-art collab-

orative filtering methods and have gained high popularity since the Netflix

Prize [Koren (2009); Takács et al. (2009)]. They assume that the user-item

rating matrix R is low rank and can be computed as a product of two

matrices known as the user and the item latent factors (denoted P and Q,

respectively). Rows of P and Q are F -dimensional vectors which represent

the corresponding user or item. The value F is referred to as the rank of

the factorization.

An item’s latent factor, denoted qi, represents a few characteristics of

the item, and a user’s latent factor, denoted pu, signifies how much a user

weights these characteristics. The predicted rating for the user u on the

item i is given by

r̂ui = pT
uqi.

The completed matrix R̂ = PQT is used to serve the recommendation

to the user for the items for which their preferences were unknown in the

original matrix R.

The user and the item latent factors are estimated by minimizing a

regularized squared loss

minimize
P,Q

1

2

∑
rui∈R

(
rui − pT

uqi

)2
+
β

2

(
||P||2F + ||Q||2F

)
, (11.6)

where the parameter β controls the Frobenius norm regularization to pre-

vent overfitting.

Additionally, instead of optimizing for rating predictions, one can op-

timize for ranking performance by substituting a ranking loss function in-

stead of the squared error loss function. For example, Bayesian Personalized

Ranking (BPR) [Rendle and Schmidt-Thieme (2010)], Collaborative Less-

is-More Filtering (CLiMF) [Shi et al. (2012)] and CofiRank [Weimer et al.

(2008)] optimize approximation of different ranking metrics to estimate the

user and the item latent factors for better ranking performance.

October 22, 2018 17:47 ws-rv9x6-9x6 Book Title 11131-11 page 390

390 E. Christakopoulou et al.

Ratings are often accompanied by contextual information associated

with the ratings. For example, the ML10M dataset provides both times-

tamps and tags which can be used to improve recommendation quality.

The traditional ratings matrix can be extended to include contextual

information in the form of a tensor, which is the generalization of a matrix

to higher orders. For example, associating each rating with a timestamp

would result in a third-order tensor whose modes represent users, items,

and time. Latent factor approaches can be extended to include higher-order

data provided by tensors. The canonical polyadic decomposition (CPD) is

a popular model for tensor factorization which has be used successfully for

rating prediction. The CPD seeks to model a ratings tensor R as the com-

bination of user factor P, item factor Q, and context factor C. The resulting

optimization problem closely resembles that of matrix factorization:

minimize
P,Q,C

1

2

∑
ruik∈R

ruik − F∑
f=1

pufqifckf

2

+
β

2

(
||P||2F + ||Q||2F + ||C||2F

)
.

The estimation of user and item latent factors by solving Equation 11.6 is

one method of solving a problem referred to as matrix completion. It is a

non-convex and computationally expensive problem. Several optimization

algorithms have been successfully applied for matrix completion on large

scale datasets.

Experimental environment. In the remaining discussion, we evaluate

three latent factor approaches that solves matrix completion problem. Each

algorithm is iterative in nature, though by convention we refer to these

iterations as epochs. We define an epoch as the work required to update

the latent factors one time using all available rating data. Convergence

is detected when the RMSE does not improve for twenty epochs. We fix

F , the rank of the factorization, to 40. All presented results are collected

using SPLATT [Smith and Karypis (2015)], a publicly available6 toolkit for

high-performance sparse tensor factorizations. While optimized for tensors,

SPLATT supports matrix factorizations because a matrix is equivalent to

a two-mode tensor. SPLATT has also been integrated into the Spark+MPI

framework [Anderson et al. (2017)], achieving over 10× speedup over pure

Spark solutions.

6http://cs.umn.edu/∼splatt/

http://cs.umn.edu/~splatt/

October 22, 2018 17:47 ws-rv9x6-9x6 Book Title 11131-11 page 391

Scalability and Distribution of Collaborative Recommenders 391

Algorithm 4 Matrix factorization via alternating least squares (ALS)

1: Initialize P and Q randomly.

2: while P and Q have not converged do

3: for all user u in parallel do

4: Hu ← 0.

5: For each rating rui in ru, append row qi to Hu.

6: pu ←
(
HT

uHu + βI
)−1

HT
u ru.

7: end for

8: for all item i in parallel do

9: Hi ← 0.

10: For each rating rui in ri, append row pu to Hi.

11: qi ←
(
HT

i Hi + βI
)−1

HT
i ri.

12: end for

13: end while

11.4.2. Alternating Least Squares (ALS)

ALS was one of the first matrix completion algorithms applied to large scale

data [Zhou et al. (2008)]. ALS is based on the observation that if we solve

Equation 11.6 for one latent factor at a time, the solution has a linear least

squares solution. ALS is an iterative algorithm which first minimizes with

respect to P and then Q. The process is repeated until convergence.

Let ru be the vector of all ratings supplied by user u. Hu is an |ru|×F
matrix whose rows are the feature vectors qi, for each item i rated in ru.

Similarly, ri is the vector of all ratings supplied for item i, and Hi is an

|ri|×F matrix. ALS proceeds by updating all pu followed by all qi:

pu ←
(
HT

uHu + βI
)−1

HT
u ru, ∀u ∈ 1, . . . ,m

qi ←
(
HT

i Hi + βI
)−1

HT
i ri, ∀i ∈ 1, . . . , n.

(11.7)

The full procedure is outlined in Algorithm 4. Extending Equation 11.7

to tensors changes the construction of the Hu matrices [Shao (2012)]. For

example, the row of Hu associated with rating ruik is the elementwise

multiplication of the corresponding feature vectors qi and ck. The Hi and

Hk matrices are constructed similarly.

Each row in Equation 11.7 is independent and thus can be computed in

parallel [Zhou et al. (2008)]. The simplicity of this approach has led ALS

to be optimized for high-performance shared- and distributed-memory sys-

tems[Karlsson et al. (2015); Smith et al. (2017)], GPUs [Gates et al. (2015);

October 22, 2018 17:47 ws-rv9x6-9x6 Book Title 11131-11 page 392

392 E. Christakopoulou et al.

20 40 60 80 100
Rank

0.0

0.5

1.0

1.5

2.0

Av
er

ag
e

ti
m

e
pe

r
ep

oc
h

(s
) rank-1

rank-k

20 40 60 80 100
Rank

0.0

0.5

1.0

1.5

2.0

Av
er

ag
e

ti
m

e
pe

r
ep

oc
h

(s
) rank-1

rank-k

(a) Matrix (b) Tensor

Fig. 11.7. Average time per epoch when using rank-1 and rank-k updates during ALS.
Execution is on 24 cores and an epoch is counted as updating each factor matrix once.

Tan et al. (2016)], Hadoop [Shin and Kang (2014)], and is implemented in

Spark’s MLlib7. Successful approaches distribute the ratings data in a one-

dimensional fashion such that all of the ratings required to construct an

H matrix are located on the same node. By distributing the data in this

fashion, none of the partially-constructed H matrices need to be commu-

nicated or aggregated. However, this distribution requires that each node

stores potentially the entire latent factors. Fortunately, in practice this is

not prohibitive on most modern systems.

The computational complexity of ALS is O
(
F 2|R|+ F 3(m+ n)

)
per

epoch. In practice, the O(F 2) computation per rating that comes from con-

structing the various H matrices dominates the computation. A common

implementation strategy is to process one rating at a time and accumulate

directly into HT
uHu and Huru instead of explicitly constructing Hu. How-

ever, this strategy ignores the details of modern hardware architectures in

which memory movement is more expensive than floating-point operations.

Each rating produces an accumulation that is a rank-1 update performing

O(F 2) work on F 2 data. Alternatively, performing a single rank-k update

by explicitly forming Hu instead performs O(|ru|F 2) work on (|ru|F +F 2)

data [Gates et al. (2015); Smith et al. (2017)]. While the final amount of

work is the same, the rank-k update fetches less data from memory and

is thus better suited for modern processors. We explore this phenomenon

in Figure 11.7, which illustrates runtime per epoch as F is increased. Us-

ing rank-k updates can be over 10× faster than the more common rank-1

updates.

7https://spark.apache.org/mllib/

https://spark.apache.org/mllib/

October 22, 2018 17:47 ws-rv9x6-9x6 Book Title 11131-11 page 393

Scalability and Distribution of Collaborative Recommenders 393

Algorithm 5 Matrix factorization via stochastic gradient descent (SGD)

1: Initialize P and Q randomly.

2: while P and Q have not converged do

3: Shuffle the permutation of ratings.

4: for all rating rui do

5: eui ← rui − pT
uqi

6: pu ← pu + η (euiqi − βpu).

7: qi ← qi + η (euipu − βqi).

8: end for

9: end while

11.4.3. Stochastic Gradient Descent (SGD)

SGD is an optimization algorithm that trades a large number of epochs for

a low computational complexity. An epoch consists of processing all ratings

one-at-a-time in random order and updating the factorization based on the

local gradient. Updates are of the form:

eui ← rui − pT
uqi,

pu ← pu + η (euiqi − βpu) ,

qi ← qi + η (euipu − βqi) ,

(11.8)

where η is a hyperparameter representing the learning rate. The complexity

of Equation 11.8 is linear in F , resulting in a total complexity of O(F |R|)
per epoch. The low complexity and simple implementation of SGD has led

to it being widely adopted by researchers and industry alike. The details

of SGD are outlined in Algorithm 5.

SGD is less straightforward than ALS to parallelize. Since processing

a rating updates rows of both P and Q, special care must be taken to

prevent the same rows from being modified at the same time (called a race

condition). There are two broad approaches for parallelizing SGD.

Stratified methods are based on the observation that if two ratings do

not overlap (i.e., they have neither a row nor a column in common) then

they can be updated with Equation 11.8 in parallel. This strategy was

introduced by DSGD [Gemulla et al. (2011)], which imposes a grid on R

to identify blocks that can be processed in parallel. Stratification is illus-

trated in Figure 11.8. Stratification has proven to be an effective strategy

for parallelizing SGD and has been extended in works on multithreaded

environments, distributed systems, and GPUs [Zhuang et al. (2013); Yun

et al. (2014); Xie et al. (2017)].

October 22, 2018 17:47 ws-rv9x6-9x6 Book Title 11131-11 page 394

394 E. Christakopoulou et al.

P

QT

P

QT

P

QT

(a) (b) (c)

Fig. 11.8. Stratified SGD with three workers. Colored blocks represent independent

sets of ratings and the rows of P and Q which model them. Each colored block of

ratings and their corresponding rows can be processed in parallel.

Asynchronous methods rely on the stochastic nature of SGD to allow

overlapping updates. This technique was popularized by Hogwild [Recht

et al. (2011)] on shared-memory systems. The key idea is to simply allow

race conditions to occur without attempting to avoid them. Convergence

is still achieved due to the iterative nature of SGD and infrequent overlaps

from the high level of sparsity in R. Teflioudi et al. later introduced asyn-

chronous SGD (ASGD) [Teflioudi et al. (2012)] for distributed computing

environments. During ASGD, nodes maintain locally modified copies of P

and Q and updates are asynchronously communicated several times per

epoch. Overlapping updates are averaged with the master copy and sent

to workers.

Extending the formulation of SGD to tensors is straightforward and

again only requires additional elementwise multiplications [Shao (2012)].

However, parallelization becomes a significant challenge when a contextual

mode is added to the data. The number of blocks in a stratified SGD al-

gorithm increases exponentially with the number of tensor modes despite

the work per rating only increasing linearly, and thus the time of syn-

chronization and communication quickly dominate the factorization time.

Asynchronous methods also suffer because the number of unique contexts

is typically much smaller than the number of users or items, resulting in

more frequent update conflicts. A hybrid of stratification and asynchronous

SGD addresses these challenges, but the hybrid is still bested by ALS at

large numbers of cores [Smith et al. (2017)].

October 22, 2018 17:47 ws-rv9x6-9x6 Book Title 11131-11 page 395

Scalability and Distribution of Collaborative Recommenders 395

Algorithm 6 Matrix factorization via coordinate descent (CCD++)

1: Initialize P and Q randomly.

2: while P and Q have not converged do

3: for all column f do

4: Pre-compute all error terms: (rui − pT
uqi).

5: for all user u in parallel do

6: Update puf following (11.9).

7: end for

8: for all item i in parallel do

9: Update qif following (11.9).

10: end for

11: end for

12: end while

11.4.4. Coordinate Descent (CCD++)

Coordinate descent is a class of optimization algorithms which update one

parameter of the output at a time. CCD++ is a column-oriented de-

scent algorithms for matrix completion [Yu et al. (2012)]. CCD++ updates

columns of P and Q in sequence, with a single parameter update taking

the form

puf ←
∑

rui∈R(rui − pT
uqi + pufqif)qif

β +
∑

rui∈R q2if
. (11.9)

The full procedure is outlined in Algorithm 4. If all (rui − pT
uqi) are

pre-computed, CCD++ has a complexity of O(F |R|) per epoch, match-

ing SGD. The extension of CCD++ to tensors follows that of ALS and

SGD, in which additional elementwise multiplications are introduced to

the formulation [Karlsson et al. (2015)].

Similar to ALS, each column entry is independent and can thus be

computed in parallel. CCD++ has accordingly been parallelized on shared-

and distributed-memory systems [Yu et al. (2012); Karlsson et al. (2015);

Smith et al. (2017)] and GPUs [Nisa et al. (2017)]. However, unlike ALS,

the communication cost from aggregating partial computations is only of

constant size per column as opposed to the larger H matrices of ALS.

The lower communication volume affords more flexible partitionings of the

ratings. Recent work has shown that a Cartesian (i.e., grid) distribution

of the data is an effective formulation and has been scaled to over sixteen

thousand cores [Smith et al. (2017)].

October 22, 2018 17:47 ws-rv9x6-9x6 Book Title 11131-11 page 396

396 E. Christakopoulou et al.

11.4.5. Evaluation of optimization algorithms

Parallel scalability. We examine the parallel scalability of ALS, SGD,

and CCD++ for matrix and tensor completion in Figure 11.9. ALS scales

notably better than the competing methods. The scalability of ALS comes

from being rich in dense linear algebra kernels which effectively use the

floating-point hardware found in each core, instead of being bound by mem-

ory bandwidth which is a shared resource. In contrast, SGD and CCD++

perform a factor of F fewer floating-point operations per rating processed,

resulting in heavy reliance on available memory bandwidth. Interestingly,

the scalability of CCD++ and SGD is also more dependent on the size and

characteristics of the ratings dataset. Figure 11.10 shows parallel scalabil-

ity on a tensor of 210 million Yahoo! music ratings with timestamps from

the 2011 KDD cup [Dror et al. (2012)]. CCD++ achieves perfect speedup

on this significantly larger and more sparse dataset.

0 10 20
Cores

0

5

10

15

20

25

Sp
ee

du
p

ALS
SGD
CCD++
ideal

0 10 20
Cores

0

5

10

15

20

25

Sp
ee

du
p

ALS
SGD
CCD++
ideal

(a) Matrix (b) Tensor

Fig. 11.9. Speedup on ML10M dataset scaling from 1 to 24 cores. SGD is parallelized

using Hogwild [Recht et al. (2011)].

Time to solution. Finally, we compare solution qualities and conver-

gence times for the latent factor approaches in Table 11.4. In the matrix

case, SGD arrives at the lowest RMSE while being competitive in runtime

to ALS. CCD++ obtains the lowest RMSE in the tensor case, but at 5× the

runtime of the similar-quality ALS. Utilizing the timestamp for tensor com-

pletion notably improves the RMSE for ALS and CCD++, but not SGD.

October 22, 2018 17:47 ws-rv9x6-9x6 Book Title 11131-11 page 397

Scalability and Distribution of Collaborative Recommenders 397

0 10 20
Cores

0

5

10

15

20

25

Sp
ee

du
p

ALS
SGD
CCD++
ideal

Fig. 11.10. Parallel speedup on a three-mode tensor made from 210 million Yahoo!

music ratings.

Table 11.4. Comparison of solution quality and time.

Matrix Tensor
Algorithm RMSE Time (s) RMSE Time (s)

ALS 0.8805 4.82 0.8662 50.26
SGD 0.8747 11.54 0.9107 17.19

CCD++ 0.8955 435.61 0.8622 256.25

RMSE is evaluated on the test dataset, averaged over three folds.
Time measures the time to convergence.

Since timestamps are grouped by month (133 months in total), the number

of independent months is significantly more limited than the number of in-

dependent users or items. Thus, there are frequent overlapping updates to

the C latent factor. Lastly, we note that the time-to-solution for CCD++

is longer in the matrix case than the tensor case, despite performing less

work and arriving at a higher RMSE. While the tensor completion algo-

rithm performs more work than the matrix equivalent, in practice we find

that it converges in fewer epochs.

11.4.6. Singular Value Decomposition (SVD)

The key idea of SVD-based models is to factorize the user-item rating ma-

trix to a product of two lower rank matrices, one containing the user factors

and the other containing the item factors. Since conventional SVD is unde-

fined in the presence of missing values, PureSVD [Cremonesi et al. (2010)]

treats all the missing values as zeros prior to the application of the standard

October 22, 2018 17:47 ws-rv9x6-9x6 Book Title 11131-11 page 398

398 E. Christakopoulou et al.

SVD method. PureSVD is shown to be suitable for the top-N recommen-

dations task. The better top-N recommendation performance of PureSVD

in comparison to the standard matrix completion-based approaches that

are optimized for rating predictions, can be attributed to the fact that it

considers all the items present in the catalog rather than considering only

the items rated by the user. Additionally, for ranking purposes, it does

not need to predict the exact ratings but only requires to achieve a correct

relative ordering of the predictions for a user.

PureSVD estimates the rating matrix R as

R̂ = UΣQT ,

where U is a n×F orthonormal matrix, Q is an m×F orthonormal matrix

and Σ is an F × F diagonal matrix, containing the F largest singular

values. It can be noted that the matrix P representing the user factors can

be derived by

P = UΣ.

The matrices U, Σ and Q can be estimated by solving the following opti-

mization problem with orthonormal constraints

minimize
U,Q,Σ

1

2
||R−

F∑
i=1

σiuiq
T
i ||2F

subject to UTU = I

QTQ = I,

(11.10)

where I is the identity matrix, σi denotes the ith largest singular value,

ui represents the ith column vector of U and qi denotes the ith column

vector of Q. The application of PureSVD on large scale sparse matrices

can be optimized with the Golub-Kahan-Lanczos Bidiagonalization [Golub

and Kahan (1965); Lanczos (1950)] approach. It computes the SVD of given

matrix R in two steps. First, it bidiagonalizes R using Lanczos procedure

as,

R = PBQT , (11.11)

where P and Q are unitary matrices, and B is an upper bidiagonal matrix.

The Lanczos procedure can take advantage of optimized sparse matrix-

vector multiplications and efficient orthogonalization. Then, it uses an

efficient method [Demmel and Kahan (1990)] to compute the singular values

of B without computing BTB as,

B = XΣYT . (11.12)

October 22, 2018 17:47 ws-rv9x6-9x6 Book Title 11131-11 page 399

Scalability and Distribution of Collaborative Recommenders 399

Now, using Equations 11.11 and 11.12 we can compute left singular vectors,

i.e., U = PX, and right singular vectors, i.e., V = QY, of matrix R.

Modern randomized matrix approximation techniques [Halko et al.

(2011)] can be used to compute a faster but approximate SVD of the rating

matrix. We will refer to these approximation techniques as Randomized

SVD. Essentially, Randomized SVD technique is carried out in two steps.

First, it tries to find Q with F orthonormal columns such that,

R ≈ QQTA. (11.13)

Next, it constructs B = QTA, and since B has relatively smaller number

of rows, i.e., F , we can employ standard methods to efficiently compute

SVD of B as,

B = ŨΣVT . (11.14)

Thus, left singular vector of R can be approximated by, U = QŨ, and

right singular vectors can be approximated by V. Randomized SVD can

take advantage of efficient sparse matrix-matrix multiplication to find Q

and to compute B.

For our experiments, we used the optimized and parallel implementation

of Golub-Kahan-Lanczos Bidiagonalization approach available in SLEPc8

[Hernandez et al. (2007)] for PureSVD, and utilized the implementation

of Randomized SVD available in RedSVD9. These implementations rely

on well-studied sparse and dense linear algebra operations, that are fur-

ther optimized for efficient usage on high-performance computers [Ander-

son et al. (1990)]. Figure 11.11 shows the speedup and total time achieved

by PureSVD and Randomized SVD on ML10M dataset with increasing

number of cores. As can be seen in the figure, the parallel implementation

of PureSVD achieves better speedup than Randomized SVD with increase

in the number of cores. Also, the time taken by Randomized SVD is lower

in comparison to that of PureSVD on a single core. Table 11.5 presents

the results for the best ranking performance achieved by both the methods

on ML10M dataset. As can be seen in the table, PureSVD and Random-

ized SVD do not outperform SLIM for top-N recommendation but the

time taken by PureSVD and Randomized SVD is lower than that of SLIM.

Furthermore, PureSVD outperforms Randomized SVD for top-N recom-

mendation performance. We should note though that the performance of

Randomized SVD is comparable to that of PureSVD, and therefore Ran-

domized SVD can serve as an alternative to PureSVD under time and
8slepc.upv.es
9https://github.com/ntessore/redsvd-h

October 22, 2018 17:47 ws-rv9x6-9x6 Book Title 11131-11 page 400

400 E. Christakopoulou et al.

0 2 4 8 12 24
Cores

0

5

10

15

20

25

Sp
ee

du
p

PureSVD
Randomized SVD
ideal

1 2 4 8 12 24
Cores

0

50

100

150

200

250

300

350

Ti
m

e
(s

ec
)

PureSVD
Randomized SVD

Fig. 11.11. Speedup (left) and total time in seconds (right) achieved by PureSVD and

Randomized SVD on the ML10M dataset (F = 500).

Table 11.5. Comparison of PureSVD with Randomized SVD in
terms of top-N performance and training time.

Method HR ARHR Rank (F) Time (sec)

PureSVD 0.292 0.139 60 9.24
Randomized SVD 0.247 0.112 400 15.46

Time corresponds to the time taken on one node (24 cores).

compute resource constraints. Also, Randomized SVD needs higher rank

to achieve its best performance.

11.5. Conclusion

In this chapter, we presented different methods which speed up popular

collaborative recommenders, by taking advantage of modern parallel multi-

core architectures. We discussed ways to efficiently identify neighbors in

k-nearest neighbor approaches in Section 11.2. We investigated how to

parallelize the sparse linear methods well-suited for the top-N recommen-

dation task, presented in Section 11.3 and how to speed up their parameter

search. Finally, in Section 11.4, we showed ways to scale up the latent fac-

tor approaches, which could extend to tensor factorization approaches. In

each section, we also presented experimental results on the popular ML10M

dataset, illustrating the runtimes and speedup achieved in comparison to

serial core implementations. Overall, the goal of this chapter is to illustrate

that modern popular collaborative recommenders, although of very different

October 22, 2018 17:47 ws-rv9x6-9x6 Book Title 11131-11 page 401

Scalability and Distribution of Collaborative Recommenders 401

nature, are able to be parallelized. We believe that research that focuses

on ways to distribute and scale popular collaborative recommenders is cru-

cial, as it leads to faster training times without sacrificing recommendation

quality.

References

Anastasiu, D. C. (2017). Cosine approximate nearest neighbors, in P. Haber,
T. Lampoltshammer and M. Mayr (eds.), Data Science – Analytics and
Applications, iDSC 2017 (Springer Fachmedien Wiesbaden, Wiesbaden),
ISBN 978-3-658-19287-7, pp. 45–50.

Anastasiu, D. C. and Karypis, G. (2014). L2ap: Fast cosine similarity search with
prefix l-2 norm bounds, in 30th IEEE International Conference on Data
Engineering, ICDE ’14, pp. 784–795, doi:10.1109/ICDE.2014.6816700.

Anastasiu, D. C. and Karypis, G. (2015a). L2knng: Fast exact k-nearest neigh-
bor graph construction with l2-norm pruning, in 24th ACM Interna-
tional Conference on Information and Knowledge Management, CIKM ’15
(ACM, New York, NY, USA), ISBN 978-1-4503-3794-6, pp. 791–800, doi:
10.1145/2806416.2806534, http://doi.acm.org/10.1145/2806416.2806534.

Anastasiu, D. C. and Karypis, G. (2015b). Pl2ap: Fast parallel cosine similarity
search, in Proceedings of the 5th Workshop on Irregular Applications: Archi-
tectures and Algorithms, IA3 ’15 (ACM, New York, NY, USA), pp. 8:1–8:8.

Anastasiu, D. C. and Karypis, G. (2016). Fast parallel cosine k-nearest neigh-
bor graph construction, in 2016 6th Workshop on Irregular Applications:
Architecture and Algorithms (IA3), pp. 50–53, doi:10.1109/IA3.2016.013.

Anderson, E., Bai, Z., Dongarra, J., Greenbaum, A., McKenney, A., Du Croz, J.,
Hammarling, S., Demmel, J., Bischof, C. and Sorensen, D. (1990). Lapack:
A portable linear algebra library for high-performance computers, in Pro-
ceedings of the 1990 ACM/IEEE Conference on Supercomputing, Supercom-
puting ’90 (IEEE Computer Society Press, Los Alamitos, CA, USA), ISBN
0-89791-412-0, pp. 2–11, http://dl.acm.org/citation.cfm?id=110382.110385.

Anderson, M., Smith, S., Sundaram, N., Capotă, M., Zhao, Z., Dulloor, S., Satish,
N. and Willke, T. L. (2017). Bridging the gap between HPC and Big Data
frameworks, Proceedings of the VLDB Endowment (PVLDB ’17).

Bayardo, R. J., Ma, Y. and Srikant, R. (2007). Scaling up all pairs similarity
search, in Proceedings of the 16th International Conference on World Wide
Web, WWW ’07 (ACM, New York, NY, USA), pp. 131–140.

Christakopoulou, E. and Karypis, G. (2016). Local item-item models for top-n
recommendation, in Proceedings of the 10th ACM Conference on Recom-
mender Systems (ACM), pp. 67–74.

Cremonesi, P., Koren, Y. and Turrin, R. (2010). Performance of recommender al-
gorithms on top-n recommendation tasks, in Proceedings of the Fourth ACM
Conference on Recommender Systems, RecSys ’10 (ACM, New York, NY,
USA), ISBN 978-1-60558-906-0, pp. 39–46, doi:10.1145/1864708.1864721,
http://doi.acm.org/10.1145/1864708.1864721.

http://doi.acm.org/10.1145/2806416.2806534
http://dl.acm.org/citation.cfm?id=110382.110385
http://doi.acm.org/10.1145/1864708.1864721

October 22, 2018 17:47 ws-rv9x6-9x6 Book Title 11131-11 page 402

402 E. Christakopoulou et al.

Demmel, J. and Kahan, W. (1990). Accurate singular values of bidiagonal matri-
ces, SIAM Journal on Scientific and Statistical Computing 11, 5, pp. 873–
912.

Deshpande, M. and Karypis, G. (2004). Item-based top-n recommendation algo-
rithms, ACM Transactions on Information Systems (TOIS) 22, 1, pp. 143–
177.

Dror, G., Koenigstein, N., Koren, Y. and Weimer, M. (2012). The yahoo! music
dataset and kdd-cup’11. in KDD Cup, pp. 8–18.

Friedman, J., Hastie, T. and Tibshirani, R. (2010). Regularization paths for gen-
eralized linear models via coordinate descent, Journal of statistical software
33, 1, p. 1.

Gates, M., Anzt, H., Kurzak, J. and Dongarra, J. (2015). Accelerating collabora-
tive filtering using concepts from high performance computing, in Big Data
(Big Data), 2015 IEEE International Conference on (IEEE), pp. 667–676.

Gemulla, R., Nijkamp, E., Haas, P. J. and Sismanis, Y. (2011). Large-scale matrix
factorization with distributed stochastic gradient descent, in Proceedings of
the 17th ACM SIGKDD international conference on Knowledge discovery
and data mining (ACM), pp. 69–77.

Golub, G. and Kahan, W. (1965). Calculating the singular values and pseudo-
inverse of a matrix, Journal of the Society for Industrial and Applied Math-
ematics, Series B: Numerical Analysis 2, 2, pp. 205–224.

Halko, N., Martinsson, P.-G. and Tropp, J. A. (2011). Finding structure with
randomness: Probabilistic algorithms for constructing approximate matrix
decompositions, SIAM review 53, 2, pp. 217–288.

Harper, F. M. and Konstan, J. A. (2015). The movielens datasets: History and
context, ACM Trans. Interact. Intell. Syst. 5, 4, pp. 19:1–19:19.

Hernandez, V., Roman, J., Tomas, A. and Vidal, V. (2007). Restarted lanczos
bidiagonalization for the svd in slepc, STR-8, Tech. Rep.

Karlsson, L., Kressner, D. and Uschmajew, A. (2015). Parallel algorithms for
tensor completion in the cp format, Parallel Computing.

Konstan, J. A., Miller, B. N., Maltz, D., Herlocker, J. L., Gordon, L. R. and
Riedl, J. (1997). Grouplens: Applying collaborative filtering to usenet news,
Commun. ACM 40, 3, pp. 77–87, doi:10.1145/245108.245126, http://doi.
acm.org/10.1145/245108.245126.

Koren, Y. (2008). Factorization meets the neighborhood: a multifaceted col-
laborative filtering model, in Proceedings of the 14th ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining (ACM),
pp. 426–434.

Koren, Y. (2009). The bellkor solution to the netflix grand prize, Netflix prize
documentation 81, pp. 1–10.

Lanczos, C. (1950). An iteration method for the solution of the eigenvalue problem
of linear differential and integral operators (United States Governm. Press
Office Los Angeles, CA).

Ning, X. and Karypis, G. (2011). Slim: Sparse linear methods for top-n rec-
ommender systems, in 2011 IEEE 11th International Conference on Data
Mining (IEEE), pp. 497–506.

http://doi.acm.org/10.1145/245108.245126
http://doi.acm.org/10.1145/245108.245126

October 22, 2018 17:47 ws-rv9x6-9x6 Book Title 11131-11 page 403

Scalability and Distribution of Collaborative Recommenders 403

Nisa, I., Sukumaran-Rajam, A., Kunchum, R. and Sadayappan, P. (2017). Paral-
lel CCD++ on GPU for matrix factorization, in Proceedings of the General
Purpose GPUs (GPGPU) (ACM), pp. 73–83.

Recht, B., Re, C., Wright, S. and Niu, F. (2011). Hogwild: A lock-free approach to
parallelizing stochastic gradient descent, in Advances in Neural Information
Processing Systems, pp. 693–701.

Rendle, S. and Schmidt-Thieme, L. (2010). Pairwise interaction tensor factoriza-
tion for personalized tag recommendation, in Proceedings of the third ACM
international conference on Web search and data mining (ACM), pp. 81–90.

Sarwar, B., Karypis, G., Konstan, J. and Riedl, J. (2001). Item-based collabora-
tive filtering recommendation algorithms, in Proceedings of the 10th inter-
national conference on World Wide Web (ACM), pp. 285–295.

Shao, W. (2012). Tensor Completion, Master’s thesis, Universität des Saarlandes
Saarbrücken.

Shi, Y., Karatzoglou, A., Baltrunas, L., Larson, M., Oliver, N. and Hanjalic,
A. (2012). Climf: learning to maximize reciprocal rank with collaborative
less-is-more filtering, in Proceedings of the sixth ACM conference on Rec-
ommender systems (ACM), pp. 139–146.

Shin, K. and Kang, U. (2014). Distributed methods for high-dimensional and
large-scale tensor factorization, in Data Mining (ICDM), 2014 IEEE Inter-
national Conference on, pp. 989–994.

Smith, S. and Karypis, G. (2015). SPLATT: the Surprisingly Parallel spArse
Tensor Toolkit, http://cs.umn.edu/∼splatt/.

Smith, S., Park, J. and Karypis, G. (2017). Hpc formulations of optimization
algorithms for tensor completion, Parallel Computing.

Takács, G., Pilászy, I., Németh, B. and Tikk, D. (2009). Scalable collaborative
filtering approaches for large recommender systems, Journal of machine
learning research 10, Mar, pp. 623–656.

Tan, W., Cao, L. and Fong, L. (2016). Faster and cheaper: Parallelizing large-
scale matrix factorization on gpus, in Proceedings of the 25th ACM Inter-
national Symposium on High-Performance Parallel and Distributed Com-
puting (ACM), pp. 219–230.

Teflioudi, C., Makari, F. and Gemulla, R. (2012). Distributed matrix comple-
tion, in Data Mining (ICDM), 2012 IEEE 12th International Conference
on (IEEE), pp. 655–664.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso, Journal
of the Royal Statistical Society. Series B (Methodological), pp. 267–288.

Weimer, M., Karatzoglou, A., Le, Q. V. and Smola, A. J. (2008). Cofi rank-
maximum margin matrix factorization for collaborative ranking, in Ad-
vances in neural information processing systems, pp. 1593–1600.

Xie, X., Tan, W., Fong, L. L. and Liang, Y. (2017). CuMF SGD: Parallelized
stochastic gradient descent for matrix factorization on gpus, in Proceedings
of the 26th International Symposium on High-Performance Parallel and
Distributed Computing (HPDC), pp. 79–92.

http://cs.umn.edu/~splatt/

October 22, 2018 17:47 ws-rv9x6-9x6 Book Title 11131-11 page 404

404 E. Christakopoulou et al.

Yu, H.-F., Hsieh, C.-J., Dhillon, I. et al. (2012). Scalable coordinate descent ap-
proaches to parallel matrix factorization for recommender systems, in Data
Mining (ICDM), 2012 IEEE 12th International Conference on (IEEE),
pp. 765–774.

Yun, H., Yu, H.-F., Hsieh, C.-J., Vishwanathan, S. V. N. and Dhillon, I.
(2014). Nomad: Non-locking, stochastic multi-machine algorithm for asyn-
chronous and decentralized matrix completion, Proc. VLDB Endow. 7, 11,
pp. 975–986, doi:10.14778/2732967.2732973, http://dx.doi.org/10.14778/
2732967.2732973.

Zhou, Y., Wilkinson, D., Schreiber, R. and Pan, R. (2008). Large-scale parallel
collaborative filtering for the netflix prize, in Algorithmic Aspects in Infor-
mation and Management (Springer), pp. 337–348.

Zhuang, Y., Chin, W.-S., Juan, Y.-C. and Lin, C.-J. (2013). A fast parallel sgd
for matrix factorization in shared memory systems, in Proceedings of the
7th ACM conference on Recommender systems (ACM), pp. 249–256.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic
net, Journal of the Royal Statistical Society: Series B (Statistical Method-
ology) 67, 2, pp. 301–320.

http://dx.doi.org/10.14778/2732967.2732973
http://dx.doi.org/10.14778/2732967.2732973

October 23, 2018 14:11 ws-rv9x6-9x6 Book Title 11131-12 page 405

Chapter 12

Robustness and Attacks on Recommenders

Neil J. Hurley

Insight Centre for Data Analytics,
School of Computer Science,

University College Dublin
neil.hurley@ucd.ie

How robust is a recommender to the presence of corrupt data in the training
dataset? To what extent will the recommendation algorithm be affected by such
data? These are the basic questions of a analysis of recommender algorithms.
They are particularly relevant in the context of maliciously injected corrupt data,
where the data injection is designed to deliberately distort the recommendation
output for particular sets of users and items. In the context of online recom-
menders, where the creation of fake identities may be relatively low-cost, such a
robustness attack against a recommender system is of genuine concern. Robust-
ness is also of some concern in the context of privacy preserving recommender
algorithms in which user rating profiles are distorted in order to protect private
data. In this chapter, we review research carried out since the early 2000s on ro-
bustness attacks and practical defences against them. We introduce a new library
for robustness analysis incorporated into the Ranksys recommender systems
framework, in which the main attacks proposed in the state-of-the-art are imple-
mented and can be simply tested against a range of recommender algorithms.

12.1. Introduction

Recommender algorithms are concerned with delivering a personalised experience
to their end-users. The implicit contract between end-user and system is that users
are willing to share personal information, namely their preferences towards partic-
ular products or services, in order for the system to better find new instances that
are likely to be relevant to them. As much as the user depends on the quality of the
recommender algorithm, the algorithm itself depends on the quality of data shared
with it. Recently, the possibility and consequences of obtaining poor recommen-
dations has percolated into the public consciousness. We are highly aware that

405

October 23, 2018 14:11 ws-rv9x6-9x6 Book Title 11131-12 page 406

406 N. J. Hurley

“fake news” may have had significant impact on issues of great societal impact.
Discussions abound about the possibility of “filter bubbles” reinforcing polarised
views. While enjoying the benefits of data-driven services, people are more and
more aware that such services can perform poorly. Recommender system design-
ers need to be sensitive to people’s trust in the quality of their recommendations
and poor performance can seriously damage a system’s reputation.

In this context, understanding a system’s robustness to poor quality data is an
important task for system designers. Even more important is to understand its ro-
bustness to maliciously tailored corrupt data. We can imagine many motivations
for malicious users to deliberately attempt to distort the output of a recommen-
dation algorithm. Attackers may simply wish to destroy a system’s reputation by
degrading the overall quality of its recommendations; or attackers may be moti-
vated to deliberately promote or demote particular recommendations to or from
recommendation lists of particular users or groups of users. As a recommendation
system relies entirely on data provided through user interaction, the possibility
exists to carry out such distortion without explicitly hacking the algorithm itself.
Instead, attackers can focus on the system database and inject corrupted data into
it. Particularly for online recommendation, where the creation of fake user iden-
tities, (sometimes referred to as sybils) may be of relative low-cost, attackers can
tailor the preferences of such sybils, in such a way that they influence the recom-
mendation output for other genuine users. Such active attacks, that focus on the
injection of fake user profiles into the dataset, in order to distort the recommenda-
tions to genuine users, are the main focus of this chapter. It is worth noting that
this sort of profile inejection attack may have other motivations—for instance, in
order to learn the preferences of genuine users—but in this chapter we focus on
rating distortion.

Profile injection attacks to distort recommender outputs were first studied in
O’Mahony et al. (2002). Afterwards, a general framework for the design of at-
tack profiles was presented in the work of Burke et al. (2005). Several attack
strategies were proposed within this framework and the leading collaborative fil-
tering algorithms were analysed with respect to their susceptibility to such attacks.
In following works, measures to counter such attacks were proposed, in particu-
lar attack detection algorithms and modifications to recommender algorithms to
enhance robustness. The main findings of this work are summarised in the fol-
lowing sections. However, differently to some of the earlier studies of robustness,
we fix our focus on top-N recommendation and ranking, rather than rating predic-
tion and study the attacks and defences in the context of metrics relevant to this
setting. In particular, we have implemented the main attacks and defences as a

October 23, 2018 14:11 ws-rv9x6-9x6 Book Title 11131-12 page 407

Robustness and Attacks on Recommenders 407

package1 which can be added to the RankSys2 recommender system framework.
This Java 8 framework contains implementations of leading recommender al-
gorithms, including user- and item-based kNN algorithms and matrix factorisation
algorithms. Moreover, it provides a set of evaluation metrics relevant to the rank-
ing task. Our new robustness package implements the general profile attack
framework allowing analysts to explore different attack strategies and assess their
impact when applying different recommender algorithms on different datasets.

Notation: Let U represent a set of users, such that n = |U| and I a set of items,
such that m = |I|. We write D for a database consisting of a set of user-item pairs
with associated preference scores, denoted as rui for u∈U and i∈ I and write rui =

/0 to denote a missing rating. Given a user, u, the goal of a top-N recommender
system is to rank a set of N > 0 items, for which user u’s preferences are unknown,
in order of their predicted relevance to user u. The system algorithm is trained
using a database D . We write Ru for the recommender list produced by the system,
or Ru(D) to emphasise its dependence on the training set. Furthermore, we use kui

to denote the rank of item i in the recommender list, where low ranks correspond
to more preferable items. This paper is concerned with algorithms that augment
the training set with spam data. We write A to denote a profile injection attack
and DA to denote the dataset augmented with profiles produced by attack A . We
write Pu to denote a user’s profile, i.e. the set of items for which u’s preferences
are available in the training set D . We write Nu for a neighbourhood of user u and
similarly Ni for a neighbourhood of item i, corresponding, respectively, to sets of
users or items that are similar to user u or item i. Finally, denote by Tu a hold-out
test set of items known to be relevant to user u.

12.2. Robustness Analysis Context

We distinguish and discuss two contexts. The first is robustness or stability of
recommender algorithms to unbiased, non-malicious noise. Robustness in this
context has received relatively less attention in the literature, but is important
nonetheless. As several studies have shown, explicit ratings gathered directly from
users are very prone to error. Users tend not to rate consistently. Their evaluations
can depend on the context in which the rating is provided, for instance the quality
of other recently explored items and their preferences at the time of rating, which
may well change over time. For recommender algorithms that rely on implicit
ratings, the correlation between implicit interaction data and a user’s true pref-
erences is never exact. Hence we should consider the data on which algorithms
1https://github.com/neilhurley/RankSysRobustness.git
2https://github.com/RankSys/RankSys

https://github.com/neilhurley/RankSysRobustness.git
https://github.com/RankSys/RankSys

October 23, 2018 14:11 ws-rv9x6-9x6 Book Title 11131-12 page 408

408 N. J. Hurley

are trained to be noisy observations of users’ true ratings, and indeed matrix fac-
torisation models, for instance, are developed from this perspective. Moreover,
recent approaches to privacy preservation has explored techniques, e.g. based on
differential privacy, which amount to the injection of tailored noise into the system
algorithm, in order to afford some protection against privacy attacks. In order for
such methods to be effective, the underlying inference algorithm must still have
some utility in the presence of such noise. It is worth noting that personalisation
in the context of noise is challenging, as the measured impact of personalised al-
gorithms over non-personalised can be small and thus a small drop in utility in
absolute terms can still be large relative to a non-personalised baseline compara-
tor. For example, for the Movielens 1M dataset, measuring top 20 precision on a
20% holdout dataset, personalised algorithms record a performance between 20%
and 22% precision, but the non-personalised most-popular item algorithm yields
a performance of 12% precision. Relative to this baseline, a drop of even a few
percentage points in precision is quite significant.

The second context is the injection of tailored, purposeful data, with a specific
attack intention in mind. In the state-of-the-art, the intention of deliberately down-
grading the recommendations of a specific target item or set of items, by causing
the system to lower its predicted ratings for the target, or to rank it lower in its
recommendation lists, is referred to as a nuke attack. Attacks whose purpose is
to increase targeted items’ predicted ratings or ranked positions are referred to as
push attacks [O’Mahony et al. (2004a)]. Such attacks amount to designing spe-
cial user profiles that can influence in the required manner and injecting these into
the system database. It is generally assumed in this analysis that malicious users
who mount such attacks operate by creating fake user identities and that these fake
identities inject preferences in the same way as genuine users, through interaction
with the system. Of course, depending on the system, such interactions may be
more or less costly. A product recommendation system that requires a purchase
before accepting a rating is clearly more difficult to attack in this way, than one that
accepts ratings without purchase. Systems that operate a secure sign-up protocol
before accepting user interactions, again pose a difficulty for the attacker. Ro-
bustness analysis however has tended not to focus on such practical interventions
and instead poses the abstract problem of the algorithm: assuming that malicious
users can, by whatever means, successfully inject malicious preferences into the
system database, how susceptible is the recommendation algorithm to being influ-
enced by such preferences? The attacker’s effort is measured purely in terms of
the number of preferences that must be injected to successfully mount a particular
attack. It is concluded that an algorithm that can be effectively influenced by a
small attack, relative to the size of the full training dataset, is weak with respect to
robustness.

October 23, 2018 14:11 ws-rv9x6-9x6 Book Title 11131-12 page 409

Robustness and Attacks on Recommenders 409

12.2.1. Attack Knowledge

While overcoming the practical barriers to is seen as outside the scope of a ro-
bustness analysis, attack analysis does consider the amount of knowledge that an
attacker must have in order to mount a particular attack. There are two types of
knowledge to consider. Firstly there is knowledge of users’ preferences. Gen-
erally, the challenge for the attacker is to create profiles that are particularly in-
fluential, which requires that the attacker choose which items should be rated by
the sybil profiles and what ratings they should be given. Knowledge of how other
genuine users have rated can greatly aid the attacker in making these decisions.
In the state-of-the-art, when attacks are referred to as “high-knowledge” or “low-
knowledge”, it is knowledge of the rating distributions of genuine users is con-
sidered. Most malicious injection attacks discussed in the literature require some
level of rating knowledge, from, at the lowest level, knowledge of the set of glob-
ally most popular items, to knowledge of the global mean and standard deviation
of ratings in the dataset, to knowledge of the mean and standard deviation of the
ratings for each item in the dataset. Again, depending on the particular system,
it can be reasonable to expect that attackers are able to attain or accurately guess
such information. Generally, when carrying out a robustness analysis, we assume
the worst case that such information is available exactly to the attacker.

The second type of knowledge, is knowledge of the recommender algorithm,
and, more particularly, knowledge of the parameters of the algorithm. Attacks
mounted against particular recommender algorithms have been referred to in the
literature as “informed” attacks. Profiles employed in these attacks are specially
tailored using knowledge of the exact way in which database preferences are used
to form the recommendation. While it may be argued that such detailed knowl-
edge is much harder to attain than knowledge of the rating distribution, such in-
formed attacks follow the philosophy of Kerckhoff’s principle from cryptography,
that a system should be secure even when everything is known about the sys-
tem, except for the keys used to secure it. Similarly an informed attack provides
a worst-case analysis of the intrinsic robustness of a recommender algorithm, to
being misled by overly-influential profiles. We note in stating this that such a ro-
bustness analysis gives us some insight into how fairly recommender algorithms
treat the rating information available to them. If each preference available to the
system is equally influential on the output of the recommender system, then the
attacker will need to inject sufficient preferences to swamp those already in the
database. On the other hand, if it is possible to design profiles that have greater
impact on the recommender output than an average profile, then this provides the
weakness in the algorithm that an attacker can exploit.

October 23, 2018 14:11 ws-rv9x6-9x6 Book Title 11131-12 page 410

410 N. J. Hurley

12.2.2. Toy Example

To fix ideas, we present a small toy example of how profile injection can influence
recommender output. In Figure 12.1, an attack has been mounted to target item i1,
with the purpose of promoting its recommendation. Consider a simple user-based
algorithm over a transaction database where users have indicated items that they
like and dislike. For each user, a set of two neighbours is chosen and the user is
recommended the most popular item in the neighbourhood that is not already in
their profile. Neighbours are chosen based on a similarity function s(u j,uk) that
computes the difference between the number of items that the pair of users agree
on minus the number they disagree on. The user-user similarities are shown in
the figure and genuine neighbours are indicated by the green cells representing
the two most similar users to each user. The two attack profiles, tailored to be
sufficiently similar to users {u2,u4,u6}, can displace the genuine users from their
neighbourhoods, resulting in a promotion of i1 to these users.

Fig. 12.1. Toy system database showing genuine user profiles with a number of sybil profiles in-
serted. In this example, two sybils are sufficient to disrupt the recommendation to three targeted users.

12.3. Attack Profile Nomenclature

In the Mobasher et al. (2007) framework for attack profile construction (see Fig-
ure 12.2), an attack profile is considered to consist of the following item subsets:

(1) Selected Items This is a sub-set of items that are chosen to support the specific
purpose of the attack. We write this subset as IS ⊆ I.

October 23, 2018 14:11 ws-rv9x6-9x6 Book Title 11131-12 page 411

Robustness and Attacks on Recommenders 411

Fig. 12.2. Attack Profile Item Subsets.

(2) Filler Items This is a sub-set of items chosen to fill out the profile, in order to
give it the appearance of a genuine profile. We write this subset as IF ⊆ I.

(3) Targeted Items This is the sub-set of items that are the specific focus of the
attack i.e. the items that the attack aims to push or to nuke. We write this
subset as IT ⊆ I. For the basic attacks discussed below, we usually assume
that IT = {iT}, a single attacked item.

In some attacks, the preferences of both filler and selected items are set so as
to support the purpose of the attack, so it is perhaps more correct to say that
these two subsets are distinguished only by the manner in which their ratings are
set. Generally, the ratings of selected items are set in order to focus the attack
towards a particular set of genuine users on whom the attack is mounted. For
instance, the selected items may be a set of items known to be liked by the targeted
user group and their preferences set high, so that the fake profile is similar to
members of this group. When the role of the filler items is just to fill in the profile
to obfuscate its purpose, their values may be set using the rating distribution of
genuine preferences, but some attacks are more effective when filler items are set
to influence the recommendation. For instance, low ratings given to filler items
can have the effect of pushing the recommendations of the targeted items.

In this framework, different attacks are defined by

(1) How the selected, filler and targeted items are chosen.
(2) How the ratings for each of these sub-sets are set.

12.4. Attack Strategies

12.4.1. Noise Injection

As discussed earlier, it is interesting to understand the stability of a recommender
algorithm’s output in the face of noise in the rating database. Hence, we include
for evaluation two noise “attacks”. The first, which we refer to as “Random Rating
Injection” (RRI) is the insertion of additional user-item-rating triples, where the
user, item and rating are all chosen uniformly at random. This has the effect

October 23, 2018 14:11 ws-rv9x6-9x6 Book Title 11131-12 page 412

412 N. J. Hurley

of diluting the database with non-informative ratings, which we would expect
will destroy the recommender utility, once these ratings swamp the genuine ones.
Later, we examine whether different algorithms perform differently with respect
to the amount of such dilution they can resist. The second type of noise attack,
which we refer to as “Noise Injection” (NI) is the distortion of the existing ratings
in the dataset with random centred noise of a given variance. A more refined
version of this attack, not considered further in this chapter, would be make the
noise variance dependent on the rating value, which could model rating behaviour
in which users are more or less certain about what they like, compared to what
they do not like.

12.5. Purposeful Attack Strategies

The main non-informed attacks proposed in the literature are summarised in Ta-
ble 12.1. Item ratings are chosen as the minimum rating rmin, maximum rating,
rmax, or randomly from distributions based on statistics of the rating dataset. In
the table, µg, σg refer to the global mean and standard deviation of all ratings in
the dataset and µ i, Σi are the vectors of means and standard deviations of ratings
over each item. Items for each of the subsets IF and IS are chosen uniformly at
random (indicated with “Unif”); randomly from the top x% of most popular items
(indicated with “From Most Pop”); in order of the most popular or least popular
items (indicated by “Most pop” and “Least pop”) respectively; or amongst the
items that tend to be liked (“low-rated”) or disliked (“high-rated”).

Table 12.1. Non-informed Purposeful attacks.
Attack Purpose IT IF IS Reference

Rating Rating Selection Rating Selection
Random Push rmax N (µg ,σg) Unif - /0 Lam and Riedl (2004)
Random Nuke rmin N (µg ,σg) Unif - /0 Lam and Riedl (2004)
Average Push rmax N (µi ,Σi) Unif - /0 Lam and Riedl (2004)
Average Nuke rmin N (µi ,Σi) Unif - /0 Lam and Riedl (2004)

Avg Over Popular (AoP) Push rmax N (µi ,Σi) From Most Pop - /0 Hurley et al. (2009)
Avg Over Popular (AoP) Nuke rmin N (µi ,Σi) From Most Pop - /0 Hurley et al. (2009)

Segment Push rmax rmin Unif rmax By segment Mobasher et al. (2005)
Bandwagon Push rmax N (µi ,Σi) Unif rmax Most pop Mobasher et al. (2007)

Reverse Bandwagon Nuke rmax N (µi ,Σi) Unif rmin Least pop Mobasher et al. (2007)
Love/Hate Nuke rmin rmax Unif - /0 Mobasher et al. (2007)

Popular Push rmax rmin Low-rated rmin +1 High-rated O’Mahony et al. (2003)

The segment attack is focused on a particular user segment identified by the
attacker and “By Segment” refers to a set of items that are popular among users
in that segment. Such a segment could correspond to users who like particular
genres in movie recommendation, for example. By rating popular items within
the user segment highly, the attacker ensures that the attack profile is similar to
the profiles of users within the segment.

October 23, 2018 14:11 ws-rv9x6-9x6 Book Title 11131-12 page 413

Robustness and Attacks on Recommenders 413

Early work on profile injection compared the Random and Average attacks in
terms of their ability to shift the rating predictions made for the target item. This
work demonstrated that, due to its higher knowledge requirements, the Average
attack was more effective than the Random attack on user-based kNN algorithms.
Item-based and model-based algorithms were shown to be more robust in compar-
ison to user-based, though they were still somewhat vulnerable to more focused
attacks, such as the segment attack. The work of Hurley et al. (2009) showed the
importance of choosing filler items according to the item-choice distribution of
genuine users, in order to increase undetectability. We replay this analysis in the
evaluation section below, but focus only on performance metrics relevant to the
top-N problem.

One attack which we do not include in Table 12.1 is the probe attack
[Mobasher et al. (2007)]. In this attack, it is assumed that the recommender sys-
tem generates predicted ratings, so that an attack profile can be built by iteratively
querying the system to provide ratings for items to be added to the attack pro-
file. A top-N recommender does not provide such feedback and hence we do not
consider this attack in our analysis.

The original Popular attack of O’Mahony et al. (2002) is an informed at-
tack directed specifically at the user-based rating prediction algorithm proposed in
Resnick et al. (1994) that uses Pearson similarity. The attack exploits the fact that
this user-based algorithm computes user-user similarities using only those items
that have been rated by both users and that correlations computed over small item-
sets are likely to attain extreme values. Hence it is possible to build small (i.e. low
cost) attack profiles, that correlate strongly with and are therefore likely to be in
the neighbourhood of many users. In the most extreme case, if a genuine and at-
tack user have only two items in common, a correlation of 1 is attained provided
they agree on the ordering of the item ratings, and -1 otherwise. An effective
push attack is then constructed by forming filler and selected item sets such that
the filler items are likely to have received lower ratings by users than the selected
items. The filler items are given a rating value of rmin and the selected items are
given a rating of rmin + 1. These low ratings ensure that the difference between
the pushed target item rating and the attack profile’s average rating is as large as
possible, as this difference is used by Resnick’s algorithm to compute the rating
for the target. Some other informed attacks have been proposed, targeting other
algorithms, such as matrix factorisation, but we do not consider these further in
this chapter.

Each of the above attacks is parameterised by the number of sybil profiles
added to the dataset and by the sizes of the three subsets of items added to each
sybil’s profile. Writing Us as the set of sybil profiles, we have that the total attack

October 23, 2018 14:11 ws-rv9x6-9x6 Book Title 11131-12 page 414

414 N. J. Hurley

size J is given by

J = ∑
u∈Us

|IT (u)|+ |IF(u)|+ |IS(u)|.

Typically evaluations are carried out in a context in which a single item is attacked,
i.e. |IT | = 1. Moreover, the number of selected items is typically a small fixed
number (e.g. < 5), so that the size of each sybil profile is determined by the filler
size. As discussed in Section 12.9, if detectability is a concern, then the attacker
will choose a filler size that is similar to the sparsity of the dataset. Hence, in
evaluations, the effect of an attack will be reported as a function of the number of
sybil users, for a fixed filler size.

12.6. robustness library

The robustness library defines an interface called ProfileInjector,
containing a single function inject that returns a stream of preferences, consist-
ing of <user, item, rating> tuples.

To allow for evaluation against unbiased noise, two noise injection classes
that implement the interface are provided. The inject method of the
RandomRatingInjector class creates a stream of <user, item, rating>
selected uniformly at random. The NoiseInjectorClass creates a stream in
which the user-item pairs in the stream are the same as those in the original dataset,
but the rating is modified by adding noise of a given variance, generated from a
Gaussian distribution.

Attacks are also provided as classes that implement this interface. Two
general purpose classes are provided:

• TargetedFillInjector is a class for creating attack profiles containing
targeted items, IT and filler items, IF . The strategies for selecting the filler
items and the setting their ratings can be specified through the constructor.

• TargetedFillSelectInjector is a specialisation of
TargetedFillInjector that also allows selected items IS to be speci-
fied.

In the constructor of these classes, it is necessary to specify whether the attack
is a push or a nuke. Each of the attacks discussed below is implemented as
a specialisation of these classes, restricted to particular item selection and rating
specification strategies.

October 23, 2018 14:11 ws-rv9x6-9x6 Book Title 11131-12 page 415

Robustness and Attacks on Recommenders 415

12.7. Measuring Robustness

A number of measures relevant to robustness are defined in Table 12.2. In this
table, IT represents a set of targeted items and U the set of users. D represents
an unattacked dataset on which an algorithm is trained. DAi represents a dataset
modified by a particular injection attack A focused on a particular targeted item
i. When averaging over such attacks, we assume that each attack is carried out
independently and separately, so that the avgRank and HitRatio represent average
performance, over a set of separately executed attacks on each item in the targeted
set. The HitRatio can be used to assess the percentage of recommender lists that
the targeted item reaches, while the avgRank informs as to the average position
attained by the items when they succeed in making it into the top N list.

Table 12.2. Robustness Measures.
Definition Description

HitRatio(i,DAi) =
1
|U| ∑u∈U1(i ∈ Ru(DAi)) The average number of users for

whom attacked item i appears in a
top-N recommendation.

HitRatio(D ,A) = 1
|IT | ∑i∈IT HitRatio(i,DAi) The average hit ratio over all at-

tacked items IT .

avgRank(D ,A) = 1
|U|

∑i∈IT ∑u∈U kui(DAi)

∑i∈IT ∑u∈U1(i∈Ru(DAi))
The average rank of attacked items
in the recommender lists, counting
only those items that make it into Ru
i.e. kui = 0 if i /∈ Ru.

Overlap(D ,A) = 1
N|U||IT | ∑u∈U ∑i∈IT |Ru(D)∩Ru(DAi)| The average overlap between top-N

sets before and after an attack.

Depending on whether the purpose of the attack is to push or nuke an item, a
successful attack corresponds to one in which the HitRatio and avgRank is greater
than (resp. less than) the corresponding measure applied to the unattacked dataset
(when A is the null attack of injecting no profiles). The Overlap measure al-
lows for the stability of a recommendation algorithm to be evaluated against noisy
training data.

None of the measures in Table 12.2 measures the utility of the recommender,
in terms of its ability to recommend relevant items. Two evaluation measures ap-
propriate for top-N recommendation, precision and NDCG are listed in Table 12.3.

12.8. Evaluation

The RankSys framework contains a number of different top-N recommender
algorithms. In this chapter, we investigate the following algorithms for producing

October 23, 2018 14:11 ws-rv9x6-9x6 Book Title 11131-12 page 416

416 N. J. Hurley

Table 12.3. Utility Measures.

Definition Description
Prec(D)@N = ∑u∈U

|Ru(D)∩Tu|
N|U | The precision of the top-N recommendation.

DCG(D)@N = 1(i1 ∈ Tu)+∑
N
j=2

1(i j∈Tu)

log2(j+1) The discounted accumulative gain ranking
measures

NDCG(D)@N = DCG(D)@N/IDCG Normalised DCG, by dividing by ideal DCG

a score sui on which to rank items for recommendation:

• ub: A user-based kNN recommendation algorithm. Here a recommendation
is formed for user u by constructing a neighbourhood Nu of the top k > 0
most similar users to u, then computing a score for each item rated by the
neighbours, as follows:

sui = ∑
{v∈Nu|i∈Pv}

simuvrvi

• ib: An item-based kNN recommendation algorithm. Here a recommendation
is formed for user u by constructing a neighbourhood Ni of the top k > 0 most
similar items to each item in Pu. A score is then computed for the union of all
neighbourhoods as

sui = ∑
{ j∈Pu|i∈N j}

simi jru j

• hkv: This is the implicit matrix factorisation algorithm of Hu et al. (2008)
which, given the dimension of a factor space k� n,m, factorises the inter-
action matrix into an n× k user matrix P = {pu`} and m× k item matrix,
Q = {qi`} such that

sui = ∑
`

pu`qi` . (12.1)

P and Q are obtained by an alternating minimisation of a weighted least
squares loss function.
• plsa: This is the probabilistic latent semantic analysis (pLSA) algorithm of

Hofmann (2004) in which the scores are based on the probability of relevance
of an item given the user, which is modelled as a product of user and item
probabilities over a set of latent aspects, leading to a scoring function of the
same form as Equation (12.1), but learned through an expectation maximisa-
tion algorithm that maximises the log likelihood of the data.

Given the scores sui, those items not in Pu are ranked according to sui and the top
N items are recommended.

October 23, 2018 14:11 ws-rv9x6-9x6 Book Title 11131-12 page 417

Robustness and Attacks on Recommenders 417

The user- and item-based algorithms depend on the similarity measure used
to form the neighbourhood. A number of similarity functions are provided in
RankSys, including cosine and Jaccard similarity. We present results on the
cosine similarity below. Moreover, these algorithms depend on some parameters,
in particular, k, the size of the neighbourhoods or factor space dimension. For
ub, we set k = 100, for ib, we set k = 20 and for hkv and plsa, we set k = 20.
These parameters are chosen to given high utility on the evaluated dataset. Further
exploration of the impact of parameters on the effectiveness of attacks can be
easily carried out using the robustness library. We apply our evaluation to the
Movielens 1M dataset [Harper and Konstan (2015)], consisting of approximately
1 million ratings given by 6040 users to 3952 movies on a 5-point rating scale.
The dataset is divided in a 80:20 ratio into training and test set.

12.8.1. Unbiased Noise Injection

The impact of adding unbiased noise to the ratings is presented in Figure 12.3a,
where NDCG@20 is plotted against the strength of the added noise. Injected noise
is measured as the noise to signal ratio (NSR) in decibels (dB), where

NSR = 10log10(σ
2
n /σ

2
i) , (12.2)

σn is the standard deviation of the noise added to the ratings and σi is the variance
of the ratings for the item to which noise is added. The figure shows a non-
personalised baseline—the pop algorithm—that recommends items in order of
their global popularity. Note that pop has been applied to the unattacked dataset.
An NSR of 20dB means that the noise is two orders of magnitude greater than the
rating variance. For the kNN algorithms, we see a gradual fall-off in performance,
but with still stronger performance than the non-personalised baseline at 20dB of
added noise. The matrix factorisation algorithms are more brittle and fail more
suddenly at a lower level of noise. In Figure 12.3b, we see the effect of adding
random ratings to the dataset. NDCG@20 is shown against the number of added
profiles, as a percentage of the original dataset size. We have added up to six times
the number of ratings as were in the original dataset. While performance has again
degraded, all algorithms maintain more utility than the popularity baseline.

These results have implications for designers of privacy-preserving algo-
rithms, using differential privacy techniques, for example. Such techniques re-
quire the injection of noise into the recommendation process, so it is important
that the algorithm be somewhat robust to such noise. The popularity baseline is
a threshold below which performance should not drop, since, at this point, the
algorithm is failing to usefully exploit any personal information in the dataset.

October 23, 2018 14:11 ws-rv9x6-9x6 Book Title 11131-12 page 418

418 N. J. Hurley

−10 −5 0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Noise (dB)

N
D

C
G

@
2

0

ub

ib

hkv

plsa

pop

0 100 200 300 400 500 600
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

% Injected Profiles

N
D

C
G

@
2

0

ub

ib

hkv

plsa

pop

(a) Noise Injection (b) Random Rating Injection

Fig. 12.3. Performance under unbiased noise injection.

See Afsharinejad and Hurley (2018) for more analysis on a differential privacy
algorithm and its impact on top-N recommendation performance.

12.8.2. Targeted Push Analysis

We compare the performance of the following attack variants:

(1) Average: An Average push attack, with filler items chosen uniformly at ran-
dom (RU);

(2) Average over Popular: An AoP push attack where filler items are chosen
uniformly from the top 20% of most popular items (AoP@20);

(3) Random with Most Popular: A push attack where the filler data is chosen
in same way as the Average attack, but IF are chosen as the set of top most
popular items in the dataset (RMP).

This study therefore, emphasises the importance of the choice of IF on the effec-
tiveness of an attack. We fix N = 20 and the filler size to 5% of the total number
of items, which is close to the sparsity of the Movielens dataset. It is worth noting
that, from the point of view of detectability (see Section 12.9), RMP is highly
detectable, since all sybil profiles consist of the same set of items, RU is also
detectable by a detector that analyses its filler placement, while AoP@20 is the
hardest to detect. Twenty items were chosen at random among those items that
receive no top-20 recommendations from the unattacked plsa algorithm applied
to the entire user-base. These poorly performing items are ones which could be
expected to benefit most from a push attack. Setting each item in turn as the tar-
get, iT , each of the four recommendation algorithms is attacked. The resulting
hitRatio, avgRank and Overlap against the attack size, measured as a percentage

October 23, 2018 14:11 ws-rv9x6-9x6 Book Title 11131-12 page 419

Robustness and Attacks on Recommenders 419

0 0.05 0.1 0.15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

RU

AoP@20

RMP

0 0.05 0.1 0.15
0

0.2

0.4

0.6

0.8

1

RU

AoP@20

RMP

(a) ub (b) ib

0 0.05 0.1 0.15
0

1

2

3

4

5

6

7
x 10

−3

RU

AoP@20

RMP

0 0.05 0.1 0.15
0

0.5

1

1.5

2

2.5
x 10

−3

RU

AoP@20

RMP

(c) hkv (d) plsa

Fig. 12.4. HitRatio over 20 items.

of the total number of genuine users in the dataset, are shown in Figures 12.4, 12.5
and 12.6, respectively. Note carefully the scale of the y-axis in each of these plots.

For the kNN algorithms, we note the benefit of building attack profiles from
popular items. In fact, ub remains largely invariant under the attack, unless it is
formed from the most popular items, RMP. In this case, even the weakest attack
is able to push the target item into the top 3 items of over 25% of the user-base.
The AoP@20 attack, that draws randomly from among the top quintile of popular
items is still not strong enough to shift the recommendations significantly. The
ib algorithm is somewhat more susceptible to attack than the ub algorithm. Ini-
tially, a somewhat larger attack is required to yield a significant push effect, but
eventually the RMP attack is able to push the targeted item into 90% of recom-
mender lists, and, on average, it appears in rank position 2. More seriously, a
fairly stealthy attack such as AoP can push into 80% of the recommendation at an
average rank of 6, when the attack size is 16%.

October 23, 2018 14:11 ws-rv9x6-9x6 Book Title 11131-12 page 420

420 N. J. Hurley

0 0.05 0.1 0.15
2

4

6

8

10

12

14

16

RU

AoP@20

RMP

0 0.05 0.1 0.15
2

4

6

8

10

12

14

16

RU

AoP@20

RMP

(a) ub (b) ib

0 0.05 0.1 0.15
6

8

10

12

14

16

18

RU

AoP@20

RMP

0 0.05 0.1 0.15
6

8

10

12

14

16

RU

AoP@20

RMP

(c) hkv (d) plsa

Fig. 12.5. avgRank over 20 items.

Note that this is somewhat contrary to previous work on robustness in which
it has been stated that item-based algorithms are less susceptible to attack that
user-based algorithms. However, it is important to bear in mind that the two kNN
algorithms discussed here are top-N recommendation algorithms, rather than rat-
ing prediction algorithms. The attacked item is likely to be in the neighbourhood
of many other items, particularly when it is connected, via sybil profiles to other
popular items. It is harder for the item to influence the user-based algorithm, as
its weight in the score is dependent on the user-similarity between the sybils and
genuine users. In order to make this similarity large, the sybils need to contain
extremely popular items.

The matrix factorisation algorithms are significantly more robust, which
agrees with observations in the literature. It is interesting to note however, that
in the case of these algorithms, the attack is more effective when IF is chosen
uniformly from the item-set, RU. All three attacks are successful on only a small

October 23, 2018 14:11 ws-rv9x6-9x6 Book Title 11131-12 page 421

Robustness and Attacks on Recommenders 421

0 0.05 0.1 0.15
0.75

0.8

0.85

0.9

0.95

1

RU

AoP@20

RMP

0 0.05 0.1 0.15
0.4

0.5

0.6

0.7

0.8

0.9

1

RU

AoP@20

RMP

(a) ub (b) ib

0 0.05 0.1 0.15
0.578

0.58

0.582

0.584

0.586

0.588

0.59

0.592

0.594

RU

AoP@20

RMP

0 0.05 0.1 0.15
0.55

0.56

0.57

0.58

0.59

0.6

0.61

RU

AoP@20

RMP

(c) hkv (d) plsa

Fig. 12.6. Overlap over 20 items.

percentage of the user-base. When RU is successful, the item is pushed to rank
position 7, on average, while the other attack variants only squeeze into the top
20, at high ranks of 15 or above. It is also noteworthy that increasing the attack
size does not greatly improve the effectiveness of the attack.

Investigating further, we plot in Figure 12.7, the HitRatio against fillersize for
the hkz algorithm when attack sizes of 3% and 16% are applied. We note that
smaller attack profiles yield more effective results and that when the filler size is
just 0.1% of the profile length, the strongest attack on hkv now succeeds in push-
ing into over 10% of all recommendation lists. On Movielens this corresponds
to a profile containing just 4 items. We can conclude that small profiles may be
overly influential in matrix factorisation, although such profiles could be easily
identified by a filtering process.

The impact of the attack algorithms on general recommender performance
may be partially assessed by examining the Overlap in Figure 12.6. We see that,
for the kNN algorithms, the top N = 20 list is distorted somewhat, even by the

October 23, 2018 14:11 ws-rv9x6-9x6 Book Title 11131-12 page 422

422 N. J. Hurley

lowest level of attack. Overlap is less useful for the matrix factorisation al-
gorithms, since model fitting involves some randomisation and we can expect
variation between different runs, regardless of an attack. We therefore show the
precision@20 in Figure 12.8, for the RMP and AoP@20 attacks, when a single
item is attacked. The RMP attack leaves precision largely unchanged. A similar
pattern may be observed for NDCG. A strong negative impact on results is only
seen for the RMP attack on the kNN algorithms.

0 0.05 0.1 0.15 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

Filler Size

H
it
R

a
ti
o

AttackSize=3%

AttackSize=16%

Fig. 12.7. HitRatio vs filler size, RU attack on hkv algorithm.

0 0.05 0.1 0.15
0.12

0.14

0.16

0.18

0.2

0.22

AttackSize

P
re

c
is

io
n

@
2

0

ub

ib

hkv

plsa

0 0.05 0.1 0.15
0.12

0.14

0.16

0.18

0.2

0.22

AttackSize

P
re

c
is

io
n

@
2

0

ub

ib

hkv

plsa

(a) RMP (b) AoP@20

Fig. 12.8. Precision of algorithms under different attacks.

12.9. Detecting Profile Injection

An obvious strategy to protect against profile injection is to apply filtering to re-
move such profiles from the database before training the system. An attack is
effective if relatively few rating injections have a large impact on the system’s
output. This suggests that sybil profiles need to be more influential than typical

October 23, 2018 14:11 ws-rv9x6-9x6 Book Title 11131-12 page 423

Robustness and Attacks on Recommenders 423

genuine profiles and this difference provides a basis for detection and filtering of
such profiles. On the other hand, if a filter removes all “unusual” profiles, leaving
only “typcial” behaviour, this goes against the very principal of personalisation on
which recommender systems are founded. So a filtering strategy needs to find a
right balance, where truly malicious data is removed, without, at the same time,
removing genuine but unusual profiles from the dataset and lowering the system’s
personalisation capabilities.

Classifying a given user profile as a sybil profile is a binary classification prob-
lem, with two categories that we can call Sybil or Genuine. The usual metrics
appropriate for binary classification can be used to measure the success of any fil-
tering strategy. In the following, we will concentrate on Receiver Operating Curve
(ROC) analysis, as this allows the full capability of the detection algorithm to be
analysed, across all possible detection thresholds. The ROC plots the probabil-
ity of good detection, pd, i.e. the probability of correctly identify a sybil profile,
against the probability of false alarm, p f , i.e. the probability of incorrectly la-
belling a genuine profile as a sybil, as the threshold of the detection algorithm is
varied. The Area under the ROC Curve (AUC) provides a good overall measure
of the success of the detector.

Detection algorithms can be categorised as supervised or unsupervised de-
pending on whether or not the algorithm is trained using instances of the two
classes. While unsupervised approaches hold the promise of a general filtering
strategy, independent of any given attack type, supervised algorithms have poten-
tial for greater performance if a good model of the classes can be devised. In
this regard, it is worth noting that, as detection will typically be carried out by
the system owner, there is access to a large source of instances from the genuine
class at least, from which good models can be designed. In the following section
we discuss one supervised and one unsupervised algorithm which demonstrate the
possible approaches.

12.9.1. Supervised Classification using Neyman-Pearson Statistical
Detection Theory

Supervised detection methods have been considered in [Burke et al. (2006)] and
[Chirita et al. (2005)] in which feature vectors based on statistics of the filler and
other sub-sets of the profile are used in classifiers such as kNN, C4.5 and SVM.
We elaborate on the approach proposed in [Hurley et al. (2009)] where attack
detection is treated as a statistical detection problem, using Neyman-Pearson (N-
P) detection. Let y ∈ Y be an observation i.e. a user profile, over the space Y of
all possible profiles. A detection test is formed based on fY|H1(y) and fY|H0(y),

October 23, 2018 14:11 ws-rv9x6-9x6 Book Title 11131-12 page 424

424 N. J. Hurley

the probability distribution functions (pdf) of y under the assumption that H1 or H0

is true, where H1, H0 denote the hypotheses that the profile is a sybil or genuine,
respectively. The Neyman-Pearson (N-P) test is a likelihood ratio test, of the form:

l(y),
fY|H1(y)
fY|H0(y)

. (12.3)

12.9.1.1. Modelling Random and Average Attacks

Define θi as an indicator variable such that θi = 1 if yi = φ and θi = 0 otherwise.
The pdf, fY|H1(y), of y under hypothesis H1 that it is an attack profile is given by

m

∏
i=1

Pr[Yi = yi] =
m

∏
i=1

Pr[Yi = /0]θi (Pr[Yi = yi|Yi 6= /0]Pr[Yi 6= /0])1−θi . (12.4)

Furthermore, assuming that the continuous values generated by the Gaussian dis-
tribution are rounded to the nearest integer, so that the probability of obtaining the
rating value yi is the probability that a Gaussian random number lies in the range
[yi− 1

2 ,yi +
1
2], we can write

Pr[Yi = yi|yi 6= /0] = Q

(
yi− 1

2 −µi

σi

)
−Q

(
yi +

1
2 −µi

σi

)
where Q(.) is the Gaussian Q-function3. For Random attack profiles, we take
µi = µg and σi = σg.

Pr[Yi 6= /0] can be approximated as |IF |/m, since filler items are chosen with
equal probability from the item set. Other attacks in which the profile is deter-
mined largely by the filler, such as Bandwagon and Love/Hate attacks can be
modelled using this model, or a small variant of it.

12.9.1.2. Modelling Genuine Profiles

A model that is sufficient to distinguish genuine profiles from Random and Aver-
age attack profiles can use Equation (12.4) for the pdf fY|H0(y), of genuine pro-
files, but with Pr[Yi 6= /0] set to model the rating behaviour of genuine users, since
it is the placement of the filler items, more so than their value, that distinguishes
these attacks. For each item i, we set Pr[Yi 6= φ] = pi, where pi, the probability
that an item is rated, can be estimated from a training set of genuine profiles, as
the fraction of profiles that rated the item. We will refer to the detector that forms
a Neyman-Pearson test using only filler selection as N-P Filler.

3i.e. Q(x) = 1/(2
√

π)
∫

∞

x e−
t2
2 dt.

October 23, 2018 14:11 ws-rv9x6-9x6 Book Title 11131-12 page 425

Robustness and Attacks on Recommenders 425

Note that the AoP attack was designed to deliberately thwart this detection
mechanism by placing item fillers with probability according to item popularity.
In this case, more sophisticated models of the user profile are required, that take
the covariance between item values into account, since in the Average and AoP
attacks, all values are selected independently.

12.9.2. Unsupervised Attack Detection using Profile Clustering

A number of unsupervised algorithms that try to identify groups of attack profiles
have been proposed [O’Mahony et al. (2004b); Su et al. (2005); Mobasher et al.
(2006); Bryan et al. (2008); Mehta and Nejdl (2009)]. Generally, these algorithms
rely on clustering strategies that attempt to distinguish clusters of attack profiles
from clusters of genuine profiles. As a prototypical example of this approach, we
discuss the method proposed in Mehta and Nejdl (2009). This method exploits
the fact that attacks consist of profiles that are highly correlated to each. A profile
clustering algorithm is therefore likely to place all attack profiles in one or just
a few clusters. Mehta and Nejdl apply this intuition by clustering profiles using
either pLSA or principal component analysis (PCA). The PCA method attempts
to choose a cluster where the sum of the pairwise covariance between profiles
in the cluster is maximised and this is achieved by sorting profiles using a score
formed from the sum of the components of a few (typically three) eigenvectors of
the covariance matrix.

An alternative approach, discussed in Hurley et al. (2009), models the set
of Genuine and Sybil profiles as a Gaussian Mixture Model and applies an
expectation-maximisation algorithm to learn the mean and covariance of the user
profiles in each cluster. These parameters are then used to form a Neyman-Pearson
test, with multivariate Gaussian likelihoods, which we refer to as N-P Gauss.

12.9.3. Discussion

We evaluate on Movielens, and set the attack filler size to 5%, the overall spar-
sity of the this dataset. For the PCA clustering strategy, the ROC is generated by
varying the attack cluster size, from 1 to m and computing p f and pd for each
size. This detector is labelled as PCA Z1 in Table 12.4 and clearly performs
extremely well. The NP Filler detector also performs well on the Random and
Average attacks. Note that this detector only exploits the difference in filler se-
lection. In fact, implicitly, the PCA detector is also exploiting the difference in
filler selection. The PCA detection strategy calculates the principal components
of the covariance matrix of the ratings dataset, converted to z-scores. The z-score

October 23, 2018 14:11 ws-rv9x6-9x6 Book Title 11131-12 page 426

426 N. J. Hurley

Table 12.4. Area under the ROC curve for attack detection.
Attack Detector AUC

Random PCA Z0 0.979
Random PCA Z1 0.999
Random N-P Filler 0.975
Average PCA Z0 0.81
Average PCA Z1 0.997
Average N-P Filler 0.956
AoP@60 PCA Z1 0.847
AoP@60 N-P Gauss 0.874
AoP@20 PCA Z1 0.736
AoP@20 N-P Gauss 0.951

for a user profile is obtained by subtracting the profile mean µu and dividing by
the standard deviation σu:

zui =
rui−µu

σu
.

Given that a typical profile contains many unrated items, the z-score depends
strongly on how missing values are dealt with. One strategy is to ignore them
and calculate µu and σu based on the rated items only. Call the resulting matrix of
z-score ratings Z0. A second strategy is to treat missing values as zeros and com-
pute µu and σu across the entire profile. Call the resulting matrix Z1. As observed
in Table 12.4, using Z0 is extremely unsuccessful. In fact, the success of the PCA
Z1 strategy is largely explained by the fact that the covariance is dominated by the
missing value distribution.

This analysis shows that an attacker should choose filler items according to
their overall popularity among the genuine user base. The AoP attack obfuscates
the Average attack by choosing filler items with equal probability from the top x%
of most popular items, rather than from the entire catalogue of items, where x is
chosen to ensure that the profiles are undetectable by the PCA detector. In order
to thwart such an attack, it becomes necessary to design a more accurate model
of the Genuine and Sybil profiles. In Table 12.4, we see that N-P Gauss obtains
significantly better detection quality than PCA Z1 on the AoP@20 attack.

The conclusion that may be drawn is that, faced with sophisticated detection
techniques, attackers need to devise obfuscation strategies to render their attack
profiles undetectable. However, the more like genuine profiles that attack profiles
become, the less powerful they will be in terms of influencing the recommender
output.

October 23, 2018 14:11 ws-rv9x6-9x6 Book Title 11131-12 page 427

Robustness and Attacks on Recommenders 427

12.10. Recommender Robustness and the Spread of Fake News

Since September 2016, towards the end of the American presidential campaign the
term ‘fake news’ started to trend in popular discourse. There is now heightened
awareness that social media platforms can filter stories to users whose veracity is
questionable. More ominously, such platforms can be manipulated so that partic-
ular stories and opinions appear on the news feeds of targeted users, in order to
influence their opinions [Bessi and Ferrara (2016)]. A good survey of the use of
false information on the web and ways to detect it is provided in Kumar and Shah
(2018). In this survey, the authors point out the distinction between misinforma-
tion, which is accidentally erroneous and disinformation, which is maliciously in-
correct [Fallis (2014)] and also distinguish between opinion-based and fact-based
false information. They discuss ways that false information is spread, using bots
and online identities created for deception, sometimes referred to as sock-puppets.
Bessi and Ferrara, for instance, found that almost one fifth of Twitter political
chatter is from bot accounts. Kumar and Shah point to research such as Ott et al.
(2011) that shows that humans are poor at judging the veracity of information.
Malicious actors focus not just on spoofing directly targeted users, but also apply
strategies to promote the trustworthiness and status of the false accounts. They
take account of the social network by, for instance, selecting influential users to
attack, in order to encourage the disinformation to be spread more widely by gen-
uine users who have been deceived. This social aspect is key to disinformation
spreading virally.

The work discussed in this chapter clearly falls into the category of dissemi-
nation of opinion-based disinformation but our focus is directed towards the char-
acteristics of the recommendation algorithms, rather than the social aspects of
disinformation spread. Our concern has been to determine whether collaborative,
personalisation algorithms have inherent weaknesses in the way that they process
user data, which can be leveraged by malicious attackers. This provides just one
point of attack for a malicious actor, within a complex web of possible vulnerabil-
ities that exists when automated tools are engaged in the filtering of information
to end users. In Kumar and Shah, it is pointed out that personalisation plays a key
role in the creation of “echo chambers”, in which a single point of view echoes
in a network of users, where conflicting views are rarely heard. Our study of
recommender algorithm robustness gives a sense of how easily an algorithm can
suppress certain recommendations through being influenced to promote others. In
some sense, algorithms that are weak from a robustness point-of-view are also
more susceptible to the creation of echo chambers. Our analysis has focused
on collaborative recommender systems that exploit explicit ratings or implicit

October 23, 2018 14:11 ws-rv9x6-9x6 Book Title 11131-12 page 428

428 N. J. Hurley

feedback. However, if the recommended items correspond to news articles or
include user reviews, there is a much richer channel of textual opinion through
which to influence end users, that has not been the focus of our study. Auto-
mated recommendation tools still largely rely on the collaborative signal obtained
through explicit or implicit feedback to filter and rank the content presented to
end users, so it is important to understand this point of weakness. Equally, it is
important to observe that addressing algorithm robustness is only one aspect in the
larger question of tracking and preventing the dissemination of disinformation.

12.11. Conclusion

In this paper we have reviewed the state-of-the-art in recommender robustness.
Moreover, as a practical contribution to practitioners in this field, we have im-
plemented the main attack strategies discussed in the literature into a robustness
analysis library in the Ranksys framework. The evaluation presented in this
chapter has focused on the top-N recommendation problem, rather than on rat-
ing prediction and the Ranksys framework provides easy access to a number of
top-N algorithms, so that their vulnerability to attack of top-N algorithms can be
assessed. We have demonstrated the use of this library through an analysis of two
kNN top-N algorithms and two matrix factorisation algorithms.

Acknowledgements

This project has been funded by Science Foundation Ireland under Grant No.
SFI/12/RC/2289.

References

Afsharinejad, A. and Hurley, N. (2018). Performance analysis of a privacy constrained knn
recommendation using data sketches, in Proceedings of the Eleventh ACM Interna-
tional Conference on Web Search and Data Mining, WSDM 2018, Los Angeles, USA,
February 6-8, 2018 (ACM).

Bessi, A. and Ferrara, E. (2016). Social bots distort the 2016 u.s. presidential election
online discussion, First Monday http://firstmonday.org/ojs/index.
php/fm/article/view/7090.

Bryan, K., O’Mahony, M. and Cunningham, P. (2008). Unsupervised retrieval of attack pro-
files in collaborative recommender systems, in RecSys ’08: Proceedings of the 2008
ACM conference on Recommender systems (ACM, New York, NY, USA), ISBN 978-
1-60558-093-7, pp. 155–162, doi:http://doi.acm.org/10.1145/1454008.1454034.

http://firstmonday.org/ojs/index.php/fm/article/view/7090
http://firstmonday.org/ojs/index.php/fm/article/view/7090

October 23, 2018 14:11 ws-rv9x6-9x6 Book Title 11131-12 page 429

Robustness and Attacks on Recommenders 429

Burke, R., Mobasher, B. and Williams, C. (2006). Classification features for attack detec-
tion in collaborative recommender systems, in Proceedings of the 12th International
Conference on Knowledge Discovery and Data Mining, pp. 17–20.

Burke, R., Mobasher, B., Zabicki, R. and Bhaumik, R. (2005). Identifying attack models
for secure recommendation, in Beyond Personalization: A Workshop on the Next
Generation of Recommender Systems.

Chirita, P. A., Nejdl, W. and Zamfir, C. (2005). Preventing shilling attacks in online rec-
ommender systems, In Proceedings of the ACM Workshop on Web Information and
Data Management (WIDM’2005), pp. 67–74.

Fallis, D. (2014). A functional analysis of disinformation, in iConference 2014 (Berlin,
Germany), http://hdl.handle.net/2142/47258.

Harper, F. M. and Konstan, J. A. (2015). The movielens datasets: History and context, ACM
Trans. Interact. Intell. Syst. 5, 4, pp. 19:1–19:19, doi:10.1145/2827872, http://
doi.acm.org/10.1145/2827872.

Hofmann, T. (2004). Latent semantic models for collaborative filtering, ACM Trans. Inf.
Syst. 22, 1, pp. 89–115, doi:10.1145/963770.963774, http://doi.acm.org/
10.1145/963770.963774.

Hu, Y., Koren, Y. and Volinsky, C. (2008). Collaborative filtering for implicit feedback
datasets, in Proceedings of the 2008 Eighth IEEE International Conference on Data
Mining, ICDM ’08 (IEEE Computer Society, Washington, DC, USA), ISBN 978-0-
7695-3502-9, pp. 263–272, doi:10.1109/ICDM.2008.22, http://dx.doi.org/
10.1109/ICDM.2008.22.

Hurley, N., Cheng, Z. and Zhang, M. (2009). Statistical attack detection, in Proceedings
of the Third ACM Conference on Recommender Systems, RecSys ’09 (ACM, New
York, NY, USA), ISBN 978-1-60558-435-5, pp. 149–156, doi:10.1145/1639714.
1639740, http://doi.acm.org/10.1145/1639714.1639740.

Kumar, S. and Shah, N. (2018). False Information on Web and Social Media: A Survey,
ArXiv e-prints arXiv:1804.08559.

Lam, S. K. and Riedl, J. (2004). Shilling recommender systems for fun and profit, In Pro-
ceedings of the 13th International World Wide Web Conference, pp. 393–402.

Mehta, B. and Nejdl, W. (2009). Unsupervised strategies for shilling detection and robust
collaborative filtering, User Modeling and User-Adapted Interaction 19, 1-2, pp. 65–
97, doi:http://dx.doi.org/10.1007/s11257-008-9050-4.

Mobasher, B., Burke, R., Bhaumik, R. and Williams, C. (2005). Effective attack models
for shilling item-based collaborative filtering system, In Proceedings of the 2005
WebKDD Workshop (KDD’2005).

Mobasher, B., Burke, R., Bhaumik, R. and Williams, C. (2007). Toward trustworthy rec-
ommender systems: An analysis of attack models and algorithm robustness, ACM
Transactions on Internet Technology 7, 4.

Mobasher, B., Burke, R. D. and Sandvig, J. J. (2006). Model-based collaborative filtering
as a defense against profile injection attacks, in AAAI (AAAI Press).

O’Mahony, M. P., Hurley, N. J., Kushmerick, N. and Silvestre, G. C. M. (2004a). Collabo-
rative recommendation: A robustness analysis, ACM Transactions on Internet Tech-
nology (TOIT), Special Issue on Machine Learning for the Internet 4, 4, pp. 344–
377.

http://hdl.handle.net/2142/47258
http://doi.acm.org/10.1145/2827872
http://doi.acm.org/10.1145/2827872
http://doi.acm.org/10.1145/963770.963774
http://doi.acm.org/10.1145/963770.963774
http://dx.doi.org/10.1109/ICDM.2008.22
http://dx.doi.org/10.1109/ICDM.2008.22
http://doi.acm.org/10.1145/1639714.1639740

October 23, 2018 14:11 ws-rv9x6-9x6 Book Title 11131-12 page 430

430 N. J. Hurley

O’Mahony, M. P., Hurley, N. J. and Silvestre, C. C. M. (2004b). An evaluation of neigh-
bourhood formation on the performance of collaborative filtering, Artificial Intelli-
gence Review 21, 1, pp. 215–228.

O’Mahony, M. P., Hurley, N. J. and Silvestre, G. C. M. (2002). Promoting recom-
mendations: An attack on collaborative filtering, in A. Hameurlain, R. Cicchetti
and R. Traunmüller (eds.), DEXA, Lecture Notes in Computer Science, Vol. 2453
(Springer), ISBN 3-540-44126-3, pp. 494–503.

O’Mahony, M. P., Hurley, N. J. and Silvestre, G. C. M. (2003). An evaluation of the per-
formance of collaborative filtering, In Proceedings of the 14th Irish International
Conference on Artificial Intelligence and Cognitive Science (AICS’03), pp. 164–168.

Ott, M., Choi, Y., Cardie, C. and Hancock, J. T. (2011). Finding deceptive opinion spam by
any stretch of the imagination, in Proceedings of the 49th Annual Meeting of the As-
sociation for Computational Linguistics: Human Language Technologies - Volume
1, HLT ’11 (Association for Computational Linguistics, Stroudsburg, PA, USA),
ISBN 978-1-932432-87-9, pp. 309–319, http://dl.acm.org/citation.
cfm?id=2002472.2002512.

Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P. and Riedl, J. (1994). Grouplens: An
open architecture for collaborative filtering of netnews, In Proceedings of the ACM
Conference on Computer Supported Cooperative Work (CSCW’94), pp. 175–186.

Su, X.-F., Zeng, H.-J. and Chen, Z. (2005). Finding group shilling in recommendation
system, in WWW ’05: Special interest tracks and posters of the 14th international
conference on World Wide Web (ACM, New York, NY, USA), ISBN 1-59593-051-5,
pp. 960–961, doi:http://doi.acm.org/10.1145/1062745.1062818.

http://dl.acm.org/citation.cfm?id=2002472.2002512
http://dl.acm.org/citation.cfm?id=2002472.2002512

October 23, 2018 15:7 ws-rv9x6-9x6 Book Title 11131-13 page 431

Chapter 13

Privacy in Collaborative Recommenders

Qiang Tang

Luxembourg Institute of Science and Technology
5 Avenue des Hauts-Fourneaux

4362 Esch-sur-Alzette, Luxembourg

qiang.tang@list.lu

Today, recommender systems are ubiquitous in our daily life and are
becoming an indispensable decision supporting tool. Unfortunately,
these systems are extremely greedy for (sensitive) personal data and
they incur enormous economic and political incentives for malicious
players to misbehave. An increasing number of privacy breaches and
system abuses have been disclosed over the time. In this chapter, we
aim at a comprehensive investigation into the privacy issues associated
with recommender systems, with a focus on the subtle conflicting-yet-
complementary relationships between privacy, robustness, and trans-
parency. Taking several existing privacy-preserving solutions, including
cryptographic and differential privacy based ones, we comparatively
analyse their strengths and weaknesses. At the end, we outline some
research directions to design pragmatic privacy-preserving recommender
systems which also facilitate other important properties such as robust-
ness and transparency.

13.1. Introduction

With an ever-expanding sea of data, predictive analytics are playing an in-

creasingly important role in both professional and personal spheres. They

are indispensable tools to discover knowledge from the historical data and

provide predictions for future decision making. In practice, they have of-

fered us with unprecedented efficiency, in the sense that many decisions can

be made by one click. Today, predictive analytics have been intensively used

in targeted advertisement, precision medicine and disease screening, credit

scoring, fraud detection and prevention, traffic analysis, homeland security,

431

October 23, 2018 15:7 ws-rv9x6-9x6 Book Title 11131-13 page 432

432 Q. Tang

and so on. Among all, recommender systems are the key enabler for various

personalized services, and they are at every corner of our life.

When recommenders continue to penetrate into our life and extract ev-

ery detail possible, more and more concerns have emerged. Worries against

such systems root in their greedy demand for personal data and the uncon-

trolled data usage inside and outside recommendation computation. Since

the beginning, privacy has been a concern for recommender customers who

are afraid of personal information disclosure, and nowadays it becomes

more worrisome due to its cascaded effects. For example, using Google as

an example, Newman [Newman (2014)] presented in-depth discussions on

the consequences of lost privacy by focusing on consumer harm and eco-

nomic inequality. So far, many privacy-preserving recommender systems

have been proposed for the purpose of minimizing information leakages

from some perspectives. Unfortunately, privacy is not a stand-alone re-

quirement, and it is entangled with other fundamental requirements, such

as robustness and transparency. This implies that most existing privacy-

preserving solutions will in-fact result in a lot of unexpected problems in

practice, even (surprisingly) downgrade the actual privacy guarantees when

deployed.

In this chapter, we aim at a deeper understanding about the privacy

concerns for both end users and the service provider, with a focus on the

tension with the robustness and transparency requirements in recommender

systems. As a result, we wish to identify future directions to design privacy-

preserving solutions which can align the expectations for different require-

ments and the incentives of different players.

13.1.1. Recommender in a Nutshell

In most recommender systems, there is a service provider (RecSys) which

facilitates the interactions among users, shown in Figure 13.1. The Rec-

Sys will implement the recommender algorithms and collect users’ data

implicitly (e.g. tracking users’ behaviour) and/or explicitly (e.g. collecting

users’ rating values on previously consumed items), and then predict what

the users will prefer. A less common setting is that the user population is

partitioned into two (or more) service providers which are responsible for

computing recommendations for their own users, shown in Figure 13.2.

Let’s assume that the item set is denoted by I =

(1, 2, · · · , b, · · · ,M), and a user x’s ratings are denoted by a vector

Rx = (rx,1, · · · , rx,b, · · · , rx,M). The rating value is often an integer from

October 23, 2018 15:7 ws-rv9x6-9x6 Book Title 11131-13 page 433

Privacy in Collaborative Recommenders 433

Fig. 13.1. Standard Setting. Fig. 13.2. Partitioned Setting.

{0, 1, 2, 3, 4, 5}. If item i has not been rated, then rx,i is set to be 0. The

ratings are often organized in a rating matrix, as shown in Table 13.1. In

its simplest form, the functionality of a recommender system is to predict

the unrated rx,i values based on rated ones.

Table 13.1. Rating Matrix.

Item 1 · · · Item b · · · Item M

User 1 (R1) r1,1 · · · r1,b · · · r1,M
User 2 (R2) r2,1 · · · r2,b · · · r2,M
...

...
...

...
...

...

User N (RN) rN,1 · · · rN,b · · · rN,M

In the literature, a lot of generic recommender algorithms have been

proposed, as detailed in [Adomavicius and Tuzhilin (2005); Shani and Gu-

nawardana (2011)]. Among all, two categories of well-known algorithms are

neighborhood-based and matrix factorization based, which we will briefly

exemplify below for the self-containment of this chapter. More detailed

description for recommender algorithms appears in Part I: Algorithms

of this book.

User-based Neighborhood. Neighborhood-based algorithms can be fur-

ther divided into user-based and item-based. We only introduce the former

in this chapter by assuming a Cosine similarity metric. For two rating

vectors Rx,Ry, their Cosine similarity is denoted as Simx,y, where

Simx,y =
〈Rx,Ry〉
‖Rx‖ × ‖Ry‖

= 〈 Rx

‖Rx‖
,

Ry

‖Ry‖
〉

October 23, 2018 15:7 ws-rv9x6-9x6 Book Title 11131-13 page 434

434 Q. Tang

Suppose we want to compute predictions for a user x based on the rating

data from a user group G, then the formula is as follows.

px,i = rx +

∑
y∈G ∧ ry,i 6=0

Simx,y(ry,i − ry)

∑
y∈G ∧ ry,i 6=0

Simx,y

Matrix Factorization. Given a user set U = {1, 2, · · · , N} and their

rating vectors Rx for x ∈ U , letR denote the set of (x, j) such that rx,j 6= 0.

One of the most popular collaborative filtering algorithms is based on low-

dimensional factor models, which derive two feature matrices U and V from

the rating matrix. The feature vector ux denotes user x’s interest and the

feature vector vj denotes item j’s characteristics. Every feature vector has

the dimension k, which is often a much smaller integer than M and N .

U =

u1

u2

...

uN

 and V =

v1

v2

...

vM

In practice, U and V are often computed by minimizing the following

Regularized least Squares Error (RSE) function:

min
U,V

1

|R|
∑

(x,j)∈R

(rx,j − 〈ux,vj〉)2 + λ
∑
x∈U
||ux||22 + µ

∑
j∈I

||vj ||22 (13.1)

for some positive parameters λ, µ. Using the standard gradient descent

method, U and V can be learned through recursively applying the updating

rules.

u(t)
x = u(t−1)

x − γ∇uxF (U(t−1),V(t−1)) (13.2)

v
(t)
j = v

(t−1)
j − γ∇vjF (U(t−1),V(t−1)) (13.3)

where γ > 0 is a small gain factor and

∇uxF (U,V) = −2
∑

j:(x,j)∈R

vj(rx,j − 〈ux,vj〉) + 2λux (13.4)

∇vjF (U,V) = −2
∑

x:(x,j)∈R

ux(rx,j − 〈ux,vj〉) + 2µvj (13.5)

In practice, these generic recommender algorithms are often combined

in different ways to overcome certain obstacles, e.g. the cold-start problem.

To this end, one of the most famous example is the BellKor’s solution

October 23, 2018 15:7 ws-rv9x6-9x6 Book Title 11131-13 page 435

Privacy in Collaborative Recommenders 435

in the Netflix competition [Koren (2009)]. Comprehensive reviews about

recommender systems can be found in a number of survey papers such as

[Adomavicius and Tuzhilin (2005); Su and Khoshgoftaar (2009); Shani and

Gunawardana (2011); Shi et al. (2014)]. Recently, deep learning has become

a very powerful tool and has been used to numerous applications. Zhang,

Yao, and Sun [Zhang et al. (2017)] gave a very comprehensive survey to the

applications of deep learning in recommender systems.

It is worth stressing that, in practical deployment, a wide spectrum of

auxiliary information (e.g. those in the first column of Table 13.2 from Wang

and Tang [Wang and Tang (2015)]) may be incorporated to improve perfor-

mances from different perspectives, like mitigating the cold-start problem,

increasing accuracy, enhancing stability. Shi, Larson and Hanjalic [Shi et al.

(2014)] gave more detailed discussions in this direction. Due to the avail-

ability of datasets, most academic papers consider only the rating matrix

(i.e. explicit feedback) as input and evaluate their solutions with respect

to some publicly well-known datasets such as MovieLens1 and Netflix2. It

is easy to understand that the more data used in recommenders the more

challenges for privacy protection! We elaborate on this in Section 13.5.

Table 13.2. Features used in different Recommenders ([Wang and Tang (2015)]).

News Tourism Movies&Video Music Books Social

Explicit feedback ? ? ? ? ?

Implicit feedback ? ? ? ? ? ?

Time ? ? ?

Content ? ? ? ? ? ?

Cost ?

Location ? ? ? ? ?

Social interaction ? ? ? ? ?

Demography ? ? ? ? ? ?

Tags ? ? ? ?

Emotion ? ?

13.1.2. Contribution and Organization

Privacy issues and solutions in recommender systems have been incremen-

tally surveyed by Ramakrishnan et al. [Ramakrishnan et al. (2001)], Lam,

Frankowski, and Riedl [Lam et al. (2006)], Beye et al. [Beye et al. (2013)],

Friedman et al. [Friedman et al. (2015)]. In particular, the work [Friedman

et al. (2015)] has offered high-level discussions on the privacy risks in a very

1https://grouplens.org/datasets/movielens/
2https://www.kaggle.com/netflix-inc/netflix-prize-data

https://grouplens.org/datasets/movielens/
https://www.kaggle.com/netflix-inc/netflix-prize-data

October 23, 2018 15:7 ws-rv9x6-9x6 Book Title 11131-13 page 436

436 Q. Tang

broad sense, while it considers a privacy violation when any of the follow-

ing principles has been violated: collection limitation, data quality, purpose

specification, use limitation, security safeguards, openness, individual par-

ticipation, and accountability. It also provides a a high-level review on

a broad set of solutions, ranging from cryptographic ones to policy-based

ones.

Different from the above works, in this chapter, we focus on informa-

tion leakage-oriented privacy breaches and offer an in-depth discussion and

comparison with respect to representative privacy-preservation solutions.

We first reflect on the privacy requirement in recommender systems and

emphasizing its relationship with other requirements in Section 13.2. In

Section 13.3 and Section 13.4, we review some privacy-preserving solutions

in the cryptographic setting and data-obfuscation setting, respectively. We

finally conclude the chapter in Section 13.5. In this chapter, due to the fact

that we are unable to get the source codes for most published solutions, we

compared their performances by directly using the experimental results in

the original papers.

13.2. Privacy Concerns in Recommenders

For users and the RecSys in a recommender system, they have their own

privacy concerns. We categorize them as follows.

• User privacy is about controlling the information that an honest

user discloses to the RecSys and other users in the system. One

privacy concern is that some input data is sensitive by itself because

such data can tell a lot about personality and behaviour. Even the

input may not look sensitive in itself in some scenarios, it can result

in invasive inferences to breach privacy. For instance, Weinsberg

et al. [Weinsberg et al. (2012)] demonstrated that what has been

rated by a user can potentially help an attacker identify this user.

• RecSys privacy is about controlling the information that the Rec-

Sys discloses to the users. For the RecSys, the proprietary system

design, the actual algorithms in use and the corresponding param-

eters are very sensitive information and they may imply a lot of

business secrets. In practice, the RecSys often collects a lot of be-

havioural information and feeds it to the system as auxiliary input,

for better performances (e.g. accuracy). Naturally, such auxiliary

data will be regarded as business asset and kept as secret as well.

October 23, 2018 15:7 ws-rv9x6-9x6 Book Title 11131-13 page 437

Privacy in Collaborative Recommenders 437

Roughly, user privacy concerns can be divided into two levels, namely

membership privacy and data privacy. As implied by Weinsberg et al.

[Weinsberg et al. (2012)], these two levels of privacy concerns are tightly

connected in the sense that breaching one will likely affect the other. More-

over, information leakage can happen both in the process of computation

and the recommendation results. We summarize the privacy-related ques-

tions in different dimensions in Table 13.3, and correspondingly define four

scenarios S1, · · · ,S4. In contrast, we treat RecSys privacy at the level of

data privacy only since there is no membership concern for the RecSys.

Table 13.3. Dimensional Privacy Concerns.

Membership Privacy Data Privacy

Leakage in the process
of computing predic-

tions

S1. Whether a user has
been involved in the com-

putation?

S2. What is revealed about
a user’s input in the com-

putation?

Leakage in the outputs S3. What can be inferred

about a user’s involvement
from the outputs?

S4. How much information

about a user’s input can be
inferred from the outputs,

given that this user is in-

volved in the computation?

The literature has told us that privacy risks are real. Related to scenario

S1, Narayanan and Shmatikov [Narayanan and Shmatikov (2008)] presented

de-anonymization attacks and applied them to anonymized Netflix dataset,

where the anonymization means removal of customer identifying informa-

tion. They showed that an attacker, with a small number of rating values

(some of them are possibly wrong) and their approximate generation dates,

can link it to the original record with very high probability. This implies

that simple anonymisation is not adequate to prevent de-identification at-

tacks in publishing rating datasets in recommenders. Related to scenario

S4, Calandrino et al. [Calandrino et al. (2011)] proposed information refer-

ence attacks against item-based neighborhood recommenders. In an attack,

the attacker registers a number of fake user accounts to receive recommen-

dation outputs, and then monitors changes in the public outputs of recom-

mender systems (i.e. item similarity lists or cross-item correlations) over a

period of time. By combining the dynamic information from monitoring

and some auxiliary information about some of the transactions of a par-

ticular “target” user, the paper proposed an algorithm to infer the target

user’s private input.

October 23, 2018 15:7 ws-rv9x6-9x6 Book Title 11131-13 page 438

438 Q. Tang

In most existing privacy-preserving solutions, RecSys privacy has not

been a concern because the recommender algorithms and parameters are

often assumed to be public. One exception is expert-based recommenders,

e.g. [Tang and Wang (2017); Ahn and Amatriain (2010)], where the Rec-

Sys serves users based on a model learned from experts’ dataset. In this

case, the RecSys has a strong incentive to protect its model. It is worth

mentioning that RecSys privacy or model privacy has become an emerging

topic for cloud-based machine learning platforms which employ a machine

learning model as a service business model, e.g. [Tramèr et al. (2016)].

13.2.1. Entanglement with Robustness and Transparency

Recommendation accuracy and efficiency are two ultimate objectives of

recommender systems, that incentivize all players to participate and ben-

efit. Following the axiom of data analytics, satisfying these requirements

crucially relies on high-quality input data from the users. Unfortunately,

the privacy requirement seemingly sits in the opposite direction because it

aims at hiding users’ input as much as possible and even hiding who the

users are. This has lead to the well-known dilemma between privacy and

these two fundamental objectives. As such, in the literature, the practi-

cality of privacy-preservation solutions has been evaluated based on their

degradation to the recommendation accuracy (in case noise is added to

achieve privacy) and efficiency of the underlying systems. We argue that

the existing practicality validation approach is far from realistic, because

two other important requirements, i.e. system robustness and algorithmic

transparency, have not been taken into account. This is particularly the

case from the perspective of the potential degradation to recommendation

accuracy. The readers can refer to Chapter 12 for more details about the

robustness properties.

Informally, system robustness is about controlling the effect of manip-

ulated inputs. Clearly, it is a prerequisite for guaranteeing recommenda-

tion accuracy. The attackers can be malicious users and even the RecSys.

From the economic perspective, there are strong incentives for robustness

attacks. Early in 2004, Amazon disclosed that many authors rated their

own books to gain popularity3. In countries like China where e-commerce

are extremely popular nowadays, robustness attacks (or, generally trust

3http:

//www.nytimes.com/2004/02/14/us/amazon-glitch-unmasks-war-of-reviewers.

html?scp=6&sq=amazon+book+reviews&st=nyt

http://www.nytimes.com/2004/02/14/us/amazon-glitch-unmasks-war-of-reviewers.html?scp=6&sq=amazon+book+reviews&st=nyt
http://www.nytimes.com/2004/02/14/us/amazon-glitch-unmasks-war-of-reviewers.html?scp=6&sq=amazon+book+reviews&st=nyt
http://www.nytimes.com/2004/02/14/us/amazon-glitch-unmasks-war-of-reviewers.html?scp=6&sq=amazon+book+reviews&st=nyt

October 23, 2018 15:7 ws-rv9x6-9x6 Book Title 11131-13 page 439

Privacy in Collaborative Recommenders 439

fraud) are a major threat to the business4. It is worth emphasizing that

the malicious behaviors in robustness attacks are not captured in any pri-

vacy models (where the objective is to hide the input of any user, no matter

honest or malicious)!

Informally, algorithmic transparency is about the openness of how per-

sonalized predictions have been computed. A transparent system allows

its users to see why they have received the contents or decisions. For rec-

ommenders, it is related to the explainability requirement although it can

mean more than that. Arguably, a transparent system opens the door for

the users to collaboratively assess a broad range of desirable properties such

as fairness and anti-discrimination. It is worth mentioning that algorithmic

transparency for data analytics at large has been in the centre of public at-

tention5. Notably, the new General Data Protection Regulation (GDPR)

of EU creates a “right to explanation” privilege (i.e. some kind of algorith-

mic transparency) for users in the process of algorithmic decision-making

[Goodman and Flaxman (2016)].

We believe that the ultimate difficulty in addressing the privacy concerns

in recommender systems comes from the entanglements among different

requirements, as shown in Figure 13.3 and elaborated below. The subtle

relationships among them indicate that it is unwise to emphasize one while

ignoring others. Unfortunately, most of existing solutions fall into this

trap. Interestingly, even with a competing nature, these requirements do

contribute to each other, and a pragmatic solution should respect all of

them simultaneously.

(1) User privacy and system robustness do not get along naturally. In order

to achieve user privacy, we may want to protect users’ inputs against

the RecSys. However, in order to make the system robust, the RecSys

needs to clean users’ inputs and exclude the suspicious users. In existing

solutions, such operations require to access the raw data and possibly

know a user’s identity. Clearly, there is a tension here. Interestingly,

on the other hand, user privacy is crucial to achieve system robustness.

When honest users’ data is compromised by an attacker, it becomes

much easier for this attacker to tailor its inputs to bias the outputs to

these honest users. This has become an important research direction

in adversarial machine learning, see [Huang et al. (2011)]. Lam et al.

The paper [Lam et al. (2006)] already gave a discussion between data

privacy and robustness properties ten years ago.

4https://en.wikipedia.org/wiki/Internet_Water_Army
5https://www.nytimes.com/2015/07/10/upshot/when-algorithms-discriminate.html

https://en.wikipedia.org/wiki/Internet_Water_Army
https://www.nytimes.com/2015/07/10/upshot/when-algorithms-discriminate.html

October 23, 2018 15:7 ws-rv9x6-9x6 Book Title 11131-13 page 440

440 Q. Tang

Fig. 13.3. Requirements Correlations.

(2) There is clearly a tension between algorithmic transparency and RecSys

privacy. If the RecSys is asked to publish the details of the deployed

algorithms and parameters to provide algorithmic transparency, then

it loses privacy. Note that the RecSys may also need to publish the

auxiliary data it collects.

(3) There is an embedded conflict between user privacy and algorithmic

transparency. The link lies in the fact that, in most collaborative filter-

ing recommender systems, the output to an individual not only depends

on this user’s input but also heavily relies on the inputs from other

users. This immediately means that, in order to provide algorithmic

transparency to a party X, both the underlying algorithm and relevant

users’ inputs need to be made available in some manner to this party

X. As such, there is a tension between the two requirements.

(4) There is a natural tension between algorithmic transparency and system

robustness. It is based on a simple fact: the more the attacker knows

about the details of the algorithms, parameters, and some information

about other users’ data; the easier for it to bias the outputs to honest

users.

13.2.2. High-level Literature Review

In the literature, most privacy-preserving cryptographic solutions assume

an honest-but-curious or semi-honest adversary model, where RecSys, users

October 23, 2018 15:7 ws-rv9x6-9x6 Book Title 11131-13 page 441

Privacy in Collaborative Recommenders 441

and other third parties (e.g. crypto service provider — CSP) are assumed

to follow the protocol specification all the time. An adversary might look at

the communication records and try to infer the private information about

others, while different adversaries (e.g. RecSys and CSP) will not collude.

As to the users, some of solutions do assume them to be malicious, which

means that a group of users can collude to infer the private information

about other honest users and other parties without following the protocol

specification. On one hand, the semi-honest assumption dramatically sim-

plifies the solution design. Nevertheless, we will show that even with this

assumption, it is not a trivial task to have a secure solution. On the other

hand, this assumption ignores a lot of potential risks in the perspective of

privacy protection. Moreover, it creates barriers to fulfill other requirements

such as robustness and transparency (when the RecSys can be malicious).

We expand on these comments in the rest of this chapter.

Existing privacy-preserving solutions can be generally divided into two

categories, and we give a brief summary in Table 13.4. We analyse some

representatives in Section 13.3.

Table 13.4. Literature Summary.

Neighborhood Matrix Factorization Hybrid

Cryptographic [Polat
and Du (2005a)],

[Basu et al.

(2012)], [Tang
(2012)], [Veu-

gen et al. (2015)]†,
[Tang and Wang
(2015)], [Tang and
Wang (2016)]

[Canny (2002b)],
[Canny

(2002a)], [Han et al.

(2009)]∗, [Nikolaenko
et al. (2013)]†, [Kim

et al. (2016)]†

[Aı̈meur et al.
(2008)], [Jeck-

mans

et al. (2012)],
[Tang and

Wang (2017)]†

Data-obfuscation

(ad hoc)

[Polat and

Du (2003)], [Polat
and Du (2006)],

[Shokri et al.
(2009)]

[Polat and

Du (2005b)], [Ioanni-
dis et al. (2014)]

Data-obfuscation
(dp)

[McSherry and
Mironov

(2009)],[Wang and
Tang (2017)]

[Wang et al.
(2015)],[Berlioz et al.

(2015)], [Liu et al.
(2015)]

Cryptographic Solutions. They essentially model recommender system

as a multi-party computation protocol, and the main objective is to secure

users’ inputs rather than the information leakage in the outputs. In another

October 23, 2018 15:7 ws-rv9x6-9x6 Book Title 11131-13 page 442

442 Q. Tang

word, these solutions mainly consider scenario S2 in Table 13.3. Often,

attackers are defined to be a semi-honest RecSys or users, and the standard

setting (shown in Figure 13.1) is considered. Some solutions have also been

proposed for partitioned datasets (shown in Figure 13.2), and they are

marked with the symbol ∗. Note that in the partitioned setting, users

are often assumed to fully trust their local RecSys. To improve efficiency,

some solutions have introduced additional semi-honest servers, and they

are marked by the symbol † in Table 13.4.

Data-obfuscation Solutions. They rely on adding noise to the original

data or computation results to protect users’ inputs. They mainly consider

scenario S3 in Table 13.3. We term some solutions as ad hoc due to the

fact that they do not use a rigorous security notion. In contrast, differential

privacy based approach has gained a lot of popularity because it provides

mathematically sound privacy notions. Often, these solutions assume a

trusted curator, e.g. RecSys, which will calibrate noises to aggregated users’

data and then publish the noisy results.

To the end of security analysis, several works have been published, re-

lated to scenario S2 defined in Table 13.3. These attacks raise questions on

the trust assumptions (i.e. who should be trusted to protect some entity’s

privacy and to which extent the trust can be assumed) that should be used

in both data-obfuscation and cryptographic solutions.

Zhang et al. [Zhang et al. (2006)] showed how to recover perturbed rat-

ings in the solutions by Polat and Du [Polat and Du (2003, 2005b)]. With

the solutions from [Polat and Du (2003, 2005b)], a user first disguises his

rating vector by perturbing every rating value using uniform or Gaussian

noise and then sends the disguised rating vector (referred to as z-scores) to

the RecSys, which will compute recommendations based on the disguised

values from all users. We note that this approach is similar to the dif-

ferential privacy approach by Shen and Jin [Shen and Jin (2014, 2016)],

although it assumes the RecSys to be the attacker while the latter solu-

tions assume users to be the attacker. Zhang et al. [Zhang et al. (2006)]

proposed two attacks. In one, the RecSys can recover the original rating

values of a user based on the disguised rating vector, using simple k-means

clustering method. In the other, the RecSys can recover all z-scores of all

users by using SVD-based method. It remains as a challenge to apply data-

obfuscation methods to secure individual record against the RecSys (or, the

curator in the case of differential privacy), because the attacker can always

apply machine learning techniques to infer the original data. To this end,

the differential privacy approach does not help much.

October 23, 2018 15:7 ws-rv9x6-9x6 Book Title 11131-13 page 443

Privacy in Collaborative Recommenders 443

Tang and Wang [Tang and Wang (2015)] proposed an attack against

the cryptographic solution by Jeckmans et al. [Jeckmans et al. (2013)].

Through the attack, an attacker can first recover the private key of the

RecSys, and then recover a lot of private information about honest peers.

Such an attack can succeed in practice due to two facts. One is that it is

always possible for a small group of users to collude, or a single malicious

user can set up a few fake user accounts. It might make sense to assume

the RecSys to be semi-honest, but it does not to assume all users to be

semi-honest. The other is that the underlying homomorphic encryption

scheme is vulnerable to key recovery attacks, where a malicious attacker

can recover the private key of RecSys by asking the RecSys to decrypt

some ciphertexts of his choice. In fact, recent research has shown that

most homomorphic encryption schemes suffer from this type of attacks (see

[Chenal and Tang (2014, 2015)]). The attack from [Tang and Wang (2015)]

shows that we should be very careful to make semi-honest assumptions

in recommenders where there is often no rigorous security mechanism to

enforce honest behaviours. Moreover, we should also be careful to rely on

homomorphic encryption for straightforward security. Special attention is

required to mitigate the vulnerabilities of potential key recovery attacks.

Generally speaking, both types of solutions affect the detection of ro-

bustness attacks. Cryptographic solutions makes it impossible for the Rec-

Sys to run any existing detectors because no plaintext input is directly

shared by the users. While for data-obfuscation solutions, the RecSys will

still be able to run its detectors but the performance will be (seriously)

affected due to the perturbations or added noise.

13.3. Examining some Cryptographic Solutions

To construct cryptographic recommenders, many building blocks can be

employed. Some elementary building blocks, such as digital signatures and

message authentication codes, can be found in the books [Menezes et al.

(1996)] and [Katz and Lindell (2007)]. The most widely-used ones are Ho-

momorphic Encryption (HE) and Garbled Circuit (GC). We briefly review

them below.

HE is a concept that dates back to Rivest, Adleman and Dertouzos

[Rivest et al. (1978)]. An encryption is fully homomorphic if one can eval-

uate any circuit on the ciphertexts without decryption (i.e. one can per-

form any number of additions and multiplications), while an encryption

scheme is somewhat homomorphic if one can only evaluate circuits with

October 23, 2018 15:7 ws-rv9x6-9x6 Book Title 11131-13 page 444

444 Q. Tang

a limited depth (i.e. only allowing limited number of additions and multi-

plications). Many somewhat homomorphic encryption schemes have been

proposed so far (e.g. BGV scheme [Brakerski et al. (2012)] and YASHE

scheme [Bos et al. (2013)]), and they can be made fully homomorphic via

the bootstrapping technique by Gentry [Gentry (2009)]. In practice, the

most widely-used library is Simple Encrypted Arithmetic Library (SEAL)

from Microsoft [Dowlin et al. (2017)], which is an optimized implementa-

tion of the YASHE scheme [Bos et al. (2013)]. Another popular library is

HElib [Halevi and Shoup (2014)], which is an optimized implementation of

the BGV scheme [Brakerski et al. (2012)]. Formally, a somewhat homo-

morphic encryption scheme in the asymmetric setting can be described by

four algorithms (Keygen,Enc,Dec,Eval).

• Keygen(λ, L): With the security level λ, the multiplication depth L,

this algorithm outputs a key tuple (PK,SK,EV K).

• Enc(PK,m): this algorithm outputs a ciphertext c.

• Dec(SK, c): this algorithm outputs a plaintext m.

• Eval(EVK, circuit, ciphertexts): this algorithm outputs a ciphertext,

which encrypts the evaluation result of circuit on the plaintexts in

ciphertexts.

When using HE, special attention is required for potential key recovery

attacks due to the fact that most HE schemes are vulnerable. It becomes

trickier when considering a semi-honest model, as we have shown in the

previous section about the work in [Tang and Wang (2015)].

GC is a cryptographic primitive introduced by Yao to solve the million-

aires’ problem [Yao (1986)], namely to determine who is richer between two

millionaires. Intuitively, the idea is as follows. Suppose the millionaires are

denoted as A and B, and their wealth is denoted by two integers IA and IB
(modeled as binary strings) respectively.

(1) Millionaire A can construct a circuit for comparing two integers IA
and IB , where every gate has two input wires/bits and one output

wire/bit. This circuit can be a standard one, known to both million-

aires. Intuitively, the circuit can be considered as a tree, where the leaf

nodes represent IA and IB and the root node is the comparison result

(denoted as 0 or 1).

(2) To protect the input privacy, millionaire A selects two random secret

keys for every wire (either input or output) and makes a lookup table

which encrypts all the output wires. The table is referred to as a GC.

October 23, 2018 15:7 ws-rv9x6-9x6 Book Title 11131-13 page 445

Privacy in Collaborative Recommenders 445

(3) Millionaire A sends the random keys, which represents IA, and the

lookup table to millionaire B.

(4) Millionaire B runs an oblivious transfer (OT) protocol to retrieve the

secret keys corresponding to IB . The OT ptotocol guarantees million-

aire B learns nothing more, while Millionaire A learns nothing.

(5) Millionaire B can then evaluate the garbled circuit by decrypting the

look-up table using the received keys from millionaire A and the re-

trieved keys by himself. The decrypted final result will indicate who is

richer by a bit 0 or 1.

(6) If necessary, millionaire B can notify millionaire A the result.

13.3.1. Extra Third-party enabled Solutions

Under the semi-honest assumption, Nikolaenko et al. [Nikolaenko et al.

(2013)] proposed a GC-based protocol for privacy-preserving matrix fac-

torization, as shown in Figure 13.4. This protocol can be used as a main

building block for privacy-preserving solutions. Roughly, the protocol works

as follows.

(1) The crypto service provider (CSP) generates a key pair (pk, sk) for a

somewhat homomorphic encryption scheme.

(2) Each user encrypts his rating vector with pk and send the ciphertexts

to the RecSys. Note that the data transmission should be through

a secure channel with confidentiality protection, in order to hide the

encrypted ratings from the CSP.

(3) Based on the homomorphic property of the underlying encryption

scheme, the RecSys re-randomizes the encrypted rating vectors for all

users. Then it sends the re-randomized ciphertexts to the CSP.

(4) The CSP decrypts the re-randomized ciphertexts and obtains the re-

randomized rating vectors for every user. Based on the decrypted val-

ues, the CSP prepares a garbled circuit for matrix factorization, where

the input wires stand for the randomness used by the RecSys in Step 3.

(5) Referring to the brief introduction to GC above, the RecSys can re-

trieve the corresponding secret keys for its randomness and evaluate

the garbled circuit afterwards. At the end, the RecSys obtains the

items’ feature matrix V (referring to Section 13.1.1).

Intuitively, the encryption in Step 2 prevents information leakage to the

RecSys, while the re-randomization by the RecSys in Step 3 prevents infor-

mation leakage to the CSP. However, note that the above protocol allows

October 23, 2018 15:7 ws-rv9x6-9x6 Book Title 11131-13 page 446

446 Q. Tang

the RecSys to learn V in plaintext, which may leak information about users’

rating values. By applying additional randomization procedures on the val-

ues in the above protocol, Nikolaenko et al. [Nikolaenko et al. (2013)] con-

structed an interactive solution to allow every user to learn his predictions

while neither the RecSys nor CSP learns anything. In addition, the authors

also gave a sketch on how to defeat malicious adversaries.

Fig. 13.4. Solution from [Nikolaenko et al. (2013)].

Fig. 13.5. Solution from [Kim et al. (2016)].

October 23, 2018 15:7 ws-rv9x6-9x6 Book Title 11131-13 page 447

Privacy in Collaborative Recommenders 447

Kim et al. [Kim et al. (2016)] proposed a HE-based protocol for privacy-

preserving matrix factorization, as shown in Figure 13.5. Roughly, the

protocol works as follows.

(1) The crypto service provider (CSP) generates a key pair (pk1, sk1) for

a somewhat homomorphic encryption scheme and another key pair

(pk2, sk2) for another somewhat homomorphic encryption scheme (this

scheme only needs to support additions).

(2) Each user encrypts his rating vector with pk2 and send the ciphertexts

to the RecSys. Note that the transmission should be through a secure

channel with confidentiality protection, in order to hide the encrypted

ratings from the CSP.

(3) Based on the homomorphic property of the underlying encryption

scheme, the RecSys re-randomizes the encrypted rating vectors for all

users. Then it sends the randomized ciphertexts to the CSP.

(4) The CSP uses sk2 to decrypt the re-randomized ciphertexts and ob-

tains the randomized rating vectors for every user. It encrypts the

randomized rating vectors with pk1 and send them back to RecSys.

(5) The RecSys and the CSP interactively execute gradient descent algo-

rithm (referring to Section 13.1.1) until some stopping conditions are

met. At the end, the RecSys obtains the user and item feature matrices.

Similar to the GC-based approach, privacy-preserving solutions can be con-

structed based on the above protocol to allow every user to learn his pre-

dictions while neither RecSys nor CSP learns anything.

It is worth noting that, besides introducing the CSP, both solutions

from [Nikolaenko et al. (2013)] and [Kim et al. (2016)] applied additional

innovative techniques to improve the computational efficiency. The authors

from [Kim et al. (2016)] performed a comparison test based on a single ma-

chine with 3.4GHz 6-cores 64GB RAM. We directly duplicate their results

in Figure 13.6 and Figure 13.7. It is clear that the HE-based solution is

more efficient than the GC-based solution with respect to both computa-

tion and communication, regardless the fact that the HE-based solution

requires more rounds of communications due to the interactive execution

of gradient descent algorithm.

Despite the security claims and the possible enhancements, we want to

point out that the above solutions and alike have many drawbacks in re-

ality. First of all, assuming two or more non-colluding third parties is not

as realistic as it is claimed to be, even if incentives can be given to these

October 23, 2018 15:7 ws-rv9x6-9x6 Book Title 11131-13 page 448

448 Q. Tang

Fig. 13.6. Computational Complexity.

Fig. 13.7. Communication Complexity.

entities for them to follow the protocol specification. One obvious risk is

that one server might be compromised, say the CSP. Suppose the attacker

cannot compromise the other server, then the attacker can just release the

October 23, 2018 15:7 ws-rv9x6-9x6 Book Title 11131-13 page 449

Privacy in Collaborative Recommenders 449

private key to the public (much like the *leaks stories nowadays), then the

RecSys will be able to decrypt everything and gain all the secret infor-

mation about the users. Secondly, semi-honest model is too weak to be

justified. One risk along this line is that a “curious” RecSys or CSP may

slightly deviate from the protocol specification in order to get some pri-

vate information from a targeted user. To this end, there are many tricks,

e.g. use special randomness or “collude” with some users (note that recom-

mender is often an open system without strong authentication, particularly

true for privacy-preserving ones). Such attack can be carried out without

affecting the utility of anyone, because recommender algorithms are often

non-deterministic so that there is no single right output for a user. Using

cryptographic techniques to prevent malicious attackers is notoriously ex-

pensive due to the scale of recommenders. Thirdly, these solutions make it

impossible for detecting robustness attacks. Normally, the RecSys should

clean the input data and exclude the abnormal ones before computing rec-

ommendations. With privacy-preserving solutions deployed, in order to

perform the tasks, new cryptographic protocols need to be proposed and

deployed, which will further downgrade the efficiency and increase informa-

tion leakage. Finally, some subtle technical considerations might make the

situation harder, e.g. the reusability issue for garbled circuit [Goldwasser

et al. (2013)] and the key recovery attacks against homomorphic encryption

schemes [Chenal and Tang (2014, 2015)].

13.3.2. Auxiliary Information enabled Solution

Different from assuming extra third parties, Tang and Wang [Tang and

Wang (2015, 2016)] proposed privacy-preserving friendship-based recom-

mender systems, which leverage the background social network information

among users to reduce the computational costs as shown in Figure 13.8. The

intuition comes from the folklore that similar users (e.g. friends) share sim-

ilar tastes. Following the principle of neighborhood-based approach, only

considering the inputs from friends can already produce reasonably good

predictions. However, the efficiency gain does not come for free. When the

user population is small, the information leakage from the output can be

significant in scenario S4 in Table 13.3. Even friends trust each other more

than strangers, they may not want to share everything with each other.

To reduce the risk in this direction, Tang and Wang proposed the idea of

introducing randomly chosen strangers in the computation.

October 23, 2018 15:7 ws-rv9x6-9x6 Book Title 11131-13 page 450

450 Q. Tang

Fig. 13.8. System Structure in the View of User u.

Two types of protocols are proposed in [Tang and Wang (2015, 2016)],

and the recommender algorithm is an adapted one for the sake of efficiency

from the neighborhood-based algorithm in Section 13.1.1. One is single

prediction protocol which allows a user to test whether or not a predicted

rating value is larger than a threshold. The other is Top-k recommendation,

which allows a user to learn the k unrated items that have the highest

predicted rating values. With a semi-honest RecSys, the Top-k protocol

works as follows. Suppose the user is Alice.

(1) Alice generates a key pair (pk, sk) for a somewhat homomorphic en-

cryption scheme.

(2) Alice sends encrypted weights to the RecSys, which will forward the

values to Alice’s friends and some randomly-chosen strangers. Different

from those in Section 13.3.1, encryption is done with respect to Alice’s

public key.

(3) Each friend or stranger computes his contribution (encrypted under

Alice’s public key pk) to the final predictions. Note that a tailored

neighborhood-based recommender algorithm is used, and it allows a

friend or stranger to compute his contribution without knowing Alice’s

rating values. The contributions are sent to the RecSys.

(4) Based on the received values and also some other encrypted values

from Alice, the RecSys can compute the predictions for all items in en-

crypted form. Note that each prediction is in the form of an encrypted

nominator and denominator pair.

October 23, 2018 15:7 ws-rv9x6-9x6 Book Title 11131-13 page 451

Privacy in Collaborative Recommenders 451

(5) The RecSys and Alice can then interactively run a ranking protocol to

rank the predictions in encrypted form.

(6) Finally, the RecSys can send the encrypted Top-k predictions to Alice.

Tang and Wang [Tang and Wang (2015, 2016)] have done experiments

based on simulated and real datasets to evaluate the accuracy of the so-

lutions. It is shown that the proposed solutions only require 1
10 of the

user population in contrast to a standard neighborhood algorithm. Based

on an Intel(R) Core(TM) i7-5600U CPU 2.60GHz PC, the computational

costs for the two types of protocols are shown in Table 13.5. The exper-

iment assumes a user population of 80, while the MovieLens dataset has

a user population 1000. For the Top-k protocol, the main source of the

computational costs for the RecSys and the user is from the ranking of

the unrated items. The Top-k (no ranking) row of the table indicates the

costs when the encrypted predictions are sent to Alice directly. In this case,

more information is leaked to Alice. We note that the MF-based solutions

(e.g. [Nikolaenko et al. (2013); Kim et al. (2016)] described in the previous

subsection) face the same situation, in the sense that similar costs will be

incurred if the users are only allowed to receive the Top-k predictions. Such

costs are not included in Figure 13.6.

Table 13.5. Execution time of Tang-Wang Solutions (in seconds).

Friend Stranger RecSys Alice

Single 1.12 1.00 0.72 74.17

Top-k 141.22 140.55 1726446 236424

Top-k (no ranking) 141.22 140.55 1562 141.58

Regarding these solutions and alike, one concern is that they do not

generalize to broader settings when appropriate social information is un-

available. In addition, friendship information may be sensitive in the first

place, so that these solutions may have their inherent privacy drawbacks.

On the positive side, unless membership privacy (shown in Table 13.3) is

strongly enforced, friendship information can always be collected in practi-

cal recommender systems and such information is also important to fulfill

other requirements such as robustness. Note also that friendship can be de-

fined based on a variety of metrics, not necessarily on the real-world social

network links. We conjecture that many practically deployed recommenders

may have already heavily made use of such information. The other concern

is about the scalability. MF-based solutions has an advantage, because the

learned model can serve all the users while, in neighborhood-based systems,

October 23, 2018 15:7 ws-rv9x6-9x6 Book Title 11131-13 page 452

452 Q. Tang

predictions need to be computed for each user separately (i.e. the protocol

needs to be executed once for each user). This advantage is more obvious

when the dataset or user population is very large. However, we need to

keep in mind that the advantage comes with the extra third party CSP.

Without such additional party, privacy-preserving matrix factorization will

be computationally infeasible (to the best of our knowledge). When the

user population is relatively small and friendship information can be easily

constructed, the above friendship-based solutions will be a better fit. Even

in this case, standard privacy-preserving neighborhood-based solutions can

still have a scalability problem because they need to process data from all

users. Concerning trust assumptions, the friendship-based solutions have

further potentials to be exploited. For example, friendship information can

be leveraged for users to validate each other’s public keys, similar to the web

of trust paradigm of PGP6. To some extent, this is superior to the somehow

artificial CSP. In addition, by asking each participant to directly compute

his contributions instead of sending his rating values will also reduce the

risk of privacy breach in case the some user’s private key is compromised.

As a remark, the work of Tang and Wang [Tang and Wang (2015,

2016)] is related to the concept of trust-aware collaborative filtering rec-

ommender systems proposed by Massa and Avesani [Massa and Avesani

(2004, 2007)], where trust metrics between users are proposed and taken

into account when computing recommendations. Different from [Tang and

Wang (2015, 2016)], no rigorous security analysis has been provided in

[Massa and Avesani (2004, 2007)]. O’Donovan and Smyth [O’Donovan and

Smyth (2005)] showed that trust-based defence can be defeated if the at-

tacker can access the trust values. This implies that the confidentiality of

these values need to be guaranteed. Cheng and Hurley [Cheng and Hur-

ley (2009)] proposed the concept of informed model-based attacks against

trust-aware solutions, where the attacker is given the model parameters,

and showed that such attacks are more efficient than others in the decen-

tralized privacy-preserving recommender system by Canny [Canny (2002a)].

They demonstrated the trade-off between privacy and robustness. We note

that these attacks do not apply to the solutions from [Tang and Wang

(2015, 2016)] due to the fact that similarity values (equivalent to the trust

metrics in [Massa and Avesani (2004, 2007)]) are kept secret from all the

players.

6https://en.wikipedia.org/wiki/Pretty_Good_Privacy

https://en.wikipedia.org/wiki/Pretty_Good_Privacy

October 23, 2018 15:7 ws-rv9x6-9x6 Book Title 11131-13 page 453

Privacy in Collaborative Recommenders 453

13.4. Examining some Differentially Private Solutions

Differential privacy [Dwork (2006); Dwork et al. (2006)] is a rigorous pri-

vacy notion, proposed to model inference attacks in releasing statistical

databases. In a short period of time, it has been applied to a wide range of

application scenarios, including recommenders.

Definition 13.1. A random algorithm M is (ε, σ)-differentially private if

for all O ⊂ Range(M) and for any (D0,D1) which only differs on one single

record, i.e. ||D0 −D1|| ≤ 1, the following inequality holds.

Pr[M(D0) ∈ O] ≤ exp(ε)Pr[(M(D1) ∈ O] + σ

We say M guarantees ε-differential privacy if σ = 0.

The parameter ε measures the privacy loss, by bounding the difference of

algorithmM’s output for any (D0,D1). Lower ε indicates stronger privacy

protection, with ε = 0 for perfect privacy.

Laplace Mechanism [Dwork et al. (2006)] is a common approach to re-

alise differential privacy guarantee by calibrating additive noise sampled

from Laplace distribution: M(D)
∆
= f(D)+Lap(0, ∆F

ε). The ∆F stands for

the L1-sensitivity, namely ∆F = max
(D0,D1)

||f(D0)− f(D1)||1. Recently, sam-

pling from the posterior distribution of a Bayesian model with bounded log-

likelihood has been proven to be differentially private [Wang et al. (2015)].

It is essentially an exponential mechanism [McSherry and Talwar (2007)].

Formally, suppose that we have a dataset of L i.i.d examples X = {xi}Li=1

which we model using a conditional probability distribution p(x|θ) where

θ is a parameter vector, with a prior distribution p(θ). If p(x|θ) satisfies

supx∈X ,θ∈Θ| log p(x|θ)| ≤ B, then releasing one sample from the posterior

distribution p(θ|X) with any prior p(θ) preserves 4B-differential privacy.

Alternatively, ε-differential privacy can be achieved by simply re-scaling

the log-posterior distribution by a factor of ε
4B , under the regularity con-

ditions where asymptotic normality (or, the Bernstein-von Mises theorem)

holds.

13.4.1. Global Differential Privacy Approach

Following the blueprint of differential privacy paradigm, Berlioz et al.

[Berlioz et al. (2015)] compared three different ways of noise calibration

for MF-based recommender systems. As shown in Figure 13.9, noise can

October 23, 2018 15:7 ws-rv9x6-9x6 Book Title 11131-13 page 454

454 Q. Tang

Fig. 13.9. Various Approaches to Achieve Differential Privacy [Berlioz et al. (2015)].

be calibrated in the preparation of rating matrix (referred to as input per-

turbation), in the stochastic gradient descent training process, and in the

output. The experimental results from [Berlioz et al. (2015)] showed that

the input perturbation approach preserves the most accuracy at the same

level of privacy guarantee.

Instead of directly calibrating noise, Wang, Fienberg, and Smola [Wang

et al. (2015)] proposed the concept of differential privacy via posterior sam-

pling for MF-based recommenders, where differential privacy is achieved

based on scaling the gradient in the model training. They showed that this

approach outperforms the standard differential privacy approach (e.g. direct

noise calibration) with respect to Bayesian learning. One concern of this

approach is that the distance between the distribution where the samples

are from and the true posterior distribution might not be the same or even

close, which means the privacy guarantee might not be truly what is claimed

to be. Fortunately, there are some theoretical results for bounding the dis-

tance (e.g. [Sato and Nakagawa (2014)]), although additional efforts are

required to interpret them in individual application scenarios. Wang and

Tang [Wang and Tang (2017)] evaluated the two methods (noise calibration

and posterior sampling) with respect to a probabilistic neighborhood-based

recommender algorithm from [Wang and Tang (2016)]. Their experimental

results show that both methods can obtain quite good accuracy when ε ≈ 1;

while, for the same privacy guarantee, posterior sampling method seems to

result in higher accuracy. In general, they showed that differentially private

MF solutions are more accurate when privacy loss is large while probabilistic

October 23, 2018 15:7 ws-rv9x6-9x6 Book Title 11131-13 page 455

Privacy in Collaborative Recommenders 455

neighborhood-based solutions are better when we want to reduce the pri-

vacy loss to a moderately small range.

Guerraoui et al. [Guerraoui et al. (2015)] proposed the concept of

distance-based differential privacy for neighborhood-based recommender al-

gorithms. With this approach, the curator (i.e. RecSys) first collects the

rating vectors for all users, and then builds an AlterEgo profile for every

user (with a certain probability p a rating item will be replaced with a

random item, otherwise it will be replaced with a similar item), and finally

any neighborhood-based algorithm can be applied to compute the final rec-

ommendations. Their experimental results are evaluated with respect to

classification accuracy metrics, so that it is difficult to compare them with

other solutions, e.g. that from [Wang and Tang (2017)].

13.4.2. Local Differential Privacy Approach

One obvious drawback of many differentially private recommenders is the

assumption that the curator accumulates all users’ input and then en-

forces the privacy. This process forces all users to fully trust the curator,

essentially the RecSys. In order to relax this strong trust requirement,

researchers have investigated the concept of local differential privacy. No-

tably, Banerjee, Hegde, and Massoulie [Banerjee et al. (2015)] investigated

the local differential privacy concept in the context of recommender systems

from an information theoretic perspective. They established lower bounds

for sample complexity (i.e. local community size) in order to cluster items

(i.e. learn the item similarities). Shen and Jin [Shen and Jin (2014, 2016)]

proposed the concept of instance-based approach for differentially private

MF-based recommenders. With this approach, every user randomizes their

rating vector before sending it to the RecSys, and recommendations are

computed based on the perturbed data from all users. In these works, per-

formances are evaluated against self defined measures only, therefore it is

unclear how it is compared to other solutions.

Clearly the local differential privacy concept mitigates the aforemen-

tioned drawback (i.e. reliance on a fully trusted curator), but it may bring

undesirable effects on recommendation accuracy due to the fact that many

privacy-savvy users will add a large amount of noise in their input. The

heavily perturbed inputs will not only downgrade privacy-savvy users’ ac-

curacy (acceptable due to the privacy-utility tradeoff), but also downgrade

the accuracy of those who have added very little noise in order to get

accurate recommendations. In addition, local differential privacy adds a

October 23, 2018 15:7 ws-rv9x6-9x6 Book Title 11131-13 page 456

456 Q. Tang

formidable barrier for fighting against robustness attacks due to the added

noises from all users.

13.4.3. Comparison to Cryptographic Solutions

Referring to the scenarios in Table 13.3, cryptographic and data-obfuscation

solutions target different scenarios. Most cryptographic solutions only tar-

get the scenario S2, namely data leakage in the computations. They usually

assume a semi-honest RecSys, which is not trusted to see users’ plaintext

inputs. On the other hand, most data-obfuscation solutions only target the

scenario S3, namely membership information leakage in the outputs. They

often assume a fully trusted RecSys, which collects inputs from all users and

then adds privacy protection afterwards. Naturally, these solutions might

also provide some limited privacy protection for the scenario S4, in the sense

that not knowing whether a user is involved or not somehow implies not

knowing the input of this user. Taking differentially-private recommender

as an example, and assume ε = 1 for record-level privacy. For any honest

user who is involved in the protocol, an attacker can only confirm this fact

with the probability ρ = e−ε

1+e−ε . Note that ρ is not negligible in the cryp-

tographic sense. There is no guarantee that with this ρ probability, how

much the attacker can learn Alice’s input.

In Table 13.6, we briefly summarize the comparison. Note that it cap-

tures the general properties of most solutions in these two categories, while

exceptions do exist.

Table 13.6. Comparison Summary.

Cryptographic Solutions Data-obfuscation

Solutions

Types of At-
tacker

RecSys and End Users End Users

Privacy Cov-
erage

S2 (leakage from computation) S3 and S4 (leakage and infer-
ence from outputs)

Trust Setup Semi-honest RecSys Honest RecSys

Security

Guarantee

Computational Assumptions Unconditional

13.5. Future Directions

Based on our previous analysis, we can conclude that privacy is an extreme

important yet tricky requirement for recommender systems. Its entangle-

October 23, 2018 15:7 ws-rv9x6-9x6 Book Title 11131-13 page 457

Privacy in Collaborative Recommenders 457

ment with other (equally important) requirements challenges the assump-

tions made in most existing solutions so far. In the following, we outline our

vision for a comprehensive solution which addresses all three requirements,

and identify some promising technical directions.

Analog to employing collaborative filtering approach for recommenda-

tion accuracy, we envision a collaborative and crowdsourced approach for

achieving robustness and transparency. For consistency/robustness rea-

sons, users should commit their encrypted inputs to a distributed ledger

[Narayanan et al. (2016)], and these inputs will be fed to the privacy-

preserving recommender protocols which are transparency and robustness

friendly by design. In an off-line manner, any group of users can run

lightweight secure multi-party computation protocols to detect robustness

attacks and test transparency properties, and then log the results on the

ledger. The distributed ledger gives control to users and glue protocols

together. The overall solution is illustrated in Figure 13.10.

Fig. 13.10. Integrated Solution.

Despite the enormous innovations on the way, efficiency has been the

main bottleneck for rigorous cryptographic solutions. Data obfuscation

approach is efficient, however it relies on a very strong trust assumption on

the RecSys. Obviously, the desire to address three requirements instead of

only one creates additional barriers for achieving efficiency. In addition to

continue improving existing building blocks, we highlight some promising

directions to realise an efficient solution.

October 23, 2018 15:7 ws-rv9x6-9x6 Book Title 11131-13 page 458

458 Q. Tang

As to fulfilling the privacy requirement, we can leverage the inherent un-

certainty characteristics inside a recommender and reduce the input size of

the recommender algorithm. The spirit of leveraging uncertainty is inspired

by the works by Aggarwal [Aggarwal (2008)] and Tang and Wang [Tang

and Wang (2015, 2016)]. In the former, Aggarwal proposed an uncertain

version of k-anonymity model based on the inherent uncertainty property

of underlying data inputs in data mining services; while in the latter, Tang

and Wang proposed to reduce the privacy leakage by randomly sampling

some users in the computation. The advantage of this method is that it

does not need to heavily manipulate the data and has very little effect on

the utility. In some sense, this is a relaxation of the worst case scenario of

differential privacy approach, where the attacker is assumed to know every

user’s input. Reducing the input size is a crucial direction to improve effi-

ciency, due to the fact that the complexity is linear to the input size. As

demonstrated in [Tang and Wang (2015, 2016)], a careful implementation

will not affect the recommendation accuracy. It is an interesting future

work to integrate the above methods for matrix factorization based rec-

ommenders. For such recommenders, an additional challenge is to satisfy

RecSys’s privacy requirement (i.e. prevent unnecessary information leak-

age of model information to individual users). We foresee the differential

privacy concept may play an important role in tackling this challenge.

As to fulfilling the robustness requirement, we need to design privacy-

aware hierarchical robustness testing protocols. Existing robustness detec-

tion solutions assume the users’ inputs are in plaintext, and even in this

case they can be computation-intensive if the user population is large. With

privacy protection for the inputs (e.g. encryption), it will be unrealistic to

directly transform these solutions to their privacy-preserving variants. Al-

ternatively, it is a promising direction to investigate statistical detectors

with two new properties. One property is that they can run among smaller

user groups and their outputs can be aggregated to serve as the global out-

put. This enables efficient cryptographic variant of statistical detectors to

be executed in groups in parallel. The other property is privacy-preserving,

which means the output from individual group should leak a negligible

amount of information at both group and individual level.

As to fulfilling the transparency requirement, we can realise users’ ex-

pectations via computed consensus. From our previous discussion, it is clear

that it is neither desirable nor enough to publish the algorithms and param-

eters in order to guarantee transparency. We foresee a two-step approach.

First, transparency indicators should be defined for the recommender

October 23, 2018 15:7 ws-rv9x6-9x6 Book Title 11131-13 page 459

Privacy in Collaborative Recommenders 459

algorithms. To this end, some valuable references are the works by Zliobaite

[Zliobaite (2017)] and Datta, Sen, and Zick [Datta et al. (2016)]. Then, any

group of users can run some cryptographic protocols to evaluate the indi-

cators without disclosing their private data, and vote on the transparency

property of the system.

Acknowledgements

When this chapter was prepared, the author was supported by a CORE

(junior track) grant from the National Research Fund, Luxembourg. The

author would like to thank Prof. Jiuyong Li from University of South Aus-

tralia for his comments.

References

Adomavicius, G. and Tuzhilin, A. (2005). Toward the next generation of recom-
mender systems: A survey of the state-of-the-art and possible extensions,
IEEE Trans. Knowl. Data Eng. 17, 6, pp. 734–749.

Aggarwal, C. C. (2008). On unifying privacy and uncertain data models, in Pro-
ceedings of the 24th International Conference on Data Engineering, ICDE
2008, pp. 386–395.

Ahn, J. and Amatriain, X. (2010). Towards fully distributed and privacy-
preserving recommendations via expert collaborative filtering and restful
linked data, in 2010 IEEE/WIC/ACM International Conference on Web
Intelligence, WI 2010, pp. 66–73.

Aı̈meur, E., Brassard, G., Fernandez, J. M. and Onana, F. S. M. (2008). Alambic:
a privacy-preserving recommender system for electronic commerce, Int. J.
Inf. Secur. 7, pp. 307–334.

Banerjee, S., Hegde, N. and Massoulie, L. (2015). The price of privacy in un-
trusted recommender systems, IEEE Journal of Selected Topics in Signal
Processing 9, pp. 1319–1331.

Basu, A., Vaidya, J., Kikuchi, H., Dimitrakos, T. and Nair, S. K. (2012). Privacy
preserving collaborative filtering for saas enabling paas clouds, Journal of
Cloud Computing: Advances, Systems and Applications 1, 1, pp. 1–14.

Berlioz, A., Friedman, A., Kaafar, M. A., Boreli, R. and Berkovsky, S. (2015).
Applying differential privacy to matrix factorization, in Proceedings of the
9th ACM Conference on Recommender Systems, pp. 107–114.

Beye, M., Jeckmans, A., Erkin, Z., Tang, Q., Hartel, P. and Lagendijk, I. (2013).
Social Media Retrieval, chap. Privacy in Recommender systems (Springer),
pp. 263–281.

Bos, J. W., Lauter, K. E., Loftus, J. and Naehrig, M. (2013). Improved security
for a ring-based fully homomorphic encryption scheme, in Cryptography and
Coding – 14th IMA International Conference, pp. 45–64.

October 23, 2018 15:7 ws-rv9x6-9x6 Book Title 11131-13 page 460

460 Q. Tang

Brakerski, Z., Gentry, C. and Vaikuntanathan, V. (2012). (leveled) fully homo-
morphic encryption without bootstrapping, in Proceedings of the 3rd Inno-
vations in Theoretical Computer Science Conference, pp. 309–325.

Calandrino, J. A., Kilzer, A., Narayanan, A., Felten, E. W. and Shmatikov, V.
(2011). You Might Also Like: Privacy Risks of Collaborative Filtering, in
32nd IEEE Symposium on Security and Privacy, S&P 2011, pp. 231–246.

Canny, J. (2002a). Collaborative filtering with privacy via factor analysis, in
Proceedings of the 25th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 238–245.

Canny, J. F. (2002b). Collaborative filtering with privacy, in IEEE Symposium
on Security and Privacy, pp. 45–57.

Chenal, M. and Tang, Q. (2014). On key recovery attacks against existing some-
what homomorphic encryption schemes, in Progress in Cryptology – LAT-
INCRYPT 2014, pp. 239–258.

Chenal, M. and Tang, Q. (2015). Key recovery attacks against ntru-based some-
what homomorphic encryption schemes, in Information Security - 18th In-
ternational Conference, ISC 2015, pp. 397–418.

Cheng, Z. and Hurley, N. (2009). Trading robustness for privacy in decentralized
recommender systems, in Proceedings of the Twenty-First Conference on
Innovative Applications of Artificial Intelligence, pp. 3–15.

Datta, A., Sen, S. and Zick, Y. (2016). Algorithmic transparency via quantitative
input influence: Theory and experiments with learning systems, in 37th
IEEE Symposium on Security and Privacy, S&P 2011, pp. 598–617.

Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K. E., Naehrig, M. and Werns-
ing, J. (2017). Manual for using homomorphic encryption for bioinformatics,
Proceedings of the IEEE 105, 3, pp. 552–567.

Dwork, C. (2006). Differential privacy, in M. Bugliesi, B. Preneel, V. Sassone and
I. Wegener (eds.), Automata, Languages and Programming, 33rd Interna-
tional Colloquium, ICALP 2006, LNCS, Vol. 4052 (Springer), pp. 1–12.

Dwork, C., McSherry, F., Nissim, K. and Smith, A. (2006). Calibrating noise
to sensitivity in private data analysis, in S. Halevi and T. Rabin (eds.),
Theory of Cryptography, Third Theory of Cryptography Conference, LNCS,
Vol. 3876 (Springer), pp. 265–284.

Friedman, A., Knijnenburg, B. P., Vanhecke, K., Martens, L. and Berkovsky, S.
(2015). Recommender Systems Handbook, chap. Privacy Aspects of Recom-
mender Systems (Springer), pp. 649–688.

Gentry, C. (2009). Fully homomorphic encryption using ideal lattices, in Proceed-
ings of the Forty-first Annual ACM Symposium on Theory of Computing,
pp. 169–178.

Goldwasser, S., Kalai, Y. T., Popa, R. A., Vaikuntanathan, V. and Zeldovich,
N. (2013). Reusable garbled circuits and succinct functional encryption, in
Symposium on Theory of Computing Conference, STOC’13, pp. 555–564.

Goodman, B. and Flaxman, S. (2016). European union regulations on algo-
rithmic decision-making and a right to explanation, https://arxiv.org/
abs/1606.08813.

October 23, 2018 15:7 ws-rv9x6-9x6 Book Title 11131-13 page 461

Privacy in Collaborative Recommenders 461

Guerraoui, R., Kermarrec, A., Patra, R. and Taziki, M. (2015). D2P:distance-
based differential privacy in recommenders, PVLDB 8, 8, pp. 862–873.

Halevi, S. and Shoup, V. (2014). Algorithms in helib, in Advances in Cryptology
– CRYPTO 2014, pp. 554–571.

Han, S., Ng, W. K. and Yu, P. S. (2009). Privacy-preserving singular value decom-
position, in Y. E. Ioannidis, D. L. Lee and R. T. Ng (eds.), Proceedings of
the 25th International Conference on Data Engineering (IEEE), pp. 1267–
1270.

Huang, L., Joseph, A. D., Nelson, B., Rubinstein, B. I. P. and Tygar, J. D. (2011).
Adversarial machine learning, in Proceedings of the 4th ACM Workshop on
Security and Artificial Intelligence, AISec 2011, Chicago, IL, USA, October
21, 2011, pp. 43–58.

Ioannidis, S., Montanari, A., Weinsberg, U., Bhagat, S., Fawaz, N. and Taft, N.
(2014). Privacy tradeoffs in predictive analytics, in The 2014 ACM Inter-
national Conference on Measurement and Modeling of Computer Systems,
pp. 57–69.

Jeckmans, A., Peter, A. and Hartel, P. H. (2013). Efficient privacy-enhanced
familiarity-based recommender system, in J. Crampton, S. Jajodia and
K. Mayes (eds.), Computer Security - ESORICS 2013 - 18th European
Symposium on Research in Computer Security, LNCS, Vol. 8134 (Springer),
pp. 400–417.

Jeckmans, A., Tang, Q. and Hartel, P. (2012). Privacy-preserving collaborative
filtering based on horizontally partitioned dataset, in 2012 International
Symposium on Security in Collaboration Technologies and Systems (CTS
2012), pp. 439–446.

Katz, J. and Lindell, Y. (2007). Introduction to Modern Cryptography (Chap-
man & Hall/Crc Cryptography and Network Security Series) (Chapman &
Hall/CRC).

Kim, S., Kim, J., Koo, D., Kim, Y., Yoon, H. and Shin, J. (2016). Efficient
privacy-preserving matrix factorization via fully homomorphic encryption:
Extended abstract, in Proceedings of the 11th ACM on Asia Conference on
Computer and Communications Security, pp. 617–628.

Koren, Y. (2009). The bellkor solution to the netflix grand prize,
http://www.netflixprize.com/assets/.

Lam, S. K., Frankowski, D. and Riedl, J. (2006). Do you trust your recommen-
dations? an exploration of security and privacy issues in recommender
systems, in G. Muller (ed.), Emerging Trends in Information and Commu-
nication Security, LNCS, Vol. 3995 (Springer), pp. 14–29.

Liu, Z., Wang, Y. X. and Smola, A. (2015). Fast differentially private matrix
factorization, in Proceedings of the 9th ACM Conference on Recommender
Systems (ACM), pp. 171–178.

Massa, P. and Avesani, P. (2004). Trust-aware collaborative filtering for rec-
ommender systems, in R. Meersman and Z. Tari (eds.), On the Move to
Meaningful Internet Systems 2004: CoopIS, DOA, and ODBASE, OTM
Confederated International Conferences, Agia Napa, Cyprus, October 25-
29, 2004, Proceedings, Part I, LNCS, Vol. 3290 (Springer), pp. 492–508.

October 23, 2018 15:7 ws-rv9x6-9x6 Book Title 11131-13 page 462

462 Q. Tang

Massa, P. and Avesani, P. (2007). Trust-aware recommender systems, in
J. A. Konstan, J. Riedl and B. Smyth (eds.), Proceedings of the 2007 ACM
Conference on Recommender Systems (ACM), pp. 17–24.

McSherry, F. and Mironov, I. (2009). Differentially private recommender systems:
building privacy into the Netflix prize contenders, in Proceedings of the 15th
ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 627–636.

McSherry, F. and Talwar, K. (2007). Mechanism design via differential privacy,
in Proceedings of the 48th Annual IEEE Symposium on Foundations of
Computer Science, pp. 94–103.

Menezes, A. J., Vanstone, S. A. and Oorschot, P. C. V. (1996). Handbook of
Applied Cryptography, 1st edn. (CRC Press, Inc.).

Narayanan, A., Bonneau, J., Felten, E. W., Miller, A. and Goldfeder, S. (2016).
Bitcoin and Cryptocurrency Technologies - A Comprehensive Introduction
(Princeton University Press).

Narayanan, A. and Shmatikov, V. (2008). Robust de-anonymization of large
sparse datasets, in 2008 IEEE Symposium on Security and Privacy (S&P
2008), pp. 111–125.

Newman, N. (2014). The costs of lost privacy: Consumer harm and rising eco-
nomic inequality in the age of google, William Mitchell Law Review 40,
2.

Nikolaenko, V., Ioannidis, S., Weinsberg, U., Joye, M., Taft, N. and Boneh,
D. (2013). Privacy-preserving matrix factorization, in Proceedings of the
2013 ACM SIGSAC Conference on Computer & Communications Security,
pp. 801–812.

O’Donovan, J. and Smyth, B. (2005). Trust in recommender systems, in Proceed-
ings of the 10th International Conference on Intelligent User Interfaces,
pp. 167–174.

Polat, H. and Du, W. (2003). Privacy-preserving collaborative filtering using ran-
domized perturbation techniques, in Proceedings of the Third IEEE Inter-
national Conference on Data Mining, pp. 625–628.

Polat, H. and Du, W. (2005a). Privacy-preserving collaborative filtering on verti-
cally partitioned data, in Knowledge Discovery in Databases: PKDD 2005,
9th European Conference on Principles and Practice of Knowledge Discov-
ery in Databases, pp. 651–658.

Polat, H. and Du, W. (2005b). Svd-based collaborative filtering with privacy, in
Proceedings of the 2005 ACM Symposium on Applied Computing, pp. 791–
795.

Polat, H. and Du, W. (2006). Achieving private recommendations using random-
ized response techniques, in Proceedings of the 10th Pacific-Asia Conference
on Advances in Knowledge Discovery and Data Mining, pp. 637–646.

Ramakrishnan, N., Keller, B., Mirza, B. and Grama, A. Y. (2001). Privacy risks
in recommender systems, Internet Computing, IEEE 5, pp. 54–63.

Rivest, R., Adleman, L. and Dertouzos, M. (1978). On data banks and privacy
homomorphisms, Foundations of Secure Computation, pp. 169–179.

October 23, 2018 15:7 ws-rv9x6-9x6 Book Title 11131-13 page 463

Privacy in Collaborative Recommenders 463

Sato, I. and Nakagawa, H. (2014). Approximation analysis of stochastic gradient
langevin dynamics by using fokker-planck equation and itô process, in Pro-
ceedings of the 31st International Conference on International Conference
on Machine Learning, pp. 982–990.

Shani, G. and Gunawardana, A. (2011). Evaluating recommendation systems, in
F. Ricci, L. Rokach, B. Shapira and P. B. Kantor (eds.), Recommender
Systems Handbook (Springer), pp. 257–297.

Shen, Y. and Jin, H. (2014). Privacy-preserving personalized recommendation:
An instance-based approach via differential privacy, in Proceedings of the
2014 IEEE International Conference on Data Mining, pp. 540–549.

Shen, Y. and Jin, H. (2016). Epicrec: Towards practical differentially private
framework for personalized recommendation, in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
pp. 180–191.

Shi, Y., Larson, M. and Hanjalic, A. (2014). Collaborative filtering beyond the
user-item matrix: A survey of the state of the art and future challenges,
ACM Comput. Surv. 47, 1, pp. 3:1–3:45.

Shokri, R., Pedarsani, P., Theodorakopoulos, G. and Hubaux, J. (2009). Pre-
serving privacy in collaborative filtering through distributed aggregation of
offline profiles, in Proceedings of the third ACM conference on Recommender
systems (RecSys ’09), pp. 157–164.

Su, X. and Khoshgoftaar, T. M. (2009). A survey of collaborative filtering tech-
niques, Adv. in Artif. Intell. 2009, pp. 4:2–4:2.

Tang, Q. (2012). Cryptographic framework for analyzing the privacy of recom-
mender algorithms, in 2012 International Symposium on Security in Col-
laboration Technologies and Systems (CTS 2012), pp. 455–462.

Tang, Q. and Wang, H. (2017). Privacy-preserving hybrid recommender sys-
tem, in The Fifth International Workshop on Security in Cloud Computing
(SCC) (Springer), pp. 59–66.

Tang, Q. and Wang, J. (2015). Privacy-preserving context-aware recommender
systems: Analysis and new solutions, in G. Pernul, P. Y. A. Ryan and
E. R. Weippl (eds.), Computer Security - ESORICS 2015, LNCS, Vol. 9327
(Springer), pp. 101–119.

Tang, Q. and Wang, J. (2016). Privacy-preserving friendship-based recom-
mender systems, IEEE Transactions on Dependable and Secure Computing
(TDSC), to appear.

Tramèr, F., Zhang, F., Juels, A., Reiter, M. K. and Ristenpart, T. (2016). Steal-
ing machine learning models via prediction apis, in 25th USENIX Security
Symposium, USENIX Security 16, pp. 601–618.

Veugen, T., de Haan, R., Cramer, R. and Muller, F. (2015). A framework for
secure computations with two non-colluding servers and multiple clients,
applied to recommendations, IEEE Transactions on Information Forensics
and Security 10, 3, pp. 445–457.

Wang, J. and Tang, Q. (2015). Recommender systems and their security concerns,
http://eprint.iacr.org/2015/1108.

October 23, 2018 15:7 ws-rv9x6-9x6 Book Title 11131-13 page 464

464 Q. Tang

Wang, J. and Tang, Q. (2016). A probabilistic view of neighborhood-based rec-
ommendation methods, in IEEE International Conference on Data Mining
Workshops, ICDM Workshops 2016, pp. 14–20.

Wang, J. and Tang, Q. (2017). Differentially private neighborhood-based recom-
mender systems, in ICT Systems Security and Privacy Protection - 32nd
IFIP TC 11 International Conference (Springer), pp. 459–473.

Wang, Y., Fienberg, S. E. and Smola, A. J. (2015). Privacy for free: Posterior
sampling and stochastic gradient monte carlo, in Proceedings of the 32nd
International Conference on Machine Learning, pp. 2493–2502.

Weinsberg, U., Bhagat, S., Ioannidis, S. and Taft, N. (2012). Blurme: inferring
and obfuscating user gender based on ratings, in Sixth ACM Conference on
Recommender Systems, pp. 195–202.

Yao, C. C. (1986). How to generate and exchange secrets, in Proceedings of the
27th Annual Symposium on Foundations of Computer Science, pp. 162–167.

Zhang, S., Ford, J. and Makedon, F. (2006). Deriving private information from
randomly perturbed ratings, in Proceedings of the Sixth SIAM International
Conference on Data Mining (SIAM), pp. 59–69.

Zhang, S., Yao, L. and Sun, A. (2017). Deep learning based recommender system:
A survey and new perspectives, https://arxiv.org/abs/1707.07435.

Zliobaite, I. (2017). Measuring discrimination in algorithmic decision making,
Data Min. Knowl. Discov. 31, 4, pp. 1060–1089.

October 23, 2018 15:44 ws-rv9x6-9x6 Book Title 11131-14 page 465

Chapter 14

TV and Movie Recommendations:

The Comcast Case

Shahin Sefati, Jan Neumann and Hassan Sayyadi

Comcast Applied AI Research
Washington DC, USA

shahin sefati@comcast.com, jan neumann@comcast.com,

hassan.sayyadi@comcast.com

With the ever-increasing number of TV shows and movies available to
the users, facilitating content discovery is key toward creating a better
user experience for an entertainment platform. Comcast is one of the
largest cable providers in the United State with millions of customers. In
this chapter, we provide an overview of the large scale recommendation
system and its building blocks that power Comcast X1 entertainment
platform. We discuss some of the challenges in building a TV and movie
recommendation system and review a set of product features for content
discovery on Comcast X1 platform. We briefly describe the historical
evolution of the recommendation system at Comcast and provide some
insights and results on evaluating the recommendation system with off-
line and online metrics. We conclude this chapter with some recent areas
of research and development.

14.1. Introduction

In recent years, personalized recommendations have become a key value

driver across different industries. Personalized recommendation systems

are ubiquitous in most online services, from ecommerce to entertainment,

and recently Comcast has brought that experience to the television.

For many households, the television is the central entertainment hub,

and the average TV viewer spends about half of her or his leisure time in

front of a TV. In addition to the content that is available on linear TV

at any moment in time, we may now pick our favorite show from DVR

recordings, or from on-demand video services that offer the desired content

whenever a customer wants to access it. At any given moment, a customer

465

October 23, 2018 15:44 ws-rv9x6-9x6 Book Title 11131-14 page 466

466 S. Sefati, J. Neumann and H. Sayyadi

has hundreds or even thousands of entertainment choices available, which

makes some sort of automatic, personalized recommendations mechanism

desirable to help them navigate a growing number of choices.

Comcast’s X1 platform is a premium video experience enjoyed by mil-

lions of Comcast customers throughout the United States. In this chapter,

we first review a number of the algorithms we developed, which form the

building blocks that power the X1 recommender system. We then review

a number of product features and how the challenges associated with each

feature are addressed. We further discuss several offline and online metrics

that are employed for evaluation. We conclude this chapter by exploring

the future directions of research and development for the X1 recommender

system.

14.2. Developed Algorithms

In this section we review number of building blocks and algorithms that

were developed in-house for TV and movie recommendations.

14.2.1. Collaborative Filtering

There are two main techniques for building a recommender system: Col-

laborative Filtering (CF), and Content-Based Filtering (CBF). CF-based

(CF-based) recommendation systems usually provide superior performance

compared to content-based recommendation, but face the so-called “cold

start problem” — what to recommend when no customer feedback data

is available. Hybrid recommender systems that combine CF-based and

content-based recommendations have proven to be the most successful ap-

proach. In this section, we review how a CF-based recommender system

can be built for TV and movie recommendations. In the following sec-

tion we will discuss how additional content meta-data (such as genre tags)

can be incorporated to build a hybrid recommender system with improved

performance.

CF-based recommendation systems leverage users’ past interactions

with items to generate item recommendations [Chapter 1]. Latent-based

approaches such as matrix factorization (and its numerous variations) are

among the most effective techniques. For example, [Mnih and Salakhut-

dinov (2008); Hu et al. (2008); Koren et al. (2009)] utilize matrix factor-

ization to represent each user and item by a low-dimensional vector. The

affinity between users and items can then be computed as the inner product

October 23, 2018 15:44 ws-rv9x6-9x6 Book Title 11131-14 page 467

TV and Movie Recommendations: The Comcast Case 467

between the user’s and item’s respective vector representations. An alter-

native to this approach is to directly model the item-item similarity matrix.

In item-based collaborative filtering, a critical intermediate step to person-

alized recommendations is the definition of an item-similarity metric. The

item similarity can be computed simply from the user-to-item observation

matrix (e.g. ratings, item consumption statistics, etc.) with similarity mea-

sures such as cosine and Jaccard coefficient being popular choices for their

simplicity.

Several years ago Comcast developed a novel probabilistic approach for

modeling the item-item similarity, [Jojic et al. (2011)], which outperformed

the state of the art in internal benchmarks.

The algorithm was developed to address a few issues with commonly

used item similarity measures:

• Common similarity measures use a priori knowledge about items, but

treat all user inputs as equal. For the purpose of computing item sim-

ilarities, what weight should be assigned to a user who likes ten items,

compared to a user who likes a thousand items?

• Item-to-item similarity is generally an asymmetrical relationship. For

example, consider the case of a war movie, “W”, and a movie about a love

story happening during a war, “WL.” Many users that enjoy “W” might

also enjoy “WL” because “W’L” has a war component. In contrast, some

of the users that enjoyed “WL” because of its love story might not enjoy

“W.” Overall, “W” is more similar to “WL” than “WL” is similar to

“W.”

In a recommendation task, the co-occurrences between two items are

usually defined as the number of users that have liked/consumed both items.

In our probabilistic approach, the similarity between two items is defined

as the ratio of the actual number of co-occurrences, to the number of co-

occurrences that would be expected if a user’s likes/dislikes were assigned

randomly to movies [Jojic et al. (2011)]. This algorithm has been powering

the Comcast X1 personalized recommendations system and is a core compo-

nent that enables many X1 personalization features, such as user-to-item

personalized recommendations (“For You Sort” — see Section 14.3.1 for

more details), and single item recommendations (“People Also Watched”

— see Section 14.3.2 for more details).

To generate personalized recommendations, two types of relevance feed-

back are potentially available: 1) explicit feedback (for example, ratings of

October 23, 2018 15:44 ws-rv9x6-9x6 Book Title 11131-14 page 468

468 S. Sefati, J. Neumann and H. Sayyadi

movies provided by users), and 2) implicit feedback (for example, the history

of movies and TV shows watched, and interactions with the UX interface).

While explicit feedback may more directly reflect the user’s taste, users

often do not provide explicit feedback, because it takes additional effort.

On the other hand, for TV and movies recommendations, usually a vast

amount of implicit feedback is available, and the relevance of a given movie

can be indirectly inferred from implicit feedback.

14.2.2. Hybrid Recommendation System

When enough implicit relevance feedback is present, collaborative filtering

techniques are the most effective approach for building a recommender en-

gine. Nonetheless, CF-based recommendation algorithms suffer from the

aforementioned cold-start problem, when a new user subscribes to the sys-

tem or when a new item is added to a catalog and implicit feedback is not

yet available.

On the other hand, content-based filtering leverages meta-data associ-

ated with items (e.g. genre and synopsis for movies). Leveraging meta-data

in addition to implicit relevance feedback facilitates the content discovery

process. This leads to better user engagement by providing more relevant

and personalized results for the customer, and also addresses the cold start

problem [Chapter 4]. For these reasons, when both implicit relevance feed-

back and content meta-data is available, hybrid recommender systems that

combine CF-based and content-based recommendation algorithms are of-

ten preferred. Moreover, content meta-data is key to support an improved

browse experience by allowing the creation of genre-specific menu collec-

tions, such as “Science-Fiction” movies, or “Comedy-Drama” movies.

Comcast’s meta-data platform makes several types of meta-data about

TV shows and movies available, such as their title, description, year of first

airing, and descriptive tags (Genre, Theme, Tone, Keyword, etc.). In what

follows, we describe how tag meta-data is refined and used together with

implicit relevance feedback to generate better content recommendations.

14.2.2.1. Tag weights

Usually, descriptive meta-data tags are assigned to TV shows and movies

by human editors, and a tag is either associated with an item or not. Thus,

these tags are binary in nature and relatively limited in terms of the in-

formation they contain, because they do not reflect the degree to which a

certain tag actually applies to the item.

October 23, 2018 15:44 ws-rv9x6-9x6 Book Title 11131-14 page 469

TV and Movie Recommendations: The Comcast Case 469

For example, it is likely that a movie such as “Shrek” is tagged as

“Action and Adventure”, but “Shrek” is not considered a typical “Action

and Adventure” movie such as “The Avengers”. In this example, we can

either remove this tag for the movie “Shrek”, or, alternatively, we can

assign it a weight corresponding to the degree that the tag matches the

movie (and we would expect that weight to be relatively low in this case).

Asking human editors to add a weight to each tag would be very time

consuming and likely error prone.

In this section, we describe how with the use of collaborative filtering

we can expand the tags for a given program, and how we can transform the

binary tag data to more appropriate and continuously valued weights.

The average number of tags for a popular program is a few dozen; across

all content, Comcast’s meta-data database contains a few thousands unique

tags. Less popular TV shows and movies may have only two or three tags,

because it is not expected that human editors homogeneously assign tags

to all available programs. This can impact the extent to which less popular

programs are discoverable.

We designed an automated method to expand the number of tags that

are associated with each program, and assigned program-specific weights to

each tag. This approach takes as input the binary, human-generated tags,

as well as the item-item similarities that we calculated using collaborative

filtering (see Section 14.2.1). The idea is that these item-item similarities

implicitly reflect the tag similarities between programs. For example, if a

program, P , is “more similar” (according to the usage data) to the subset

of programs that are tagged with, T , then the pair (P, T) should have a

strong weight. In nutshell, two factors play a role: 1) the fraction of the

set of programs that are similar to program, P that are tagged with Tag,

T , 2) the fraction of the set of all programs that are tagged with Tag, T ,

that are similar to program P . In Table 14.1, the top 5 weights assigned to

existing tags in few tag category are shown for the movie “Shrek”. We see

that after refinement, the “Action and Adventure” has a only small Genre

score, which is what we wanted to accomplish.

14.2.2.2. Tag importance

While we have a few thousand unique tags, and a handful of tag categories

to describe each program, not all of these descriptors are equally discrim-

inative for a recommendation task. For example, two programs that have

the tag “Drama” in common might not be as similar as two programs

October 23, 2018 15:44 ws-rv9x6-9x6 Book Title 11131-14 page 470

470 S. Sefati, J. Neumann and H. Sayyadi

Table 14.1. Top 5 weights assigned to existing tags in each tag category for the movie

Shrek.

Genre Keyword Tone

Animated 0.2693 Friendship 0.0696 Fanciful 0.0872

Family Entertainment 0.2519 Hero 0.0498 Humorous 0.0851
Children’s Family Entertainment 0.2045 Danger 0.0461 Rousing 0.0475

Fantasy 0.1142 Partner 0.0266 Stylized 0.0279

Action and Adventure 0.0652 Fantasy-world 0.0231 Witty 0.0081

which have the tag “Basketball” in common. Some techniques, such as

TF/IDF (Term Frequency/Inverse Document Frequency), suggest that the

popularity of a tag has an inverse correlation with its discriminative power.

However, our data shows this is not always the case and pairwise similari-

ties between programs derived from implicit relevance feedback can be used

to determine the importance of each tag and its category. Tag importance

plays a major role in computing a purely tag-based similarity score which

is helpful when a new program becomes available and we need to deal with

the cold-start problem.

14.2.3. Implicit and Explicit Favorites (I know what I want

to watch)

The recommendation task is not limited to recommending only new relevant

content, such as a new TV show or movie, to users. Weekdays when you

return home from work, you may find yourself tuning to the same group

of channels on TV because you know where you can find the content you

want to watch, such as your local news channel, your favorite sitcom, etc.,

or you know which channels suit your taste. You may know when a new

episode of your favorite show becomes available on demand, or perhaps you

are binge-watching a new favorite show. Sports fans may want to know

anytime their favorite teams are playing — when, and on what channels.

What is common in all these cases is that you know what you want to

watch and it is our task to get you to the programming you love with as little

effort on your part as possible. Enabling customers to find their favorite

channels, programs, and sports teams is of great importance in facilitating

the content discovery. At Comcast, there are two ways to identify favorite

content for our customers:

(i) explicit favorites: a feature that enables a customer to mark channels,

programs, or sport teams explicitly as their favorites;

October 23, 2018 15:44 ws-rv9x6-9x6 Book Title 11131-14 page 471

TV and Movie Recommendations: The Comcast Case 471

(ii) implicit favorites: a feature that automatically learns a customer’s fa-

vorites by identifying patterns in the programs the customer chose to

watch that we then use to deliver personalized viewing experiences in

accordance with our privacy policies and all applicable laws.

Favorite content is currently being surfaced in several personalization

features both on the Comcast X1 platform and the mobile app. In Sec-

tion 14.3, we review some use cases that benefit from identifying favorite

content in more detail.

14.2.4. Predictive Popularity

We continuously research additional signals to improve our recommender

system and to further facilitate the content discovery experience for our

customers. In addition to the previously mentioned signals, the popular-

ity of entities such as channels, programs, actors, etc. and their variance

over time is another important signal for our search, browse, and recom-

mendation algorithms. Since popularity varies over time, we developed a

predictive popularity forecasting method to capture the seasonalities in our

time series data.

An example of a seasonality is when a new season of a TV show airs:

The search and browse popularity for that TV show may exhibit a weekly

pattern that peaks on the weekday that the show is aired, and for video-

on-demand consumption it would peak the day after the initial airing due

to catch-up viewing.

Browsing and discovering popular TV shows and movies is an effective

way to watch new content. By leveraging signals such as Video-On-Demand

data, we developed a predictive model for program popularity. The program

popularity signal helps us to surface popular programs in genre menus, or

boost the rank of popular items when returning personalized recommenda-

tions.

For live TV, while we currently have a service that captures which pro-

grams are currently trending in real-time, a predictive model for popularity

is still desirable, so that we can incorporate the predicted popularity sig-

nal into recommendations for upcoming programs. In addition to program

popularity, the predictive model can also take advantage of what is trending

on social media to further boost content that is noteworthy and likely to

increase viewership in the near future, e.g., exciting sporting or breaking

news events.

October 23, 2018 15:44 ws-rv9x6-9x6 Book Title 11131-14 page 472

472 S. Sefati, J. Neumann and H. Sayyadi

14.2.5. Day Parting

Another application of the time-varying popularity signal is day parting.

Watching content on the TV is usually a shared experience, and we do

not know who is actually in front of the screen. In multi-person house-

holds, family members watch categorically different content and have dis-

tinct tastes. Indeed, individual customers’ viewing patterns may differ

depending on mood and time-of-day. Our day parting pipeline employs

time-series models and collaborative filtering to capture the following tem-

poral patterns in usage data [Sayyadi-Harikandehei (2018)]:

• Daily patterns (content watched now is more similar to content consumed

at the same time of the day than at other times)

• Weekly patterns (content watched now is more similar to content con-

sumed on the same day of the week than on other days)

• Recency (content watched now is more similar to content consumed re-

cently than content consumed further in the past)

This day-parting feature allows us to personalize the X1 experience

without forcing our customers to create different profiles.

14.3. Addressed Challenges and Problems

In this section we will review some of the personalization features of the

Comcast X1 platform, and discuss a few of the challenges we faced and

addressed while building our TV and Movie content discovery and recom-

mendations platform.

14.3.1. For You: Personalized Recommendation for TV

Shows and Movies

As consumers are increasingly faced by a proliferation of new video content

choices and different ways to watch, video recommendations have become

an important tool for helping users discover content that they are likely to

enjoy. The “For You” service provides personalized recommendations for

TV shows and movies, potentially grouped by Genre, Free / Premium, etc.

if so desired. The recommendations are generated by combining collabora-

tive filtering, meta-data similarity via tag weights, day-parting as well as

predictive popularity forecasting.

October 23, 2018 15:44 ws-rv9x6-9x6 Book Title 11131-14 page 473

TV and Movie Recommendations: The Comcast Case 473

14.3.2. People Also Watched

For each TV show or movie in the catalog, the X1 interface provides an

entity page that displays details about the selected content item, such as

the plot summary, ways to watch (linear TV or VOD), and the cast and

crew of the show. Entity pages are popular destinations during the content

discovery process and users may land on an entity page via several paths,

including browse and search via text or the X1 voice remote. The “People

Also Watched” feature provides a convenient way for the user to find the

content that is similar to the TV show or the movie that they currently

selected. This feature makes direct use of the item-item similarity scores

that are computed from both implicit relevance feedback and meta-data (see

Section 14.2.2 for more details about our hybrid recommender system).

14.3.3. Because You Watched

Recommender systems often behave like black boxes and provide no rea-

soning to support why a recommended item is being presented to a user.

Research has shown that providing explanations for recommendations im-

proves the trust of users in a recommender system and creates a better ex-

perience for the users [Herlocker et al. (2000)]. The “Because You Watched”

feature explicitly presents content that is similar to a movie or TV show

that the user has watched in the past and by presenting the source item, the

service explains why the recommended items were selected. This feature

makes use of the “People Also Watched” service (see Section 14.3.2) as well

as a list of favorite TV shows and movies the user has identified.

14.3.4. What Should I Watch?

“What Should I Watch” is a voice-enabled feature that provides the user

with different types of personalized and trending content. The goal is to

generate a personalized landing page for our customers that combines con-

tent from all the available sources arranged in thematic rows. Some of

the row examples include: live TV, movie collections (filtered by Genre,

Free / Premium, etc.), Because You Watched, What is Trending on TV

and social media at the moment, implicit and explicit favorites, recently

recorded programs on digital video recorder (DVR), etc. We combine both

batch and real-time data processing to build this personalized experience

for Comcast’s customers.

October 23, 2018 15:44 ws-rv9x6-9x6 Book Title 11131-14 page 474

474 S. Sefati, J. Neumann and H. Sayyadi

In what follows we describe some of the challenges with generating per-

sonalized recommendations for live TV and discuss how the service is built.

Despite the rise in video-on-demand (VOD) consumption, live TV is still

the most popular way people consume video entertainment. At Comcast,

we are developing novel ways to make it easy for our customers to access

live TV content that is interesting and relevant for them at the current mo-

ment. The content available on linear TV channels is constantly changing

and the information about it is often only available at the time of airing,

which leads to cold start challenges. In addition, we often consume TV

in groups of varying and unknown composition (household vs individual),

which makes building taste profiles and modeling consumer behavior very

challenging. The recommendations in the TV row of the “What Should I

Watch” feature are generated by combining the output of several personal-

ization services, including:

• Predicted popularity and real-time trending

• Favorite programs, teams, and stations

• Day parting

• Collaborative filtering

Finally, we built an ensemble machine learning model to blend the scores

from the personalization services mentioned above, to compute a relevance

score for each channel, based on what is being aired and time of the day.

In Figure 14.1, schematic of this service is depicted.

Fig. 14.1. “What should I Watch” for live TV.

October 23, 2018 15:44 ws-rv9x6-9x6 Book Title 11131-14 page 475

TV and Movie Recommendations: The Comcast Case 475

14.3.5. Taste-based menus: Menu Personalization

Movies are associated with meta-data tags such as “Genre” or “Tone,” to

name two of many types. These tags exist at different levels of granularity,

e.g., “Drama” and a number of its sub-genres, such as “Comedy-Drama”,

“Political-drama”, etc. Based on these tags, thousands of menu collections

can be created for movies and TV shows, by filtering lists of recommended

items based on the presence or absence of tags and their combinations. The

goal of these taste-based menus is to provide a personalized set of menus

for each customer, which reflects their taste. The underlying algorithm

leverages the history of what a customer has chosen to watch to determine

the movies that they have watched in the past, from each possible menu,

as well as a personalized score for each menu. Without limiting the types

of menus that can be recommended to a customer, a probabilistic model

will generate a set of recommended menus for a customer every time they

visit the interface.

14.3.6. Personalized Search

Search is still an essential component of our content discovery platform,

with a goal of helping customers find the content they are looking for —

as quickly as possible. Customers perform a search query to find different

types of entities such as programs, sport teams, TV channels, actors, etc.

Our goal was to build a personalized search experience that minimizes the

number of interactions required to find the desired content. The personal-

ized search experience is an ensemble of the output of several algorithms,

including a predictive popularity model for every term in the title, and a

predictive popularity model for every entity, as computed from the individ-

ual and aggregate search histories. For example, even though the official

name of “CNN” is “Cable News Network”, virtually nobody searches for

the word “Cable” when they want to watch “CNN”. The predictive model

for every term in the title identifies the importance of each word in the

title, as well as frequently used other terms that customers have used in

their searches before tuning to “CNN”. A personalized search feature is also

important to distinguish between ambiguous search queries. For example,

“Chicago Fire” is the name of both a TV series and a soccer team that is

based in Chicago. In this case, the personalized search engine ranks the

TV series and the soccer club differently for different customers, depending

on their previous searches and resulting tune-in behavior.

October 23, 2018 15:44 ws-rv9x6-9x6 Book Title 11131-14 page 476

476 S. Sefati, J. Neumann and H. Sayyadi

14.4. Implementation Resources and Historical Evolution

and Versions

The implementation of our recommendations system underwent a number

of evolutions over the years. The first version was implemented in Java

using the Hadoop big data processing framework, and consisted of a series

of batch jobs that ran every day on multi-node clusters. The jobs started

with a daily ingest of the tune activity logs, which were then joined with

the TV schedule (for live TV watching activity) and program metadata

to create viewing sessions for each device. Another Hadoop job then took

these viewing sessions and computed the item-to-item similarity matrix, as

explained in Section 14.2.2. Both the viewing sessions and sparse item-to-

item similarities are stored in a key-value cache, for fast access at the time

of the recommendations API call.

At time of prediction, the system combines viewing data and the item-

to-item similarity information to compute the candidate list of relevant

items for the customer. This list is then re-ranked using the predicted

popularity and day parting signals using optimized Java code.

For the next evolution of our pipeline, we re-implemented the batch

processing steps using the Spark framework which reduced the latency and

overall processing time of our pipelines noticeably.

For the current version of our pipeline, we are focused on converting it

from a batch process into a real-time streaming pipeline. We used Kafka

for the streaming data transport and storage, and the Spark Streaming

framework to process the rich set of implicit feedback signals with minimal

latency.

14.5. Evaluation

14.5.1. Offline and Online metrics

It is very important to accurately evaluate the performance of a content

discovery system during both development and production. We use a num-

ber of offline and online metrics to evaluate the performance of our sys-

tem. These metrics include recall, click-through rate, position of selected

items on the page, watch rate, average search clicks, and Spearman’s rank

correlation coefficient. While the offline metrics will ideally correlate highly

with the online metrics, running systematic A/B tests in production is es-

sential to verify the assumptions behind the offline metrics. Measurable

October 23, 2018 15:44 ws-rv9x6-9x6 Book Title 11131-14 page 477

TV and Movie Recommendations: The Comcast Case 477

online metrics in A/B tests may sometimes reveal counter-intuitive facts

about the actual impact of changes to the platform which contradict the

hypothesized behavior.

In one experiment, we conducted an A/B test for comparing two sort-

ing algorithms for movie recommendations: 1) popularity-based recom-

mendations, 2) personalized recommendations by leveraging users’ viewing

choices, and we noticed that the watch-rate for the personalized recommen-

dations increased by 13% compared to the popularity-based recommenda-

tions.

14.6. Lessons Learned and Future Directions

With the ever-increasing number of TV shows and movies available to the

customers, facilitating content discovery is key toward creating a better

user experience for an entertainment platform. In this chapter, we reviewed

some of the challenges in building large scale recommendation systems for

contents available on linear TV and movies. In what follows, we describe

some of our recent approaches to improve the recommendation system.

14.6.1. Deep Learning-based Recommender System

In Section 14.2.2, we described how tag metadata can be used, in addition

to collaborative filtering, to build a hybrid recommender system. Content

metadata is not limited to genre or theme tags, though. Comcast’s meta-

data platform provides other types of metadata, such as title, description,

year, and even poster art. Incorporating additional meta-data into col-

laborative filtering is a challenging problem. Recently, deep learning-based

collaborative filtering algorithms produced superior performance, compared

to prior state of the art approaches, such as matrix factorization. More-

over, deep learning models provide more flexible frameworks for leveraging

multi-modal data in applications, including the personalized recommenda-

tion services we described in this chapter. At Comcast, we are continuously

adding deep learning models to the X1 recommender system.

14.6.2. Automatic Content Analysis

As a customer, we want the services we use to consume entertainment to

guide and assist us, in a personalized way, so that we can find something

to watch that we like and that fits our current mood. Traditionally, the

content we could choose from consisted only of content entities as a whole.

October 23, 2018 15:44 ws-rv9x6-9x6 Book Title 11131-14 page 478

478 S. Sefati, J. Neumann and H. Sayyadi

Nowadays, and in part due to increased consumption of content on mobile

devices, we often do not want to consume whole shows anymore, but only

the “best” parts, i.e., the segments that are (or social networks deem to

be) most relevant and interesting to us.

To enable such personalized entertainment experiences, we need to know

more about the content shown than just the metadata at the asset level,

like titles, credits, keywords. This additional information could be the

semantic segments and moments of a program, who is on screen and when,

the theme or topic of the segment, and how relevant a segment is based on

a customer’s taste profile. In addition, if the information is aligned with

the timeline of the video, it allows for advanced navigational experiences

within and between assets, and can be indexed to enable relevant search

and recommendations within videos.

To build the entertainment experiences of the future, at Comcast Ap-

plied AI Research, we are exploring automatic content analysis solutions

that combine video, audio and text processing with machine learning algo-

rithms to identify relevant moments, segments and their descriptions po-

tentially with very limited human interaction. The generated metadata

could then be used by other applications to provide consumers with a more

interactive and personalized experience. Examples are more accurate pro-

gram (segment) recommendations, in and between program navigation, and

enhanced search capabilities, such as free-form queries about specific seg-

ments, using our voice interfaces.

Acknowledgement

The authors would like to thank Oliver Jojic, Leemay Nassery and many

other members of the team who contributed to the algorithms, features,

and material covered in this chapter.

References

Herlocker, J. L., Konstan, J. A. and Riedl, J. (2000). Explaining collaborative
filtering recommendations, in Proceedings of the 2000 ACM conference on
Computer supported cooperative work (ACM), pp. 241–250.

Hu, Y., Koren, Y. and Volinsky, C. (2008). Collaborative filtering for im-
plicit feedback datasets, in Proceedings of the 2008 Eighth IEEE Inter-
national Conference on Data Mining, ICDM ’08 (IEEE Computer Soci-
ety, Washington, DC, USA), ISBN 978-0-7695-3502-9, pp. 263–272, doi:
10.1109/ICDM.2008.22, http://dx.doi.org/10.1109/ICDM.2008.22.

http://dx.doi.org/10.1109/ICDM.2008.22

October 23, 2018 15:44 ws-rv9x6-9x6 Book Title 11131-14 page 479

TV and Movie Recommendations: The Comcast Case 479

Jojic, O., Shukla, M. and Bhosarekar, N. (2011). A probabilistic definition of
item similarity, in Proceedings of the fifth ACM conference on Recommender
systems (ACM), pp. 229–236.

Koren, Y., Bell, R. and Volinsky, C. (2009). Matrix factorization techniques for
recommender systems, Computer 42, 8.

Mnih, A. and Salakhutdinov, R. R. (2008). Probabilistic matrix factorization, in
Advances in neural information processing systems, pp. 1257–1264.

Sayyadi-Harikandehei, H. (2018). Personalized content recommendations based
on consumption periodicity, US Patent 9,942,609.

October 23, 2018 15:44 ws-rv9x6-9x6 Book Title 11131-14 page 480

October 23, 2018 16:26 ws-rv9x6-9x6 Book Title 11131-15 page 481

Chapter 15

Music Recommendations

Dietmar Jannacha, Iman Kamehkhoshb and Geoffray Bonninc

aAAU Klagenfurt, Austria, bTU Dortmund, Germany, cLoria, Nancy, France

dietmar.jannach@aau.at, iman.kamehkhosh@tu-dortmund.de, bonnin@loria.fr

Today’s online music services like Spotify provide their listeners with
different types of music recommendations, e.g., in the form of weekly
recommendations or personalized radio stations. Such recommendations
are often based, at least in parts, on collaborative filtering techniques.
In this chapter, we first review the different types of music recommenda-
tions that can be found in practice and discuss the specific challenges of
the domain. Next, we discuss technical approaches for the problems of
music discovery and next-track recommendation in more depth, with a
specific focus on their practical application at Spotify. Finally, we further
elaborate on open challenges in the field and revisit the specific problems
of evaluating music recommendation systems in academic environments.

15.1. Introduction

Music was one of the first application fields of collaborative filtering (CF)

recommender systems. The Ringo system presented in [Shardanand and

Maes (1995)] went online as early as 1994 and was designed to recommend

albums and musical artists to users, initially as an email-based service.

It was based on explicit rating information provided by users for artists

to construct preference profiles. Recommendations in that system were

then made based on a user-to-user or item-to-item neighborhood scheme as

described in Chapter 1 and sent via email to Ringo’s users.

Today, more than twenty years later, the social web has led to new

dimensions of social, “word of mouth” information filtering. At the same

time, the way we listen to music and how we discover new artists or albums

has dramatically changed. Millions of music tracks are nowadays avail-

able to us instantaneously through various online music streaming services.

As a result, almost all of today’s major online music services, including

481

October 23, 2018 16:26 ws-rv9x6-9x6 Book Title 11131-15 page 482

482 D. Jannach, I. Kamehkhosh and G. Bonnin

Spotify or the services by Google or Microsoft, provide some form of music

recommendation functionality.

15.1.1. Music Recommendation Tasks

The Ringo system supported three main tasks: (i) suggest artists/albums,

(ii) list artists/albums that the user will most probably dislike, and (iii)

predict the rating of a user for an album. At the time when Ringo was

online, users could consider the recommendations the next time they visited

a music store or when they placed a mail order at a catalog company.

Of the three tasks supported by the Ringo system, today mainly the

artist and album recommendation services are common on online music

platforms. However, the recent possibility to provide recommendations

and play music instantaneously opened new opportunities for other recom-

mendation scenarios. Spotify, one of today’s market leaders in the online

music streaming industry, as of 2018, provides recommendations through

a number of features of their platform and apps. Specifically, they for ex-

ample support discovery through personalized recommendations [Johnson

(2014)]. They furthermore generate user-specific playlists (“mix tapes”) for

listeners on a weekly basis and provide a “release radar” to point users to

newly released tracks that might be interesting to them. In addition to

these features, non-personalized recommendations, e.g., of trending tracks,

are common on most music platforms.

While some types of music recommendations are nowadays already com-

mon on music-related sites and apps, some additional scenarios for music

recommendation have been explored in the literature in the past. Table 15.1

provides an overview of common recommendation scenarios. We can cate-

gorize the different recommendation tasks into different groups.

• First, recommendations can be non-personalized and simply consist

of currently trending tracks, artists, albums, concerts, etc. Another

common (non-personalized) way of pointing users to something in-

teresting is to provide them with curated playlists, which repre-

sents a convenient way for users to browse the catalog [Johnson

and Newett (2014)].

• Second, recommendations can be contextualized, but non-

personalized. On Last.fm, for example, virtually endless radio sta-

tions can be created based on a seed track or seed artist. In the

research literature, a number of approaches to support users during

October 23, 2018 16:26 ws-rv9x6-9x6 Book Title 11131-15 page 483

Music Recommendations 483

manual playlist construction were proposed, where the system’s

task is to recommend additional tracks given a playlist beginning

or a set of user-specified constraints.

• The third category consists of personalized, but non-contextual rec-

ommendations. Spotify’s Discover Weekly feature is an example of

such a functionality, where the system provides a set of recom-

mended tracks based on the user’s observed behavior.

• The final category comprises approaches that are both person-

alized and contextualized. An example would be a system that

recommends items during playlist construction where these items

both match the current playlist and the user’s general tastes. Ap-

proaches in that category can mostly be found in the academic

literature.

In this chapter, our main focus will be on approaches that are either

contextualized, personalized, or both. We will specifically discuss collabora-

tive filtering techniques and hybrid approaches that combine collaborative

information with additional data, e.g., the musical features of the tracks.

15.1.2. Specific Challenges of Music Recommendation

From a computational perspective, some of the tasks listed in Table

15.1 seem quite similar to recommendation tasks in other domains, like

e-commerce. In particular, the personalized and non-contextualized rec-

ommendation scenarios can in principle be addressed with collaborative

filtering approaches that are designed for relevance prediction and learning-

to-rank scenarios, where the final goal is to create a ranked list of objects

that are supposed to be generally relevant for a user. We will discuss a vari-

ant of such a standard collaborative filtering technique, as used by Spotify,

later in Section 15.2. Similarly, the problem of providing a virtually endless

playlist given the user’s recently played tracks can be found in a compara-

ble form as a session-based recommendation scenario in e-commerce [Hidasi

et al. (2016a); Jannach and Ludewig (2017); Quadrana et al. (2018)]. We

will discuss the specifics of the problem setting for music recommendation

in a later section as well.

A number of aspects are however very specific to music recommenda-

tion, and some others are at least more relevant for music than for other

application areas of recommender systems. These aspects relate both to

technical and non-technical issues and include, among others, the follow-

ing.

October 23, 2018 16:26 ws-rv9x6-9x6 Book Title 11131-15 page 484

484 D. Jannach, I. Kamehkhosh and G. Bonnin

Table 15.1. Examples of Music Recommendation Tasks.

Non-personalized Personalized

N
o
n
-c

o
n
t
e
x
t
u
a
li
z
e
d

• Trending List: Provide a list of currently

trending (or currently being played)

items, e.g., tracks, albums, artists, con-

certs etc. Often used as a baseline for ex-

periments in the research literature, e.g.,

[Chen et al. (2016); Pálovics et al. (2014);

Vasile et al. (2016)].

• Similar Objects: Find similar tracks or

artists, available, e.g., on Spotify. This

type of recommendation can often be

found in the Music Information Retrieval

literature, e.g., [Germain and Chakareski

(2013); Hartono and Yoshitake (2013);

Moore et al. (2012)].

• Curated Playlists: Help users dis-

cover things through curated (editorial)

playlists, e.g., on 8tracks.com.

• Broadcasting Radios: Usually made by

professional disc jockeys. Such playlists

often contain popular tracks, and are of-

ten targeting specific audiences [Ekelund

et al. (2000)].

• Track, Artist Discovery: Help users to

find something new that matches their

general preferences, as implemented, e.g.,

by Spotify in the “Discover Weekly”

and “Release Radar” features [Johnson

(2014)].

• Album Discovery: Recommend albums to

listen to. Such a functionality can be

found on general e-commerce sites like

Amazon.com as well.

• Enjoyment Prediction: Provide an assess-

ment if the user will like a certain track,

artist or album; also, create a list of things

that the user will presumably not like.

• Static Playlist Generation: Generate a

personalized playlist based on user tastes;

like Spotify’s “Mix Tape” feature.

• Personalized Recommendation of Curated

Playlists: Suggest hand-made playlists to

users that are likely to generally match

their taste, e.g., on Deezer. Rarely stud-

ied in the literature, see, e.g., [Loni et al.

(2016)].

• Recommendation of Radio Streams: Rec-

ommend broadcasting radio stations to

users based on their profile and feedback.

Also rarely studied, see, e.g., [Moling et al.

(2012)].

C
o
n
t
e
x
t
u
a
li
z
e
d

• Virtual Radio Station: Create a virtually

endless playlist, given a seed track or seed

artist. To be found on Spotify, Deezer,

Pandora, and other popular services, as

well as in the research literature, see, e.g.,

[Oliver and Flores-Mangas (2006); Cliff

(2006); Moens et al. (2010); Jylhä et al.

(2012)].

• Playlist Construction Support: Generate

a playlist based on seed tracks or other in-

formation regarding the current session,

like the user’s mood; or provide sugges-

tions of tracks during manual playlist cre-

ation.

• Contextualized

Playlist Recommendation: Recommend a

curated playlist based, e.g., on the time of

the day, day of the week, or season.

• Personalized Radio (next-track recom-

mendation): Generate a virtually end-

less radio based on the last played tracks,

while possibly taking into account the

user immediate feedback (e.g., “like”,

“skip”, and “ban” actions).

• Personalized Playlist Construction Sup-

port: Generate a playlist based on seed

tracks or other information, like the user’s

mood and past preferences.

October 23, 2018 16:26 ws-rv9x6-9x6 Book Title 11131-15 page 485

Music Recommendations 485

Catalog aspects: While larger e-commerce shops can easily have hundred

thousands of catalog items, the number of recommendable items on Spotify,

as of 2018, is over 35 million tracks. This can make the application in

particular of academic approaches challenging. Furthermore, constantly

new tracks are released and added to the catalog. And, at least for some

musical genres, the freshness or recency of the recommendations might be

an important quality factor to consider. Moreover, the meta-data of the

tracks in the catalog can be very noisy and incomplete, and significant

efforts might be required in order to clean it and infer missing information,

in particular as a huge number of new tracks is released every year.

Preference information: Users of the Ringo system were asked to in-

dicate their preferences for 125 artists (popular ones and random ones).

While also some of today’s systems (such as Microsoft Groove) ask users

to provide an initial set of preferences regarding artists and genres, music

recommenders often have to rely on mostly implicit preference signals in

terms of listening logs, sometimes in combination with explicit like state-

ments or “skip” actions. Besides the problem of correctly interpreting very

large amounts of implicit feedback, an additional challenge in that context

is that preferences can change over time.

Repeated recommendations: Many recommendation algorithms, and in

particular those that are based on the matrix completion problem abstrac-

tion, aim to predict the relevance of unseen items. In the music domain,

repeatedly listening to the same tracks is however common. If such re-

peated consumptions should be supported, algorithmic approaches have to

be able both to decide which tracks to recommend repeatedly and when to

recommend these tracks.

Immediate consumption and feedback: Differently from many e-

commerce domains, the recommendations provided on a music streaming

service can be immediately “consumed” by the listeners, e.g., using a per-

sonalized radio station. A main challenge in that context is that the system

should be able to provide the user with a means to “correct” recommenda-

tions or give feedback (e.g., in terms of a like or dislike button). Moreover,

this feedback should be immediately taken into account in the recommen-

dation process.

Mainstream might not be enough: In some sense, music is “more niche”

than movies [Johnson (2014)]. While in movie recommendation there are

many blockbusters that are safe to recommend to a major fraction of the

users, there are many musical genres which have their specific audiences

(like jazz, classical music, or pop), and recommending generally popular

items might easily lead to a bad user experience.

October 23, 2018 16:26 ws-rv9x6-9x6 Book Title 11131-15 page 486

486 D. Jannach, I. Kamehkhosh and G. Bonnin

Context-dependence and time variance: Which music we want to listen

to can be highly context-dependent. The relevant contextual factors can

include, for example, the user’s mood, the time of the day, or if the user

listens to the music alone or as part of a group. Being able to capture and

consider these contextual factors can be crucial for the quality perception

and acceptance of a recommender.

Purposes of music listening: One related specificity of music is the fact

that one often listens to music with a very specific purpose in mind: create a

particular ambiance for a party, getting some motivation to wash the dishes,

enhance the experience of reading a good book, getting relaxed before going

to bed, etc. This means that the recommended items not only have to fit

the current context, but also fit the purpose of the user.

Musical taste and stated preferences can be socially influenced: Which

music we like and listen to is not only affected by our own mood, it can

also be substantially affected by our social environment (“social bonding”)

and/or trends in the community as a whole. For some scenarios it can

therefore be particularly helpful to consider a user’s social environment

and corresponding behavior in the past in the recommendation process.

At the same time, when users share their tastes and preferences on social

networks, it is not always clear if people actually listen to what they publicly

“like” or if they merely use their public profiles to create a desired image

of themselves.

15.1.3. Chapter Outline

In the remainder of this chapter, we will first discuss selected algorith-

mic approaches for music recommendation problems. Specifically, we will

first discuss the application of matrix factorization techniques for the Dis-

cover Weekly feature of Spotify and will then review recent approaches of

adaptive playlist generation (next-track music recommendation). After-

wards, we will outline open challenges both from a practical and academic

perspective. We will then report how a music recommendation service is

deployed and tested in industrial environments, again based on publicly

available information about Spotify’s solution. The final sections of the

paper will be devoted to questions of how to evaluate music recommenders

in practice and which resources are available for researchers in academic

environments. The chapter ends with a summary of the lessons learned

and open challenges.

October 23, 2018 16:26 ws-rv9x6-9x6 Book Title 11131-15 page 487

Music Recommendations 487

15.2. Computational Tasks and Algorithms

Various algorithmic approaches have been proposed over the years for

music-related recommendation scenarios. Three types of approaches gener-

ally exist: (1) collaborative techniques, i.e., recommending music liked by

similar users, (2) content-based techniques, i.e., recommending music whose

content (musical features, lyrics, etc.) is similar to the content of the tracks

the user liked in the past, and (3) hybrid techniques, i.e., combining both

previous approaches. Content-based approaches are mostly studied in the

field of Music Information Retrieval (MIR). Correspondingly, the MIR lit-

erature often focuses on the problem of deriving such features from the

low-level musical signal.1 This chapter will not cover these aspects and will

mostly focus on collaborative and hybrid techniques.

Companies usually do not publicly reveal the details of how they gen-

erate their recommendations or on which data they are based. Some dis-

cussions about the inner workings of the used machinery are sometimes

revealed in public presentations. In many cases, presenters from industry

report that they use a variety of algorithmic approaches for the different

recommendation tasks. The streaming service Pandora, for example, in ad-

dition to its unique database of manually annotated musical tracks2 which

is used for content-based recommendations, relies also on collaborative tech-

niques [Bieschke (2014)].

15.2.1. Implicit Matrix Factorization for Discovery and

Item Search

In this section, we will briefly review how collaborative filtering was —

among other techniques — applied at Spotify based on public presentations

around the year 2014 [Johnson and Newett (2014); Johnson (2014)]. In

more recent presentations, such as [Steck et al. (2015)], the authors report

that Spotify uses an ensemble of different techniques (including NLP models

and Recurrent Neural Networks) as well as explicit feedback signals (thumbs

up / down), and also audio features for certain recommendation tasks.

1The various aspects of automated music data analysis are discussed, e.g., in [Weihs
et al. (2016)].
2Music Genome Project https://en.wikipedia.org/wiki/Music_Genome_Project

https://en.wikipedia.org/wiki/Music_Genome_Project

October 23, 2018 16:26 ws-rv9x6-9x6 Book Title 11131-15 page 488

488 D. Jannach, I. Kamehkhosh and G. Bonnin

15.2.1.1. Distributed Matrix Factorization based on Listening Logs

At its core, the algorithm that was used at Spotify for its discovery feature,

is based on a standard user-item rating matrix, where users are rows and

the columns represent tracks. There are, however, a number of specific

aspects to be addressed in this domain, in particular the following two:

(1) In comparison to the well-researched movie recommendation do-

main, the number of items is much larger and there are more than

35 million songs that can potentially be recommended. Also, the

number of users is substantial, in particular when compared to

public datasets that are used in academic research.

(2) The entries in the matrix are often not explicit item ratings, but

are based on the users’ listening histories. As users often listen

to tracks many times, the resulting play counts can be used as an

implicit preference signal. Exploiting play counts instead of ex-

plicit ratings can actually lead to more accurate recommendations

[Jawaheer et al. (2010)].

Let us recall a common formulation of the optimization problem for

matrix factorization techniques as described, e.g., in [Koren (2008)].

min
q∗,p∗

∑
(u,i)∈K

(rui − µ− bu − bi − qTi pu)2 + λ(‖qi‖2 + ‖pi‖2 + b2u + b2i) (15.1)

Here, the goal is to minimize the squared prediction error for all (u, i)

pairs in the training set (K), where the rating prediction rui for a user u

and an item i is based on the rating average µ, some user and item bias

factors bu and bi, and the user and item latent factors qi and pi; see also

Chapter 2.

In the problem encoding of what is called “implicit matrix factorization”

at Spotify, as proposed in [Hu et al. (2008)], the entries in the input matrix

are zeros and ones, where a one in a cell indicates that a user has streamed

a track at least one time. Multiple streaming events for the same track

are therefore not considered in the encoding. However, the assumed higher

preference for a track that was played multiple times is captured in the

optimization function. Instead of optimizing the root mean squared error

(RMSE), a weighted version of the RMSE is optimized, where a certain

weight factor cui is used, which is based on the stream counts for a given

user and track. Ignoring the average rating µ, the optimization function is

October 23, 2018 16:26 ws-rv9x6-9x6 Book Title 11131-15 page 489

Music Recommendations 489

therefore defined as [Hu et al. (2008); Johnson (2014)]:

min
q∗,p∗

∑
(u,i)∈K

cui(rui − bu − bi − qTi pu)2 + λ(‖qi‖2 + ‖pi‖2 + b2u + b2i) (15.2)

Details of how the weight function is calculated are not revealed. To

find the optimal parameters, the Alternating Least Squares (ALS) method

is applied. Due to the huge amount of required computations, a distributed

computing architecture based on the map-reduce scheme (using Hadoop3)

was utilized at that time. The exact details of the distributed computations

are not available. Nevertheless, distributed ALS methods as described, e.g.,

in [Zhou et al. (2008)] are nowadays available as off-the-shelf components,

e.g., within the Apache Mahout4 software. The required infrastructure,

however, seems to be substantial and Steck et al. (2015) report that Spotify,

as of 2015, used a Hadoop cluster consisting of 1,000 nodes and collected

one terabyte of user data each day.

Once the latent user and item vectors are computed, they can be used

for the two following tasks:

(1) Relevance prediction: As usual, the relevance of an item can be

determined by computing the dot product of the user and the item

vectors.

(2) Item or user similarity assessment : Two items or users can be

compared using their coordinates in the latent factor space by com-

puting the cosine similarity of the item and vectors, respectively.

15.2.1.2. Finding Similar Objects with Approximate Nearest

Neighbors

For this latter task — finding similar objects, which is a key non-

personalized functionality of Spotify — the problem is again that there are

many users and items. Finding the exact set of the most similar objects

(“neighbors”) is therefore computationally challenging. As a consequence,

an “Approximate Nearest Neighbor” method called Annoy was used [Bern-

hardsson (2015)].

Technically, the algorithm works by recursively splitting up the set of

objects into two classes. In each step, two random points are chosen and

the hyperplane that is equidistant to the points is used to split the data.

This procedure is recursively repeated until a certain stopping criterion is
3http://hadoop.apache.org/
4http://mahout.apache.org/

http://hadoop.apache.org/
http://mahout.apache.org/

October 23, 2018 16:26 ws-rv9x6-9x6 Book Title 11131-15 page 490

490 D. Jannach, I. Kamehkhosh and G. Bonnin

met, leading to a binary tree where each object is assigned to exactly one

leaf nodes. As a stopping criterion, one could for example define that each

leaf node has at most K objects assigned.

Figure 15.1 shows an example of such a tree, which has the property

that most objects in the same leaf node have a higher probability to be

similar to each other than to objects of another leaf node. When looking

for the neighbors of a certain user or item, one can walk down the tree from

the root node by assessing on which side of the separating hyperplane the

input item will be. Such a simple algorithm, however, has its limitations.

One can, for example, easily end up with a situation where there are (a)

only very few objects in the resulting leaf node and (b) some nodes are

actually close but not part of the leaf node.

(a) (b)

Fig. 15.1. Building the binary tree in Annoy, adapted from [Bernhardsson (2015)]. The
set of points is first split into two halves according to the first selected hyperplane (a).

Both halves are then split again using the same principle (b).

October 23, 2018 16:26 ws-rv9x6-9x6 Book Title 11131-15 page 491

Music Recommendations 491

Two techniques are proposed to deal with these potential limitations:

(1) An algorithm is used that explores both child nodes when a certain

closeness threshold is met.

(2) Instead of building only one decomposition tree, multiple trees are

randomly generated and the set of neighborhood candidates is de-

termined by collecting the elements of all leaf nodes for the given

target items.

For the resulting set of candidate neighbors, the similarity values are

computed and the N most similar ones are returned. While some of the

true nearest neighbors might be missed by the procedure, the neighbor-

hoods can be computed fast. Using the different algorithm parameters

(e.g., the number of trees used), one can furthermore balance accuracy and

computational costs.

Generally, Annoy is not the first method that combines clustering and

nearest-neighbor search. Different other approximate techniques were pro-

posed in the literature before, for instance, balltrees [Omohundro (1989)].

In principle, the proposed technique is only one of several possible ways

of constructing so-called k-d trees, i.e., trees that partition points in the

space using hyperplanes. According to the authors of Annoy5, the method

however has the advantage of having a small memory footprint and that it

is engineered to be used in a distributed environment as index files can be

shared between processes.

15.2.2. Adaptive Playlist Generation

The matrix factorization approach presented in the previous section is

mainly designed to help users discover items that are assumed to be gen-

erally relevant or interesting to them. However, as discussed in Chapter 1,

users of a recommendation service often have a specific intent or goal when

they visit a website or use an app. In the music domain, the goal or inten-

tion of a user might be influenced by his or her current mood or contextual

situation (e.g., being at a party, or doing sports). One common function-

ality of music streaming services therefore is to provide users with a means

to play a virtual endless list of suitable tracks based only on some limited

amounts of initial input.

5See the documentation at https://github.com/spotify/annoy/

https://github.com/spotify/annoy/

October 23, 2018 16:26 ws-rv9x6-9x6 Book Title 11131-15 page 492

492 D. Jannach, I. Kamehkhosh and G. Bonnin

15.2.2.1. Spotify’s Adaptive Radio

On some platforms this functionality is called “Radio”. Given, e.g., an

artist or a track as an input, a playlist is automatically created by the

service. Often, such playlists are based on tracks by related artists or by

tracks that are in some sense similar to the seed track. In some cases,

such radio stations are non-personalized, i.e., with the same input, every

user receives more or less the same set of recommendations. In principle,

however, the selection of tracks could be personalized as well, in case the

listening history or some other preferences information about the current

user is known.

Since in this scenario the system’s recommendations are immediately

consumed in the order determined by the system, the users should be en-

abled to give feedback on the recommendations and this feedback should be

immediately processed by the recommender. Spotify’s Radio feature sup-

ports both of these functionalities, personalized playlists and immediate

feedback, in some form.

Bernhardsson (2013) summarizes the main principle of how Spotify op-

timizes their “artist radio” or “song radio” as sketched in Figure 15.2. The

general idea is to use a number of different algorithms (which probably also

use different optimization measures) and combine the recommendations in

an ensemble with Gradient Boosted Decision Trees [Steck et al. (2015)],

with explicit thumbs data and random negatives as an input for the opti-

mization process. The outcome is a pool of tracks that can in principle be

played on the current radio. The final ranking of the tracks is then done

by computing scores for each possible next track. The following factors are

taken into account. However, how the different aspects are combined, is

not revealed in detail.

• The “global rank” of a track in the track pool, as determined by

the algorithms;

• the estimated relevance of each track for a user based on the latent

factor model;

• the estimated relevance to the user based on the given thumbs;

• the diversity of the tracks in the session in terms of artists and

albums.

October 23, 2018 16:26 ws-rv9x6-9x6 Book Title 11131-15 page 493

Music Recommendations 493

Fig. 15.2. Conceptual Model of the Radio Service, adapted from [Steck et al. (2015)].

15.2.2.2. CF-based Next-Track Music Recommendation in the

Literature

Academic research has been conducted on various forms of music recom-

mendation. The addressed application scenarios for example include non-

contextualized item (e.g., track, artist, or album) recommendation for dis-

covery [Bachrach et al. (2014)], similar object retrieval [Chen et al. (2016)],

the automated construction of finite-length playlists or playlists with some

length bounds [Pauws et al. (2008)], as well as next-item recommendation

(playlist continuation) [Vasile et al. (2016)].

In this section, we will focus on applying collaborative filtering tech-

niques for next-item recommendation scenarios, i.e., on situations where

the collective behavior of a larger user community is considered in the rec-

ommendation process. The general computational task in these settings

is to compute a ranked list of tracks to be played next given some seed

information like an artist or a start track. There are two main applications

where such a functionality is needed. First, next-item recommendations

can be the basis for a virtually endless radio station like Spotify’s Radio

feature. Second, this type of recommendations can be used to assist users

when they manually create a finite-length playlist, as implemented, e.g., in

Apple’s iTunes Genius.

October 23, 2018 16:26 ws-rv9x6-9x6 Book Title 11131-15 page 494

494 D. Jannach, I. Kamehkhosh and G. Bonnin

In the following, we consider scenarios where the provided seed infor-

mation is one or more tracks, representing a playlist beginning or a set

of recently played tracks. Given this ordered list of tracks and possibly

some auxiliary information, e.g., track metadata, musical features of the

tracks, or the user’s past preferences, the goal is to compute a ranked list of

tracks to be recommended as a playlist continuation. Generally, the setting

therefore corresponds to a session-aware or session-based recommendation

scenario, as discussed in Chapter 1 and in more detail in [Quadrana et al.

(2018)].

Non-Personalized Approaches. A large part of the published ap-

proaches in the research literature are non-personalized, i.e., given a playlist

beginning, they return the same set of tracks for every user. Technically,

a variety of approaches from different algorithm families has been explored

[Bonnin and Jannach (2014)]. Generally, we can differentiate between two

types of approaches:

(1) Sequence-agnostic techniques: These algorithms only consider the

co-occurrence of items in the current session and past listening

sessions or playlists.

(2) Sequence-aware techniques: Algorithms of this type also consider

the order of the tracks, both in the current as well as in the past

sessions.

Sequence-agnostic Approaches: A basic approach would be to apply fre-

quent pattern rule mining techniques and look for tracks that often appear

together in the listening logs of users in the past. These association rules

can then be used to make Amazon-like recommendations of the form “Cus-

tomers who bought this item also bought these items”. A more effective

method, however, is to apply a session-based k-nearest-neighbor (kNN) ap-

proach as discussed in [Hariri et al. (2012)] or [Bonnin and Jannach (2014)].

The kNN method takes the sequence of the last played tracks as an

input and then in a first step determines the k most similar past sessions

in the logs of all user sessions. Given the current session s, the set of the k

nearest neighbors Ns, and a function sim(s1, s2) that returns a similarity

score for two sessions s1 and s2, the score of a recommendable item i is

defined as

scoreknn(i, s) = Σn∈Ns
sim(s, n)× 1n(i) (15.3)

October 23, 2018 16:26 ws-rv9x6-9x6 Book Title 11131-15 page 495

Music Recommendations 495

where 1n(i) = 1 if n contains i and 0 otherwise, see also [Bonnin and

Jannach (2014)]. Technically, different distance (similarity) measures can

be used to compare two sessions or playlists, e.g., binary cosine similarity.

To ensure scalability, neighborhood sampling can be applied, e.g., based on

the recency of the listening logs of the community [Jannach and Ludewig

(2017)].

Sequence-aware Techniques: A number of sequence-aware techniques

were explored in the literature as well. Sequential patterns are a counter-

part of frequent pattern techniques and were investigated, e.g., in [Bonnin

and Jannach (2014)]. In a related approach, Hariri et al. (2012) aimed at

the identification of topic sequences in playlists instead of only looking at

track sequences. Their results showed that considering these topic transi-

tions leads to a performance improvement over a kNN technique. In another

work, Park et al. (2011) presented a modified collaborative filtering method

that uses session information to capture sequence and repetition patterns

in listening sessions. They showed that their proposed session-based CF

approach can outperform a basic CF method. A number of alternative

and comparably simple sequence-based techniques were recently evaluated

in the music domain and other domains in [Kamehkhosh et al. (2017);

Ludewig and Jannach (2018)]. The investigated methods include, for ex-

ample, sequential patterns of size two or neighborhood-based techniques

that use a similarity functions which consider the order of the tracks in a

session.

More elaborate techniques are based on sequence learning models. Some

approaches of that type that are mentioned in the literature for example

include Recurrent Neural Networks (RNNs) [Bernhardsson (2014)]. In prin-

ciple, however, any form of algorithm that can be used for sequence-aware

session-based recommendation can be applied to the music domain as well,

including, for example, ones that use Markov-models in some form [Rendle

et al. (2010)] or that rely on special types of RNNs [Hidasi et al. (2016a);

Hidasi and Karatzoglou (2017)]. A potential drawback of such more sophis-

ticated models is that they can easily become computationally challenging.

At the same time, today’s more sophisticated models are not necessarily

better than the simple techniques mentioned above in terms of the predic-

tion accuracy, as discussed in [Ludewig and Jannach (2018)].

Personalized Approaches. While item discovery approaches are almost

always personalized, the work presented in [Jannach et al. (2017)] represents

one of the few attempts in the literature where the process of creating a

October 23, 2018 16:26 ws-rv9x6-9x6 Book Title 11131-15 page 496

496 D. Jannach, I. Kamehkhosh and G. Bonnin

playlist continuation is personalized. The personalization features in this

work are embedded within a multi-faceted track scoring scheme. First, a

baseline relevance score for each recommendable track is computed based

on a k-nearest-neighbor method as described above. Then, a variety of

other relevance signals are considered in a weighted approach.

Technically, the overall relevance score scoreoverall for a possible next

track t∗, given the playlist beginning h, is computed as follows [Jannach

et al. (2017)]:

scoreoverall(h, t
∗) = wbase · scorebase(h, t∗) +∑

pers∈P
wpers · scorepers(h, t∗) (15.4)

where P is a set of personalization strategies, each with a different weight

wpers, and wbase is the weight of the baseline. The functions scorebase
and scorepers compute the baseline score and the scores of the individual

personalization components, respectively.

The following signals were considered for the personalization step:

(1) Favorite Tracks

(2) Favorite Artists

(3) Topic Similarity

(4) Extended Neighborhood

(5) Social Friends

Favorite Tracks: It is quite common in the domain that users listen to

their favorite tracks again and again. Therefore, it is reasonable to also

recommend tracks that the user has already heard (several times) in the

past. Different strategies to select tracks for repeated recommendations

are possible. One can, for example, repeatedly recommend tracks that are

generally popular; or, one can recommend tracks that the user has listened

to at the same time of the day in the past. Yet another approach is to

repeatedly recommend tracks of artists that the user is listening to in the

current session.

Since the literature suggests that users tend to repeatedly consume

things that they have experienced more recently [Anderson et al. (2014)],

one can furthermore give more weight to tracks that were more recently

played by the user. Finally, the effectiveness of repeated recommendations

can be further increased when the system can guess if the user is currently

in the mood of discovering something new or rather prefers to listen to his

or her favorites, as discussed in [Kapoor et al. (2015)].

October 23, 2018 16:26 ws-rv9x6-9x6 Book Title 11131-15 page 497

Music Recommendations 497

Favorite Artists: Many music lovers have their favorite artists and it

therefore might be a comparably safe strategy to recommend tracks of these

artists to users, even when this might lead to limited discovery effects.6

Technically, to compute an artist-based score, one can inspect the current

and the past listening session of the user and assign higher scores to tracks

that are performed by the artists that also appeared in these past listening

sessions.

Topic Similarity: The assumption of this personalization score is that

some users are interested in certain types of music, for example, mostly sad

ballads or instrumental music. Therefore, recommendable tracks that in

some respect are “content-wise” similar to those that the user listened to

in the past should receive a higher rank. Generally, one can use all sorts of

information to determine the similarity of objects, e.g., based on musical

features. Since such information is not always available, one can also look

at the publicly available tags that users assign to certain artists or tracks,

for example, on Last.fm. Technically, again different similarity measures

can be applied, for example, by using the cosine similarity between two

TF-IDF encoded track representations.

Extended Neighborhood: The kNN-method described above merely looks

for sessions that are similar to the current one. To consider the long-term

personal preferences of the user, one can however also consider sessions that

are similar to the past sessions of the user, maybe with a lower weight.

Social Friends: Finally, the last personalization approach considered in

[Jannach et al. (2017)] takes the musical preferences of the user’s social

friends into account. Our musical tastes and preferences, as mentioned in

the introduction, can to some extent be determined by the tastes of our

social environment. One possible technical approach is therefore to recom-

mend the favorite tracks of the user’s social friends, giving more weight to

social friends that are generally more popular and, e.g., have more followers.

Overall, experimental evaluations in [Jannach et al. (2017)] showed that

all these personalization features can have a positive effect on the quality

of the resulting recommendations. The best results are usually achieved

when multiple signals are considered in parallel, which however requires

that the importance weights are fine-tuned. Generally, the applicability

of some approaches depends on the availability of the corresponding data,

e.g., the information about the user’ social connections.

6We will discuss questions of recommendation quality later on in more depth.

October 23, 2018 16:26 ws-rv9x6-9x6 Book Title 11131-15 page 498

498 D. Jannach, I. Kamehkhosh and G. Bonnin

15.3. Challenges

Building a successful music recommender system can be challenging in a

variety of dimensions. A key challenge clearly is to understand what makes

a good recommendation in the first place, e.g., because the perception of

music is highly subjective and context-dependent, as will be discussed in

Section 15.4.

15.3.1. Data-Related Aspects

Huge amounts of data can be available for providers of a music stream-

ing service. For larger services, there are millions of recommendable items

and even more users.7 Furthermore, there can be billions of streaming

events, which can potentially be leveraged for building better recommen-

dation models. As a result, scalability aspects can be a main concern when

choosing or designing a recommendation algorithm. For the case of the im-

plicit matrix factorization approach at Spotify, for example, only the play

counts for the tracks were considered when optimizing the models. Obvi-

ously, however, one could also consider the temporal sequences of the events

or even the musical features of the individual tracks to end up with bet-

ter recommendations [Cai et al. (2007); Su et al. (2010); Dias and Fonseca

(2013); Johnson (2014)].

Another data-related issue is concerning potential biases in the available

data. There is a very long tail of musical tracks available on music platforms

that have been barely listened to by anyone and many modern algorithms

might mostly focus on the more popular items [Celma and Cano (2008)].

This might in turn lead to a “rich-get-richer” (popularity reinforcement)

effect as a small fraction of the catalog receives most of the (mostly positive)

feedback. Furthermore, when using listening logs as input, the recorded

events might be, to some larger extent, influenced by a recommendation

functionality that was provided by the platform.

15.3.2. User Interaction Aspects

The recommendation techniques discussed in this chapter are mostly based

on implicit feedback, i.e., play events for the tracks. However, music plat-

forms also provide different mechanisms for users to explicitly state their

7As of 2018, Spotify reports to have over 70 million paying subscribers and almost 160

million active users of the service (https://press.spotify.com/es/about/, accessed 8
March 2018).

https://press.spotify.com/es/about/

October 23, 2018 16:26 ws-rv9x6-9x6 Book Title 11131-15 page 499

Music Recommendations 499

preferences. Most platforms, for example, give the users the opportunity to

rate individual tracks (recommendations), typically using a binary feedback

scale. In addition, users can often skip individual tracks, which represents

another form of explicit feedback.8 At least on some platforms, like Mi-

crosoft Groove, users are initially asked to provide their preferences for

certain artists or genres.

In the context of explicit preference statements, different challenges can

arise and various design decisions have to be made.9 The initial preference

acquisition process, for example, should not represent a burden for the user.

And, users should be given the opportunity to revise their statements later

on. Regarding the ratings for individual tracks, we commonly see thumbs-

up/thumbs-down approaches, probably because many users tend to give

only extreme ratings or would find it too tedious to give fine-grained feed-

back, e.g., on a five-point scale. A specific phenomenon in that context

mentioned in [Steck et al. (2015)] is that the provided explicit preference

statements might not be fully reliable, and users sometimes use their pref-

erence statements to create a public image of themselves, but then in fact

listen to other types of music more frequently.

Finer-grained forms of giving feedback are provided, however, on other

media sites. Figure 15.3, for example, shows how users could give feedback

to individual video recommendations at YouTube around the year 2015.

Here, the users could not only state that they did not like a certain item,

but also state that they either had seen it before or that they are not

interested in a certain channel. Clearly, while such an approach gives more

control to the users, it also increases the complexity and required user

effort. At the same time, such fine-grained feedback forms can be difficult

to operate on mobile devices, which are often used to consume streaming

music.

In order to acquire short-term listening preferences, music platforms, as

described above, for example let the user provide some initial track or artist,

and base the subsequent tracks on that seed information. Since (a) the

system might misinterpret the user’s intentions or (b) users sometimes only

has a vague idea of what they want to hear [Steck et al. (2015)], at least some

form of allowing the user to fine-tune the playlists has to be provided. For

the Spotify app, it was decided to provide thumbs-up/thumps-down buttons

for the user. A particular challenge in that context, however, is that the

8In fact, skipping a track can be considered both as implicit and explicit feedback.
9For a recent review on user interaction aspects for recommender systems, see [Jugovac
and Jannach (2017)].

October 23, 2018 16:26 ws-rv9x6-9x6 Book Title 11131-15 page 500

500 D. Jannach, I. Kamehkhosh and G. Bonnin

Fig. 15.3. Feedback on the YouTube platform (replaced with a simpler form as of 2018).

user’s reactions should be “immediately gratifying”, i.e., the playlist should

be refreshed instantaneously, at least when there is negative feedback on

the track. This might in turn lead to computational challenges and limited

research exists in the literature that discusses algorithmic approaches to

incorporate such feedback on the fly.

In addition, as mentioned in [Johnson (2014)], most of the provided

feedback is positive and obviously only available for tracks that were ac-

tually recommended to users. As a result, this can easily lead to some

algorithmic bias when optimizing only using feedback that was given to

tracks that were presented to users.

Generally, not much research exists on how to design the user interfaces

of music apps that feature a recommendation component. One typical

aspect that is mentioned as a way to increase the adoption of the recom-

mendations is the provision of explanations, so that the users have a chance

to understand why a certain item was recommended [Lamere and Celma

(2011)]. Other open questions include how to determine the actual users’

context, e.g., their mood, activities, surroundings etc., either through ex-

plicit elicitation methods or through additional sensor information.

15.3.3. Incorporating Song Feature Information

Relying mostly or even solely on the collective behavior of a commu-

nity when recommending using collaborative filtering techniques can have

certain limitations, e.g., low prediction accuracy when there are limited

amounts of feedback signals for recently added tracks (item cold-start).

Therefore, in this domain, considering the musical features of the recom-

mendable tracks can be helpful to avoid unsuitable elements in a playlist,

October 23, 2018 16:26 ws-rv9x6-9x6 Book Title 11131-15 page 501

Music Recommendations 501

e.g., high-energy tracks within a chill-out playlist. This is in particular

important since such unsuitable recommendations can have a measurable

negative effect on the user’s quality perception of the service [Chau et al.

(2013)].

Traditional content-based recommendation approaches typically suffer

less from such problems. The basic idea of such algorithms is to recom-

mend items that are similar to the ones that the user has liked in the past.

Technically, this is usually achieved by representing both users and items in

terms of the features of the musical tracks. The features can include both

musical characteristics as well as track meta-data such as release years.

The shared form of representation can then be used to compute the match

(similarity) between a given user profile and a recommendable track. A

common way of representing the items is to use vectors whose dimensions

correspond to content or meta-data features, such as the tempo, the loud-

ness, the different possible genres, etc. Users are also represented based on

their preferences, which either can be obtained by asking the user to ex-

plicitly provide some preference information (e.g., using a questionnaire),

or can be extracted from the music that the user has listened to in the past.

In principle, a large number of musical features can be used, including

low-level ones related to the timbre or rhythmic aspects as well as more

high-level ones like the instrumentation or the “danceability” of a track.

Pandora.com, as mentioned above, relies on manual annotations by experts.

An alternative is to automatically extract the information from various

sources, including the audio signal as well as other data sources like social

annotations or lyrics. Extracting such features is a key topic in the field of

music information retrieval and significant progress has been made in the

last years, see, e.g., [Casey et al. (2008); Müller (2015); Weihs et al. (2016)].

The extraction process can, however, lead to inaccurate results in some

cases. At the same time, the process can be computationally challenging,

given the huge number of available tracks.

Since also content-based methods have limitations, e.g., their tendency

to recommend “more of the same”, a large variety of hybrid algorithms

were proposed in the literature on recommender systems. Such hybrids

combine different techniques and are usually designed in order to overcome

the limitations of the individual techniques. A key challenge in that context

is how to merge the available types of information in the best possible way.

An early hybrid method was proposed by Yoshii et al. (2006), who used a

probabilistic model in the form of a Bayesian network to integrate user rat-

ings collected from Amazon and content data represented as mel-frequency

October 23, 2018 16:26 ws-rv9x6-9x6 Book Title 11131-15 page 502

502 D. Jannach, I. Kamehkhosh and G. Bonnin

cepstral coefficients. Their results showed that the hybrid method achieves

higher accuracy and more diverse recommendations in terms of artists than

the two underlying methods. In a more recent work, Wang and Wang (2014)

developed an approach to combine a collaborative filtering method based

on probabilistic matrix factorization [Salakhutdinov and Mnih (2007)] and

content features that were learned automatically via a deep belief network

[Hinton et al. (2006)].

Generally, a number of ways exist to combine the recommendations of

different algorithms, e.g., by weighting the individual prediction scores or

by using the recommendations generated by one algorithm as a pre-filtered

input to another. Alternatively, machine learning models like Factorization

Machines can be applied that combine the different types of input data in

an integrated model.

Overall, in many application domains of music recommendation hy-

brid techniques can be considered the method of choice. When creating a

playlist for a virtually endless radio station, for example, the application of

collaborative filtering techniques can increase the probability that the rec-

ommendations include tracks that are new to the user (“discovery”). Using

content-based techniques in parallel can, at the same time, help to ensure

that the tracks played in the future do not deviate too much from the seed

tracks in terms of their musical features. A general challenge in the context

of such hybrid systems, however, is how to combine the different techniques

in the best possible way.

15.4. Evaluation

The evaluation and comparison of different music recommendation strate-

gies can be challenging, both for music service providers and for academic

researchers. After discussing the determination of the relevant quality cri-

teria in general and how to balance these criteria, this section will focus

on the assessment of performance in real world settings and in academic

environments.

15.4.1. Quality Criteria

Generally, the acceptance of a music recommendation service depends on

the quality and utility perception of its users. Regarding the specific rec-

ommendation scenario, a number of different factors can have an influence

on the users’ perceptions. The following list gives examples of such factors,

October 23, 2018 16:26 ws-rv9x6-9x6 Book Title 11131-15 page 503

Music Recommendations 503

as mentioned also in [Bonnin and Jannach (2014)] in the context of the

playlist generation problems. In general, these factors can be music-related

and purpose-oriented [Jannach and Adomavicius (2016)].

Examples of music-related factors:

• Diversity: The recommendations (e.g., a list of tracks to be played

next) should be sufficiently different from each other, e.g., in terms

of their artist [Slaney and White (2006); Lee et al. (2011); Ka-

malzadeh et al. (2012); Puthiya Parambath et al. (2016)].

• Homogeneity: At the same time (e.g., in the context of playlist

construction support), it is often desirable that the next tracks

are not too different from each other, for instance, in terms of

their genre, tempo, or mood [Logan (2002); Balkema and van der

Heijden (2010); Jannach et al. (2015)].

• Coherence: Also, it is often important that the recommended

tracks do not only fit to each other, but also represent coherent

continuations to the previously played tracks [Kamehkhosh and

Jannach (2017)].

• Transitions: In some situations, for example, when creating

playlists for parties, the differences between subsequent tracks, e.g.,

in terms of their tempo, should in general not be too high [Flexer

et al. (2008); Sarroff and Casey (2012)].

Examples of purpose-oriented factors:

• Discovery / Novelty : The recommendations could, for example, be

designed to be helpful for users to discover new artists, tracks, or

genres [Celma (2010); Zhang et al. (2012)].

• Agreeableness: In particular, when a set of music track recommen-

dations should be listened to by a group of users (e.g., at a party),

it might be important that the music is enjoyed by the majority,

which can, for example, be achieved by mainly focusing on gener-

ally popular tracks [Popescu and Pu (2012)].

• Context-fit : As described in [Bonnin and Jannach (2014)], playlists

are often created for a certain “theme” or context (e.g., sports

workout). The quality of the recommendations then depends on

their fit for the given theme or context.

October 23, 2018 16:26 ws-rv9x6-9x6 Book Title 11131-15 page 504

504 D. Jannach, I. Kamehkhosh and G. Bonnin

As can be easily seen, the different quality criteria can be antagonistic,

e.g., agreeableness vs. discovery or homogeneity vs. diversity, and trade-offs

have to be found. How to balance these aspects can depend on the specific

application scenario.

15.4.2. Balancing Different Quality Factors

Given these potentially conflicting goals, it is often insufficient to only con-

sider the relevance of a certain item in isolation. Instead, the suitability

of an entire list of tracks to be played next has to be taken into account.

Usually, however, considering additional quality factors other than predic-

tion accuracy leads to a trade-off situation as multiple, possibly competing

goals have to be balanced.

In the research literature on recommender systems, a number of ap-

proaches were proposed to deal with such trade-off situations and to im-

prove recommendations by considering additional quality factors, e.g., in

[Adomavicius and Kwon (2012); Ziegler et al. (2005); Bradley and Smyth

(2001); Zhang and Hurley (2008)], or [Vargas and Castells (2011)].

Most of these approaches however (i) consider only two quality factors

(e.g., accuracy vs. diversity) and (ii) do not consider the user’s individual

tendencies (e.g., with respect to diversity in general). Some more recent

works that try to overcome these limitations can be found in [Kapoor et al.

(2015); Shi et al. (2012); Oh et al. (2011)], and [Ribeiro et al. (2014)]. These

approaches are however often designed for a very specific quality factor

(e.g., diversity). Or, they implement the balancing strategy within their

own recommendation algorithm so that existing algorithmic frameworks

and approaches cannot be reused.

An alternative, two-phase approach that can be combined with any

existing item-ranking algorithm was proposed in the context of next-track

music recommendation problems in [Jannach et al. (2015)]. Similar to works

like [Adomavicius and Kwon (2012)], the general idea of the method is to

take a limited set of k (e.g., k = 30) most relevant items according to an

arbitrary item-ranking or scoring algorithm and then to re-rank these top

items in a way that selection of the top-10 items optimizes some quality

criterion. In the context of the “radio” problem, this could mean to take

the top 30 tracks according to their predicted suitability as a continuation

for the last played tracks and then re-rank the items in order to maximize

the artist diversity within the 10 next tracks. To compute such a re-ranked

list, a greedy approach can be applied, which can compute solutions in real

time that are very close to the true optimum.

October 23, 2018 16:26 ws-rv9x6-9x6 Book Title 11131-15 page 505

Music Recommendations 505

A general question in such problem settings, however, is to determine

the right amount of artist diversity. Some approaches use a combined qual-

ity measure that considers both accuracy and diversity. This, however,

assumes that there is a globally accepted level of, e.g., diversity. In reality,

the appropriate level of diversity (or homogeneity etc.) can be dependent on

different factors, including the diversity of current playlist or even the gen-

eral long-term preferences of the particular user. The method proposed in

[Jugovac et al. (2017)] takes such considerations into account. Specifically,

the implemented optimization procedure can be configured to be guided

by the characteristics of a “seed” of items and the optimization goal then

consists of minimizing the difference between the seed items’ characteristics

and the characteristics of the recommendation list.

. . .

1 2 3 . . .

1

2

5

Determine sample set Su (dotted)
from user‘s listening history and
calculate artist diversity for Su

Generate ranked recommendations
(accuracy optimized)

Retain top-n list Tu and exchange
list Xu. Exchange and optimize to
match user diversity tendency

Return optimized Tu and discard Xu

Tu
Xu

Tu Xu

3/4

Fig. 15.4. Illustration of the re-ranking scheme, adapted from [Jugovac et al. (2017)].

Figure 15.4 illustrates the general idea based on the artist diversity

problem. The elements in dotted lines in the upper rectangle (marked with

1©) represent the selected seed items and the different colors represent

different artists. The seed set can for example be taken from the set of the

user’s last played tracks or be a subset of the user’s favorite tracks. Based

on this seed set, the user’s individual tendency towards artist diversity can

be computed. In the next step, the ranked list of recommendations (next

tracks for a given playlist history) is computed with any algorithm. Again,

different colors in step 2© represent different artists. Since the top-10 items

of the list have a lower artist diversity than the items in the seed set, the

algorithm then starts exchanging elements from the top of the list with

October 23, 2018 16:26 ws-rv9x6-9x6 Book Title 11131-15 page 506

506 D. Jannach, I. Kamehkhosh and G. Bonnin

elements from the end of the list, which probably have a slightly lower

predicted relevance but help to improve the diversity of the top-10 list.

Improving in that context means that the algorithm tries to minimize the

difference between the diversity level of the top-10 list and the seed tracks.

Therefore, if a user generally prefers lists with high diversity, the re-ranking

will lead to higher diversity. Vice versa, a user who usually listens to various

tracks by the same artist in a session will receive recommendations with a

lower artist diversity. As a result, the definition of a globally desired artist

diversity level can be avoided.

Generally, there can be multiple and possibly conflicting optimization

goals that should be considered in parallel, e.g., high artist diversity, ho-

mogeneous tempo, smooth transitions. Such situations can be considered

in the approach as long as the relative importance of the difference factors

can be specified. The acceptable compromises on recommendation accu-

racy can also be fine-tuned by determining the size of the top-k list from

which items can be picked during the optimization process.

15.4.3. Performance Assessment in Real-World Settings

In order to assess the performance of a music recommendation service,

an understanding about its expected utility or value is required in the first

place. Recommendation services on music platforms are primarily designed

to support the user during a certain task like playlist construction or to

provide some other functionality like a personalized radio station. While

such services often do not directly lead to additional revenue for the provider

as in the e-commerce domain, recommendation services on music platforms

can represent an additional value for the consumer (e.g., in terms of better

a user experience or an easier discovery of new things). This can, in turn,

lead to a higher customer retention and an indirect business value.

In order to quantify the effectiveness of a recommendation service, differ-

ent basic measurements and analyses can be made. First, one can measure

the adoption of the service, i.e., determine which fraction of the users actu-

ally use the service over an extended period of time to a significant extent.

For certain services like a personalized radio station, one can also analyze

the specific user behavior and their feedback to the recommendations. Do

users, for example, skip certain recommended tracks or are they continuing

to listen to the recommended tracks most of the time? Such measurements

regarding the acceptance of the recommendation can be made and com-

pared in field (A/B) tests, possibly accompanied by user surveys. Finally,

October 23, 2018 16:26 ws-rv9x6-9x6 Book Title 11131-15 page 507

Music Recommendations 507

since the user interface (UI) design can have a significant impact on the

adoption and effectiveness of some recommendation services [Steck et al.

(2015)], the UI design should be evaluated as well through laboratory stud-

ies, A/B tests, or both.

The indirect business value of a music recommendation service can typ-

ically only be assessed through field tests and the specific measurement

depends on the business model of the provider. For flat-rate subscription-

based services like Spotify or others, user engagement and customer reten-

tion (subscription renewals) might be a measure that one wants to optimize.

Another potential measure is the conversion of users of a free service to pre-

mium (paying) users.10 If the music recommendation service on the other

hand is used to recommend items in a pay-per-stream or pay-per-download

model, the overall revenue or profit usually represent the target measures.

A main challenge in that context is that for many complex machine

learning approaches a number of parameters have to be optimized, and

that not all parameter settings can be tested in field studies. Therefore,

algorithms are usually optimized regarding some proxy measures in an of-

fline process (e.g., precision or recall). The challenge however is that for

many of these proxy measures, it is unclear if they truly correlate with

the target measure that one wants to optimize in reality (e.g., customer

retention). In fact, a number of recent works suggest that success measures

often used in academia, in particular the prediction accuracy, are often not

good indicators of the true success of a recommendation service, see also

the discussion of Netflix’s recommendation service in [Gomez-Uribe and

Hunt (2015)]. Another challenge when optimizing accuracy measures in

an offline process is that the observed data (e.g., thumbs) can be biased

in different ways. Often, the large majority of the signals consists of only

positive feedback. And, which items are actually listened to (and rated) by

consumers can itself be heavily influenced by the existing recommendation

service or other functionalities of the platform, e.g., lists of trending items.

15.4.4. Comparing Algorithms in Academic Environments

Similar to other application domains of recommenders, the predominant

form of evaluating recommendation algorithms in the music domain is based

on offline experiments, using either explicit user preference data or recorded

user activity logs.

10See [Bernhardsson (2017)] for a discussion of potential issues when computing conver-
sion rates.

October 23, 2018 16:26 ws-rv9x6-9x6 Book Title 11131-15 page 508

508 D. Jannach, I. Kamehkhosh and G. Bonnin

Datasets. In case the goal is to predict user preferences (i.e., the relevance

of individual items) for a user given a common user-item preference matrix,

“standard” evaluation schemes for the matrix completion setup from other

application domains can be applied.

For many application scenarios of music recommenders — and in par-

ticular for personalized radio stations — using recorded listening logs as a

basis for offline experiments however seems more appropriate. A number

of public datasets are available online. Some of them contain the listening

histories of thousands of users over an extended period of time. Often, these

logs were obtained through the public APIs of music services like Last.fm.

Table 15.2 gives an overview of a number of public datasets.

Finally, some research works on collaborative music recommendation are

based on publicly shared “hand-crafted” playlists (mixtapes), i.e., sequences

of tracks that were put together and shared by users of music services for a

certain purpose, e.g., for a road trip or a sports workout. Different datasets

containing such playlists are publicly available today, see also Table 15.2.

Evaluation Protocols and Metrics. Comparing the prediction accu-

racy of different music recommendation strategies in terms of information

retrieval or machine learning measures is common in the academic liter-

ature. In case sequential user activity logs or playlists are the basis for

the evaluation, a typical evaluation procedure is to use a “session-wise”

approach as discussed in Chapter 1. For each listening session or playlist,

a defined number of tracks from the beginning of a session are revealed

and the task of the recommender is to predict the next (hidden) track(s).

Such a research approach was, for example, used by Hariri et al. (2012)

or by Bonnin and Jannach (2014), where standard information retrieval

measures were applied. An alternative evaluation approach based on the

Average Log-Likelihood was proposed by Mcfee and Lanckriet (2011), a

measure which can be used to assess how likely a system is to generate the

tracks of a given playlist or listening session. This measure, however, has

certain limitations, as discussed in [Bonnin and Jannach (2014)].

11The Echo Nest has been acquired by Spotify in 2014. A similar Web API has since
been made available by Spotify, see https://developer.spotify.com/web-api
12http://webscope.sandbox.yahoo.com
13https://labrosa.ee.columbia.edu/millionsong/tasteprofile
14http://www.kkbox.com
15https://www.kaggle.com/c/kkbox-music-recommendation-challenge/leaderboard
16http://www.artofthemix.org

https://developer.spotify.com/web-api
http://webscope.sandbox.yahoo.com
https://labrosa.ee.columbia.edu/millionsong/tasteprofile
http://www.kkbox.com
https://www.kaggle.com/c/kkbox-music-recommendation-challenge/leaderboard
http://www.artofthemix.org

October 23, 2018 16:26 ws-rv9x6-9x6 Book Title 11131-15 page 509

Music Recommendations 509

Table 15.2. Selection of public datasets.
Type Name Description

Music meta-data Million Song Dataset Made available in 2011 by researchers from the Music

Information Retrieval community [Bertin-Mahieux et al.

(2011)]. The dataset consists of meta-data for 1 million

tracks of 44,745 artists, including tags, date of release

and several acoustic features from The Echo Nest.11

Rating data Yahoo! Music Artist and track ratings from data sets published by

Yahoo! Research.12

Taste Profile subset An addition to the Million Song Dataset that contains

real user play counts for a subset of the tracks (384,546

tracks) and was released by The Echo Nest.13

Amazon product

co-purchasing network

metadata

Made available in [Leskovec et al. (2007)]. It contains

various reviews and review information such as ratings,

number of votes, etc. on 548,552 items of different types

(books, music CDs, DVDs and VHS video tapes).

InCarMusic Constructed for the work presented in [Baltrunas et al.

(2011)]. It contains user ratings of genres and car-related

context information, such as driving style (relaxed or

sport), road type (city, highway or serpentine), etc. for

about 140 tracks of 10 different genres.

Listening logs Last.fm Celma (2010) published two datasets containing the

listening logs of about 1,000 and 360,000 users,

respectively, collected from Last.fm API.

30Music A collection of listening and playlists data retrieved from

Internet radio stations through Last.fm API. The

datasets consists of 31 million user play events, 2.7

million user play sessions, and 4.1 million user “love”

statements and was published by Turrin et al. (2015).

KKBOX KKBOX is a music streaming service provider in East

Asia.14 In the context of a machine learning

competition15, listening logs of over 34,000 users were

published together with some information about over

400,000 individual tracks.

Listening logs

extracted from

microblogs

MMTD The Million Musical Tweet Dataset includes listening

histories based on more than 1 million tweets referring

to 133,968 unique tracks by 25,060 different artists

created by 215,375 users. The dataset was introduced by

Hauger et al. (2013).

#nowplaying Contains about 40 million listening events extracted

from music-related tweets of users on Twitter. The

dataset is enriched with additional information about

the artist, the track title, and metadata about the tweet

and was published by Zangerle et al. (2014).

Music playlists Art of the Mix A dataset of hand-crafted playlists made available by

McFee and Lanckriet (2012). It contains all playlists

(about 100,000) of the Website Art of the Mix16 created

before June 2011. Each playlist contains artist names,

track names, creator name, a categorical label (e.g.,

“Reggae”) and the identifiers of the tracks that could be

found in the Million Song Dataset.

Kollect.fm Contains about 35,000 playlists with feedback about

them from about 16,000 users retrieved from kollect.fm,

which is a music discovery website where users can

receive recommendation of playlists.

October 23, 2018 16:26 ws-rv9x6-9x6 Book Title 11131-15 page 510

510 D. Jannach, I. Kamehkhosh and G. Bonnin

Focusing solely on accuracy measures has its limitations also in the mu-

sic domain. Predicting mostly very popular tracks in fact proves to be a

very competitive strategy. In [Bonnin and Jannach (2013)], the authors

proposed a popularity-based method called “Collocated Artists – Greatest

Hits”. This method simply takes the artists who appear in the given listen-

ing session and then recommends to play the most popular tracks of these

artists and of similar artists, where the artist similarity is determined based

on their co-occurrence in past listening sessions. Experimental evaluations

show that this method is particularly effective in guessing the immediate

next tracks.

Recommendation lists that include only very popular tracks might how-

ever not be satisfying for many users, e.g., because these recommendations

lead to limited discovery and low artist diversity. Therefore, researchers

sometimes apply multi-metric evaluation schemes which consider both pre-

diction or ranking accuracy and other quality factors like the homogeneity

of the recommended tracks, artist diversity, coherence with the previous

tracks, or the transitions between the tracks [Jannach et al. (2016, 2017)].

As discussed above, different techniques can then be applied to balance the

given quality factors, see [Jugovac et al. (2017)] for a comparison of recent

approaches, which also showed that considering additional quality factors

can even lead to an improvement in terms of ranking accuracy. Gener-

ally, the problem in these situations is not only to assess the relevance of

the individual recommended items, but to consider quality factors that are

determined by the characteristics of the recommendation list as a whole.

Research works that are based on recorded user activity logs have ad-

ditional limitations. In particular, it is not clear for datasets that are

obtained, e.g., from Last.fm, to which extent the users’ listening activity is

“natural” in the sense that the users selected one track after the other when

listening. In reality, larger parts of log entries might be the result of the

existing “radio” service of the platform. Evaluating algorithms in terms of

predicting the next track in the log then amounts to predicting what the

existing recommendation service would play. Also, in some datasets, we can

observe that users listen to entire albums and the sequence of the tracks

then often corresponds to the order of the tracks on the album. Predicting

the next track is then comparably trivial and an algorithm that is capable

of detecting album listening sessions will achieve high prediction accuracy

values for these cases.

Offline evaluation approaches have their limitations, as discussed above,

in particular as it is not always clear if the chosen computational metrics are

October 23, 2018 16:26 ws-rv9x6-9x6 Book Title 11131-15 page 511

Music Recommendations 511

good estimators of (a) the quality perception of users and (b) of the business

success of the recommendation service. User studies on music recommen-

dation approaches are comparably rare. Examples of such studies can be

found in [Barrington et al. (2009)] and, more recently, in [Kamehkhosh and

Jannach (2017)] and [Kamehkhosh et al. (2018)]. In particular, the work

presented in [Kamehkhosh and Jannach (2017)] indicated that using hand-

crafted playlists can represent a reasonable “gold standard” for evaluating

playlist generation techniques. The work, however, also revealed potential

limitations of user studies in terms of familiarity effects, i.e., users prefer

recommendations when they contain tracks they already know.

15.5. Lessons Learned, Open Challenges, and Outlook

Collaborative filtering based recommendations are nowadays a common

functionality on several music platforms. And, as described in the chapter,

at least some of these platforms rely on elaborate algorithms, e.g., based

on matrix factorization, to create personalized recommendations.

Several challenges of building such recommendation services have been

discussed throughout the chapter, including in particular the problems of

scalability, the importance of considering short-term trends, or the general

problem of finding good proxy measures for offline evaluation scenarios.

Pure collaborative filtering approaches, in general, have a number of

limitations and this applies also for the music domain, where we for ex-

ample have the phenomenon that constantly new items are available on

the platform. To recommend such items, relying on “content” information

(e.g., musical signals, metadata, lyrics) is a viable approach to assess the

relevance of new tracks for individual users. How to combine the multitude

of different signals in the best possible way in hybrid recommendation tech-

niques is in our view an area which requires additional research. Recently,

Jannach et al. (2017) investigated the use of rich user models that combine

collaborative filtering techniques with such content information and social

information, showing that considering all of these signals can be beneficial.

This work was based only on a very limited set of musical features and sim-

ple weighting schemes. More elaborate approaches to derive and process

a variety of signals, e.g., based on deep learning approaches, already exist

today and should be further explored in the future [van den Oord et al.

(2013); Wang et al. (2015); Hidasi et al. (2016b)].

Another music recommendation scenario that is not fully investigated

in the literature is group-based music recommendation. Consider, for

October 23, 2018 16:26 ws-rv9x6-9x6 Book Title 11131-15 page 512

512 D. Jannach, I. Kamehkhosh and G. Bonnin

example, playlist creation for a party or music selection in public places. In

such scenarios, the recommended items are consumed by a group of listeners

rather than by individuals and the recommendations should, therefore, sat-

isfy the entire group as a whole. Generally, group-based recommendation

strategies either aggregate individual user models to build a group pro-

file, or aggregate individual predictions for users to generate group-based

recommendations [Berkovsky and Freyne (2010)].

More research is also required in terms of understanding which factors

influence the quality perception by users. A number of questions are open

in that context, for example: How much diversity, e.g., in terms of artists or

genres, is appropriate? To which extent is the diversity level depending on

the current user’s context, e.g., mood? How do we quantify diversity with a

computational metric and how do we know that the computational metric

corresponds to the user’s quality perception? How problematic are “bad”

recommendations — can the recommendation of one or a few unsuitable

items have a significant negative effect on the acceptance of the service?17

Finally, many of the mentioned quality factors can depend on the user’s

current context. Limited research exists on the contextualization of recom-

mendations, see, for instance, [Hariri et al. (2012)] or [Kapoor et al. (2015)],

which mainly try to derive the user’s context and short-term preferences

from their behavior. So far, to the best of our knowledge, only the In-

CarMusic dataset [Baltrunas et al. (2011)] contains additional information

about the users’ context.

References

Adomavicius, G. and Kwon, Y. (2012). Improving Aggregate Recommendation
Diversity Using Ranking-Based Techniques, IEEE TKDE 24, 5, pp. 896–
911.

Anderson, A., Kumar, R., Tomkins, A. and Vassilvitskii, S. (2014). The Dynamics
of Repeat Consumption, in WWW ’14, pp. 419–430.

Bachrach, Y., Finkelstein, Y., Gilad-Bachrach, R., Katzir, L., Koenigstein, N.,
Nice, N. and Paquet, U. (2014). Speeding Up the Xbox Recommender Sys-
tem Using a Euclidean Transformation for Inner-Product Spaces, in RecSys
’14, pp. 257–264.

Balkema, W. and van der Heijden, F. (2010). Music Playlist Generation by As-
similating GMMs into SOMs, Pattern Recognition Letters 31, 11, pp. 1396–
1402.

17See [Chau et al. (2013)] for a user study on the topic of bad recommendations.

October 23, 2018 16:26 ws-rv9x6-9x6 Book Title 11131-15 page 513

Music Recommendations 513

Baltrunas, L., Kaminskas, M., Ludwig, B., Moling, O., Ricci, F., Aydin, A.,
Lüke, K.-H. and Schwaiger, R. (2011). InCarMusic: Context-Aware Music
Recommendations in a Car, in EC-Web ’11, pp. 89–100.

Barrington, L., Oda, R. and Lanckriet, G. R. G. (2009). Smarter than Genius?
Human Evaluation of Music Recommender Systems, in ISMIR ’09, pp. 357–
362.

Berkovsky, S. and Freyne, J. (2010). Group-based Recipe Recommendations:
Analysis of Data Aggregation Strategies, in RecSys ’10, pp. 111–118.

Bernhardsson, E. (2013). Music Recommendations at Spotify, Online
https://de.slideshare.net/erikbern/

collaborative-filtering-at-spotify-16182818.
Bernhardsson, E. (2014). Recurrent Neural Networks for Collaborative

Filtering, Online
https://erikbern.com/2014/06/28/

recurrent-neural-networks-for-collaborative-filtering.html.
Bernhardsson, E. (2015). Approximate Nearest Neighbor Methods and Vector

Models, Online
https://de.slideshare.net/erikbern/approximate-nearest-neighbor-
methods-and-vector-models-nyc-ml-meetup.

Bernhardsson, E. (2017). Conversion Rates — You Are (Most Likely)
Computing Them Wrong, Online https://erikbern.com/2017/05/23/

conversion-rates-you-are-most-likely-computing-them-wrong.html.
Bertin-Mahieux, T., Ellis, D. P., Whitman, B. and Lamere, P. (2011). The Million

Song Dataset, in ISMIR ’11, pp. 591–596.
Bieschke, E. (2014). Pandora, presentation at MLconf2013, Online https://de.

slideshare.net/SessionsEvents/eric-bieschke-slides.
Bonnin, G. and Jannach, D. (2013). Evaluating the Quality of Generated Playlists

Based on Hand-Crafted Samples, in ISMIR ’13, pp. 263–268.
Bonnin, G. and Jannach, D. (2014). Automated Generation of Music Playlists:

Survey and Experiments, Computing Surveys 47, 2, pp. 26:1–26:35.
Bradley, K. and Smyth, B. (2001). Improving Recommendation Diversity, in AICS

’01, pp. 75–84.
Cai, R., Zhang, C., Zhang, L. and Ma, W.-Y. (2007). Scalable Music Recommen-

dation by Search, in MM ’07, pp. 1065–1074.
Casey, M. A., Veltkamp, R., Goto, M., Leman, M., Rhodes, C. and Slaney, M.

(2008). Content-Based Music Information Retrieval: Current Directions
and Future Challenges, Proceedings of the IEEE 96, 4, pp. 668–696.

Celma, Ò. (2010). Music Recommendation and Discovery in the Long Tail
(Springer).

Celma, O. and Cano, P. (2008). From hits to niches?: Or How Popular Artists can
Bias Music Recommendation and Discovery, in NETFLIX ’08, pp. 5:1–5:8.

Chau, P. Y. K., Ho, S. Y., Ho, K. K. W. and Yao, Y. (2013). Examining the
Effects of Malfunctioning Personalized Services on Online Users’ Distrust
and Behaviors, Decision Support Systems 56, pp. 180–191.

Chen, C.-M., Tsai, M.-F., Lin, Y.-C. and Yang, Y.-H. (2016). Query-based Music
Recommendations via Preference Embedding, in RecSys ’16, pp. 79–82.

https://de.slideshare.net/erikbern/collaborative-filtering-at-spotify-16182818
https://de.slideshare.net/erikbern/collaborative-filtering-at-spotify-16182818
https://erikbern.com/2014/06/28/recurrent-neural-networks-for-collaborative-filtering.html
https://erikbern.com/2014/06/28/recurrent-neural-networks-for-collaborative-filtering.html
https://de.slideshare.net/erikbern/approximate-nearest-neighbor-methods-and-vector-models-nyc-ml-meetup
https://de.slideshare.net/erikbern/approximate-nearest-neighbor-methods-and-vector-models-nyc-ml-meetup
https://erikbern.com/2017/05/23/conversion-rates-you-are-most-likely-computing-them-wrong.html
https://erikbern.com/2017/05/23/conversion-rates-you-are-most-likely-computing-them-wrong.html
https://de.slideshare.net/SessionsEvents/eric-bieschke-slides
https://de.slideshare.net/SessionsEvents/eric-bieschke-slides

October 23, 2018 16:26 ws-rv9x6-9x6 Book Title 11131-15 page 514

514 D. Jannach, I. Kamehkhosh and G. Bonnin

Cliff, D. (2006). hpDJ: An Automated DJ with Floorshow Feedback, in Consum-
ing Music Together, pp. 241–264.

Dias, R. and Fonseca, M. J. (2013). Improving Music Recommendation in Session-
Based Collaborative Filtering by Using Temporal Context, in ICTAI ’13,
pp. 783–788.

Ekelund, R. B., Ford, G. S. and Koutsky, T. (2000). Market Power in Radio
Markets: An Empirical Analysis of Local and National Concentration, The
Journal of Law and Economics 43, 1, pp. 157–184.

Flexer, A., Schnitzer, D., Gasser, M. and Widmer, G. (2008). Playlist Generation
Using Start and End Songs, in ISMIR ’08, pp. 173–178.

Germain, A. and Chakareski, J. (2013). Spotify Me: Facebook-Assisted Auto-
matic Playlist Generation, in MMSP ’13, pp. 25–28.

Gomez-Uribe, C. A. and Hunt, N. (2015). The Netflix Recommender System:
Algorithms, Business Value, and Innovation, Transactions on Management
Information Systems 6, 4, pp. 13:1–13:19.

Hariri, N., Mobasher, B. and Burke, R. (2012). Context-Aware Music Recommen-
dation Based on Latent Topic Sequential Patterns, in RecSys ’12, pp. 131–
138.

Hartono, P. and Yoshitake, R. (2013). Automatic Playlist Generation from Self-
Organizing Music Map, Journal of Signal Processing 17, 1, pp. 11–19.

Hauger, D., Schedl, M., Kosir, A. and Tkalcic, M. (2013). The Million Musical
Tweet Dataset - What We Can Learn From Microblogs, in ISMIR ’13,
pp. 189–194.

Hidasi, B. and Karatzoglou, A. (2017). Recurrent Neural Networks with Top-k
Gains for Session-based Recommendations, CoRR abs/1706.03847.

Hidasi, B., Karatzoglou, A., Baltrunas, L. and Tikk, D. (2016a). Session-based
Recommendations with Recurrent Neural Networks, in ICLR ’16.

Hidasi, B., Quadrana, M., Karatzoglou, A. and Tikk, D. (2016b). Parallel Recur-
rent Neural Network Architectures for Feature-rich Session-based Recom-
mendations, in RecSys ’16, pp. 241–248.

Hinton, G. E., Osindero, S. and Teh, Y.-W. (2006). A Fast Learning Algorithm
for Deep Belief Nets, Neural Computation 18, 7, pp. 1527–1554.

Hu, Y., Koren, Y. and Volinsky, C. (2008). Collaborative Filtering for Implicit
Feedback Datasets, in ICDM ’08, pp. 263–272.

Jannach, D. and Adomavicius, G. (2016). Recommendations with a Purpose, in
RecSys ’16, pp. 7–10.

Jannach, D., Kamehkhosh, I. and Bonnin, G. (2016). Biases in Automated Music
Playlist Generation, in UMAP ’16, pp. 281–285.

Jannach, D., Kamehkhosh, I. and Lerche, L. (2017). Leveraging Multi-
Dimensional User Models for Personalized Next-Track Music Recommen-
dation, in SAC ’17, pp. 1635–1642.

Jannach, D., Lerche, L. and Kamehkhosh, I. (2015). Beyond “Hitting the Hits” –
Generating Coherent Music Playlist Continuations with the Right Tracks,
in RecSys ’15, pp. 187–194.

Jannach, D. and Ludewig, M. (2017). When Recurrent Neural Networks meet the
Neighborhood for Session-Based Recommendation, in RecSys ’17, pp. 306–
310.

October 23, 2018 16:26 ws-rv9x6-9x6 Book Title 11131-15 page 515

Music Recommendations 515

Jawaheer, G., Szomszor, M. and Kostkova, P. (2010). Comparison of Implicit
and Explicit Feedback from an Online Music Recommendation Service, in
Workshop on information heterogeneity and fusion in recommender sys-
tems, pp. 47–51.

Johnson, C. (2014). Algorithmic Music Discovery at Spotify, Online
https://de.slideshare.net/MrChrisJohnson/

algorithmic-music-recommendations-at-spotify.
Johnson, C. and Newett, E. (2014). From Idea to Execution: Spotify’s

Discover Weekly, Online https://de.slideshare.net/MrChrisJohnson/

from-idea-to-execution-spotifys-discover-weekly/12-Insight_

users_spending_more_time.
Jugovac, M. and Jannach, D. (2017). Interacting with Recommenders —

Overview and Research Directions, ACM Transactions on Intelligent In-
teractive Systems (ACM TiiS) 7.

Jugovac, M., Jannach, D. and Lerche, L. (2017). Efficient Optimization of Mul-
tiple Recommendation Quality Factors According to Individual User Ten-
dencies, Expert Systems With Applications 81, pp. 321–331.

Jylhä, A., Serafin, S. and Erkut, C. (2012). Rhythmic Walking Interactions with
Auditory Feedback: an Exploratory Study, in AM ’12, pp. 68–75.

Kamalzadeh, M., Baur, D. and Möller, T. (2012). A Survey on Music Listening
and Management Behaviours, in ISMIR ’12, pp. 373–378.

Kamehkhosh, I. and Jannach, D. (2017). User Perception of Next-Track Music
Recommendations, in UMAP ’17, pp. 113–121.

Kamehkhosh, I., Jannach, D. and Bonnin, G. (2018). How Automated Recom-
mendations Affect the Playlist Creation Behavior of Users, in Proceedings
of the Workshop on Intelligent Music Interfaces for Listening and Creation
at IUI ’18.

Kamehkhosh, I., Jannach, D. and Ludewig, M. (2017). A Comparison of Fre-
quent Pattern Techniques and a Deep Learning Method for Session-Based
Recommendation, in Workshop on Temporal Reasoning in Recommender
Systems at RecSys ’17, pp. 50–56.

Kapoor, K., Kumar, V., Terveen, L., Konstan, J. A. and Schrater, P. (2015). “I
Like to Explore Sometimes”: Adapting to Dynamic User Novelty Prefer-
ences, in RecSys ’15, pp. 19–26.

Koren, Y. (2008). Factorization Meets the Neighborhood: A Multifaceted Col-
laborative Filtering Model, in KDD ’08, pp. 426–434.

Lamere, P. and Celma, O. (2011). Music Recommendation and Discovery
Remastered, Tutorial at ACM RecSys 2011, Online
https://musicmachinery.com/2011/10/24/

music-recommendation-and-discovery-remastered-a-tutorial/.
Lee, J. H., Bare, B. and Meek, G. (2011). How Similar Is Too Similar?: Explor-

ing Users’ Perceptions of Similarity in Playlist Evaluation, in ISMIR ’11,
pp. 109–114.

Leskovec, J., Adamic, L. A. and Huberman, B. A. (2007). The Dynamics of Viral
Marketing, ACM Trans. Web 1, 1.

Logan, B. (2002). Content-Based Playlist Generation: Exploratory Experiments,
in ISMIR ’02, pp. 295–296.

https://de.slideshare.net/MrChrisJohnson/algorithmic-music-recommendations-at-spotify
https://de.slideshare.net/MrChrisJohnson/algorithmic-music-recommendations-at-spotify
https://de.slideshare.net/MrChrisJohnson/from-idea-to-execution-spotifys-discover-weekly/12-Insight_users_spending_more_time
https://de.slideshare.net/MrChrisJohnson/from-idea-to-execution-spotifys-discover-weekly/12-Insight_users_spending_more_time
https://de.slideshare.net/MrChrisJohnson/from-idea-to-execution-spotifys-discover-weekly/12-Insight_users_spending_more_time
https://musicmachinery.com/2011/10/24/music-recommendation-and-discovery-remastered-a-tutorial/
https://musicmachinery.com/2011/10/24/music-recommendation-and-discovery-remastered-a-tutorial/

October 23, 2018 16:26 ws-rv9x6-9x6 Book Title 11131-15 page 516

516 D. Jannach, I. Kamehkhosh and G. Bonnin

Loni, B., Pagano, R., Larson, M. and Hanjalic, A. (2016). Bayesian Personal-
ized Ranking with Multi-Channel User Feedback, in RecSys ’16 (ACM),
pp. 361–364.

Ludewig, M. and Jannach, D. (2018). Evaluation of Session-Based Recommena-
tion Algorithms, arXiv:1803.09587 [cs.IR], https://arxiv.org/abs/1803.
09587.

Mcfee, B. and Lanckriet, G. (2011). The Natural Language of Playlists, in ISMIR
’11, pp. 537–541.

McFee, B. and Lanckriet, G. R. (2012). Hypergraph Models of Playlist Dialects,
in ISMIR ’12, pp. 343–348.

Moens, B., van Noorden, L. and Leman, M. (2010). D-Jogger: Syncing Music
With Walking, in SMC ’10.

Moling, O., Baltrunas, L. and Ricci, F. (2012). Optimal Radio Channel Recom-
mendations with Explicit and Implicit Feedback, in RecSys ’12, pp. 75–82.

Moore, J. L., Chen, S., Joachims, T. and Turnbull, D. (2012). Learning to Embed
Songs and Tags for Playlist Prediction, in ISMIR ’12, pp. 349–354.

Müller, M. (2015). Fundamentals of Music Processing: Audio, Analysis, Al-
gorithms, Applications (Springer International Publishing), doi:10.1007/
978-3-319-21945-5.

Oh, J., Park, S., Yu, H., Song, M. and Park, S. (2011). Novel Recommendation
Based on Personal Popularity Tendency, in ICDM ’11, pp. 507–516.

Oliver, N. and Flores-Mangas, F. (2006). MPTrain: A Mobile, Music and
Physiology-Based Personal Trainer, in MobileHCI ’06, pp. 21–28.

Omohundro, S. M. (1989). Five Balltree Construction Algorithms, Tech. rep.,
International Computer Science Institute, Berkeley, California.

Pálovics, R., Benczúr, A. A., Kocsis, L., Kiss, T. and Frigó, E. (2014). Exploiting
Temporal Influence in Online Recommendation, in ACM ’14, pp. 273–280.

Park, S. E., Lee, S. and Lee, S.-G. (2011). Session-Based Collaborative Filtering
for Predicting the Next Song, in CNSI ’11, pp. 353–358.

Pauws, S., Verhaegh, W. and Vossen, M. (2008). Music Playlist Generation by
Adapted Simulated Annealing, Information Sciences 178, 3, pp. 647–662.

Popescu, G. and Pu, P. (2012). What’s the Best Music You Have?: Designing
Music Recommendation for Group Enjoyment in Groupfun, in CHI ’12,
pp. 1673–1678.

Puthiya Parambath, S. A., Usunier, N. and Grandvalet, Y. (2016). A Coverage-
Based Approach to Recommendation Diversity On Similarity Graph, in
RecSys ’16, pp. 15–22.

Quadrana, M., Cremonesi, P. and Jannach, D. (2018). Sequence-Aware Recom-
mender Systems, ACM Computing Surveys.

Rendle, S., Freudenthaler, C. and Schmidt-Thieme, L. (2010). Factorizing Per-
sonalized Markov Chains for Next-basket Recommendation, in WWW ’10,
pp. 811–820.

Ribeiro, M. T., Ziviani, N., Moura, E. S. D., Hata, I., Lacerda, A. and Veloso,
A. (2014). Multiobjective Pareto-Efficient Approaches for Recommender
Systems, ACM Transactions on Intelligent Systems and Technology 5, 4,
pp. 1–20.

https://arxiv.org/abs/1803.09587
https://arxiv.org/abs/1803.09587

October 23, 2018 16:26 ws-rv9x6-9x6 Book Title 11131-15 page 517

Music Recommendations 517

Salakhutdinov, R. and Mnih, A. (2007). Probabilistic Matrix Factorization,
in Advances in Neural Information Processing Systems 20, Proceedings
of the Twenty-First Annual Conference on Neural Information Process-
ing Systems, Vancouver, British Columbia, Canada, December 3-6, 2007,
pp. 1257–1264.

Sarroff, A. M. and Casey, M. (2012). Modeling and Predicting Song Adjacencies
In Commercial Albums, in SMC ’12.

Shardanand, U. and Maes, P. (1995). Social Information Filtering: Algorithms
for Automating “Word of Mouth”, in CHI ’95, pp. 210–217.

Shi, Y., Zhao, X., Wang, J., Larson, M. and Hanjalic, A. (2012). Adaptive Di-
versification of Recommendation Results via Latent Factor Portfolio, in
SIGIR’12, pp. 175–184.

Slaney, M. and White, W. (2006). Measuring Playlist Diversity for Recommen-
dation Systems, in AMCMM ’06, pp. 77–82.

Steck, H., von Zwol, R. and Johnson, C. (2015). Interactive Recom-
mender Systems, Online https://de.slideshare.net/MrChrisJohnson/

interactive-recommender-systems-with-netflix-and-spotify.
Su, J.-H., Yeh, H.-H., Yu, P. S. and Tseng, V. S. (2010). Music Recommendation

Using Content and Context Information Mining, IEEE Intelligent Systems
25, 1, pp. 16–26.

Turrin, R., Quadrana, M., Condorelli, A., Pagano, R. and Cremonesi, P. (2015).
30Music Listening and Playlists Dataset, in RecSys ’15 Posters.

van den Oord, A., Dieleman, S. and Schrauwen, B. (2013). Deep Content-Based
Music Recommendation, in NIPS ’13, pp. 2643–2651.

Vargas, S. and Castells, P. (2011). Rank and Relevance in Novelty and Diversity
Metrics for Recommender Systems, in RecSys ’11, pp. 109–116.

Vasile, F., Smirnova, E. and Conneau, A. (2016). Meta-Prod2Vec: Product
Embeddings Using Side-Information for Recommendation, in RecSys ’16,
pp. 225–232.

Wang, H., Wang, N. and Yeung, D.-Y. (2015). Collaborative Deep Learning for
Recommender Systems, in KDD ’15, pp. 1235–1244.

Wang, X. and Wang, Y. (2014). Improving Content-based and Hybrid Music
Recommendation Using Deep Learning, in Proceedings of the 22Nd ACM
International Conference on Multimedia, MM ’14 (ACM, New York, NY,
USA), ISBN 978-1-4503-3063-3, pp. 627–636, doi:10.1145/2647868.2654940,
http://doi.acm.org/10.1145/2647868.2654940.

Weihs, C., Jannach, D., Vatolkin, I. and Rudolph, G. (eds.) (2016). Music Data
Analysis: Foundations and Applications (CRC Press).

Yoshii, K., Goto, M., Komatani, K., Ogata, T. and Okuno, H. G. (2006). Hy-
brid Collaborative and Content-Based Music Recommendation Using Prob-
abilistic Model with Latent User Preferences, in ISMIR ’06, pp. 296–301.

Zangerle, E., Pichl, M., Gassler, W. and Specht, G. (2014). #Nowplaying Music
Dataset: Extracting Listening Behavior from Twitter, in WISMM Work-
shop at MM ’14, pp. 21–26.

Zhang, M. and Hurley, N. (2008). Avoiding Monotony: Improving the Diversity
of Recommendation Lists, in RecSys ’08, pp. 123–130.

https://de.slideshare.net/MrChrisJohnson/interactive-recommender-systems-with-netflix-and-spotify
https://de.slideshare.net/MrChrisJohnson/interactive-recommender-systems-with-netflix-and-spotify
http://doi.acm.org/10.1145/2647868.2654940

October 23, 2018 16:26 ws-rv9x6-9x6 Book Title 11131-15 page 518

518 D. Jannach, I. Kamehkhosh and G. Bonnin

Zhang, Y. C., Séaghdha, D. O., Quercia, D. and Jambor, T. (2012). Auralist: In-
troducing Serendipity into Music Recommendation, in WSDM ’12, pp. 13–
22.

Zhou, Y., Wilkinson, D., Schreiber, R. and Pan, R. (2008). Large-Scale Parallel
Collaborative Filtering for the Netflix Prize, in AAIM ’08, pp. 337–348.

Ziegler, C.-N., McNee, S. M., Konstan, J. A. and Lausen, G. (2005). Improv-
ing Recommendation Lists Through Topic Diversification, in WWW ’05,
pp. 22–32.

519

Chapter 16

Contact Recommendations in Social Networks

Javier Sanz-Cruzado and Pablo Castells

Universidad Autónoma de Madrid,
Avda. Francisco Tomás y Valiente 11, 28049 Spain,

javier.sanz-cruzado@uam.es, pablo.castells@uam.es

The increasingly fast development and expansion of recommender systems
technology over the last two and a half decades, along with the exponential
growth of online social networks in the last few years, has given place to the
concurrence of the two areas in several directions. The present chapter focuses
on a specific area within this confluence: the recommendation of people to
connect with in social networks. We analyze the specifics of contact suggestion
as a very particular recommendation task, where both the target users and the
target items are people. We give an overview of the most relevant state of the art
algorithms in this area, including methods that were originally developed with
slightly different problems in mind. We present a global empirical comparison
of the reviewed algorithms in order to get a perspective of their comparative
performance. We conclude discussing future possible directions for research and
development in this area.

16.1. Introduction

The increasingly fast development and expansion of recommender
systems technology over the last two and a half decades, along with the
massive growth of online social networks in the last few years, has given
place to the concurrence of the two areas in several directions. Most
commercial social platforms today incorporate automatic friend
suggestions functionalities of some sort [25], and link recommendation is
now a widely addressed research topic in recommender systems and
network science [30,48,52]. Research in different fields has been
developed somewhat independently though, and the equivalence or

520 J. Sanz-Cruzado and P. Castells

nuances in solutions and problem statements may not have always been
obvious.

The problem of finding suitable links to add to a social network (or any
complex network for that matter) can be traced back to the early work on
network growth models [8], the purpose of which is to understand (model,
predict) how a complex network may form and develop globally, to
acquire specific shapes and properties. Suitable link in that context would
mean to be an as good match of reality as possible, in terms of the resulting
network structures and characteristics. Later on link prediction took shape
as a more specific problem in its own [48], where guessing the right
individual edges mattered, the purpose being to uncover, as accurately as
possible, specific links that were present but unobserved in a network, or
would eventually form as the network evolves. The problem took on new
and more consequential meaning with the emergence of massive online
networks, along with the continued blooming of recommender system
technologies, where link prediction could turn a more direct attention
towards the users involved in the predicted edges, and what the new edge
may signify particularly for them from a personalized recommendation
perspective [5].

This chapter gives an overview of current advances in the area of
contact recommendation in social networks, aiming to provide a
comprehensive and integrative perspective of the area. After briefly
discussing the nature of the problem in a broader context, we provide a
wide overview of the most relevant state of the art algorithms, including
methods that were originally developed with slightly different problems in
mind, but which can be straightforwardly applied in a recommendation
task. In order to get a perspective of their comparative performance, we
present a global empirical comparison of the reviewed algorithms.

16.2. The Contact Recommendation Task

Contact recommendation in online social networks aims to help people
enhance their social connectivity in a number of ways. It may help speed
up the process of transferring already existing offline relationships to an
online social platform. It may also point users towards people they do not

 Contact Recommendations in Social Networks 521

necessarily know, or had forgotten about, but may wish to establish contact
with. In general, the aim of recommending people can be to find
relationships that a) already exist, b) would form naturally in the future, or
c) may form as a consequence of the recommendation [16]. These
distinctions shall not make a particular difference as far as our analysis and
description of methods go, at the level of generality we shall address them
in the present chapter. It is useful to keep the distinction in mind though
as to the potential use and example applications of the discussed
techniques.

Figure 16.1. Relationship between the relevant areas.

Table 16.1. Specifics of the related tasks.

Suggests

Assumes a
social network

Primary task type

Social recommendation Items or people Yes Ranking
People recommendation People No Ranking
Link prediction Links in a graph Yes Classification
Contact recommendation People Yes Ranking

Contact recommendation has close links to related tasks and notions,

which we start by discussing here. We illustrate these relationships in
Figure 16.1, in our own proposed perspective, and summarize some main
aspects in Table 16.1. As a recommender system task, contact
recommendation is a quite peculiar particular case, where the users and
the items are exactly the same set — in other words, the graph defined by
the rating matrix is not bipartite. Ratings represent explicit or implicit
interactions of some form between users. Interactions can consist of

People
recommendation

Contact
recommendation

Link
prediction

Social
recommendation

522 J. Sanz-Cruzado and P. Castells

actions such as the formation of stable social ties (friendship, following,
etc.), the direct exchange of data or information (directed messages),
indirect interaction on user-authored content (liking, forwarding, etc.), and
so forth. The inter-user ties in the social network can have arbitrarily rich
associated information (tie type, timestamps, exchanged content, etc.).

As a general functionality, people recommendation can be conceived
without the presence of a social network, as in e.g. expert recommendation
[56] or online dating [21,41,66,67]. Reciprocally, it also makes sense to
recommend other things than people in a social environment, such as
posts, events, groups, or any other entity users interact with in the social
platform (see [30] for an extensive review of recommender systems in
social media). If we define social recommendation as any recommendation
approach that uses specific data structures derived from direct interaction
between users [75], then contact recommendation can be seen as the
intersection of people recommendation and social recommendation.

A classic and tightly related, almost equivalent problem to contact
recommendation is that of link prediction [48]. One clear difference
between both problems is that link prediction can be put forward in
complex networks that are not necessarily social, such as biological
networks [13,74]. Hence some link prediction problems are not contact
recommendation problems. Other than this, the difference — whereby we
would not consider contact recommendation as just a subset of link
prediction — is rather subtle. On the one hand, link prediction, as the name
suggests, was originally aimed to find unobserved links that exist or will
form in the future [48]. There is nothing however that prevents from
applying the exact same prediction techniques (or close variations) to find
links that may not exist and never form spontaneously, but can be useful
for the involved people. Using this as a distinction from contact
recommendation would thus seem artificial. We might also distinguish the
tasks by their ultimate purpose and to whom the output is targeted: link
prediction aims to uncover hidden parts of a network, or predict how the
network will grow, whereas contact recommendation aims to satisfy or
help network users by suggesting them people to link to. This difference
seems more subjective than substantial, and it does not really change by
itself the problem statement or the design of solutions.

 Contact Recommendations in Social Networks 523

A subtle but somewhat more meaningful difference is that link
prediction is generally stated as a binary link classification problem,
whereas contact recommendation is rather a user ranking problem. A link
prediction method would essentially output two score values for each link,
representing the probability that the link belongs to the “exists” or the
“does not exist” classes (or “useful”, or whatever the specific goal is),
respectively. In the usual case, the scores have a global scope and define a
ranking of links by likelihood of belonging to the class of interest
(unobserved existing links). The scores can be processed in different ways
(thresholding, ranking, etc.) depending on the decision to be made: advise
the most likely case (exists or does not exist) for each link, select the most
likely unobserved links that may exist in the network, etc.

In contrast, the output of a contact recommender is essentially a set of
recommended user rankings (one for each target user). It is always
possible to use a global link prediction ranking to produce a set of
recommended user rankings,a but the reverse is not necessarily true — the
local ranking scores, returned by a contact recommender for a given target
user, commonly involve monotonic, rank-preserving transformations (e.g.
removal of constants) that depend on the target user, so that merging the
recommendations into a global link ranking would generally not make
appropriate sense. To this extent we may consider that link prediction
methods, when applied to people in social networks, are simply
(equivalent to) a subset of contact recommendation methods, but the
reverse is not true. The relation between contact recommendation and link
prediction is comparable to the relation between information retrieval (IR)
and binary classification: a document classifier into the relevant and not
relevant classes given a query can be used as an IR system by ranking the
documents by decreasing classifier score for the relevant class for each
query. But the rankings of an IR system may not provide an immediate
basis to make a decision as to which documents are relevant for which
queries — it depends on how the IR scores are elaborated, and whether
they make global sense over different queries.

aTheoretically, a classification method might apply monotonic transformations on its
scoring function for a fixed link (e.g. removal of the prior link probability in Naïve Bayes)
thereby losing a global meaning, but such transformations are generally optional and not
strictly required by the method.

524 J. Sanz-Cruzado and P. Castells

16.3. Contact Recommendation Algorithms

From a recommender system point of view, contact recommendation can
be seen as a standard problem where the set of items is equivalent to the
set of users, and the ratings matrix is the adjacency matrix of the social
network. In this perspective, state of the art approaches such as
neighborhood-based methods or matrix factorization algorithms could be
used straightforwardly to recommend people in social networks. However,
since social networks are a quite distinctive application domain, people
recommendation has been addressed by quite particular perspectives,
leading to a wide variety of specialized algorithms. In this section, we
review some of the most notable approaches. Figure 6.2 shows a summary
of the algorithms introduced in the next sections and their taxonomy.

Throughout the rest of this chapter we shall use the following notation.
We denote by 𝒢 ൌ 〈𝒰, 𝐸〉 the graph structure of a social network, where
𝒰 is the set of users in the network, and 𝐸 ⊂ 𝒰∗

ଶ represents the relations
between the users.b For each user 𝑢 ∈ 𝒰, we denote by Γሺ𝑢ሻ ⊂ 𝒰 the set
of people the user is connected to in the network. Given a target user 𝑢 ∈
𝒰, the contact recommendation task consists then in finding the people
that 𝑢 may find most benefit in connecting to. The recommendation
generally consists of a ranked subset of 𝒰 ∖ Γሺ𝑢ሻ. The ranking can be
equivalently represented as a scoring function 𝑓௨: 𝒰 ∖ Γሺ𝑢ሻ → ℝ, the
values of which induce an order (by decreasing score value) over the
candidate users.

bWe use the shortcut notation 𝒰∗

ଶ to refer to the pairs of different users, i.e. 𝒰∗
ଶ ൌ 𝒰ଶ ∖

ሼሺ𝑢, 𝑢ሻ ∈ 𝒰ଶ | 𝑢 ∈ 𝒰ሽ.

 Contact Recommendations in Social Networks 525

526 J. Sanz-Cruzado and P. Castells

16.3.1. Neighborhood-based methods

Contact recommendation algorithms within this category consider that the
most informative elements in the network for predicting new links are the
sets of neighbors of the two endpoints of the candidate links. Many
algorithms have been developed in the field that can be classed in this
category, a representative set of which we describe next.

Preferential attachment. This algorithm takes the preferential attachment
phenomenon [8] as a model for prediction. The idea is that if a network
evolves following a certain growth model, new links can be accurately
predicted based on the model. The preferential attachment model has been
observed as a trend in many real networks, where nodes connect to nodes
with high degree (more specifically, neighbors are selected by new nodes
with proportional probability to their degree). Accordingly, a link
prediction algorithm can be defined considering that a link between two
nodes is most likely to appear when both have a large degree [48]. That
principle motivates the following mathematical formulation for the score:

𝑓௨ሺ𝑣ሻ ൌ |Γሺ𝑢ሻ||Γሺ𝑣ሻ|

When used as a contact recommendation method, 𝑓௨ሺ𝑣ሻ ∝ |Γሺ𝑣ሻ|
ranks the recommended contacts by decreasing degree, and amounts to a
plain non-personalized popularity-based recommendation, which can also
be read as ranking recommended contacts by the prior probability that a
random person is connected to the candidate contact. The method is rather
trivial but still achieves a basic effectiveness level that makes it suitable as
a sanity-check baseline, or even a minimum-cost recommendation
approach in commercial applications [4].

Most common neighbors (MCN). This simple method recommends the
users with the highest number of common neighbors with the target user
[61]:

𝑓௨ሺ𝑣ሻ ൌ |Γሺ𝑢ሻ ∩ Γሺ𝑣ሻ|

The ranking function here can be read as rank-equivalent to the (joint
or, rank-equivalently, conditional) probability that a neighbor of the target
user is a common neighbor with the candidate user.

 Contact Recommendations in Social Networks 527

Though the previous formula is straightforward for undirected
networks, directed networks admit different particularizations for the
directionality of the neighborhoods, which can be taken as: the set of users
that follow the user (which we will denote as Γ୧୬ሺ𝑢ሻሻ, the set of people the
user follows, Γ୭୳୲ሺ𝑢ሻ, or the union of both, Γ୳୬ୢሺ𝑢ሻ ൌ Γ୧୬ሺ𝑢ሻ ∪ Γ୭୳୲ሺ𝑢ሻ.

Applying the principle of homophily, i.e. considering that new bonds
are more likely to be created between similar people [57], Golder et al.
[26] considered two different variations of this algorithm: recommending
users who share interests with the target user i.e. people with common
followees: 𝑓௨ሺ𝑣ሻ ൌ |Γ୭୳୲ሺ𝑢ሻ ∩ Γ୭୳୲ሺ𝑣ሻ|; and recommending users who
share audiences with the target user, i.e. people with common followers:
𝑓௨ሺ𝑣ሻ ൌ |Γ୧୬ሺ𝑢ሻ ∩ Γ୧୬ሺ𝑣ሻ|. In addition to the previous options, they
explore as an additional alternative recommending the followees’
followees of the target user, i.e. people at distance 2 from the target user:
𝑓௨ሺ𝑣ሻ ൌ |Γ୭୳୲ሺ𝑢ሻ ∩ Γ୧୬ሺ𝑣ሻ|.

Jaccard. In networks where the degree distribution is highly skewed, the
MCN algorithm tends to promote the most highly connected people (since
the probability that the target user shares common friends increases with
the number of connections of the candidate user), and hence the algorithm
becomes highly similar to preferential attachment recommendation.
Several approaches have been considered to mitigate this effect. The best-
known is the Jaccard coefficient [36,48,70], which measures the
probability that a random neighbor of the target or the candidate user is
common to both of them:

𝑓௨ሺ𝑣ሻ ൌ
|Γሺ𝑢ሻ ∩ Γሺ𝑣ሻ|
|Γሺ𝑢ሻ ∪ Γሺ𝑣ሻ|

Many other approaches have been proposed for normalizing the
common neighbor score, such as the Sørensen index [72], the local Leicht-
Holme-Newman index [44], Hub Promoted and Depressed indexes
[68,81] or the Salton index [70]. We omit them here, as they are very
similar in terms of formulation and performance.

528 J. Sanz-Cruzado and P. Castells

Figure 16.3. Resource allocation.

Adamic-Adar. This algorithm promotes users with a highly overlapping
friendship neighborhood to the target user [2,48], similarly to the common
neighbor methods. But differently from the latter, this approach gives
more importance to common friends with a low degree, as being in a way
more “unique” to both friendship circles than more popular people
who have a lower discriminative power in comparing overlapping
neighborhoods. The formula for this method is the following:

𝑓௨ሺ𝑣ሻ ൌ
1

log|Γሺ𝑤ሻ|
௪∈ሺ௨ሻ∩ሺ௩ሻ

which amounts to counting common neighbors, weighted by the inverse
of the neighbor popularity, with the logarithm as a damping function to
modulate the penalization of highly connected common neighbors.

Resource allocation. This method [81] takes inspiration in physical
processes involving the distribution of finite resources through a social
network. Consider that a person 𝑢 has a definite amount of a certain
resource, and he wants to spread it through the network. This resource is
impossible to copy, so it is divided into equal parts, each of which is
distributed to a single neighbor, who repeats the process. Then one may
want to know the fraction of the initial resource that arrives to the
candidate user in two steps. Figure 16.3 illustrates this process in an
example, showing the fractions of the initial resource from person 𝑢 that

 Contact Recommendations in Social Networks 529

reach each user in the network after two steps. Based on this metaphor, a
contact recommendation is defined where candidate users 𝑣 are ranked by
decreasing order of the amount of resource that each candidate will receive
from 𝑢 after two iterations:

𝑓௨ሺ𝑣ሻ ൌ
1

|Γሺ𝑢ሻ|

1
|Γሺ𝑤ሻ|

௪∈ሺ௨ሻ∩ሺ௩ሻ

Since 1 |Γሺ𝑢ሻ|⁄ is a constant that does not affect the ranking for a given
target user 𝑢, we can see that this approach is equivalent to Adamic-Adar
without the logarithmic damping, that is, highly popular common
neighbors will have a heavy penalization and hence have little effect on
the resulting recommendations.

16.3.2. Path-based methods

Expanding the vision of the recommendation algorithms to the full
network allows taking advantage of several graph properties which are
invisible at the local level, such as the existing paths between pairs of
nodes in the network. In this section, we introduce the most relevant path-
based methods.

Graph distance. Following the notion of small world network, in
which individuals are related by short chains [79], this algorithm ranks
recommended contacts by the inverse length of the shortest path between
the target user and the candidate contacts:

𝑓௨ሺ𝑣ሻ ൌ െ𝛿ሺ𝑢, 𝑣ሻ

where 𝛿ሺ𝑢, 𝑣ሻ denotes the shortest-path distance between 𝑢 and 𝑣.

Katz. The approach was originally proposed as a method for computing
the status of a node in a social graph [39], and later adopted as a method
for link prediction [48]. This method seeks to recommend the most densely
connected and proximate people to the target user by counting the number
of paths between the target and the candidates, exponentially damped by
the length of the path to give more importance to short paths. The most
general formulation is the following:

530 J. Sanz-Cruzado and P. Castells

𝑓௨ሺ𝑣ሻ ൌ 𝛽pathsሺ𝑢, 𝑣ሻ
ஶ

ୀଵ

where 𝛽 ∈ ሺ0,1ሻ penalizes for the path lengths (and ensures convergence
of the infinite sum), and pathsሺ𝑢, 𝑣ሻ represents the number of paths of
length 𝑙 between 𝑢 and 𝑣. An exact expression can be found by using the
properties of the adjacency matrix 𝐴 of the network. The 𝑛-th power of the
adjacency matrix 𝐴 has the number of paths of length 𝑛 between every
two nodes. Using this we can computing the sum as a geometric series,
and we get:

𝑓௨ሺ𝑣ሻ ൌ 𝛽𝐴௨௩

ஶ

ୀଵ

ൌ ሺሺ𝐼 െ 𝛽𝐴ሻିଵ െ 𝐼ሻ௨௩

The matrix inversion can be computed by numerical methods. It is also
possible to estimate a fair approximation of the infinite sum by summing
a few of the first summands, since the tail of the geometric series tends to
zero very fast.

A derivate index has also been proposed, called local path index [51]
that ignores paths of length 1. The expression for this index is the
following:

𝑓௨ሺ𝑣ሻ ൌ 𝛽

ୀ

pathsାଶሺ𝑢, 𝑣ሻ

where 𝑛 2 is the maximum length of the path.

Global Leicht-Holme-Newman index. This index was created as a
similarity measure between vertices in networks [44]. The measure is
based on the concept that two vertices are similar if their immediate
neighbors in the network are themselves similar.

The starting point of the algorithm is a generalized version of the Katz
formula, where each term 𝐴௨௩

 has its own weight 𝐶௨௩
 . This weight is the

inverse of the expected number of paths of length 𝑙 between 𝑢 and 𝑣 in a
configuration model [63]:

 Contact Recommendations in Social Networks 531

1

𝐶௨௩
 ൌ 𝔼ሾ𝐴௨௩

 ሿ ൌ
|Γሺ𝑢ሻ||Γሺ𝑣ሻ|

2𝑚
𝜆ଵ

ିଵ

where 𝑚 ൌ |𝐸| is the total number of links in the network, and 𝜆ଵ is the
principal eigenvalue of the adjacency matrix. This leads to the following
expression:

𝑓௨ሺ𝑣ሻ ൌ
2𝑚𝜆ଵ

|Γሺ𝑢ሻ||Γሺ𝑣ሻ|
ቈ൬𝐼 െ

𝜙
𝜆ଵ

𝐴൰
ିଵ

௨௩

where 𝜙 ∈ ሺ0,1ሻ is a free parameter that essentially controls how fast
similarity decays with distance in network paths (the lower 𝜙 the fastest
similarity decays).

16.3.3. Random walk methods

Social interactions can also be modeled by random walks. These methods
use transition probabilities between connected nodes to determine the
probability that a random walker is at a certain node of the network at a
random point in time.

Rooted PageRank. PageRank [12] exploits the network link structure to
generate scores for each network node. The score for a node u represents
the stationary probability of being in that node for a user who “walks”
randomly across the network edges. Originally proposed for ranking web
pages based on the hyperlink topology, it is one of the best-known random
walk algorithms.

The importance of a node relies on three factors: the number of nodes
that point to it, their importance, and the number of outgoing edges from
those nodes. If a node is linked to by a high number of nodes, the
importance of that node increases. The importance transmitted by an in-
link is recursively proportional to the importance of the link source.
Moreover, the importance transmitted by the link is equally divided and
distributed to the outgoing edges from the source. This leads to the
following recursive equation:

532 J. Sanz-Cruzado and P. Castells

𝑓௨ሺ𝑣ሻ ൌ
𝑟

|𝒰|
 ሺ1 െ 𝑟ሻ

𝑓௨ሺ𝑤ሻ
|Γ୭୳୲ሺ𝑤ሻ|

௪∈ሺ௩ሻ

ሺ1 െ 𝑟ሻ

|𝒰|
 𝑓௨ሺ𝑤ሻ

௪:|౫౪ሺ௪ሻ|ୀ

where 𝑟 is a parameter that represents the probability that the random
walker teleports to a random node (ignoring links). The rightmost term in
the equation helps handle the sinks in the network, ensuring that that
∑ 𝑓௨ሺ𝑤ሻ ൌ 1௪ . The values for each node are iteratively computed, using
the expression above.

We can easily realize that the resulting recommendation method is
non-personalized, since no information about the target user is taken into
account. It is however possible to personalize the algorithm in different
ways. Among many possibilities, the most common is probably the
approach proposed by White and Smith [80].

The personalized refinement is based on the teleport probability. In the
basic random walk version, every user can teleport to any node in the
network with uniform probability. In the personalized version, users can
only teleport to the target user. The effect derived from this variation is
that the importance of a node does not only depend on the link structure of
the network, but also on how near the node is to the target user (as the walk
is frequently reinitialized to the target user as a restarting point). The
resulting formula is the following:

𝑓௨ሺ𝑣ሻ ൌ 𝑟𝛿௨௩ ሺ1 െ 𝑟ሻ
𝑓௨ሺ𝑤ሻ

|Γ୭୳୲ሺ𝑤ሻ|
௪∈ሺ௩ሻ

 ሺ1 െ 𝑟ሻ𝛿௨௩ 𝑓௨ሺ𝑤ሻ
௪:|౫౪ሺ௪ሻ|ୀ

where 𝛿௫௬ is the Kronecker delta function (𝛿௫௬ ൌ 1 if 𝑥 ൌ 𝑦 and 𝛿௫௬ ൌ 0

if 𝑥 ് 𝑦). This algorithm has been used in link prediction under the name
of rooted PageRank [48], since the target user acts as a “root” of the
random walk.

Hitting time. Also known as mean first passage time, the hitting time from
a node 𝑢 to a node 𝑣 is the expected number of steps (or equivalently, the
expected time, if each step takes the same time) required for a random
walk starting at 𝑢 to reach node 𝑣:

 Contact Recommendations in Social Networks 533

𝐻ሺ𝑢, 𝑣ሻ ൌ 𝑡൫𝑝௨→௩ሺ𝑡ሻ െ 𝑝௨→௩ሺ𝑡 െ 1ሻ൯

ஶ

௧ୀ

where 𝑝௨→௩ሺ𝑡ሻ represents the probability of reaching 𝑣 starting from 𝑢 in
time smaller or equal to 𝑡. The hitting time can be used to recommend
people by ease of reach, that is, by inverse order of 𝐻ሺ𝑢, 𝑣ሻ:

𝑓௨ሺ𝑣ሻ ൌ െ𝐻ሺ𝑢, 𝑣ሻ

Another related measure for predicting links is called commute time,
and is defined as the expected time for the random walker to travel from
𝑢 to 𝑣 and returning from 𝑣 to 𝑢 [48].

𝑓௨ሺ𝑣ሻ ൌ െ𝐻ሺ𝑢, 𝑣ሻ െ 𝐻ሺ𝑣, 𝑢ሻ

The easiest way to compute the matrix 𝐻 is the following [59]. First,
the PageRank transition matrix 𝑇 is computed,c which represents 𝑝௨→௩ሺ𝑡ሻ
for all user pairs. Then, 𝐻 is defined as:

𝐻 ൌ ൣ𝐼 െ 𝐵# 𝐽𝐵ௗ
൧Πିଵ

where 𝐵 ൌ 𝐼 െ 𝑇, and 𝐵# is the pseudoinverse matrix of 𝐵 [23]. 𝐵ௗ

represents the matrix 𝐵 with 0 out of the main diagonal, 𝐽 is a matrix with
all its terms equal to 1 and Π is a diagonal matrix whose entries represent
the stationary probability of each node in the random walk. The reader can
find more details in [59].

Money. The Money algorithm was reported as one of the main
components in the Twitter contact recommendation service, “Who-to-
Follow” [25,29]. This algorithm exploits the link structure of the network
using the SALSA (Stochastic Approach for Link Structure Analysis) [45]
random-walk algorithm. To cope with the massive scale of social networks
and combat spam users, the Money approach starts by building a much
smaller bipartite graph, known as the consumer-producer graph, for each
user in the network. The set of link sources of this bipartite graph, known

cAs is well known, the PageRank transition matrix [43] is 𝑇 ൌ 𝑟�̅� ሺ1 െ 𝑟ሻ𝐽, where 𝐽 is a
|𝑈| ൈ |𝑈| matrix with 𝐽௨௩ ൌ 1 for all user pairs, and �̅� is the adjacency matrix normalized
to sum 1 by rows and has uniform priors for sink rows.

534 J. Sanz-Cruzado and P. Castells

as the set of consumers or hubs, contain a so-called circle of trust of the
target user. To find this circle of trust, an “egocentric” random walk
algorithm, very similar to personalized PageRank, is run over the network
[7,25,29]. The subset of users who achieve the top 𝑘 values for this
algorithm are selected as the target user’s circle of trust. The set of link
destinations of the bipartite graph, known as the set of producer or
authorities, includes every user followed by the users in the circle of trust.

Figure 16.4. Consumer-producer graph.

An example of the consumer consumer-producer bipartite graph is
illustrated in Figure 16.4. It should be observed that, if the selected size 𝑘
for the circle of trust is greater than the number of nodes in the network,
this bipartite graph is the same for each user in the network: the hub set
would be comprised of all nodes in the network, and the set of authorities
would contain all nodes with at least one incoming link.

Once the bipartite graph is built, a personalized version of the SALSA
algorithm is applied over it. Since SALSA is only applied over the reduced
graph, only nodes in the circle of trust and their followees can be
recommended. SALSA defines two scores for each node in the network,
which are formulated as two random walks: one on the authorities, and
one on the hubs. The walks are made of double steps, where state
transitions traverse two links in a row: one link forward and one link
backward, or vice versa. At each step, if the random walker has 𝑑
neighboring nodes to which he can transition, a uniform fraction of the
score, 1 𝑑⁄ , is transferred to each of those nodes. Put formally, the scores
are computed by:

Consumers Producers

 Contact Recommendations in Social Networks 535

𝑎ሺ𝑣ሻ ൌ
ℎሺ𝑤ሻ

|Γ୭୳୲ሺ𝑤ሻ|
௪∈ሺ௩ሻ

ൌ
𝑎ሺ𝑥ሻ

|Γ୭୳୲ሺ𝑤ሻ||Γ୧୬ሺ𝑥ሻ|
௫∈౫౪ሺ௪ሻ௪∈ሺ௩ሻ

ℎሺ𝑣ሻ ൌ
𝑎ሺ𝑤ሻ

|Γ୧୬ሺ𝑤ሻ|
ൌ

ℎሺ𝑥ሻ
|Γ୧୬ሺ𝑤ሻ||Γ୭୳୲ሺ𝑥ሻ|

௫∈ሺ௪ሻ௪∈౫౪ሺ௩ሻ௪∈౫౪ሺ௩ሻ

This formulation of the algorithm has two main limitations: first, it is
only personalized in that the circle of trust is different for each target user,
and, second, the authority score has been proved to be proportional to the
in-degree of the user, and the hubs score proportional to its out-degree, in
such a way that the resulting recommendations can be quite similar to a
preferential attachment approach as described in Section 16.3.1 [45]. A
more personalized approach can be defined just by adding a user-centered
teleport vector to the hubs [7]:

𝑓௨
ሺ𝑣ሻ ൌ ℎ௨ሺ𝑣ሻ ൌ 𝛼𝛿௨௩ ሺ1 െ 𝛼ሻ

𝑎௨ሺ𝑤ሻ
|Γ୧୬ሺ𝑤ሻ|

௪∈౫౪ሺ௩ሻ

𝑓௨
ሺ𝑣ሻ ൌ 𝑎௨ሺ𝑣ሻ ൌ

ℎ௨ሺ𝑤ሻ
|Γ୭୳୲ሺ𝑤ሻ|

௪∈ሺ௩ሻ

In this personalized variant, hub scores are taken as a representation of
the similarity between the different users in the circle of trust and the target
user, and authority values as a measure of the relevance of a producer for
the target user. Hence, authority scores 𝑓௨

ሺ𝑣ሻ are suggested as the most
sensible option for selecting the recommended candidates [25,29].
However, according to the homophily principle [57], it may also make
sense to apply hub scores 𝑓௨

ሺ𝑣ሻ for recommendation [29]. In the
experiments we report in section 16.7, we shall see that none of the two
options is necessarily always best, as it may depend on the dataset.

PropFlow. The PropFlow algorithm [50] computes the probability 𝑓௨ሺ𝑣ሻ
that a restricted random walk starting at 𝑢 ends at 𝑣 in 𝑙 steps or fewer
using link weights as transition probabilities. For unweighted networks,
all links can be considered to just have a constant weight. The walk
terminates upon reaching 𝑣 or upon revisiting any node (including 𝑢). The

536 J. Sanz-Cruzado and P. Castells

probabilities 𝑓௨ሺ𝑣ሻ can be computed by a simple BFS traversal of the
network starting at 𝑢. Starting with 𝑓௨ሺ𝑢ሻ ൌ 1, the procedure updates the
probabilities of all the neighbor nodes 𝑣 of the node 𝑥 currently visited in
the BFS, as follows:

𝑓௨ሺ𝑣ሻ ← 𝑓௨ሺ𝑣ሻ 𝑓௨ሺ𝑥ሻ
weightሺ𝑥, 𝑣ሻ

∑ weightሺ𝑥, 𝑤ሻ௪∈ሺ௫ሻ

PropFlow is thus similar to rooted PageRank, but it is cheaper to
compute, since only a breadth first search with maximum depth 𝑙 is
needed. The depth restriction is intended to bound the potential cumulative
noise that can result from far regions of the network.

SimRank. SimRank [38] seeks to recommend similar users following the
recursive intuition that two users are similar if they are followed by similar
users. The similarity between users is thus defined as:

𝑓௨ሺ𝑣ሻ ൌ ൞

1 if 𝑣 ൌ 𝑢

𝛾
∑ ∑ 𝑓ሺ𝑏ሻ∈ሺ௩ሻ∈ሺ௨ሻ

|Γሺ𝑢ሻ||Γሺ𝑣ሻ|
if 𝑣 ് 𝑢 and |Γሺ𝑢ሻ||Γሺ𝑣ሻ| ് 0

0 otherwise

This algorithm can be interpreted in terms of random walks as the
expected number of steps at which two random walkers are expected to
meet at the same node if they started at nodes 𝑢 and 𝑣, and randomly
walked the network backwards.

Supervised random walks: This algorithm combines random walk
algorithms with supervised link prediction approaches [5] (which will be
described later in Section 16.3.6). This algorithm applies a weighted
version of the rooted PageRank algorithm previously described. In the
original version, when a node is visited, the probability of travelling from
that node to another one without teleport was uniform among the different
outgoing edges. In this weighted version, it is proportional to the weight
of the edge, as follows:

𝑝௨ሺ𝑣ሻ ൌ 𝑟𝛿௨௩ ሺ1 െ 𝑟ሻ
weightሺ𝑤, 𝑣ሻ

∑ weightሺ𝑣, 𝑤ሻ௪∈౫౪ሺ௩ሻ
௪∈ሺ௩ሻ

𝑝௨ሺ𝑤ሻ

 Contact Recommendations in Social Networks 537

Using profile information (age, place of birth of the users, etc.) and
structural information of the network (degree, number of friends, etc.), as
well as link formation data, the weights for the random walk are learned
by a supervised algorithm so that a random walk is more likely to visit the
nodes the target user will create new links to.

16.3.4. Collaborative filtering approaches

Contact recommendation can also be stated as a particular case of classical
recommendation. In that perspective, users play the role of both users and
items, and the network adjacency matrix A is the rating matrix.
Collaborative filtering can be hence applied straightforwardly by this
mapping for recommending users in social networks. As an example, we
show the reformulation of neighborhood-based collaborative filtering
algorithms, also known as nearest neighbors (kNN), as one of the most
widely known collaborative filtering approach examples. kNN approaches
are based on the principle that similar users prefer similar items, and
similar items are preferred by similar users [64]. The algorithm selects the
top k most similar users (or items) to the target user (or candidate items),
and computes the recommendation scores as a linear combination of the
neighbors’ ratings. We show next the adaptation for the user-based and
item-based variants.

User-based kNN. The user-based variant generates scores using the
ratings for the candidate items provided by other users similar to the target
user 𝑢 [64]. This set of users is known as the neighborhood of the target
user, 𝒩ሺ𝑢ሻ — where “neighbor” here means a similar user, as opposed to
network neighbors Γሺ𝑢ሻ meaning explicitly connected users in the social
network. A simple and effective version computes the scores as a weighted
linear combination of the neighbors’ ratings for the candidate items.

In contact recommendation, the network adjacency matrix 𝐴 is
interpreted as a rating matrix, hence the “rating” of a user 𝑣 for an “item”
(again a user) 𝑤 is 𝐴௩௪, which is equal to 1 when ሺ𝑣, 𝑤ሻ ∈ 𝐸 and 0
otherwise. Substituting that in the traditional recommendation scheme,
user-based kNN for contact recommendation gets defined by:

538 J. Sanz-Cruzado and P. Castells

𝑓௨ሺ𝑣ሻ ൌ simሺ𝑢, 𝑤ሻ𝐴௪௩

௪∈𝒩ሺ௨ሻ

ൌ simሺ𝑢, 𝑤ሻ
௪∈𝒩ሺ௨ሻ
ሺ௪,௩ሻ∈ா

The similarity between users can be assessed in multiple ways. In
collaborative filtering, the similarity between users is defined in terms of
their interactions with items, which in our context translates to outgoing
social connections of the target user. For instance, using the cosine
similarity:

simሺ𝑢, 𝑣ሻ ൌ
|Γ୭୳୲ሺ𝑢ሻ ∩ Γ୭୳୲ሺ𝑣ሻ|

ඥ|Γ୭୳୲ሺ𝑢ሻ||Γ୭୳୲ሺ𝑣ሻ|

Item-based kNN: The item-based variant exploits the similarity between
the items in the system to generate recommendations. Given a candidate
item, the algorithm takes a neighborhood, of items with which common
users have interacted with the neighbors and the target user. The scores are
defined as the weighted linear combination of the ratings the target user
has provided for the neighbor items. By the same mapping as in the user-
based variant, we get:

𝑓௨ሺ𝑣ሻ ൌ simሺ𝑣, 𝑤ሻ𝐴௨௪

௪∈𝒩ሺ௩ሻ

ൌ simሺ𝑣, 𝑤ሻ
௪∈𝒩ሺ௩ሻ
ሺ௨,௪ሻ∈ா

The similarity function can be the same as applied in the user-based
approach, except for the neighborhood direction: to be coherent with
the classical formulation, item-based kNN should use the incoming
neighborhoods Γ୧୬ሺ𝑢ሻ, Γ୧୬ሺ𝑣ሻ in the equation for cosine similarity.

16.3.5. Information retrieval approaches

Classical text information retrieval (IR) methods [6] have also been
adapted for contact recommendation. Hannon et al. [31] explored
adaptations of the vector space model (VSM) [70] to generate
recommended contact rankings, by having users play the dual role of
documents (to be retrieved), and the query (a description of what we are

 Contact Recommendations in Social Networks 539

looking for). Depending on what elements play the role of terms in text
search, two different approaches are proposed: content-based and
collaborative-filtering.

In the collaborative filtering approach, the user’s neighbors play the
role of terms. The “bag-of-terms” representation of a given (target or
recommended) user assigns a binary “frequency” of 1 for the user’s
neighbors, and 0 for the rest of users in the network. The user
neighborhood is thus taken as the equivalent of a term representation of
the user. Similarly to the MCN algorithm, in directed graphs it is possible
to define the neighborhoods in different ways according to the direction of
the edges: incoming neighborhood Γ୧୬ ሺ𝑢ሻ, outgoing neighborhood
Γ୭୳୲ ሺ𝑢ሻ, or the union of both Γ୳୬ୢሺ𝑢ሻ ൌ Γ୧୬ሺ𝑢ሻ ∪ Γ୭୳୲ሺ𝑢ሻ [31].

In the content-based approach, terms are actually extracted from text,
specifically from user-generated content. The target user vector is built by
concatenating user-generated text (e.g. tweets on Twitter) into a single
document. Different content selection policies have been explored to build
the user term vector, such as all the text produced by the user, or all the
text produced by contacts of the user (incoming, outgoing, or both).

Once the terms (or “terms”) for the user vectors have been determined
by either of the two above described approaches, the terms can be
weighted by any usual approach in the VSM. For instance using the classic
tf-idf weighting scheme:

𝑤ሺ𝑡, 𝑢ሻ ൌ tf-idfሺ𝑡, 𝑢ሻ ൌ tfሺ𝑡, 𝑢ሻ ⋅ idfሺ𝑡ሻ

where tfሺ𝑡, 𝑢ሻ is a monotonically increasing function of the frequency of
term 𝑡 in the bag-of-terms representation of user 𝑢, and idfሺ𝑡ሻ measures
the specificity of the term. For instance, using one of the common
instantiations of the tf-idf scheme:

tfሺ𝑡, 𝑢ሻ= ൜
1+ log2 freqሺt,uሻ if freqሺt,uሻ>0

0 otherwise

idfሺ𝑡ሻ ൌ logଶ
|𝒰|

|ሼ𝑢 ∈ 𝒰|freqሺ𝑡, 𝑢ሻ 0ሽ|

Finally, using the weighted user vector representations,
recommendation scores can be computed by the cosine similarity — or

540 J. Sanz-Cruzado and P. Castells

any variation thereof within the VSM — between the target user and the
candidate users:

𝑓௨ሺ𝑣ሻ ൌ
∑ tf-idfሺ𝑡, 𝑢ሻ ⋅ tf-idfሺ𝑡, 𝑣ሻ௧∈௨∩௩

ඥ∑ tf-idf ଶሺ𝑡, 𝑢ሻ௧∈௩

Throughout the rest of this chapter, we shall denote the collaborative
filtering variant of tf-idf as CF-tf-idf, whereas the content-based approach
shall be named CB-tf-idf.

16.3.6. Supervised methods

Link prediction (and, as a particular case, contact recommendation) can
also be addressed from a supervised machine learning (ML) perspective,
i.e. applying classifiers such as Naïve-Bayes [3,50], logistic regression
[78], support vector machines [3] , multilayer perceptrons [3] or random
forests [18,50] to solve the problem. This perspective is commonly
referred to as supervised link prediction. Instead of ranking the links
according to their probability of existence or formation, the algorithms
address link prediction as a classification problem over the set of all pairs
of nodes with two classes: the presence or absence of the link. Several
issues, specific to the task, have to be addressed:
 Pattern ranking: A classifier seeks to determine the most likely class

for a pattern, which in link prediction would mean finding out whether
each possible link (a pattern) is more likely to be present or not (binary
class determination). We can hence think of a classifier as a class ranker
given a pattern. However the contact recommendation task goes the
other way around, seeking to rank links (the patterns) by their
membership likelihood to the “existing link” class. Adapting a
classifier for this task is usually straightforward as long as the classifier
outputs class scores. It is simply a matter of using the scores to organize
rankings differently, and revising any rank-equivalent operations —
given a pattern — that may have been applied to the development of
the pattern-class scoring function.

 Class imbalance: Users typically establish connections with a small
fraction of the people in a social network [22]. This fact, along with the
upper limit established by some social network applications to the

 Contact Recommendations in Social Networks 541

number of relations allowed for a single user (e.g. to prevent spam bots
[60]), causes real social networks to be very sparse. This can pose an
extreme unbalance problem for supervised approaches, since most
links in the network do not exist or will never form. It is possible to
overcome this problem using common approaches in machine learning
for dealing with class imbalance [15], such as undersampling the set of
examples [50], creating new artificial patterns of the minority class
[50], or using specific machine learning algorithms adapted for
imbalanced datasets [3].

 Feature selection: Selecting a reduced and informative set of features
for the classification is key for the good performance of the classifier.
Many possibilities have been explored for generating those patterns,
such as using network analysis metrics [3], features related to the
content published in the social networks (e.g. the number of papers
published by two authors in a citation network, the keyword count of
each author, or the number of common keywords [3]), or the output of
unsupervised link prediction methods [18,50].

16.3.7. Matrix factorization

The effectiveness and popularity of matrix factorization techniques as
collaborative filtering algorithms [42] has led to several link prediction
and contact recommendation algorithms that rely on their principles.
One of the most notable approaches is proposed by Menon et al. [58],
consisting of factorizing the network adjacency matrix as a function of the
product of two different matrices, as follows:

𝐴 ൎ 𝐿ሺ𝑊்Λ𝑊ሻ

In this decomposition, 𝑊 ∈ ℝൈ is a matrix that contains the latent
vectors for each user in the network (each column 𝑤௨ represents the
different 𝑘 latent features for a user 𝑢), Λ ∈ ℝൈ is a square matrix that
is needed to handle directed networks (the adjacency matrix of undirected
networks is symmetric and can be factorized into a function of just two
matrices 𝑊𝑊்), and 𝐿ሺ⋅ሻ is a link function. Once this decomposition is
obtained, the recommendation ranking score is computed as:

542 J. Sanz-Cruzado and P. Castells

𝑓௨ሺ𝑣ሻ ൌ 𝐿ሺ𝑤௨
்Λ𝑤௩ሻ

where 𝑤௨ is the latent vector associated to user 𝑢. To find the
corresponding factorization, Menon et al. propose a method that seeks to
minimize the area under the ROC curve [24].

Other matrix factorization techniques have been proposed that exploit
social network data to recommend items rather than users [37,53], but can
also be adapted to recommend contacts as well. The SoRec algorithm [53]
is one such example. This algorithm simultaneously factorizes the network
adjacency matrix and a user-item rating matrix 𝑅 as the products of two
matrices:

𝐴 ൎ 𝑊்𝑍

𝑅 ൎ 𝑊்𝑉

where 𝑊 represents the user latent feature space, 𝑉 represents the item
latent feature space, and 𝑍 is a factor matrix for the network. Though
primarily conceived for recommending items using the approximated
rating matrix 𝑅, the approximation to the adjacency matrix 𝐴 can also be
applied to recommend contacts, using the following score function:

𝑓௨ሺ𝑣ሻ ൌ 𝑤௨
்𝑧௩

where 𝑤௨ and 𝑧௩ are, respectively, the rows of the matrices 𝑊, 𝑍
associated to users 𝑢 and 𝑣.

In addition to the matrix factorization approaches specifically devised
for link prediction, any collaborative filtering algorithm — and hence in
particular any matrix factorization algorithm for recommendation [35,42]
— can be potentially adapted for recommending links, as stated in Section
16.3.4.

16.3.8. Model-based approaches

This family of algorithms supposes that the structure of the social network
follows an underlying probabilistic model [28]. Under this assumption, the
algorithms fit as closely as possible the probabilistic model to the structure
and properties of the real network. Links are then predicted using the

 Contact Recommendations in Social Networks 543

probability of being added to the network according to the fitted model.
The most notable examples of these algorithms are the hierarchical
structure model [17] and the stochastic block model [28]. The former
assumes that social networks have an underlying hierarchical structure,
while the latter considers that nodes in a network are divided into several
partitions or blocks, and the probability that a link exists only depends on
the groups that its endpoints belong to. The preferential attachment
method, can also be classed in the model-based category, though it is also
a neighbor-based approach and hence we described it as such in Section
16.3.1.

16.4. Contact recommendation in online social network
platforms

By the late 00’s, mainstream online social networks such as Facebook,
LinkedIn and Twitter started providing contact recommendation
functionalities on their platforms. Public knowledge about the algorithmic
internals and specifics is naturally limited, we may observe the outside
functionality or even some internal details that have been disclosed to
some extent.

Facebook: The “People You May Know” algorithmd relies on many
sources. Facebook has stated to recommend users mostly according to the
existence of common friends between the target and candidate users, but
the system also recommends people belonging to common groups or
affiliations with the target user (using information about the school,
university or work, entered in the user profiles), or people tagged in the
same photos or contents.

LinkedIn: Contacts are recommended according to commonalities
between userse, based on information contained in user profiles, common
connections between the target and candidate users, the industries or
companies both users have worked in, etc.

dhttps://www.facebook.com/help/336320879782850
ehttps://www.linkedin.com/help/linkedin/answer/29/people-you-may-know-feature-
overview

544 J. Sanz-Cruzado and P. Castells

Tumblr:f Tumblr, a social blogging platform, recommends new blogs (a
rough equivalent of “user”) by considering a mixture of the topics the user
prefers and the network structure [1]. At sign-in, users are asked about
their preferences over a set of predetermined topics organized in a
taxonomy. Based on this, a topical profile is created for each user, which
is used to cope with the initial cold-start. As the number of contacts grows,
new blogs are recommended by the triad closure principle (i.e. friend-of-
a-friend algorithms).

Twitter: In contrast to other social sites, Twitter did disclose some details
about the inner workings of the “Who to Follow” service [25,29], which
we summarized in Section 16.3.3. In addition to this algorithm, Twitter
has also mentioned experiments with several other algorithms [25,29],
such as rooted PageRank and MCN, and the closure algorithm, which
recommends target user followers at distance two, and a personalized
version of the HITS algorithm, labeled “Love” [40].

16.5. Available resources

The massive growth of online social network platforms, their widespread
use, and their interest as an area of study has given rise to the availability
of a wide array of resources of both broad and specific interest to the area
addressed in this chapter. We briefly describe a selection of those
resources, comprising datasets, online social network data access APIs,
and software libraries for network analysis and manipulation, and link
prediction.

16.5.1. Datasets

A good number of network datasets of different types, domains, and sizes
are publicly available and can be used for the needs of evaluating link
recommendation algorithms. Particularly worthy of mention are the
following:
 Stanford Large Network Dataset Collection:g This collection

includes a wide variety of large datasets, including samples from social

fhttps://www.tumblr.com
ghttps://snap.stanford.edu/data/index.html

 Contact Recommendations in Social Networks 545

networks such as Twitter, Google+ or Facebook, Web graphs,
collaboration networks such as ArXiv, signed networks, and more.

 Ben-Gurion University Social Networks Security Research Group
Datasets:h A collection of datasets that includes anonymized versions
of directed, undirected and multi-label social networks datasets. It
includes data from Facebook, Google+, Academia.edu, and other
sources.

 CASOS:i Dataset collection from the Center for Computational
Analysis of Social and Organizational Systems (CASOS) of the
Carnegie-Mellon University. It includes data from social, semantic,
communication, and other types of networks.

16.5.2. APIs

Some social network sites provide different APIs supporting the
development of applications on top of their platform, and access to their
data: users, relations between users, user-generated content, etc. Such
APIs are a valuable source of data for experimentation with contact
recommendation systems, by obtaining data to perform offline tests, or by
creating applications that directly operate over the platform [31].

Twitter: Twitter provides several APIsj; the most important ones are the
REST API and the Streaming API, which allow users to crawl different
elements in the network.
 The REST API provides access to most of the functionalities of

Twitter: retrieving information from user timelines, obtaining
interactions between users, posting new tweets, following users, etc.
However, free access is notably limited by the number of calls that can
be made to the API.

 The Streaming API is much less restricted as to the number of calls,
though it can only be used for obtaining tweets in real time (up to 1%
of the published tweets).

hhttp://proj.ise.bgu.ac.il/sns/datasets.html
ihttp://www.casos.cs.cmu.edu/tools/data.php
jhttps://developer.twitter.com/en/docs

546 J. Sanz-Cruzado and P. Castells

The Twitter APIs can be accessed directly via URLs, but libraries are
also available in different programming languages including C++, Java,
Python and .NET, which simplify the development work around the APIs.

Tumblr: This blogging platform offers a APIk granting access to blogs,
posts and relations between them. Tumblr furthermore provides official
API clients for JavaScript, Ruby, PHP, Java, Python, Objective-C and Go.

Facebook: Facebook provides an APIl to work with their data and develop
applications upon its social network. This API is however much more
restrictive than Twitter or Tumblr in terms of the data access conditions:
it requires the explicit permission of users to retrieve their information (the
API only authorizes retrieving data from people who use the application).

16.5.3. Software libraries

In addition to the previous resources, there are many useful libraries for
developing contact recommendation algorithms, or related applications.
We may consider two different types of libraries:

 General network libraries such as Jungm (Java), SNAPn [47] (C++,
Python) or iGrapho (R, Python, C/C++) provide implementations of
generic graph manipulation and network analysis, which can simplify
the development and testing of contact recommendation applications.

 Link prediction libraries: Specific libraries are also available
providing explicit link prediction method implementations. In this
scope we may highlight LPMadep [49], a framework for link prediction
that implements some of the most important algorithms, such as most
common neighbors, Adamic-Adar, Jaccard and PropFlow, and includes
software support for evaluation. Other graph libraries such as

khttps://www.tumblr.com/docs/en/api/v2
lhttps://developers.facebook.com/docs/graph-api/overview
mhttp://jung.sourceforge.net
nhttp://snap.stanford.edu/index.html
ohttp://igraph.org
phttps://github.com/rlichtenwalter/LPmade

 Contact Recommendations in Social Networks 547

NetworKitq and NetworkXr also provide some link prediction
algorithm implementations.

16.6. Practical aspects

When building a contact recommendation system, there are some aspects
to consider. In this section, we provide an overlook of some of them, like
the evaluation of this systems, the directionality of the edges or the
scalability of the different algorithms.

16.6.1. Edge direction

The development of contact recommendation methods was originally
largely oriented to undirected networks. However, the success of many
asymmetrical online social networks such as Tumblr, Twitter or Instagram
motivated further attention to directed networks. In many cases, contact
recommendation algorithms can be generalized to directed versions by a
quite straightforward adaptation, as is the case for the methods described
in Section 10. A trivial adaptation is to process all directed edges as if they
were undirected, but finer alternatives may achieve better accuracy [31].
Some algorithms, such as Katz, can in fact be applied without modification
to directed networks, just operating on an asymmetric adjacency matrix.
However, for some other algorithms, such as most neighborhood-based
approaches described in Section 16.3.1, we need to be specific in what we
mean by a node 𝑢 being a neighbor of another node 𝑣. As illustrated in
Figure 16.5, there are three different possible definitions of neighborhood:
incoming Γ୧୬ሺ𝑢ሻ ൌ ሼ𝑣 ∈ 𝒰|ሺ𝑣, 𝑢ሻ ∈ 𝐸ሽ, outgoing Γ୭୳୲ሺ𝑢ሻ ൌ ሼ𝑣 ∈
𝒰|ሺ𝑢, 𝑣ሻ ∈ 𝐸ሽ or undirected neighborhood Γ୳୬ୢሺ𝑢ሻ ൌ ሼ𝑣 ∈ 𝒰|ሺ𝑢, 𝑣ሻ ∈
𝐸 ∧ ሺ𝑣, 𝑢ሻ ∈ 𝐸ሽ.

The neighborhood choice applies to both target and candidate users
[26,31], thus giving rise to six different possible alternative combinations
for each algorithm. For instance, Hannon et al. [31] chose one of the three
possible directions (either incoming, outgoing or undirected) for both

qhttps://networkit.iti.kit.edu
rhttps://networkx.github.io

548 J. Sanz-Cruzado and P. Castells

nodes in their tf-idf algorithm, while Golder et al. [26], as we explained in
Section 16.3.1, considered three different configurations for the directed
MCN model, where scores were defined as the intersection of the
incoming neighbors of the target and candidate users, the intersection of
their outgoing neighbors, and the intersection of the outgoing neighbor of
the target user and the incoming of the candidate one.

16.6.2. Scalability

One critical aspect in the implementation and design of general
recommender systems and, as a particular case, social recommendation, is
dealing with data at the common massive scale of current online platforms,
and social media in particular, with active monthly users counted by the
billions [60]. Running content recommendation at such a scale poses
challenges in terms of both time and hardware resources. The time and
memory requirements of contact recommendation algorithms mainly
depend on the number of users in the network. If we were to consider every
missing link in a directed network as a candidate recommendation, we
would need to compute a total of |𝒰|ሺ|𝒰| െ 1ሻ െ |𝐸| values, essentially a
quadratic cost with respect to the network size, for the typical sparse
network [33,60]. Even for a single user, this may involve computing
billions of scores.

Some methods avoid this bottleneck simply by their own nature. For
instance, neighborhood-based methods such as MCN, Jaccard or Adamic-
Adar, only consider candidate contacts having common friends with

a) Incoming neighborhood b) Outgoing neighborhood c) Undirected neighborhood

Figure 16.5. Possible neighborhoods for a user in directed graphs. Nodes in blue belong to
the neighborhood, while nodes in white do not.

 Contact Recommendations in Social Networks 549

the target user, whereby the algorithm complexity (in an efficient
implementation) is in fact linear in the number of edges. Other algorithms,
like PropFlow or local path index limit the distance from the target user
via their parameters. It is also possible to apply this idea in an artificial
way to many other algorithms. For instance, Lichtenwalter et al. [50] only
generated scores at distance smaller or equal to 5 from the target user.
Other algorithms take a reduced set of candidate recommendations for
each target user by more sophisticated methods. The Money algorithm
[29] described in Section 16.3.3, for instance, first computes a
personalized circle of trust around each target user, and then applies a more
costly algorithm as a second step within this subnetwork of candidates and
the supervised random walk approach in Section 16.3.3 only considers
neighborhoods at distance 2.

16.6.3. Evaluation

Recommender system evaluation is known to be a non-trivial problem,
and contact recommendation, as a particular case, shares similar general
issues as well as specific aspects of its own. A primary question to be
elucidated in evaluation is whether the recommendation task should be
viewed as a classification or a ranking task. The classification perspective
evaluates contact recommendation as a binary classification problem,
where a link is correctly classified as “interesting” (according to the goal
in the particular application domain) when the target user accepts the
recommended link, or in an observational perspective, when a link
between the target and the recommended user is eventually formed (or, in
an offline experiment, is present in some held out test set). In this view,
the algorithms can be evaluated by common metrics such as the area under
the curve (AUC), confusion matrices, etc. [24], taking classification
thresholds if needed. This has been the main evaluation approach in link
prediction [5,17,18]. An example is illustrated in Figure 16.6. The ranking-
based perspective is more representative of real scenarios though, where a
recommendation is a ranking of contacts delivered to the target user. From
this point of view, the quality of recommendations is assessed by ranking-
oriented IR metrics such as precision, recall, nDCG, etc. [5,31], built
around the concept of relevance [6]. A recommended connection is

550 J. Sanz-Cruzado and P. Castells

considered relevant if the target user actually creates a link to the
recommended person. Figure 16.7 illustrates this perspective.

An additional issue in offline evaluation is the effect of the data sample.
Data collection procedures are known to be a sensitive point in
experimental practice in virtually any experimental discipline [34]. Social
network data sampling introduces additional complexities when the nodes
and edges of network can only be sampled by traversing the network itself,
as is commonly the case [1]. Moreover, the massive size of current online
social networks causes a major scale gap between the total network and
the samples thereof that are commonly feasible to obtain and cope with in
iterative experiments. This may further compromise the representativeness
of the sample with respect to whole network, and hence how translatable
to the latter are the results obtained on the former. In addition to the scale

Figure 16.6. Toy example of classification-oriented evaluation (ROC curve and AUC).
Cell color in the adjacency matrix (left) represents a network split into training links (light
blue) and test links (red), corresponding to the training and test networks, while white cells
correspond to non-existing links. The values in the red and white cells represent fictitious
recommendation algorithm scores, for exemplification. The table in the middle illustrates
the resulting ranking of link predictions based on the algorithm scores, where red cells
indicate correctly guessed links (test links), and white cells correspond to incorrect
predictions (non-existing links). In the right-hand-side graphic, the green line shows the
resulting ROC curve for the algorithm, and the grey line corresponds to random
classification.

 Contact Recommendations in Social Networks 551

issues, some network sampling methods are known to introduce biases,
failing to match the properties of the real network [46,54]. For example,
breadth-first sampling or degree sampling show a bias towards retrieving
high-degree and high-PageRank nodes [54]. Experimental practice in the
contact recommendation practice would benefit from further awareness of
the effects such biases can have in the outcome of evaluation.

16.7. Empirical observations

In order to analyze and compare the performance of the contact
recommendation algorithms described in the previous sections, we present
here some empirical observations in offline experiments over network
data.

Figure 16.7. Toy example of ranking-based evaluation (precision at 𝑘 ൌ 2). The network
data and algorithm scores in the adjacency matrix (left) have the same meaning as in Fig.
6. In the recommendation task, the link ranking is broken down into a ranking for each
target user (middle). The test links are used as relevance judgments (in information
retrieval evaluation terminology) for metric computation over the rankings. The evaluation
metric (P@2 in this toy example) is computed separately for each ranking, and then
averaged into a single final value.

552 J. Sanz-Cruzado and P. Castells

16.7.1. Experimental setup

The experiments we report here are conducted in a recommender system
perspective, rather than a classification task. More specifically,
recommendation is tested as a ranking task [9,19,32], which the
community is coming to find is more representative of our experimental
setting.

Datasets. We run the experiments over data obtained from real social
networking sites, namely Facebook and Twitter. The Facebook data is
taken from the Stanford Large Network Dataset Collection (see Section
16.5.1). In particular, we use the ego-Facebook dataset, which contains the
friend lists of ten Facebook users, and all the friendship links among them,
amounting to a total of 4,039 users and 88,234 edges [55].

For Twitter, we downloaded data by network exploration in a snowball
sampling approach [27] using the public REST API. The snowball
sampling starts from a seed user and explores, breadth-first, a certain
subset of the outgoing links of each visited user. Specifically, we explore
all the interaction links in the last 200 tweets posted by the user before
August 2nd 2015. Interaction links are defined by the content of tweets, i.e.
ሺ𝑢, 𝑣ሻ ∈ 𝐸 if 𝑢 mentioned, retweeted or replied 𝑣 in some of its posted
tweets collected in our exploration. The network traversal stops when a
desired total number of users are discovered (10,000 in our experiments).
At this point, we complete the dataset by obtaining all the remaining
interaction edges between the discovered users that may not have been
directly traversed in the exploration (this essentially involves the outgoing
links from users at the exploration frontier). The resulting network
contains 10,000 users and 164,653 edges.

In addition to the interaction network thus built, we obtain an
additional network with the same set of users, but where the edges
correspond to stable follows links, i.e. ሺ𝑢, 𝑣ሻ ∈ 𝐸 if 𝑢 follows 𝑣 on Twitter.
We do so by simply obtaining all the follows relations between the users
in the interaction network, via the REST API. The follows network has
582,172 edges and, naturally, as many users as the interaction network
(just a few users with zero follows links are dropped — see details in Table
16.2).

 Contact Recommendations in Social Networks 553

Experimental procedure. To evaluate an algorithm, we split the network
data into a training and a test subgraph. The training subgraph is supplied
as input to the recommendation algorithms under evaluation. The test
subgraph is used as ground truth to compute accuracy metrics over the
output (candidate user rankings for each target user) returned by the
algorithms. Specifically, the test network edges are taken as positive
relevance judgments in metrics such as precision, recall or nDCG,
considering the edges in the test network as “relevant links” for each user,
and any other link as “non-relevant”.

We apply a random data split for the Facebook network, and a temporal
split in the Twitter networks (as the edges have explicit or implicit
timestamps). In the random split for Facebook, each network edge is
(independently) assigned to the training or test subgraph with a probability
equal to the desired split ratio (0.8 training data in our experiments).

The Twitter interaction network is split by dividing the set of tweets
from which the network was built. Tweets are split according to their
timestamp into two subsets dated, respectively, before and after a certain
split time point. The time point chosen in such a way that a desired split

Table 16.2. Network dataset details.

 Twitter

 Interaction Follows Facebook

 Directed Yes Yes No

T
ot

al

Nr. users 10,000 10,000 4,039

Nr. edges 164,653 582,172 88,234

Clustering coef. 0.0967 0.1829 0.5192

Diameter 13 10 8

T
ra

in
in

g Nr. users 9,796 9,964 4,020

Validation edges 111,392 427,568 56,333

Training edges 137,850 475,530 70,566

T
es

t Nr. users 5,652 8,180 3,652

Nr. edges 21,598 98,519 17,644

554 J. Sanz-Cruzado and P. Castells

ratio (again, 0.8 training data here) is obtained. Based on this split, the
training and test networks include all the interaction links induced by the
tweets before and after the split point respectively. Finally, the edges that
are present at both sides of the split are removed from the test set, in order
to get a disjoint split as required for a fair evaluation.

For supervised algorithms, we made a split of the training graphs for
both Facebook and Twitter interaction network, using the same procedures
explained above. 75% of the training data is used to create training patterns
for the supervised algorithms, using the remaining 25% of links as
validation data.

For the follows network, we used three different link downloads: the
first download was used to generate the training patterns for supervised
algorithms; the new links in the second snapshot of the network, taken four
months after the first one, is used as validation data. Finally, the new edges
in the third snapshot, downloaded two years later, are used as test data for
evaluation.

Finally, in both Twitter datasets, we exclude the recommendation of
reciprocating links (i.e. the recommendation of people who link back to
the target user). This means such links are removed from (or more simply,
not requested to be placed in) the rankings returned by the algorithms, and
are also removed from the test network (as they are not expected to be
recommended). This is for two reasons. First, Twitter already notifies
users every time someone interacts with them or starts following them —
hence an additional recommendation to pay attention to such new
followers or interactors would be redundant. Second, the reciprocating
ratio on Twitter is quite high, and this would bias the evaluation in
rewarding algorithms that are prone to trivially recommend reciprocal
links. This issue is absent from Facebook as the concept of link
reciprocation is only defined in directed networks. Table 16.2 shows the
size of the training and test sets of each network dataset, as well as the
subset for supervised approaches.

Algorithms. We evaluate and compare the different algorithms detailed in
Section 16.3. As collaborative filtering algorithms (Section 16.3.4), we
include the implementation of kNN (user-based and item-based) and
matrix factorization (algorithm for implicit feedback proposed by Hu et al.

 Contact Recommendations in Social Networks 555

[35]) provided in the RankSyss public framework. We do not have results
for the content-based version of the tf-idf algorithms [31] on the Facebook
dataset, since no side information of any kind is available there. On the
Twitter data, we have used the original tweets (not retweets) posted by
each user before the time of the split as the content from which the user
representation is built.

We also test two supervised algorithms: Gaussian Naïve Bayes and
Logistic Regression [10], using the implementation provided by the Scikit-
learnt Python package. In order to run those algorithms, we need to
generate patterns for every missing link in the network. Supervised
methods in the literature typically use other predictors, such as Jaccard or
Adamic-Adar as features, hence essentially building ensembles of link
prediction algorithms [50], or use data features of very specific domains
(such as the number of co-authored articles in collaboration networks [3]).
In order to test an approach as generic as possible, we shall use network-
related properties associated to the edge we aim to predict. We consider
two types of features:

 Individual features, related to individual users in the network. We take
such features for both endpoints of the edges (target and candidate
user). For directed graphs, we include: the in-degree, out-degree,
the local clustering coefficient, closeness, betweenness and (not
personalized) PageRank. In undirected graphs, we simply take the
degree in place of in-degree and out-degree.

 Paired values, computed for pairs of users in the network. We use the
number of common neighbors between the edge endpoints, and the
embeddedness. Furthermore, we include binary features that indicate
whether or not the link crosses network communities. In our
experiments, we use three such features, corresponding to three
different community detection algorithms: Louvain [11], Infomap [69]
and Leading Vector [62].

Finally, we add random recommendation as a sanity-check baseline to
the comparison. Parameter settings and configurations for the algorithms
are shown in Table 16.3. The algorithm parameters are tuned by a simple

shttp://ranksys.org
thttp://scikit-learn.org/stable

556 J. Sanz-Cruzado and P. Castells

grid search optimizing the P@10 metric. Moreover, in the directed Twitter
network, the edge direction was one more configuration setting, which we
likewise tune for the best result. All path-based algorithms are sensitive to
link direction, except Global LHN which needs a symmetric adjacency
matrix. In the tf-idf algorithms, similarly to the original algorithmic
proposal [31], we use the same neighborhood direction for both target and
candidate nodes.

We do not include in our experiments the algorithms described in
Sections 16.3.7 and 16.3.8, as well as the SimRank and supervised random
walks algorithms in Section 16.3.3, as they involve complexity and

Table 16.3. Optimal parameters for the different algorithms and networks.

 Twitter

 Algorithm Interaction Follows Facebook

N
ei

gh
bo

rh
oo

d-
ba

se
d Pref. attachment Γ୧୬ሺ𝑣ሻ Γ୧୬ሺ𝑣ሻ -

MCN Γ୳୬ୢሺ𝑢ሻ, Γ୧୬ሺ𝑣ሻ Γ୳୬ୢሺ𝑢ሻ, Γ୧୬ሺ𝑣ሻ -

Jaccard Γ୳୬ୢሺ𝑢ሻ, Γ୧୬ሺ𝑣ሻ Γ୳୬ୢሺ𝑢ሻ, Γ୧୬ሺ𝑣ሻ -

Adamic-Adar Γ୳୬ୢሺ𝑢ሻ, Γ୧୬ሺ𝑣ሻ, Γ୳୬ୢሺ𝑤ሻ Γ୳୬ୢሺ𝑢ሻ, Γ୧୬ሺ𝑣ሻ, Γ୭୳୲ሺ𝑤ሻ -

Res. allocation Γ୳୬ୢሺ𝑢ሻ, Γ୧୬ሺ𝑣ሻ, Γ୳୬ୢሺ𝑤ሻ Γ୳୬ୢሺ𝑢ሻ, Γ୧୬ሺ𝑣ሻ, Γ୳୬ୢሺ𝑤ሻ -

P
at

h-
ba

se
d Katz 𝛽 ൌ 0.1 𝛽 ൌ 0.4 𝛽 ൌ 0.1

Local path index 𝛽 ൌ 0.1, 𝑙 ൌ 3 𝛽 ൌ 0.1, 𝑙 ൌ 3 𝛽 ൌ 0.1, 𝑙 ൌ 3

Global LHN 𝜆 ൌ 0.1 𝜆 ൌ0.1 𝜆 ൌ 0.1

R
an

do
m

 w
al

k

Rooted PageRank 𝑟 ൌ 0.4 𝑟 ൌ 0.9 𝑟 ൌ 0.99

PropFlow 𝑙 ൌ 4 𝑙 ൌ 2 𝑙 ൌ 2

Money Auth. , 𝛼 ൌ 0.99 Auth. , 𝛼 ൌ 0.99 Hubs, 𝛼 ൌ 0.99

Hitting Time 𝑟 ൌ 0.9 𝑟 ൌ 0.9 𝑟 ൌ 0.1

Commute Time 𝑟 ൌ 0.9 𝑟 ൌ 0.9 𝑟 ൌ 0.1

IR
 CF-tf-idf Γ୳୬ୢ Γ୧୬ -

CB-tf-idf Own tweets Γ୧୬ tweets -

C
F

User-based kNN 𝑘 ൌ 100 𝑘 ൌ 50 𝑘 ൌ 30

Item-based kNN 𝑘 ൌ 290 𝑘 ൌ 280 𝑘 ൌ 300

Implicit MF

𝛼 ൌ 40
𝜆 ൌ 150
𝑘 ൌ 300

𝛼 ൌ 40
𝜆 ൌ 150
𝑘 ൌ 270

𝛼 ൌ 40
𝜆 ൌ 150
𝑘 ൌ 280

 Contact Recommendations in Social Networks 557

scalability challenges that are out of the scope of the present study;
moreover, some of these methods (e.g. SoRec) are very specific of
networks with certain properties and or/side information that our datasets
do not include.

16.7.2. Results

Table 16.4 shows the experimental results obtained for the best version of
each algorithm on the different datasets. Along with accuracy, we adapt
and report novelty and diversity metrics from the recommender systems
field [14,76,77], such as the popularity complement (PC), profile distance
(PD), intra-list dissimilarity (ILD) and the complement of the Gini index
(1 – Gini) for the distribution of recommended user.

Accuracy. We shall focus on of ranking-based metrics, rather than
classification-oriented, as the natural perspective for a recommendation
task (even when solved by the adaptation of a classification algorithm).
We shall compute the metrics over users who have test data
(corresponding to the “TI” evaluation setting option as described in [9],
i.e. people who have followed at least one new user in the test set — which
is quite a standard option in recommender systems evaluation). We report
P@10 as a simple and representative ranking-oriented accuracy metric —
other metrics and deeper cutoffs show similar trends as we shall report
here.

We can see in Table 16.4 some differences between datasets, which
can be attributed to the different nature and properties of the corresponding
networks. In terms of P@10, we observe that algorithms exhibit a similar
behavior over the two Twitter datasets, with classic collaborative filtering
standing out among the rest, followed by neighborhood-based link
prediction approaches. However, a different behavior is observed in the
Facebook dataset, where personalized random walks and neighborhood-
based link prediction become the most accurate recommenders.

The reason for that difference might be the differences between
networks in terms of clustering coefficient [63], as shown in Table 16.2.
A large value of this metric means that most pairs of triplets are transitive
(i.e. if there is a link from 𝑢 to 𝑣 and a link from 𝑣 to 𝑤, it is likely that a

558 J. Sanz-Cruzado and P. Castells

 Contact Recommendations in Social Networks 559

link from 𝑢 to 𝑤 exists in the network). Therefore, recommending people
at distance 2 from the target user, with many common neighbors, is more
likely to work on networks with high clustering coefficient than in
networks with low clustering. The most accurate algorithms in Facebook
are the ones that recommend this type of users, thus performing better than
on the Twitter networks.

Several common patterns can be identified otherwise across all
three datasets. One notable observation is the good performance of
neighborhood-based link prediction algorithms, which consistently
achieve competitive results every time. Among them, the Adamic-Adar
algorithm stands out, ranking among the top 5 best algorithms in all
networks. To a lesser extent, other alternatives such as resource allocation
or MCN also achieve good accuracy. Also in this family, preferential
attachment is quite suboptimal in all datasets, and the Jaccard coefficient,
though far better than popularity, fails to improve over its unnormalized
version (MCN). The CF-tf-idf approach, which can also be classed in this
group, shows a similar behavior to Jaccard in all datasets. This method has
very similar accuracy to the content-based IR approach.

On the other hand, path-based approaches are far from the best results:
Katz, global LHN and distance-based recommendation are always among
the worst four algorithms in the comparison (random recommendation
aside) in terms of precision, along with the hitting time and commute time
algorithms. The only exception to this observation is the local path index,
which stands as a mid-packer in all three datasets. The three other random
walk methods — Money, PageRank and PropFlow — seem to work quite
well on the Facebook undirected network — they are in fact the best three
algorithms — while they are far from being any good on Twitter. Money,
the algorithm devised by researchers at Twitter, seems to be the best of all
three.

The poor accuracy of CF-tf-idf, Jaccard and global LHN index can be
related to a common factor in all three algorithms: a heavy popularity
penalization. It would appear that some degree of popularity is needed to
achieve a basic accuracy level.

Finally, the direct adaptation of classical collaborative filtering
algorithms is among the best-performing approaches. On Twitter, matrix
factorization is the top algorithm, and user-based kNN ranks in the head

560 J. Sanz-Cruzado and P. Castells

pack as well. They both achieve decent — though not top — accuracy also
on Facebook. We further observe that item-based kNN is slightly behind
the two other approaches, particularly on the interaction network.

Novelty and diversity. In addition to the accuracy metrics, we have
evaluated the algorithms using complementary perspectives, namely
novelty and diversity. The novelty perspective measures how different the
recommended users are with respect to the current or previous social
experience of the candidate user, whereas diversity refers to the
recommendation of people who are different from each other [14]. For
novelty, we measure the popularity complement (PC) [14,76], and the
profile distance (PD) [14,76] of recommendations. For diversity we use
the intra-list distance [14,76] and the Gini coefficient [14,77].

The popularity complement (PC) [14,76] rewards the recommendation
of long-tail, low-degree users. Since it is the opposite of the objective
function of preferential attachment, it is easy to see why popularity yields
the lowest value for this metric. Random-walk algorithms hitting time and
commute time follow close by, which indicates that both methods have a
strong bias towards recommending popular users. Algorithms like Jaccard,
CF-tf-idf and the global LHN index yield high values in this metric. This
is mainly due to the strong penalization applied to popular candidate items.
This is particularly noticeable in LHN, which even outperforms random
recommendation in this metric. On the Twitter datasets, CB-tf-idf also
achieves good results in PC.

We assess recommendation unexpectedness with the profile distance
metric (PD) [14,76], which measures how different the recommended
contacts are from people the target user is already connected to. The metric
requires a distance measure, based on user features. Depending on the
dataset we evaluate, we consider two different types of features In the
Twitter datasets, we take as features the unique terms in the text of tweets
posted by users. We weight the terms by tf-idf [70] on the concatenated
tweets (as a single document), and we measure the distance between users
as the complement of the cosine similarity between the tf-idf vectors. We
find many differences between datasets in the results, but also some
commonalities. User-based and item-based kNN as well as Katz stand out,
reaching high PD values in both datasets. Popularity, hitting time and

 Contact Recommendations in Social Networks 561

commute time also achieve fair results. On the other extreme, tf-idf
variants are among the worst approaches, along with neighborhood-based
algorithms.

Since the Facebook dataset does not include any side information to
extract user features from, we take an alternative distance notion.
Specifically, we partition the network into communities, which we take as
user features. We use three different community detection algorithms for
this purpose: leading vector [62], Louvain [11] and Infomap [69], which
provide a 3-dimensional feature vector for each user, formed by the
communities the user belongs to in each of the three respective network
partitions. Using these features, we take the complement of the Jaccard
similarity of the users’ respective communities as the distance measure.
We observe that popularity, hitting time and commute time stand out
among the rest, showing the most novel recommendations. Far from them,
distance-based and machine learning approaches obtain moderate results,
but still much better than the rest of the algorithms.

We use the same distance measures (tf-idf on Twitter and community
Jaccard on Facebook) to assess the intra-list dissimilarity (ILD), i.e. how
different are recommended users from each other [14,76]. We observe
that, in the Twitter networks, distance-based recommendation, hitting time
and commute time achieve the best ILD results, followed by popularity,
PageRank and Money. On the opposite extreme, item-based kNN, CF-tf-
idf and LHN yield the worst values. Despite the differences, we observe
some similar results in the Facebook dataset: hitting time and commute
time provide the most diverse recommendations, followed by popularity.
Machine learning approaches, along with Katz and distance-based
recommendation, though far from the best methods, obtain good ILD
results.

We nonetheless find a considerable variation from one dataset to the
other: on the Twitter interaction network, hitting time and commute time
provide the most diverse results, along with supervised Naïve-Bayes; on
the Twitter follows network, path-based approaches stand out; preferential
attachment, Naïve-Bayes and distance-based recommendation achieve the
most diverse recommendations on the Facebook network. In all cases,
kNN produces the worst results, while random recommendation trivially
produces highly diverse recommendations, as is well-known [14].

562 J. Sanz-Cruzado and P. Castells

Finally, the Gini coefficient measures how evenly distributed are
recommendations over the network population [14,77]. Preferential
attachment naturally produces, by definition, the most concentrated
recommendations, since it is not personalized and predicts essentially
(except for excluding existing contacts and reciprocating links for each
target user) the same list of contacts to everyone. Hitting time and
commute time also show remarkably low scores for this metric, showing
that they do not provide very personalized predictions. Excluding random
recommendation, which trivially achieves the highest value for this metric
in all datasets, Jaccard, distance-based recommendation and CF-tf-idf
obtain the best values in all three datasets, because they either penalize or
ignore popularity in their ranking function. Interestingly, penalizing
popularity alone is not a guarantee for achieving a high Gini diversity: the
LHN algorithm seems to concentrate recommendations over a reduced set
of users who are not popular — the reason being that the target user has
little effect on the ranking score of the algorithm, hence the reduced degree
of personalization of the resulting recommendations.

Conclusions. Overall, from the point of view of recommendation
accuracy, which has been the focus of the vast majority of research efforts
in the field, we can say that state of the art collaborative approaches from
the recommender systems field, such as kNN [64] and matrix factorization
[35], work very effectively when adapted to this very particular
recommendation problem. We also confirm the effectiveness (most
consistently across datasets) of one of the most classical and long-standing
approaches, Adamic-Adar [2,48,57]. When considering a wider
perspective of recommendation utility, we can point at Jaccard [36,48,70]
as a particularly balanced option, which procures better novelty and
diversity than the most accurate algorithms (again, consistently over
metrics and datasets), while still retaining a fair accuracy level.

Let the reader keep in mind that the empirical observations reported
here are a particular example experiment from which we cannot extract
general claims, but we hope it serves as illustration of the different
behavior displayed by some variety of algorithms drawn from work in
different contexts, which we test and compare here under an integrative
experimental setup.

 Contact Recommendations in Social Networks 563

16.8. Future directions

The recommendation of contacts in a social network is a relatively new
problem and many new algorithms and techniques will certainly see the
light in the coming years. Algorithmic design, to begin with, can be
expected to be an active area of innovation and research for many years to
come. More effective and efficient algorithms will foreseeably be
developed, and specific questions and aspects therein (such as link
directionality in algorithm instantiations) will likely remain open for
research improvement in the mid or long term.

Moreover, if the evaluation of recommender systems remains an area
with open research problems today, this is more so when recommending
people, as the human complexity of the target user gets multiplied by
the complexity of a human target item. Further research is needed
to understand the motivations, goals and assumptions of contact
recommendation, and the different angles that should be considered.
Notions such as engagement, reciprocity [66,67], dimensions such as
novelty and diversity [14,16] may bear rich meanings when referred to
people interacting with people.

Another major and barely addressed prospect is considering what link
recommendation brings not just to each individual user, but to the network
itself. As personalized contacts suggestions gain presence in social
platforms, they may play an increasingly important active role in the
growth of the network, and hence in shaping its evolution. This effect
should be better understood to avoid undesired drifts (e.g. hub
hypertrophy, community bubbles, starving nodes, etc. [65]), and to take
the opportunity to draw further benefit from the action of recommenders,
with a broader outlook on the network properties, performance and value.
This perspective may lead to new and rich connections between
recommender system technology and long-standing research on social
network analysis, theory and metrics [1,20,71,73].

564 J. Sanz-Cruzado and P. Castells

References

1. Aiello, L., Barbieri, N. (2017). Evolution of Ego-networks in Social Media with Link
Recommendations, Proceedings of the 10th ACM International Conference on Web
Search and Data Mining (WSDM 2017), ACM, pp. 111–120.

2. Adamic, L.A. and Adar, E. (2003). Friends and neighbors on the Web, Social
Networks 25(3), pp. 211–230.

3. Al Hasan, M., Chaoji, V., Salem, S., and Zaki, M. (2006). Link Prediction using
Supervised Learning, Proceedings of SDM 06 Workshop on Link Analysis,
Counterterrorism and Security at the 6th SIAM International Conference of Data
Mining (SDM 2006), IEEE, pp. 1828–1832.

4. Amatriain, X. (2012). Mining Large Streams of User Data for Personalized
Recommendations, ACM SIGKDD Explorations Newsletter 14(2), pp. 37–48.

5. Backstrom, L. and Leskovec, J. (2011). Supervised Random Walks, Proceedings of
the 4th ACM International Conference on Web Search and Data Mining (CIKM
2011), ACM, pp. 635–644.

6. Baeza-Yates, R. and Ribeiro-Neto, B. (2011) Modern Information Retrieval: the
concepts and technology behind search, 2nd Ed. (Addison-Wesley Publishing
Company, USA).

7. Bahmani, B., Chowdury, A. and Goel A. (2010). Fast incremental and personalized
PageRank, Proceedings of the VLDB Endowment 4(3), pp. 173–184.

8. Barabàsi, A-L. and Albert, R. (1999). Emergence of scaling in random networks,
Science 286(5439), pp. 509–512.

9. Bellogín, A., Castells, P. and Cantador I. (2017). Statistical Biases in Information
Retrieval Metrics for Recommender Systems, Information Retrieval Journal 20(6),
pp. 606–634.

10. Bishop, C. (2006). Pattern Recognition and Machine Learning (Springer, New York,
USA).

11. Blondel, V., Guillaume, J., Lambiotte, R. and Lefebvre, E. (2008). Fast Unfolding of
Communities in Large Networks. Journal of Statistical Mechanics: Theory and
Experiment 2008(10).

12. Brin, S. and Page, L. (1998). The Anatomy of a Large-Scale Hypertextual Web
Search Engine, Proceedings of the 7th International Conference on World Wide Web
(WWW 1998), Elsevier Science Publishers B.V., pp. 107–117.

13. Cannistraci, C.V., Alanis-Lobato, G., and Ravasi, T. (2013). From link-prediction in
brain connectomes and protein interactomes to the local-community-paradigm in
complex networks, Scientific Reports 3.

14. Castells, P., Hurley, N. and Vargas, S. (2015) Recommender Systems Handbook, 2nd
Ed., eds. Ricci, F., Rokach, L., Shapira, B., Chapter 26 “Novelty and Diversity in
Recommender Systems” (Springer, New York, USA), pp. 881–918.

 Contact Recommendations in Social Networks 565

15. Chawla. N., Bowyer, K., Hall, L. and Kegelmeyer, W. (2002). SMOTE: Synthetic
Minority Over-sampling Technique, Journal of Artificial Intelligence Research 16,
pp. 321–357.

16. Chen, J., Geyer, W., Dugan, C., Muller, M. and Guy, I. (2009). Make new friends,
but keep the old, Proceedings of the 27th International Conference on Human
Factors in Computing Systems (CHI 2009), ACM, pp. 201–210.

17. Clauset, A., Moore, C. and Newman, M.E.J. (2008). Hierarchical structure and the
prediction of missing links in networks, Nature 453, pp. 98–101.

18. Cukierski, W., Hamner, B. and Yang, B. (2011). Graph-based features for
Supervised Link Prediction, Proceedings of the 2011 International Joint Conference
on Neural Networks (IJCNN 2011), IEEE, pp. 1237–1244.

19. Cremonesi, P., Koren, Y. and Turrin, R. (2010). Performance of Recommender
Algorithms on Top-N Recommendation Tasks, Proceedings of the 4th ACM
Conference on Recommender Systems (RecSys 2010), ACM, pp. 39–46.

20. Daly, E. M., Geyer, W. and Millen, D.R. (2010). The network effects of
recommending social connections, Proceedings of the 4th ACM Conference on
Recommender Systems (RecSys 2010), ACM, pp. 301–304.

21. Diaz, F., Metzler, D. and Amer-Yahia, S. (2010). Relevance and Ranking in Online
Dating Systems, Proceedings of the 33rd Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR 2010),
ACM, pp. 66–73.

22. Dunbar, R.I.M. (1993). Coevolution of neocortical size, group size and language in
humans. Behavioral and Brain Sciences 16, pp. 681–735.

23. Erdelyi, I. (1967). On the Matrix Equation Ax = λBx, Journal of Mathematical
Analysis and Applications 17(1), pp. 119–132.

24. Fawcett, T. (2006). An introduction to ROC analysis, Pattern Recognition Letters
27(8), pp. 861–874.

25. Goel, A., Gupta, P. Sirois, J., Wang, D., Sharma, A. and Gurumurthy, S. (2015). The
Who-to-follow system at Twitter: Strategy, algorithms and revenue impact,
Interfaces 45(1), pp. 98–107.

26. Golder, S.A., Yardi, S., Marwick, A. and boyd, d. (2009). A Structural Approach to
Contact Recommendation in Online Social Networks, Workshop on Search in Social
Media (SSM 2009) at the 32n Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR 2009).

27. Goodman, L. (1961). Snowball Sampling, Annals of Mathematical Statistics 32 (1),
pp. 148–170.

28. Guimera, R. and Sales-Pardo, M. (2009). Missing and spurious interactions and the
reconstruction of complex networks, Proceedings of the National Academy of
Sciences 106, pp. 22073–22078.

29. Gupta, P, Goel, A., Lin, J., Sharma, A., Wang, D. and Zadeh, R. (2013). WTF: The
Who To Follow service at Twitter, Proceedings of the 22nd International Conference
on World Wide Web (WWW 2013), ACM, pp. 505–514.

566 J. Sanz-Cruzado and P. Castells

30. Guy, I. (2015) Recommender Systems Handbook, 2nd Ed., eds. Ricci, F., Rokach, L.,
Shapira, B., Chapter 15 “Social Recommender Systems” (Springer, New York,
USA), pp. 881–918.

31. Hannon, J., Bennet, M. and Smyth, B. (2010). Recommending Twitter users to
follow using content and collaborative filtering approaches, Proceedings of the
4thACM Conference on Recommender Systems (RecSys 2010), ACM, pp. 199–206.

32. Herlocker, J., Konstan, J., Terveen, L. and Riedl, J. (2004). Evaluating Collaborative
Filtering Recommender Systems, ACM Transactions on Information Systems 22(1),
pp. 5–53.

33. Hill, R. and Dunbar, R. (2003). Social Network Size in Humans, Human Nature
14(1), 53–72.

34. Hox, J.J. and Boeije, H. (2005). Encyclopedia of Social Measurement, Volume 1, eds.
Kempf-Leonard, K. “Data Collection, Primary vs. Secondary” (Elsevier,
Amsterdam, The Netherlands), pp. 593–599.

35. Hu, Y., Koren, Y. and Volinsky, C. (2008). Collaborative Filtering for Implicit
Feedback Datasets, Proceedings of the 8th IEEE International Conference on Data
Mining (ICDM 2008), IEEE, pp. 263–272.

36. Jaccard, P. (1901). Étude comparative de la distribution florale dans une portion des
Alpes et du Jura, Bulletin de la Société Vaudoise des Sciences Naturelles 37 (142),
pp. 547–579.

37. Jamali, M. and Ester, M. (2010). A Matrix Factorization Technique with Trust
Propagation for Recommendation in Social Networks, Proceedings of the 4th ACM
Conference on Recommender Systems (RecSys 2010), ACM, pp. 135–142.

38. Jeh, G. and Widom, J. (2002). SimRank: A Measure of Structural-Context Similarity,
Proceedings of the 8th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD 2002), ACM, pp. 538–549.

39. Katz, L. (1953). A new status index derived from sociometric analysis,
Psychometrika 18(1), pp. 39–43.

40. Kleinberg, J.M. (1999). Authoritative Sources in a Hyperlinked Environment,
Journal of the ACM 46(5), pp. 604–632.

41. Koprinska, I. and Yacef, K. (2015) Recommender Systems Handbook, 2nd Ed, eds.
Ricci, F., Rokach, L., Shapira, B., Chapter 16, “People-to-People Reciprocal
Recommenders” (Springer, New York, USA), pp. 545–568.

42. Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix Factorization Techniques for
Recommender Systems. Computer 42(8), pp. 30–37.

43. Langville, A.N. and Meyer, C.D. (2006) Google’s PageRank and Beyond: The
Science of Search Engine Rankings (Princeton University Press, New Jersey, USA).

44. Leicht, E.A., Holme, P. and Newman, M.E.J. (2006). Vertex similarity in Networks,
Physical Review E 73.

45. Lempel, R. and Moran, S. (2001). SALSA: The Stochastic Approach for Link-
Structure Analysis. ACM Transactions on Information Systems 19(2), pp. 131–160.

 Contact Recommendations in Social Networks 567

46. Leskovec, J. and Faloutsos, C. (2006). Sampling from Large Graphs, Proceedings of
the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD 2006), ACM, pp. 631–636.

47. Leskovec, J and Sosič, R. (2016). SNAP: A General-Purpose Network Analysis and
Graph-Mining Library, ACM Transactions on Intelligent Systems and Technology
8(1).

48. Liben-Nowell, D. and Kleinberg, J. (2003). The Link Prediction Problem for Social
Networks, Proceedings of the 12th ACM International Conference on Information
Knowledge and Management (CIKM 2003), ACM, pp. 556–559.

49. Lichtenwalter, R.N and Chawla, N.V. (2011). LPMade: Link Prediction Made Easy,
Journal of Machine Learning Research 12, pp. 2489–2492.

50. Lichtenwalter, R.N, Lussier, J.T. and Chawla, N.V. (2010). New Perspectives and
Methods in Link Prediction, Proceedings of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD 2010), ACM, pp. 243–
252.

51. Lü, L., Jin, C. and Zhou, T. (2009). Similarity Index for Link Prediction of Complex
Networks, Physical Review E 80(4).

52. Lü, L and Zhou, T. (2010). Link Prediction in Social Networks: A Survey, Physica
A 390(6), pp. 1150–1170.

53. Ma, H., Yang, H., Lyu, R. and King, I. (2008). SoRec: Social Recommendation
Using Probabilistic Matrix Factorization, Proceedings of the 17th ACM International
Conference on Information and Knowledge Management (CIKM 2008), ACM, pp.
931–940.

54. Maiya, A. and Berger-Wolf, T. (2011). Benefits of Bias: Toward Better
Characterization of Network Sampling, Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge and Data Mining (KDD 2011), ACM, pp.
105–113.

55. McAuley, J. and Leskovec, J. (2012). Learning to Discover Social Circles in Ego
Networks, Advances in Neural Information Processing Systems 25 (NIPS 2012).
Curran Associates, Inc., pp. 539–547.

56. McDonald, D. and Ackerman, M. (2000). Expertise Recommender: A Flexible
Recommendation System and Architecture, Proceedings of the 2000 ACM
Conference on Computer Supported Cooperative Work (CSCW 2000), ACM, pp.
231–240.

57. McPherson, M., Smith-Lovin, L. and Cook, J-M. (2001). Birds of a Feather:
Homophily in Social Networks, Annual Review of Sociology 27(1), pp. 415–444.

58. Menon, A. and Elkan, C. (2011). Link Prediction via Matrix Factorization,
Proceedings of the European Conference on Machine Learning and Knowledge
Discovery in Databases (ECML PKDD 2011), Springer-Verlag, pp. 437–452.

59. Meyer, C.D. (1975). The Role of Group Generalized Inverse in the Theory of Finite
Markov Chains. SIAM Review 17(3), pp. 443–464.

568 J. Sanz-Cruzado and P. Castells

60. Myers, S.A, Sharma, A., Gupta, P. and Lin, J. (2014). Information Network or Social
Network? The Structure of the Twitter Follow Graph, Proceedings of the 23rd
International Conference on World Wide Web (WWW Companion 2014), ACM, pp.
493–498.

61. Newman, M.E.J. (2001). Clustering and preferential attachment in growing
networks, Physical Review E 64.

62. Newman, M.E.J. (2006). Finding community structure in networks using the
eigenvalues of matrices, Physical Review E 74.

63. Newman, M.E.J. (2010) Networks: An Introduction (Oxford University Press,
Oxford, United Kingdom).

64. Ning, X., Desrosiers, C. and Karypis, G. (2015) Recommender Systems Handbook,
2nd Ed, eds. Ricci, F., Rokach, L., Shapira, B. Chapter 1 “A Comprehensive Survey
of Neighborhood-based Recommendation Methods” (Springer, New York, USA),
pp. 37–76.

65. Pariser, E. (2011) The Filter Bubble: How the personalized web is changing what we
read and how we think (Penguin Press, London, United Kingdom).

66. Pizzato, L., Rej, T., Chung, T., Koprinska, I. and Kay, J. (2010). RECON: A
Reciprocal Recommender for Online Dating, Proceedings of the 4th ACM
Conference on Recommender Systems (RecSys 2010), ACM, pp. 207–214.

67. Pizzato, L., Rej, T., Akejurst, J., Koprinska, I., Yacef, K. and Kay, J. (2013).
Recommending people to people: the nature of reciprocal recommenders with a case
study in online dating, User Modeling and User-Adapted Interaction 23(5), pp. 447–
488.

68. Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N. and Barabàsi, A-L. (2002).
Hierarchical Organization of Modularity in Metabolic Networks, Science 297, pp.
1551–1555.

69. Rosvall, M. and Bergstrom, C. (2008). Maps of random walks on complex networks
reveal community structure, Proceedings of the National Academy of Sciences
105(4), pp. 1118–1123.

70. Salton, G. and McGill, M.J. (1983) Introduction to Modern Information Retrieval.
(McGraw-Hill, Inc., New York, USA).

71. Sanz-Cruzado, J., Pepa, S.M. and Castells, P. (2018). Structural Novelty and
Diversity in Link Prediction, Companion Proceedings of the The Web Conference
2018 (WWW 2018), IW3C2, pp. 1347–1351.

72. Sørensen, T. (1948). A method of establishing groups of equal amplitude in plant
sociology based on similarity of species content and its application to analyses of the
vegetation on Danish commons, Biologiske Skrifter 5(4), pp. 1–34.

73. Su, J., Sharma, A. and Goel, S. (2016). The Effect of Recommendations on Network
Structure, Proceedings of the 25th International Conference on World Wide Web
(WWW 2016), IW3C2, pp. 1157–1167.

74. Sulaimany, S., Khansari, M., Zarrineh, P., Daianu, M., Jahanshad, N., Thompson,
P.M. and Masoudi-Nejad, A. (2017). Predicting brain network changes in

 Contact Recommendations in Social Networks 569

Alzheimer’s disease with link prediction algorithms, Molecular BioSystems 13(4),
pp. 725–735.

75. Tang, J., Hu, X., Liu, H. (2013). Social recommendation: a review, Social Network
Analysis and Mining 3(4), pp. 1113–1133.

76. Vargas, S. and Castells, P. (2011). Rank and Relevance in Novelty and Diversity
Metrics for Recommender Systems, Proceedings of the 5th ACM Conference on
Recommender Systems (RecSys 2011), ACM, pp. 109–116.

77. Vargas, S. and Castells, P. (2014). Improving Sales Diversity by Recommending
Users to Items, Proceedings of the 8th ACM Conference on Recommender Systems
(RecSys 2014), ACM, pp. 145–152.

78. Wang, C., Satuluri, V. and Parthasarthy, S. Local Probabilistic Models for Link
Prediction, Proceedings of the 7th IEEE International Conference on Data Mining
(ICDM 2007), IEEE, pp. 322–331.

79. Watts, D. and Strogatz, S. (1998). Collective dynamics of ‘small-world’ networks,
Nature 393, pp. 440–442.

80. White, S. and Smyth, P. (2003). Algorithms for estimating relative importance in
networks, Proceedings of the 9th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD 2003), ACM, pp. 266–275.

81. Zhou, T., Lü, L. and Zhang, Y. (2009). Predicting missing links via local information,
The European Physical Journal B 71(4), pp. 623–630.

October 25, 2018 13:52 ws-rv9x6-9x6 Book Title 11131-00b-toc page xviii

October 23, 2018 17:39 ws-rv9x6-9x6 Book Title 11131-17 page 571

Chapter 17

Job Recommendations:

The XING Case

Katja Niemann, Daniel Kohlsdorf and Fabian Abel

XING SE, Hamburg, Germany

{katja.niemann, daniel.kohlsdorf, fabian.abel}@xing.com

There are several reasons why people are interested in getting job rec-
ommendations. They might be actively looking for a new job or want
to stay informed about their own value in the job market, etc. Addi-
tionally, recruiters aim for the right people to see their job postings to
find suitable candidates for open positions. Real world job recommender
systems face several challenges, though. Job postings are only interest-
ing as long as they are up-to-date and, thus, have to be recommended
to the right users as soon as they are published. Furthermore, a job rec-
ommender system should aim to support the users in their professional
growth and needs to find jobs that do not necessarily match the users’
current profile but have the potential to form the next step in the users’
career. In this chapter, we first introduce the professional social network
XING and discuss the challenges it has to tackle when generating job
recommendations. Thereafter, we present the recommender’s function-
ality and discuss how we evaluate new features or extensions. Finally,
we conclude with an insight in the recommender system’s architecture
that has to serve thousands of requests per minute.

17.1. Introduction

17.1.1. XING

XING1 is a social network for professionals with more than 20 Million—

primarily German-speaking—users. XING offers various products and ser-

vices supporting social networking, tools enabling companies and recruiters

to attract, find, and recruit talent as well as a jobs marketplace amongst

others. The social network helps users to approach potential business part-

ners, network with colleagues or find coaches. In order to do so, users create

1https://xing.com

571

https://xing.com

October 23, 2018 17:39 ws-rv9x6-9x6 Book Title 11131-17 page 572

572 K. Niemann, D. Kohlsdorf and F. Abel

and maintain a profile page holding information about their curriculum vi-

tae (CV) including details about their current employment, previous career

steps, education as well as tags describing their skills and interests. Fig-

ure 17.1 shows an excerpt of one of the author’s profile page. An individual

CV entry typically provides information about the job role (including name

of the position, discipline, seniority level), company (including the company

name, industry, company size) and the period of time that a user spent in

the given position. Additionally, users can add information only visible to

recruiters like their aspired salary, companies they are interested in or their

willingness to travel or move to another city. Recruiters can use XING’s

recruiting tools to create job postings or define detailed search profiles and

directly contact potential candidates.

In the subsequent sections, we will focus on XING’s job marketplace2

and will discuss the problem of recommending jobs to users [Abel (2015)].

The job marketplace typically features between 650,000 and 1 Million job

postings. Some of these job postings are automatically crawled from the

Web while others are manually created by recruiters on XING. Companies

and recruiters can also buy packages to promote their job ads and therewith

increase their visibility.

Users can either search for specific postings using XING’s search service

or browse and receive job recommendations through multiple channels, e.g.

on XING’s start page, mobile apps, emails, etc. In the job marketplace it-

self, recommendations are presented as cards in a matrix with three columns

and two rows which can be expanded to see more recommendations (see

Figure 17.2(a). These cards list the job title, the company, the city and

the age of the postings. Furthermore, a score is shown that indicates to

what extent a recommendation matches the profile of the user. The job

recommendation engine also allows for actively notifying users about new

incoming job postings. Those types of push recommendations are high-

lighted with an additional NEW label that is shown at the top right of

the recommendations. The number of unread push recommendations is

moreover shown in the menu bar on the left.

The top two postings are also presented on the start page of XING as

depicted in Figure 17.2(b). Emails (see Figure 17.2(c) and mobile apps

for Android, Windows or iOS (see Figure 17.2(d) feature channels for dis-

tributing job recommendations as well.

2https://www.xing.com/jobs

https://www.xing.com/jobs

October 23, 2018 17:39 ws-rv9x6-9x6 Book Title 11131-17 page 573

Job Recommendations: The XING Case 573

Fig. 17.1. Example of a XING profile with skills, interests, details about cur-

rent/previous employments and the educational background of the user.

Users have several ways of interacting with a job posting. Clicking a

posting’s card opens the detailed view of the job posting with a full text

description of the advertised opening. It is also possible to bookmark the

posting in order to return to it easily or to apply to the opening directly on

the page. On the other hand, users can delete job recommendations from

their recommendation list.

In order to explain our recommendations and give users the option to

give feedback, we provide another view on the job recommendation called

Is this job for me? that is shown in Figure 17.3. This view lists the changes

from the user’s current job to the possible future job as advertised by the

October 23, 2018 17:39 ws-rv9x6-9x6 Book Title 11131-17 page 574

574 K. Niemann, D. Kohlsdorf and F. Abel

(a)

(b) (c) (d)

Fig. 17.2. Example channels which are used for distributing job recommendations.

(a) Jobs market (b) Startpage (c) Email (d) Mobile app.

posting and highlights how well the profile of the user matches with the

open position. Users can provide their personal feedback by rating the

recommendation on a five-star rating scale.

October 23, 2018 17:39 ws-rv9x6-9x6 Book Title 11131-17 page 575

Job Recommendations: The XING Case 575

Fig. 17.3. Is this job for me? Explaining recommendations and giving users means to
rate the relevance of recommendations on a 5-star rating scale.

Building recommender systems for our jobs market often requires to

build and customize algorithms that are able to handle some unique chal-

lenges arising in our domain. In the next section, we will describe the most

important challenges our algorithms need to overcome.

17.1.2. Challenges

There are various challenges XING’s recommender system has to tackle.

Some of these challenges arise from XING’s business interests and use cases

while some of the challenges are related to the data extracted from users

and items.

17.1.2.1. Data sparsity and new user problem

Another challenge for our recommender system are new and incomplete

user profiles [Su and Khoshgoftaar (2009)]. For example, profiles without

a seniority level or job title will make it difficult to find appropriate jobs.

As soon as users start interacting on XING, their implicitly mined interests

may compensate for incomplete profiles. However, for newly registered

users there is often little information available which makes the task of

recommending job advertisements difficult and calls for actively starting a

dialog for obtaining a better understanding about the users’ demands and

interests.

October 23, 2018 17:39 ws-rv9x6-9x6 Book Title 11131-17 page 576

576 K. Niemann, D. Kohlsdorf and F. Abel

17.1.2.2. Data sparsity and new item problem

Since job postings are very short lived, there are often not many interactions

for each item. Furthermore, the item collection is quite large and diverse

since XING is regularly crawling new job postings. 5,000–20,000 new job

ads are typically added to the inventory on a daily basis and a similar

amount of items is also removed again from the platform. Users who are

actively seeking for a new job would like to be informed about such new

incoming jobs as fast as possible. In fact, the vast majority of the job

recommendations that are actively pushed to users so that users receive a

notification (either per email, in the mobile app or on the Web platform, cf.

NEW label in Figure 17.2) are pushed immediately after the corresponding

job ads were added to the inventory of the jobs marketplace and thus did

not receive a single interaction at the time they are pushed. These sparsity

issues render many of the collaborative filtering approaches difficult.

17.1.2.3. Information extraction

Since collaborative filtering is not applicable in all situations we also ap-

ply content-based recommendation strategies. However, another challenge

arising from the crawled postings is that usually no meta data is available

describing them.

The postings from the crawler are raw HTML documents. Therefore,

our system needs to extract important information for our content-based

recommendation algorithms including the actual full-text of the job ad, the

job title, the location, the company, the seniority label and many more.

During the extraction of these fields errors can occur that might subse-

quently lead to bad recommendations and in turn a loss in trust.

17.1.2.4. Trust

One of the hardest challenges is to keep the users’ trust and make the

recommendations transparent [Konstan and Riedl (2012)]. Since a person’s

career is a fundamental part of life, a bad job recommendation can be

viewed as insulting or anger the user to a point where the user’s trust in

the recommender system is completely lost. One example of a mistake

that often leads to disappointed users is a mismatch regarding the seniority

of the user. For example, a recommendation with the job role Internship

Assistant to the CEO for a user with the job role CEO will most probably

be interpreted in a negative way.

October 23, 2018 17:39 ws-rv9x6-9x6 Book Title 11131-17 page 577

Job Recommendations: The XING Case 577

17.1.2.5. Ambiguity and false information

People may sometimes use the same words but in fact refer to different

concepts. For example, a job role such as Sales Manager leaves quite some

room for interpretation. It may refer to a call agent, traveling salesman,

shop assistant and many more. Moreover, user profiles and job adver-

tisements may both contain false information. For example, job ads are

sometimes written by recruiters who are lacking detailed background infor-

mation about the actual job role and may thus not correctly describe skills

that are required for a given position. On the contrary, users may list skills

in their profiles that do not properly reflect their experience.

17.1.2.6. Evolving careers

Most users are not looking for a job that is equivalent to their current job.

They want to evolve in their career or find a job in which they can gather

new skills or competencies. Thus, the profile of a user might describe the

present and past of the users but not necessarily their future for which we

aim to recommend jobs [Li et al. (2017); Xu et al. (2016)].

17.1.2.7. Paid content vs. non-paid content

One of XING’s businesses is to sell job advertisements to recruiters. By

paying for job advertisements, recruiters benefit from an increased number

of impressions for their job ads. In other words, these postings require a

boosted score when ordering recommendations. We want to recommend the

most suitable job postings to our users, though. Sometimes, these goals can

be conflicting and there might be a trade-off between the quality and the

boosting. This is especially true for postings where only very few potential

candidates exist.

17.1.2.8. User interests vs. recruiter interests

Ideally, job recommendations take two aspects into account: (a) the recom-

mended job ad should be of interest to the user and (b) the user should be

an appropriate candidate for the given job. Balancing these two types of

interests is not easy. A user may be strongly interested in a given job, but

may in fact—from the recruiter’s perspective—not be a good candidate for

the job opening.

Furthermore, the two parties recruiters and candidates can have differ-

ent goals. For example, companies might want to reach as many qualified

October 23, 2018 17:39 ws-rv9x6-9x6 Book Title 11131-17 page 578

578 K. Niemann, D. Kohlsdorf and F. Abel

candidates as possible in order to increase their postings’ visibility. How-

ever, for job roles with a high demand, the candidates might be then flooded

with messages from recruiters or notifications about new job recommenda-

tions. Particularly when it comes to actively notifying users about new

matching job recommendations, one requires smart mechanisms that de-

cide about sending or not sending such notifications.

In the rest of the paper, we will present how we tackle these challenges

at XING in a production environment. Additionally, some of these chal-

lenges, especially the data sparsity as well as the user vs. recruiter interests,

were addressed as part of the ACM Recommender Systems Challenges 2016

and 2017 [Abel et al. (2016, 2017); Said (2016)] which were co-organized by

XING. In both editions of the challenge, the winning solutions were ensem-

bles of recommender algorithms that exploited hundreds or even thousands

of features. Additionally, both solutions made use of gradient-boosted de-

cision trees to learn models combining those features [Volkovs et al. (2017);

Xiao et al. (2016)]. To get a more detailed overview of the various solutions

submitted to the Challenges, we refer the reader to the proceedings of the

corresponding ACM Recommender Systems Challenges [rec (2016, 2017)].

17.1.3. Structure of XING’s Job Recommender System

In order to account for the different requirements from our business and

our data sources, we implement XING’s job recommender system as an en-

semble of various recommendation strategies, filters, and rankers. The rec-

ommender ensemble consists of multiple components C = c1, c2, ..., cN such

as collaborative filtering, more-like-this, or content-based recommender sys-

tems. Each of these components ci returns a list of k recommendations with

scores ri1, ri2, ..., rik. To compute the final score of an item j its scores are

combined linearly over all components and then squished through a logistic

function.

s(j) = β0 +
∑
i∈N

I(itemj ∈ Ci) ∗ βj ∗ rij (17.1)

p(item = j) =
1

1 + e−s(j)
(17.2)

The function I(itemj ∈ Ci) is an indicator function that returns 1 if the

item was returned from component ci and 0 otherwise. The weights β are

learned using a logistic regression model. During learning, we try to predict

a user’s click using the components’ scores as features. After the final

recommendation list is computed using the output of all components, we

October 23, 2018 17:39 ws-rv9x6-9x6 Book Title 11131-17 page 579

Job Recommendations: The XING Case 579

apply several filtering and ranking algorithms that account for our business

rules.

17.2. Data Processing Pipelines

17.2.1. Users and Items

In order to better understand the meaning of the information shared by

the users in their profiles as well as to understand the job postings and

match them with the users, we pre-process the user profiles and job postings

and map them to the same knowledge space as described in the following

sections.

17.2.1.1. User profiles

Each user has a profile page which enables her to provide a detailed overview

about her professional career as well as about her competencies, education,

and interests. The profile page is thus divided in several sections according

to the different information presented with the most important and promi-

nently placed sections being haves, interests, professional experience, and

educational background (cf. Figure 17.1).

The haves and interests sections hold the users’ skills and competencies

and additionally their main purpose for using the platform in a tag-like

form. The most common haves are hard and soft skills like ‘online market-

ing’, ‘quality management’, ‘C++’ as well as ‘reliability’, ‘flexibility’, and

‘creativity’ while the interests section expresses what the users are looking

for, e.g. ‘new contacts’, ‘new challenges’, or ‘exchanging ideas’.

The professional experience section comprises the work experiences of

the users, i.e. their previous and current positions. Each work experience

holds mandatory information, i.e. the job title and the company name which

are both free-text as well as the employment type (e.g. ‘full-time employee’,

‘part-time employee’, ‘intern’, ‘freelancer’, or ‘volunteer’) and the industry

(e.g. ‘Banking and Financial Services’ or ‘IT and Internet’) which can

both be selected using a drop-down menu. Additionally, a work experience

can hold optional information about the discipline, the career level, or the

number of employees in the company as well as its start and end date.

Finally, a user can mark a work experience as primary which forces the job

title and company name to be shown next to the profile picture of the user

at the top of the web page.

October 23, 2018 17:39 ws-rv9x6-9x6 Book Title 11131-17 page 580

580 K. Niemann, D. Kohlsdorf and F. Abel

The educational background section gives an overview of the university-

level education of a user with the only mandatory information being the

university which is given by the user as free text. Optional specifications

are the field of study, the (future) degree as well as the duration. Similarly

to the work experiences, an education entry can be selected as primary to

be shown next to the user’s profile picture.

No inferred or processed information is shown on a user’s profile page

but only data explicitly given by the user. However, the users are encour-

aged to fill in their profiles as detailed as possible and also to keep them

up-to-date by utilizing tools like the profile wizard which asks the users

about profile entries still being valid and suggests skills that match the

current profile or the job recommendation optimizer which enables users to

specify what they are looking for in a new job.

17.2.1.2. Job postings

Each posting holds free text and optionally images that describe the offered

job and the company. Above the posting, additional information about the

job are summarized in a structured way, i.e. the job’s title, the company,

the location, the date when it was posted, the job type (which is similar to

the employment type of the user), the career level, and the industry.

XING offers companies a graphical user interface as well as an API to

submit their paid job postings. This way, the companies can directly choose

several features like the career level or the industry from XING provided

lists. Additionally, XING uses a crawler to gather (non-paid) job postings

from different web sites and extracts or infers these features automatically.

17.2.1.3. Interactions of users and job postings

When a user gets a recommendation for a job posting, she can choose

to ignore it, to bookmark it in order to create an overview of jobs she is

interested in, to delete it in order to make the recommendation disappear

and show a new one, or to click on it to study the job posting in detail.

After clicking on a job posting, she can still bookmark the job posting or

create a search alert based on the features automatically extracted from

the job posting which can be further refined. In the “Is this job for me”

section of the posting (see Figure 17.3), the user has the option to rate the

posting using stars on a scale from 1–5.

Finally, the user has several opportunities to reply to a job posting

that vary based on the chosen posting, e.g. paid postings usually hold a

October 23, 2018 17:39 ws-rv9x6-9x6 Book Title 11131-17 page 581

Job Recommendations: The XING Case 581

‘I’m interested’ button that enables the users to notify the job poster with

just one click if they are interested in the job. Another reply option is

the ‘Apply’ button that opens a user’s mail client with the contact e-mail

address of the posting or forwards the user to the application web site of

the respective company.

Users can also choose to give general feedback about their job posting

recommendations. They then gets a list of up to 20 recommendations

that they can rate on a scale from 1–5. The rating should represent the

users’ preferences with regard to job title match, location match and other

fields. Additionally, the users can add free text comments about their job

recommendations in general.

17.2.2. Entity Recognition

A lot of the data considered by XING’s recommender engines is in natural

language, e.g. the job titles, the posting descriptions as well as the skills

and interests of the users. These fields hold very rich information, however,

natural language is ambiguous. This is to say, different users and companies

might use different terms to refer to the same job role or skill. Additionally,

even though XING solely focuses on the German-speaking market, it has

to deal with different languages as many user profiles and job postings hold

information in English and sometimes also in other languages like French

or Spanish. Thus, XING developed and maintains a highly specified ontol-

ogy for understanding the job roles, skills and fields of study as stated by

the users and job postings. Currently, the ontology holds more than 2,000

job roles and over 20,000 skills with alternative labels in several languages

(mostly English and German). An example for an often detected job role is

Java Developer which comprises 246 different alternative labels, e.g. Appli-

cation Architect J2EE and Java Entwickler (which is German). The skills

are more diverse than the job roles and hold hard skills as well as personal

characteristics as presented in the user profile.

The basic approach that tries to detect the so-called ontology entities

by finding complete matches between the text and the ontology is based

on the AhoCorasick algorithm [Aho and Corasick (1975)]. However, de-

pending on the field that is currently processed, e.g. job title, discipline, or

job description, more specialized algorithms are applied that allow partial

matches as well.

October 23, 2018 17:39 ws-rv9x6-9x6 Book Title 11131-17 page 582

582 K. Niemann, D. Kohlsdorf and F. Abel

17.2.3. User Modeling

The users already provide a lot of information in their profiles which are

further extended using the XING ontology. However, some user profiles

are rather sparse or out-dated. Additionally, most of the information given

by the users refers to the past (e.g. education and previous positions) as

well as to the present time (e.g. current position and skills). In order to

better understand the interests of the users and in which direction they

want to evolve in the future, we infer further attributes based on their

behavior, e.g. interaction-based interest profiles, their career levels as well

as their interest in finding a new job which we describe in more detail in

the following paragraphs.

The interest profile of a user is solely based on her interactions with

job postings and includes her preferred job roles, skills, industries, and

cities whereas each entry is weighted according to the number of times it

was present in the clicked postings. Additionally, a time-based component

makes sure that the weight of a clicked posting slowly declines. This way we

might for example find skills a user does not hold yet but wants to acquire.

Additionally, we infer suitable career levels for the users by applying a

rule-based approach. This is done because the career levels stated by the

users are not always comparable. For example, if a student is the CEO

of her own one-person company, we do not want to provide her with CEO

positions of large companies but rather with entry-level positions. Here,

the rules take into account the career level explicitly stated by a user, the

current work experiences and education entries as well as the size of the

company the user is working for and many more.

As XING wants to present only relevant content to its users, it is crucial

to understand if a user is at least slightly open to changing her job. Thus,

we follow a similar approach as Wang et al. [Wang et al. (2013)] and

estimate the users’ willingness to change jobs (wtcj) score that is used to

pick the number of push job recommendations a user receives amongst

others. The wtcj score is calculated using gradient-boosted decision trees

that consider over 100 features such as the number of log-ins and clicks on

job postings, the last time the profile picture was updated and the duration

of the current position in comparison to the average duration in the given

job role. Furthermore, the features are weighted according to the common

behavior of the respective user to make behavioral changes explicit. For

example, the number of login-ins in the last three month is normalized by

dividing it by the number of log-ins in the last year.

October 23, 2018 17:39 ws-rv9x6-9x6 Book Title 11131-17 page 583

Job Recommendations: The XING Case 583

17.3. Job Recommender System

In the following sections, we will describe our recommendation strategies as

well as some of our filtering and ranking algorithms in detail. As discussed

in Section 17.1.3 the job recommender system is an ensemble of multiple

strategies whose results are combined into a single recommendation list

using a logistic regressor. The final list is then filtered and ranked.

17.3.1. Recommender Engines

All applied recommender strategies have in common that they build a query

based on different features which is then run against an Elasticsearch3

search engine indexing the job postings. This way, potential recommen-

dations are returned that can be further refined and we do not need to

consider all user-posting pairs when applying the different approaches but

focus on a small subset which can be done in real-time.

17.3.1.1. Association Rule Mining for Collaborative Filtering

Collaborative filtering approaches are very popular for the creation of rec-

ommendations as they can utilize the word of mouth principle and can,

thus, take information into account that are not given by any textual de-

scriptions. Furthermore, they do not require the users to explicitly share

any information. However, XING’s job recommender system has to be able

to recommend job postings as soon as they are published. Additionally, job

postings that were posted a few days ago might already feel outdated for

actively-looking users. Thus, when only considering user interactions with

these short-lived items, the system has to deal with data that is too sparse

to apply classical collaborative filtering approaches.

The users’ interactions provide very valuable insights about our users’

needs, though. In order to utilize these insights, this recommender engines

applies interaction-based association rules. Here, the current job title, disci-

pline, industry, location (city), and career level as well as the tags (found in

the haves section of the user’s profile) are taken into account and are com-

bined with the information extracted from the postings the user positively

interacted with to build a combined profile. Based on these profiles and the

interaction data we calculate the lift for each tag, source, and posting. It

is important to mention that when collecting the data for calculating the

lift, the posting a user interacted with is not yet part of the user’s profile.
3https://www.elastic.co/

October 23, 2018 17:39 ws-rv9x6-9x6 Book Title 11131-17 page 584

584 K. Niemann, D. Kohlsdorf and F. Abel

This way, we might find for a given job posting that users with the

jobtitle “Marketing Manager” have a 56th higher probability to click on it

compared to all users while another job posting might be especially inter-

esting for users with the skill Big Data (lift 45) or the discipline Analytics

(lift 33). The new item problem remains, though, which is the reason

why XING additionally applies content-based filtering approaches as well

as item-to-item recommendations.

For creating the recommendations, the combined user profile is used

to create an Elasticsearch query and the returned postings are weighted

according to the user profile and the pre-calculated association rules.

17.3.1.2. Content-based filtering

We apply two content-based strategies, the first one is based on the explicit

user profiles (i.e. the information the users shared on their profile pages)

while the other one is based on the interest profiles (i.e. the information

extracted from the job postings the users interacted with). Both profiles

are partially enriched with other inferred information like the most suitable

career level and matching entries from XING’s ontology, see 17.2.3

Based on these user profiles we create two independent search queries

for each user and run them against the Elasticsearch search engine. The

result lists are both ranked by their TFxIDF-based similarity to the query,

i.e. the user profile.

17.3.1.3. Item-to-item recommendations: More-Like-This

The more-like-this recommender is a content-based filtering between items

consisting of two components. The first component creates an Elasticsearch

query using a user’s bookmarks and reply intentions to search for similar

postings across all active postings. Here, the similarity is calculated by

solely considering the job roles, the skills and the locations in which the job

roles and skills are represented by the respective ontology entries.

The second component utilizes word2vec [Mikolov et al. (2013)] for rank-

ing the candidate recommendations generated in the first step. Word2vec

is a dense, low dimensional (100 dimensions in our case) representation of

words. Vectors of words that are semantically similar will also be close

in the latent space. For example, the words “developer” and “program-

mer” are close in this space, while the words “developer” and “logistics”

are not. We use Continuous Bag of Words (CBOW) to train these vectors

and the latent space of the postings is spanned by the average of all word

October 23, 2018 17:39 ws-rv9x6-9x6 Book Title 11131-17 page 585

Job Recommendations: The XING Case 585

vectors in each posting. All postings from the candidate list of the first

step as well as the postings from the user’s previous positive interactions

are transformed into a joint latent space using word2vec to then calculate

their cosine similarity and rank the recommendations accordingly.

17.3.2. Filtering and Ranking Components

Currently, we apply 13 filter and 11 ranking components. The purpose of

these strategies is to either support XING’s business model, e.g. by boosting

paid job postings or to correct common pitfalls of the recommender engines.

We describe selected components in this section.

17.3.2.1. Less-like-this

For the generation of the job recommendations we apply a more-like-this

component that tries to learn from the job postings a user liked in the

past what she will like in the future. Similarly, we have a less-like-this

component as filter that learns from past interactions like the deletion of

recommended job postings what kind of job recommendations a user does

not like and removes them from the list of recommendation candidates.

17.3.2.2. Career Level

It is important to only recommend job postings with suitable career levels

to keep the users’ trust as described in Section 17.1.2.4. The career level

of a job posting thus has to hold a similar or slightly higher career level as

the one of the target user. Here, we consider the users’ career levels that

were inferred as described in Section 17.2.3, i.e. we do not only use the

information about the career levels that the users explicitly shared with us

but apply a rule-based approach to infer comparable career levels.

17.3.2.3. Location

The location of a job is important for most of the users. Thus, we filter the

recommendations in a way that at least a third of the shown job recom-

mendations for a user are close to her current location. We only make an

exception if we do not find enough suitable jobs in the proximity of a user.

Furthermore, jobs postings from locations where a user has many contacts

receive a boost.

October 23, 2018 17:39 ws-rv9x6-9x6 Book Title 11131-17 page 586

586 K. Niemann, D. Kohlsdorf and F. Abel

17.3.2.4. Diversity

We do not try to create recommendation lists holding job postings that

are as diverse as possible, as most users are looking for a specific job role.

We try to diversify the companies of the job postings, though, to prevent

that one company dominates the recommendations of a user, even if this

company is actively looking to fill many similar positions.

17.3.2.5. Rating prediction

This component predicts how a user would rate a job posting on a scale from

1 to 5 based on a gradient-boosted decision tree model (XGBoost [Chen and

Guestrin (2016)]). It then discards all recommendations with a predicted

rating that is below a given threshold and boosts recommendations with

a high predicted rating. The idea for this model resulted from the ACM

Recommender Systems Challenge 2016 [Abel et al. (2016)] and particularly

from the solution developed by Xiao et al. [Xiao et al. (2016)].

For training the model we utilize the users’ explicit ratings of job post-

ings. Attributes that are taken into account are the job roles, skills, study

subjects, disciplines, industries, and locations amongst others. Based on

these attributes we hand-engineered features that each aim to capture the

overlap between a specific part of the user’s profile and the job posting. For

example, one feature captures the overlap of skills detected in the haves sec-

tion of a user profile and in the posting, one feature captures the probability

of the transition from the user’s current job role to the job role offered in

the posting and one feature captures if the user’s current discipline matches

with the job’s discipline, etc. This is to say, we calculate matches between

the different user and job posting attributes while taking into account the

different sections in which they were identified, e.g. current and previous

job positions for users or title and body for job postings. Additionally, we

consider transitions between jobs as well as common jobs for users who

studied a given subject or hold a specific skill.

However, we assume that not all matches hold the same informative

value. For example, a match of a skill like ‘key account management’ or

‘Scala’ seems to be more expressive than a match of skills like ‘flexibility’

or ‘openness’, i.e. there are matches in which we can put a higher trust than

in other. Accordingly, we weight all matches based on the trustworthiness

of the matched entities.

In order to calculate the trustworthiness of the different entities we first

calculate the number of all rated recommendations with a match of the

October 23, 2018 17:39 ws-rv9x6-9x6 Book Title 11131-17 page 587

Job Recommendations: The XING Case 587

given entity between the user’s profile and the job posting. We then take

the number of matching recommendations that hold a rating higher than 1

and divide it by the number of all matching recommendations.

17.4. Evaluation

In this section we first describe the evaluation strategies we implement at

XING to then present two case studies. In the first case study, we compare

the impact of the different recommendation strategies while in the second

case study we show how we evaluate a new filtering component.

17.4.1. Evaluation Setup

When creating a new model, we usually have a ground truth that can be

used for training and offline testing. Here, the kind of ground truth as well

as the applied evaluation metrics vary largely depending on the task. Based

on the results of the offline evaluation we then pick the most promising

model and perform an online evaluation in form of A/B-Testing.

17.4.1.1. Offline Evaluation

Common offline evaluation metrics that we apply when working with im-

plicit rating data like clicks and bookmarks are precision@k and recall@k

[Herlocker et al. (2004)]. When training the rating prediction component

using explicit rating data, we utilize the root mean squared error (RMSE)

as evaluation metric. However, in practice it does not matter if we are

able to correctly predict if a user would rate a job posting with one or two

stars but to predict that the user will not like that job posting and discard

it [McNee et al. (2006)]. Additionally, it is important to not discard job

postings a user will like, though, as these can be quite rare. Thus, we came

up with an additional way to perform the final evaluation by calculating

for each rating (i.e. the five classes 1–5) the percentage of postings in the

test set that would be discarded for varying thresholds, see Section 17.4.3.

Additionally, a common test before deploying a new recommendation strat-

egy, filter, or ranker is to measure its impact by calculating the difference

between the old and new recommendation lists.

October 23, 2018 17:39 ws-rv9x6-9x6 Book Title 11131-17 page 588

588 K. Niemann, D. Kohlsdorf and F. Abel

17.4.1.2. Online Evaluation

The online evaluation is the most important part as a component is only

useful when it performs well in production. The online evaluation is per-

formed in the form of A/B-Testing. Therefore, we split all users into two

equal subsets named A and B and play out the original recommendations to

group A and the new recommendations to group B. The online evaluation

metrics differ greatly from the offline evaluation metrics, additionally, they

are usually the same independent of the task, i.e. the Click-Through-Rate

(CTR) and the User Success. The CTR measures the percentage of clicked

job recommendations in relation to all job recommendations while the user

success can be divided in the absolute user success, i.e. the total number of

users who clicked on a job recommendation in a given time frame as well

as the relative user success, i.e. the percentage of users who clicked on at

least one job recommendation in relation to all users who received at least

one job recommendation.

17.4.2. Case: Recommender Engines

As discussed in Section 17.3.1, we apply four different recommender en-

gines that produce the recommendation candidates that are then further

filtered and ranked. These recommender engines are collaborative filter-

ing, content-based filtering utilizing the explicitly given user information,

content-based filtering utilizing the automatically generated interest profiles

of the users, and item-to-item recommendations. Here, we want to discuss

how strongly the different recommender engines contribute to the success of

the job recommender system. We therefore took a random sample of around

1.5 Million XING users and analyzed the more than 40 Million tracking

events that were collected for these users in September 2017. Tracking

events include the display of postings as recommendation to users, i.e. im-

pressions, positive interactions of users with recommended job postings, i.e.

clicks, bookmarks, or replies, and negative interactions, i.e. deletions.

17.4.2.1. User success and CTR

Figure 17.4(a) gives an overview over the normalized success rates of the

four recommender engines. The (relative) user success is the percentage

of users who interacted with at least one job recommendation from the

specified recommender engine in relation to all users who received a job

recommendation from that recommender engine. The CTR measures the

October 23, 2018 17:39 ws-rv9x6-9x6 Book Title 11131-17 page 589

Job Recommendations: The XING Case 589

percentage of clicked job recommendations from one recommender engine in

relation to all job recommendations from that recommender engine. Here,

each user-job combination is only counted once, this is to say if a job is

recommended several times to the same user from the same recommender

engine it is still counted as just one recommendation for that engine. Ad-

ditionally, a job recommendation can be created by several recommender

engines and is then counted separately for each engine. Finally, these suc-

cess rates are normalized by the least successful strategy.

The item-to-item recommender is the most successful approach in terms

of CTR with a score about twice as high as the score of the collaborative fil-

tering which is the least successful approach and thus receives a normalized

score of 1. The implicit content-based filtering is the second-best approach

with a normalized score of about 1.5, followed by the explicit content-based

filtering which performs similarly to the collaborative filtering.

When considering the user success, the item-to-item recommender again

is the most successful approach with a score that is almost four times as high

as the user success of the explicit content-based filtering which is the least

successful approach. The implicit content-based filtering is the second-best

approach with a normalized score of about 1.8, followed by the collaborative

filtering with a normalized score of about 1.3.

Summing up, when only considering user success and CTR, the item-to-

item recommender is the clear winner followed with some distance by the

implicit content-based approach while the explicit content-based filtering

and the collaborative filtering share the last place.

17.4.2.2. Reach

When analyzing the reach of the different recommender engines, see Fig-

ure 17.4(b), one gets a more clear picture, though. The reach compares

the absolute number of positive interactions that could be initiated by a

recommender engine and the absolute number of users that clicked on a rec-

ommendation from the specified recommender engine, respectively. As for

the success rates, the reach is normalized by the least successful strategy.

The collaborative filtering is the most successful approach in terms of

interaction-based reach and holds a score that is 1.8 times higher than the

score of the explicit content-based approach which is the least successful

approach. The collaborative filtering is followed by the implicit content-

based filtering which performs similarly with a normalized score of about

1.7 and the item-to-item recommender with a normalized score of 1.4.

October 23, 2018 17:39 ws-rv9x6-9x6 Book Title 11131-17 page 590

590 K. Niemann, D. Kohlsdorf and F. Abel

0	

1	

2	

3	

4	

5	

collabora.ve	
filtering	

content-based	
(explicit)	

content-based	
(implicit)	

item-to-item	

re
la
%v

e	
CT

R	
an

d	
U
se
r	S

uc
ce
ss
	 CTR	

User	Success	

(a)

0	

1	

2	

3	

collabora,ve	
filtering	

content-based	
(explicit)	

content-based	
(implicit)	

item-to-item	

re
la
%v

e	
nu

m
be

r	o
f	i
nt
er
ac
1
on

s	a
nd

	
us
er
s	

Interac,ons	
Users	

(b)

Fig. 17.4. (a) Success rates: Click-through rate (CTR) and fraction of users who inter-

acted with recommendations (User Success) per recommender engine. Success rates are

normalized by the least successful strategy. (b) Reach: Relative number of positively
interacted recommendations (Interactions) and relative number of users who interacted

with recommendations (Users).

Similarly, the collaborative filtering is also the best performing approach

in terms of user-based reach with a score that is about 2.7 times higher

than the score of the item-to-item recommender which performs worst.

Again, the implicit content-based filtering is the second best approach and

performs similarly to the best approach with a normalized score of about

2.5. The explicit content-based approach still performs clearly better than

the item-to-item filtering with a score of about 1.8.

Summing up, as for the success rates, there is one approach that per-

forms best for both the user- and the item-based evaluation metric, i.e. the

collaborative filtering which is closely followed by the implicit content-based

filtering. The explicit content-based approach as well as the item-to-item

recommender both lag behind.

October 23, 2018 17:39 ws-rv9x6-9x6 Book Title 11131-17 page 591

Job Recommendations: The XING Case 591

17.4.2.3. Discussion

The success of the recommender engines varies greatly depending on the

evaluation metric. This is also known as precision/recall trade-off. While

the item-to-item recommender achieves the highest success rates which

means its recommendations are very precise, its reach is very low in com-

parison to the other approaches, i.e. it has a low recall. In contrast, the

reach is very high for the collaborative filtering while it also offers more

recommendations that seem to be of no interest for the users.

The approach that appears to be the best trade-off between success

rates and reach is the implicit content-based filtering which combines all

user interactions to build a meaningful profile about the users’ career goals.

The explicit content-based filtering lags behind for both evaluations metrics.

An explanation for this might be the domain. As already mentioned, many

or even most users want to evolve in their career, thus, they are usually

not looking for a position that is already mentioned in their profile which

might soon represent their past.

Overall, we can state that the approaches complement each other. Even

though the explicit content-based approach seems to be the least successful

one, it is important if users do not hold any interaction data.

17.4.3. Case: Rating Prediction

In order to create rating predictions to filter non-suitable recommenda-

tions, i.e. recommendations holding a rating prediction lower than a given

threshold, we apply a gradient-boosted decision tree model. For evalua-

tion purposes, we implement a baseline model using linear regression. Both

models are evaluated independently in an offline environment to find the

best combinations of features and hyper-parameter settings. Thereafter,

we test the final models online in an A/B-Test.

17.4.3.1. Offline Evaluation

We perform a 5-fold cross validation and calculate for each of the two rat-

ing predictors and each rating (i.e. the five classes 1–5) the percentage of

postings in the test set that would be discarded for varying thresholds, see

Figure 17.5. The tree-based rating predictor performs way better than the

linear regression as it is able to better distinguish between good and bad

recommendations. For example, using a threshold of 2.5, 86% of the rec-

ommendations rated with only one star are discarded while 85% of the

October 23, 2018 17:39 ws-rv9x6-9x6 Book Title 11131-17 page 592

592 K. Niemann, D. Kohlsdorf and F. Abel

Fig. 17.5. Offline Evaluation for rating prediction-based filtering. With a threshold

of 2.5, we can filter 86% of the recommendations holding a 1-star rating while falsely

deleting 15% of the recommendations holding a 5-star rating using XGBoost.

recommendations rated with 5 stars are retained using the tree-based

model. The linear regression discards just slightly less of the 1-star rec-

ommendations but also only keeps 70% of the 5-star ratings. Thus, we

decide to use the tree-based model for the application in production.

We use this diagram not only to choose a model but also to choose

a default threshold for removing the not suitable recommendations. The

threshold is then further refined for each user, e.g. the threshold will be

higher for users holding a lot of recommendations with high rating pre-

dictions but can be lower for users for which we generate only a few rec-

ommendations. As can be seen in the diagram, when choosing the right

threshold one has to consider the trade-off of removing bad and keeping

good recommendations. For example, by varying the threshold to e.g. 1.5

we are able to keep almost all good recommendations while only removing

about 30% of the bad recommendations, by varying the threshold to 3.5 we

are able to discard almost all bad recommendation but keep less than 50%

of the good recommendations.

17.4.3.2. Online Evaluation

We run an A/B-Test with this new filtering component on the platform and

analyze the tracking data to compare the results based on our evaluation

metrics for the two groups. The test ran for two weeks and involved over

two Million users. Overall, we observe for the success rates that the CTR

October 23, 2018 17:39 ws-rv9x6-9x6 Book Title 11131-17 page 593

Job Recommendations: The XING Case 593

increased by 23% and relative user success increased by 16%. In terms

of reach we figured out that the amount of users with recommendations

decreased by 26% which seems like a lot, however, the user-based reach

increased by 7% and the interaction-based reach increased by 6%. This is

to say, even though we target less users, more users click on our recommen-

dations which means that we correctly filter out the bad recommendations

and push the good recommendations to the top of the recommendation

lists. Furthermore, the rating average increased by 20%.

17.5. A complex recommender system in production

Whenever a user visits XING’s start page or the job marketplace, a request

for receiving the user’s job recommendations is send to the job recom-

mender’s REST API. Overall, the job recommender receives a few thousand

requests per minute that need to be answered as fast as possible. Here, we

aim for the recommender to send a response in less than 200ms for 99%

of the requests. In this chapter, we will briefly present the architecture of

XING’s recommender system as well as the interplay of batch and online

processing and finally discuss what it takes to include a new component

into the system.

17.5.1. Architecture

When the job recommender system’s REST API is called, it issues sev-

eral queries to other REST APIs, database systems and the Elasticsearch

search engine to collect information about the user and the potential job

recommendations. Doing this in sequential order would take up to several

seconds, thus, we do as much parallel processing as possible. Furthermore

it is important to allow different components to share the gathered informa-

tion. Figure 17.6 shows the architecture for calculating online information

which also enables the easy integration of new components.

First, the identifier of a user is send to the job recommender system’s

REST API which then collects all needed information about the user in

parallel in stage 1. Thereafter, the different recommender engines use this

information in stage 2 to independently create job recommendations which

are then combined (see Section 17.1.3). In stage 3, the information about

these potential job recommendations are gathered from various data sources

and used by the filters in stage 4 and the final rankers in stage 5. In contrast

to the filters, the rankers have to run in sequential order.

October 23, 2018 17:39 ws-rv9x6-9x6 Book Title 11131-17 page 594

594 K. Niemann, D. Kohlsdorf and F. Abel

Fig. 17.6. Job Recommender System Architecture.

17.5.2. Online and Batch Processing

When calculating the recommendations, some of the data taken into ac-

count has to be up-to-date. For example, if a user added a new skill or

rated a job recommendation negatively, the job recommender has to adapt

its recommendations immediately. Thus, the recommendations cannot be

(completely) pre-computed but the recommender system has to get the

most current information about the user (in stage 1) and use it for finding

the most suitable job postings. These look-ups and calculations have to be

performed in milliseconds.

However, there is also data that takes minutes or hours to compute.

Examples are the complete interaction profiles of the users, the association

rules for collaborative filtering or some inferred information about the users

like the comparable career level. Here, we apply batch-processing and pre-

calculate the information several times a day and export it to a database

where it can be easily looked-up.

17.5.3. Re-training and Deployment of Components

We use several components that were automatically trained like the rat-

ing prediction-based filter or the word2vec-based topic modeling. These

models have to be re-trained periodically to reflect the current user be-

havior or XING’s job posting base. Additionally, some external changes,

like an update of XING’s ontology, might require a re-training of specific

components.

However, each re-training has to be triggered and then the new model

has to be carefully evaluated offline. Additionally, if the new model pro-

duces different recommendations for many users, we have to think about

A/B-Testing the new model before pushing it to production. Especially

with a growing number of automatically trained models, this is a very ex-

pensive process.

October 23, 2018 17:39 ws-rv9x6-9x6 Book Title 11131-17 page 595

Job Recommendations: The XING Case 595

Fig. 17.7. Automatically re-train and deploy models.

We thus created workflows that when triggered do not only learn a new

model but also test it against the current model and finally deploy it to

production or start an A/B test when the differences to the current model

reach a given threshold, as shown in Figure 17.7

First, the ground truth, i.e. training and test set are calculated to then

create the respective feature vectors which are used the train the model.

The model is trained several times using different hyper-parameters that are

determined using stratified random search. The best model is selected us-

ing a pre-defined metric, e.g. the f1-measure@20 for the rating predictions,

and stored in our model storage. Thereafter, the new model is compared

to the current model. Here, we take a random sample of e.g. 10,000 users

and calculate two rating lists for each of them using the two models. The

recommendation lists are then compared based on the number of recom-

mendations per user or the average distance of the jobs to the location of

the respective user. If the lists’ differences are below a given threshold,

the model is directly pushed into production. Otherwise, an A/B-Test is

automatically started to compare the two models. Currently, the analysis

of this A/B test and the final decision of pushing it to production if an A/B

test was started is done manually.

17.6. Conclusion

In this chapter, we presented XING’s job recommender system that aims

to support its users in finding new jobs and evolve in their career. We

showed that the system has to tackle some common challenges like the

new user or the new item problem and discussed some challenges that are

specific to the job domain. Especially the transience of the items makes it

difficult to apply pure collaborative-based approaches. Thus, we introduced

association rules that are automatically re-calculated several times a days

and additionally focus on content-based approaches which are combined

October 23, 2018 17:39 ws-rv9x6-9x6 Book Title 11131-17 page 596

596 K. Niemann, D. Kohlsdorf and F. Abel

into an ensemble to complement each other. In order to handle ambiguous

job descriptions or skill names, we deployed a domain-specific ontology that

is utilized by almost all recommender engines. Another challenge specific

to recommending jobs is that we do not create recommendations for the

current profiles of the users but for their future. This is why the users’

interactions are especially important in order to understand the direction

in which a user wants to evolve which is also shown by the high success

rates of the more-like-this recommender. Additionally, we consider common

career paths or job transitions when filtering the recommendation lists. In

order to keep and increase the users’ trust in the system, we apply several

filters like the rating prediction-based filter to only keep recommendations

in which the recommender system has a high confidence. As shown in

the second case study in which we presented the evaluation of the rating

prediction-based filter, we can increase the reach of the system dramatically

by recommending less items and only keeping the most promising ones.

After discussing the challenges and providing an insight in the func-

tionality of the recommender system we presented how we evaluate new

components before they go live in production. It is important to remember

that we first evaluate several models offline to pick the most promising one

which is then evaluated online in an A/B-Test to make the decision if the

component should be pushed to production or not. It is not unusual that a

promising approach does not perform as expected in a live environment and

needs to be revised. Thus, it is crucial to choose suitable offline evaluation

metrics to pick the right model in the first place.

Finally, we shortly presented the extensible architecture that allows

XING’s recommender to serve millions of requests per day in just a few

hundred milliseconds each. This is possible by combining batch processing

that is conducted offline and parallel processing of the information that has

to be gathered and combined in real-time.

References

(2016). RecSys Challenge ’16: Proceedings of the Recommender Systems Chal-
lenge (ACM, New York, NY, USA), ISBN 978-1-4503-4801-0.

(2017). RecSys Challenge ’17: Proceedings of the Recommender Systems Chal-
lenge 2017 (ACM, New York, NY, USA), ISBN 978-1-4503-5391-5.

Abel, F. (2015). We know where you should work next summer: job recommenda-
tions, in Proceedings of the 9th ACM Conference on Recommender Systems
(ACM), pp. 230–230.

October 23, 2018 17:39 ws-rv9x6-9x6 Book Title 11131-17 page 597

Job Recommendations: The XING Case 597

Abel, F., Benczúr, A., Kohlsdorf, D., Larson, M. and Pálovics, R. (2016). Recsys
challenge 2016: Job recommendations, in Proceedings of the 10th ACM
Conference on Recommender Systems, RecSys ’16 (ACM, New York, NY,
USA), ISBN 978-1-4503-4035-9, pp. 425–426, doi:10.1145/2959100.2959207,
http://doi.acm.org/10.1145/2959100.2959207.

Abel, F., Deldjoo, Y., Elahi, M. and Kohlsdorf, D. (2017). Recsys challenge
2017: Offline and online evaluation, in Proceedings of the Eleventh ACM
Conference on Recommender Systems, RecSys ’17 (ACM, New York, NY,
USA), ISBN 978-1-4503-4652-8, pp. 372–373, doi:10.1145/3109859.3109954,
http://doi.acm.org/10.1145/3109859.3109954.

Aho, A. V. and Corasick, M. J. (1975). Efficient string matching: An aid to bib-
liographic search, Commun. ACM 18, 6, pp. 333–340, doi:10.1145/360825.
360855, http://doi.acm.org/10.1145/360825.360855.

Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system,
in Proceedings of the 22Nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’16 (ACM, New York, NY,
USA), ISBN 978-1-4503-4232-2, pp. 785–794, doi:10.1145/2939672.2939785,
http://doi.acm.org/10.1145/2939672.2939785.

Herlocker, J. L., Konstan, J. A., Terveen, L. G. and Riedl, J. T. (2004). Evaluat-
ing collaborative filtering recommender systems, ACM Trans. Inf. Syst. 22,
1, pp. 5–53, doi:10.1145/963770.963772, http://doi.acm.org/10.1145/

963770.963772.
Konstan, J. A. and Riedl, J. (2012). Recommender systems: From algorithms

to user experience, User Modeling and User-Adapted Interaction 22, 1–2,
pp. 101–123, doi:10.1007/s11257-011-9112-x.

Li, L., Jing, H., Tong, H., Yang, J., He, Q. and Chen, B.-C. (2017). Nemo: Next
career move prediction with contextual embedding, in Proceedings of the
26th International Conference on World Wide Web Companion, WWW ’17
Companion (International World Wide Web Conferences Steering Commit-
tee, Republic and Canton of Geneva, Switzerland), ISBN 978-1-4503-4914-
7, pp. 505–513, doi:10.1145/3041021.3054200, https://doi.org/10.1145/
3041021.3054200.

McNee, S. M., Riedl, J. and Konstan, J. A. (2006). Being accurate is not enough:
How accuracy metrics have hurt recommender systems, in CHI ’06 Extended
Abstracts on Human Factors in Computing Systems, CHI EA ’06 (ACM,
New York, NY, USA), ISBN 1-59593-298-4, pp. 1097–1101, doi:10.1145/
1125451.1125659, http://doi.acm.org/10.1145/1125451.1125659.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S. and Dean, J. (2013). Dis-
tributed representations of words and phrases and their compositionality,
in C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani and K. Q. Wein-
berger (eds.), Advances in Neural Information Processing Systems 26 (Cur-
ran Associates, Inc.), pp. 3111–3119.

Said, A. (2016). A short history of the recsys challenge, AI Magazine 37, 4.
Su, X. and Khoshgoftaar, T. M. (2009). A survey of collaborative filtering tech-

niques, Adv. in Artif. Intell. 2009, pp. 4:2–4:2, doi:10.1155/2009/421425,
http://dx.doi.org/10.1155/2009/421425.

http://doi.acm.org/10.1145/2959100.2959207
http://doi.acm.org/10.1145/3109859.3109954
http://doi.acm.org/10.1145/360825.360855
http://doi.acm.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/963770.963772
http://doi.acm.org/10.1145/963770.963772
https://doi.org/10.1145/3041021.3054200
https://doi.org/10.1145/3041021.3054200
http://doi.acm.org/10.1145/1125451.1125659
http://dx.doi.org/10.1155/2009/421425

October 23, 2018 17:39 ws-rv9x6-9x6 Book Title 11131-17 page 598

598 K. Niemann, D. Kohlsdorf and F. Abel

Volkovs, M., Yu, G. W. and Poutanen, T. (2017). Content-based neighbor models
for cold start in recommender systems, in Proceedings of the Recommender
Systems Challenge 2017, RecSys Challenge ’17 (ACM, New York, NY,
USA), ISBN 978-1-4503-5391-5, pp. 7:1–7:6, doi:10.1145/3124791.3124792,
http://doi.acm.org/10.1145/3124791.3124792.

Wang, J., Zhang, Y., Posse, C. and Bhasin, A. (2013). Is it time for a career
switch? in Proceedings of the 22nd International Conference on World Wide
Web, WWW ’13 (ACM, New York, NY, USA), ISBN 978-1-4503-2035-
1, pp. 1377–1388, doi:10.1145/2488388.2488509, http://doi.acm.org/10.
1145/2488388.2488509.

Xiao, W., Xu, X., Liang, K., Mao, J. and Wang, J. (2016). Job recom-
mendation with hawkes process: An effective solution for recsys chal-
lenge 2016, in Proceedings of the Recommender Systems Challenge, Rec-
Sys Challenge ’16 (ACM, New York, NY, USA), ISBN 978-1-4503-4801-
0, pp. 11:1–11:4, doi:10.1145/2987538.2987543, http://doi.acm.org/10.

1145/2987538.2987543.
Xu, H., Yu, Z., Yang, J., Xiong, H. and Zhu, H. (2016). Talent circle detection in

job transition networks, in Proceedings of the 22nd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, KDD ’16
(ACM, New York, NY, USA), ISBN 978-1-4503-4232-2, pp. 655–664, doi:10.
1145/2939672.2939732, http://doi.acm.org/10.1145/2939672.2939732.

http://doi.acm.org/10.1145/3124791.3124792
http://doi.acm.org/10.1145/2488388.2488509
http://doi.acm.org/10.1145/2488388.2488509
http://doi.acm.org/10.1145/2987538.2987543
http://doi.acm.org/10.1145/2987538.2987543
http://doi.acm.org/10.1145/2939672.2939732

October 25, 2018 9:13 ws-rv9x6-9x6 Book Title 11131-18 page 599

Chapter 18

Academic Recommendations: The Mendeley Case

Maya Hristakeva, Daniel Kershaw, Benjamin Pettit,

Saúl Vargas and Kris Jack

Elsevier, AlphaBeta Building, London, EC2A 1BR, United Kingdom

Mendeley Suggest is a recommender system that helps researchers keep
up to date with articles in their field and fill gaps in their knowledge. It
leverages usage data from the Mendeley reference management system,
in which millions of users have compiled personal libraries of relevant ar-
ticles. In this chapter, we explain how recommendations are generated
using user-based collaborative filtering. Much of the development of the
live system has focused on keeping users engaged as they repeatedly in-
teract with the system and adapting to their research interests as they
add new articles to their libraries. The product has evolved over time
through taking into account user feedback, experimenting with new ap-
proaches, and making data-driven decisions. As Mendeley Suggest con-
tinues to develop, we expect to incorporate additional domain-specific
features to supplement collaborative filtering and provide even more use-
ful recommendations.

18.1. Introduction

The rate at which scientific research is performed and published poses a

challenge for researchers and students who need to keep up to date with an

ever increasing amount of literature [Larsen and von Ins (2010)]. Mende-

ley [Henning and Reichelt (2008); Vargas et al. (2016)] is a platform that

helps researchers organise and discover relevant scientific literature, show-

case their work, and connect with their peers through the Mendeley1 ref-

erence manager and a personalised article recommender system Mendeley

Suggest2. As with other reference management tools, Mendeley helps re-

searchers and students to manage their reading lists and libraries of relevant

1https://www.mendeley.com
2https://www.mendeley.com/suggest/

599

https://www.mendeley.com
https://www.mendeley.com/suggest/

October 25, 2018 9:13 ws-rv9x6-9x6 Book Title 11131-18 page 600

600 M. Hristakeva et al.

research articles. Each user’s library is an implicit expression of interest

in a set of articles, and the combined libraries of millions of users enables

Mendeley Suggest to deliver high quality recommendations through collab-

orative filtering (CF).

A number of information retrieval and discovery tools have been devel-

oped to aid the exploration of increasingly large online research catalogues.

These include CiteULike3 for managing libaries as well as Scopus4 and

Google Scholar5 for searching and mapping research. For a comprehensive

survey of research article recommender systems, we refer the readers to

[Beel et al. (2016)]. The methods for creating recommendations in the aca-

demic literature domain include generic approaches such as content-based

filtering [Beel et al. (2013)], folksonomies [Jomsri et al. (2010)], collabo-

rative filtering [McNee et al. (2002)], and hybrid techniques [Wang and

Blei (2011)], as well as domain-specific methods such as the use of citation

networks [Küçüktunç et al. (2012)].

All of these methods have their pros and cons in generating research arti-

cle recommendations. For example, content-based recommendations [Beel

et al. (2013)] utilise features from the metadata and text of the articles,

which results in wide coverage of items, but the recommendations might

not be of high quality compared to methods that take usage into account

[Jannach et al. (2015)]. Folksonomies [Jomsri et al. (2010)] utilise the power

of the crowd through collaborative tagging, which can be powerful if the

catalogue coverage is high, but in practice this is rarely the case. Alterna-

tively, collaborative filtering [McNee et al. (2002)] builds on the power of

implicit feedback from the users, though this also presumes that every inter-

action a user has is positive (see Chapter 7). Hybrid techniques [Wang and

Blei (2011)] combine the best of a number of methods, for example collab-

orative filtering and content-based, but can be more complex to implement

in practice. Citation networks are good for identifying reputable and highly

cited papers, however they tend to favour older articles, which is not always

best for keeping researchers up to date [Walker et al. (2007)]. Additionally,

the majority of these methods for recommending research articles have only

been implemented on small datasets compared to Mendeley’s catalogue.

Ultimately, for Mendeley Suggest we want a system that produces en-

gaging recommendations and scales to millions of users and billions of

documents. After evaluating several of the approaches listed above at

3http://www.citeulike.org
4https://www.scopus.com
5https://scholar.google.com/

http://www.citeulike.org
https://www.scopus.com
https://scholar.google.com/

October 25, 2018 9:13 ws-rv9x6-9x6 Book Title 11131-18 page 601

Academic Recommendations: The Mendeley Case 601

Mendeley scale, we found that the best performance came from CF, specif-

ically user-based collaborative filtering (UBCF), which sources recommen-

dations from the libraries of similar users [Bhowmick et al. (2014)]. Not only

does it scale well, but it takes advantage of the implicit feedback from user

libraries, which is data unique to Mendeley. We improved on this founda-

tion with modifications to the UBCF algorithm, post-processing steps, and

by supplementing it with with content-based and discipline-based recom-

mendations for new Mendeley users (“cold users”, Section 18.4.5). There-

fore the full system is a hybrid recommender, within which UBCF is the

primary method. Adding recommendations from the citation network did

not result in big gains to either quality or coverage. However, future iter-

ations are likely to combine a broader range of article features, including

citations, in a model-based hybrid approach (Section 18.8).

This chapter details how the Mendeley Suggest recommender system

(Figure 18.1) has been designed and developed. We explain recommen-

dations are generated through collaborative filtering, based on user activ-

ity from the reference manager. We also present the current architecture,

pointing out the design choices and technologies we use and some of the

remaining challenges. The remainder of this chapter is structured as fol-

lows. We start with an overview of the recommender system architecture,

including its data sources, batch and real-time components, and event log-

ging (Section 18.2). Next we focus on the collaborative filtering component,

including the algorithms used (Section 18.3), the domain-specific challenges

(Section 18.4), and the architecture for generating and serving recommen-

dations at scale (Section 18.5). While this describes the latest iteration

of Mendeley Suggest, we also give an overview of its historical evolution

(Section 18.6). Ongoing changes to the recommender system are steered

by offline and online experimentation, which we explain in Section 18.7.

18.2. Mendeley Suggest Overview

The Mendeley Suggest recommender system is more than just the algo-

rithms that it implements. In fact, it is a collection of core components

that are designed to interact with one another in order to meet a set of

user needs. Figure 18.1 shows how these core architectural components

interact with one another in Mendeley Suggest.

October 25, 2018 9:13 ws-rv9x6-9x6 Book Title 11131-18 page 602

602 M. Hristakeva et al.

Fig. 18.1. Mendeley Suggest Architecture.

Fig. 18.2. Mendeley Suggest Portal.

18.2.1. User Interface

We currently have two main clients that are live: Suggest web portal (Fig-

ure 18.2) and email sender (Figure 18.3). Users receive weekly recommen-

dation emails containing three of their top recommendations. If users want

October 25, 2018 9:13 ws-rv9x6-9x6 Book Title 11131-18 page 603

Academic Recommendations: The Mendeley Case 603

Fig. 18.3. Mendeley Suggest Email.

to view more recommendations they can go to the Suggest portal where we

display a list of recommendations that are updated daily. Each client dis-

plays a subset of the top recommendations generated by the system, which

are ranked and filtered specifically for the client’s context. For example,

in the emails we don’t want to send the same recommendations two weeks

in a row, whereas in the portal it might be acceptable to show the same

recommendation more than once. Each client records user actions (e.g.

recommendation is viewed or added to library) and sends them back to

the recommender system so that it can learn from them and improve the

recommendations that it serves.

18.2.2. Data Sources

Mendeley Suggest’s recommendations are generated from a variety of data

sources including user profile data, research article data, usage event logs,

and user libraries from the Mendeley reference manager. For each user

library, we record the ID of each article and the time that the user added it,

which forms the interaction data for collaborative filtering and evaluation.

Each interaction is an implicit expression of interest by the user in article.

October 25, 2018 9:13 ws-rv9x6-9x6 Book Title 11131-18 page 604

604 M. Hristakeva et al.

Apart from the usage data, we also have metadata about articles and users.

For the articles, we have titles, abstracts and author-defined keywords.

Mendeley users can choose a discipline from a list of subject areas, and

they can also add research interests to their profile pages in free text form.

18.2.3. Recommender Approaches

Mendeley Suggest uses a custom implementation of UBCF, which we ex-

plain in Section 18.3. We supplement collaborative filtering with a number

of other recommendation approaches, which are particularly useful for user

cold start (see Section 18.4.5). We determine which articles are popular in

each of Mendeley’s subject areas, and also identify articles with a signif-

icant and recent uplift in activity and signal them as trending. Another

approach is content-based similarity, which allows us to recommend re-

lated articles using metadata fields such as title, abstract, keywords, and

publication venue. These additional approaches are explained in detail in

[Hristakeva et al. (2017)]. Mendeley Suggest is therefore a switching hybrid

recommender system, according to the taxonomy in Chapter 4.

18.2.4. Recommendation Post-processing

Once the raw recommendations have been generated, we apply some last

minute sanity checking of the recommendations and some business logic

aimed at avoiding obvious mistakes. For example, we filter out recommen-

dations that users have already added to their libraries as well as ones that

don’t meet a metadata quality threshold (Section 18.4.2). We also have

some filtering and re-ranking methods that are applied at this point. For

example, we typically don’t want to recommend the same list of articles

to users every day. If a user has already seen a recommendation and not

added it to his or her library then we reduce the probability of it being

shown again, as we explain in Section 18.3.4.

18.3. Developed Algorithms

Mendeley Suggest consists of multiple algorithmic approaches, filtering and

re-ranking methods, and business logic rules, but at its core is a user-

based collaborative filtering algorithm that generates candidate recommen-

dations. We decided upon user-based rather than item-based collaborative

filtering for two main reasons. First, typically online businesses that use

October 25, 2018 9:13 ws-rv9x6-9x6 Book Title 11131-18 page 605

Academic Recommendations: The Mendeley Case 605

Table 18.1. Common Notation.

Notation

D The set of all papers within the Mendeley catalogue

U The set of users of Mendeley
d A document within the catalogue such that d ∈ D
u A Mendeley users such that u ∈ U
Du Returns the set documents (d) in a users library
Ru Set of recommendations for user u such that Ru ∩Du ≡ ∅
sim(u, U) returns the set of 100 most similar users to u

sim(U, u) returns the set of 100 users that user u is most similar to (inverted neighborhood)
rud The score for recommendation of document d to user u

recommender systems have many more users than items that can be rec-

ommended. In our case, the data is an unusual shape in that we have

many hundreds of millions of items that can be recommended (i.e. all re-

search articles ever published) and only tens of millions of users (i.e. the

research community). User-based collaborative filtering scales better than

item-based collaborative filtering in this case. Also, through empirical test-

ing we found that user-based collaborative filtering generated better quality

recommendations than the item-based ones (see Section 18.4.1).

We have adapted the vanilla UBCF approach to suit Mendeley Sug-

gest’s aim of delivering recommendations that adapt to a user’s changing

interests. In Section 18.3.3 we incorporate temporal information, forcing

it to serve recommendations based on users’ recent activity and the recent

activity of their neighbors. Additionally, if we repeatedly serve the same

recommendations to a user, then over time they will get stale, resulting in

the user loosing interest in Suggest. In Section 18.3.4 and 18.3.5 we intro-

duce impression discounting and dithering in order to provide a better user

experience.

The set of documents (e.g. papers, journal article and notes) in Mende-

ley’s database is D, such that d ∈ D, and the set of users in Mendeley

are U , such that u ∈ U . The set of documents that a user (u) has within

his or her library is represented as Du, which is a subset of all available

documents, Du ⊂ D.

18.3.1. User-Based Collaborative Filtering

The idea behind UBCF is that users who have liked the similar items in

the past will like the same items in the future. For Mendeley, this would

mean if users have added the same articles to their libraries, they would

like similar articles in the future. To generate recommendations for users

is a two stage process; first we identify similar users to them and then

recommend articles which the set of similar users are reading.

October 25, 2018 9:13 ws-rv9x6-9x6 Book Title 11131-18 page 606

606 M. Hristakeva et al.

To identify similar users we compute the cosine similarity between the

sparse vectors that represent users’ libraries (Du):

cosine(u, u′) =
|Du ∩Du′ |√
|Du| × |Du′ |

(18.1)

The 100 users with the highest similarity to user u constitute its neigh-

borhood, sim(u, U). An alternative set of users from whom to source

recommendations is the inverted neighborhood — any user u′ for whom

u ∈ sim(u′, U) [Vargas and Castells (2014)]. We denote the inverted neigh-

borhood sim(U, u). In practice, we used the inverted neighborhood because

it produced better quality recommendations (see Section 18.7.1).

The set of recommendations for a user (Ru) is then the union of all

the neighboring user libraries minus what the user already has in his/her

library (Du) [Sarwar et al. (2001)];

Ru =
⋃

u′∈sim(U,u)

Du′ \Du (18.2)

Each document in Ru is then scored (rud) using the sum of user similarities

across all neighbors who have the document in their libraries.

rud =
∑

u′∈sim(U,u)

{
cosine(u, u′), if d ∈ Du′ \Du

0, otherwise
(18.3)

Using the cosine similarity between users as a measure of trust in the

recommendation means that users who have more similar libraries to user u

influence the final set of recommendations to a greater extent. This results

in a set of recommended documents for each user, with a higher score

indicating that the user is more likely to be interested in the document.

18.3.2. Significance Weighting

One weakness of using cosine similarity to score neighbors is that it ignores

the statistical confidence in the correlation between libraries. For example,

a large number of Mendeley users have small libraries, so a neighbor u′ may

have only one or two articles in common with the focal user u, but nonethe-

less rank highly in terms of cosine(u, u′) because |Du′ | is also small. To

alleviate this problem, we scale the CF score with a significance weighting

computed from the number of articles in common [Ricci et al. (2015)]:

score(u, u′) = min(1,
|Du ∩Du′ |

K
)× cosine(u, u′) (18.4)

October 25, 2018 9:13 ws-rv9x6-9x6 Book Title 11131-18 page 607

Academic Recommendations: The Mendeley Case 607

If the users have fewer than K documents in common, then the con-

tribution of neighbor u′ to the CF score is scaled down. This means that

preference is given to recommendations that are generated from high co-

occurrence neighbors, who are more likely to have shared interests with

the user. While there are more elegant ways of incorporating uncertainty

into the score, this linear weighting with an empirically derived threshold

of 5 was a sensible first implementation that improved recommendations in

offline evaluation (Section 18.7.1).

18.3.3. Time Decay

Researchers’ interests are constantly evolving. The aim of Mendeley Sug-

gest is to serve time-appropriate recommendations, allowing users to keep

up to date with their current topics of interest. This poses a challenge

for traditional CF methods that treat all user-item interactions the same,

irrespective of when they took place. We adapted the UBCF approach

described above by applying time decay to the user-item interactions.

The input to the CF model can be represented in a sparse format as

triples <user, item, rating>. In the normal implicit-feedback CF model,

any item in a user’s library gets a rating of 1 — a binary scale, as discussed

in Chapter 7. To bias recommendations toward more recent activity, we

modified the ratings using a decay function

rating = β−∆t (18.5)

where ∆t is the time, in years, since the user added the article to his

or her library. This means that articles that were added further back in

time will influence recommendations to a lesser extent than more recent

additions. We tuned the parameter β through offline and online evaluation

(Section 18.7).

This decayed rating can be applied in two ways. The “one-sided” ver-

sion applies time decay only to the focal user’s library Du, and not to the

candidate neighbors Du′ . The “two-sided” version applies decay to both

the focal user and the candidate neighbors, in other words all ratings can be

decayed before computing user similarities. We chose the two-sided version

as this performed better in offline evaluation (Section 18.7.1).

18.3.4. Impression Discounting

If a user is repeatedly shown a recommendation and doesn’t interact with

it (e.g. doesn’t add it to his or her library), Mendeley Suggest treats this as

October 25, 2018 9:13 ws-rv9x6-9x6 Book Title 11131-18 page 608

608 M. Hristakeva et al.

an implicit signal that the user is not interested in the article. Such articles

are penalised by reducing their rank in the list of recommended articles

or by removing them entirely using impression discounting , a technique

described in [Lee et al. (2014)].

Impression discounting relies on learning a model for users based on

their historical exposure to recommendations (i.e. impressions). The model,

when applied to a user’s list of recommendations will then penalise (i.e. dis-

count) articles that have not been clicked and change the ordering of the

recommendations in the list. More formally, on application of impression

discounting to a ranked list of recommendations, new scores are generated

for the articles based on the product of their original scores and a discount-

ing factor:

new score = orig score ∗ f(g(X)) (18.6)

where X is a set of features relevant to the user’s impressions of the item

(e.g. number of times item was viewed, how long since the item was last

viewed), g is a discounting function for individual features, and f is a func-

tion that combines the discounted features to get an aggregated discounting

factor. Similar to the authors of [Lee et al. (2014)], we found that using

an exponential decay function for the discounting factor worked best in

Mendeley Suggest.

18.3.5. Dithering

Since the collaborative filtering recommendations are computed daily, a

user could be served the same recommendations on successive visits to

Mendeley Suggest and may lose interest in the recommendations. To give

the impression of fresh content, dithering [Dunning et al. (2014)] is applied

to re-order the list of recommendations by adding normally distributed

random noise to the initial rank of the recommendations (based on the CF

scores)

new score = log(rank) +N(0, log ε) (18.7)

where ε = ∆rank
rank and typically ε ∈ [1.5, 3]. The degree of re-shuffling of

the original recommendations list depends on the amount of random noise

added (i.e. values of ε).

In practice, this is a simple form of an explore-exploit strategy allowing

us to learn more about articles that have low ranking positions (according

to the model predictions) as they may randomly be pushed up the list being

displayed to the user. It can also have the positive side-effect of keeping the

October 25, 2018 9:13 ws-rv9x6-9x6 Book Title 11131-18 page 609

Academic Recommendations: The Mendeley Case 609

list of recommendations looking fresh by surfacing recommendations that

were previously hidden lower down the list.

18.4. Addressed challenges and problems

When developing recommender systems a number of challenges and prob-

lems need to be addressed, from being able to generate the recommenda-

tions at scale to ensuring user privacy is preserved. The following sections

outline some of the challenges we faced when developing and implementing

Mendeley Suggest and the solutions we put in place.

18.4.1. Generating recommendations at scale

Mendeley generates article recommendations for each user on a daily ba-

sis. When generating recommendations, we are primarily interested in two

factors: recommendation quality and cost (i.e. runtime), ideally looking

for approaches which have high quality and relatively low cost. Typically

reducing the cost will also reduce the quality. However, as shown in Chap-

ter 11, it is also possible to implement high quality scalable collaborative

systems using parallelisation and distributed technology without having to

compromise on quality.

As discussed in Section 18.3, we implemented user-based collaborative

filtering over item-based collaborative filtering or matrix factorization as it

not only produced higher quality recommendations but also scaled better

for our use case where there are many more items to be recommended than

users. We spent considerable effort attempting to scale and tune these

algorithms through different implementations [Hristakeva (2015)]. By going

with a tuned implementation of UBCF (see Figure 18.4), we were able to

reduce runtime by close to 50% and improve recommendation quality by

100% when compared to item-based collaborative filtering and alternating

least squares matrix factorization with 10000 latent factors. As discussed

in Chapter 2, matrix factorization is widely used for collaborative filtering

but usually requires denser matrices of user-item interactions to achieve

high quality results.

Another optimisation involves handling user libraries that contain a very

large number of documents. From a technical perspective, large libraries

slow down the distributed nearest neighbor computation and make it un-

stable. Therefore we downsample large libraries to the N most recently

added documents. Although this threshold was chosen for the smooth

October 25, 2018 9:13 ws-rv9x6-9x6 Book Title 11131-18 page 610

610 M. Hristakeva et al.

Fig. 18.4. Quality vs runtime trade-off — user-based CF outperformed both item-based

CF and matrix factorization in terms of quality of the recommendations and cost.

running of the collaborative filtering job, we reason that it may also benefit

recommendation quality. Libraries with thousands of documents are not

as representative of a focussed research topic and probably contain more

co-occurrences between unrelated documents. The downsampling step re-

duces the influence of these large libraries, while ensuring that the users

who created them can still receive recommendations.

18.4.2. Recommending high quality articles

Mendeley’s catalogue consists of over one hundred million unique research

articles. It is a crowd-sourced collection derived from billions of research

articles that individual Mendeley users throughout the world have added

to their libraries. As such, it’s also a noisy data set and deduplicating

these records at scale is challenging [Subasic et al. (2016)]. Despite the

noise, it is still valuable input for Mendeley Suggest’s collaborative filtering

algorithms, provided some article quality filters are put in place.

As there is no restriction to what users can add to their Mendeley li-

braries (phone bills, CVs, presentations, etc.), these items might end up

in the user-item interactions on which the recommendations are based.

To prevent such items being recommended, we have implemented quality

thresholds to identify recommendable articles within the Mendeley cata-

logue. We perform three checks, first, the articles have to occur in the

libraries of at least M users. This quorum rule removes articles that have

extremely narrow interest or limited availability. The second check is that

October 25, 2018 9:13 ws-rv9x6-9x6 Book Title 11131-18 page 611

Academic Recommendations: The Mendeley Case 611

articles must be indexed in Scopus6, a cross-publisher database of research

article metadata. The third check is for the completeness of the article

metadata, removing articles that have missing titles, abstracts, or authors.

18.4.3. Respecting users’ privacy

Researchers are inherently protective of their research, thus care must be

taken in the generation and explanations of the recommendations to a user,

as researchers trust Mendeley to protect their information. As shown in

[Mehta and Nejdl (2008)] and [Canny (2002)], collaborative filtering sys-

tems can be forced to expose user information through a number of simple

algorithm attacks and where the interface provides explanations for the

recommendations e.g. “a user you follow has recently read X”.

Privacy is maintained in two ways, first by only giving explanations to

users in relation to their own activity. Secondly, we only base recommen-

dations on documents that are indexed in Scopus and are therefore widely

available, and we check that they occur in multiple user libraries. This

means that recommendations will not be based on a single user’s library.

18.4.4. Serving fresh recommendations

We want users to interact with Mendeley Suggest as part of their research

gathering activities, be this daily or weekly. If the recommendations have

changed little on subsequent visits then this may deteriorate users’ experi-

ence and reduce the usefulness of the recommendations. To overcome this

we introduced two mechanisms, impression discounting (Section 18.3.4) and

dithering (Section 18.3.5) to increase turnover within the recommendations

lists.

18.4.5. Recommending articles to all users

Mendeley has a constantly growing user base, with new undergraduates,

postgraduate researchers and established academics joining. We aim to

serve recommendations to users as soon as they join Mendeley, therefore

the system must be designed to deal with the new user cold start prob-

lem discussed in Chapter 8. To address this we implemented a number

of recommendation strategies that we can fall back to in the absence of

collaborative filtering results:

6https://www.scopus.com

https://www.scopus.com

October 25, 2018 9:13 ws-rv9x6-9x6 Book Title 11131-18 page 612

612 M. Hristakeva et al.

• Discipline — Each user chooses a broad discipline, so even the

coldest users can receive a diverse set of documents that are popular

among users in the same discipline.

• Research Interests — For users who specify research interests,

we can offer focused recommendations based directly on the user’s

self-defined keywords.

• Recent Activity — As soon as a user adds the first documents

to his or her library, we can immediately recommend articles with

related content, even before the daily CF results are generated.

These content-based recommendations use the title, abstract, and

keywords of the article that the user most recently added or read.

This method extends to all articles, even new articles with no pre-

vious usage.

Although some article information, such as citations, is not used in this

hybrid, the recommendation strategies have been chosen to complement

each other. Discipline-based recommendations have the highest user cov-

erage, whereas the third approach, using article content, produces better

recommendations than profile information alone. None of these alternatives

perform as well as collaborative filtering (see Section 18.7.1). Therefore, to

offer high quality recommendations to new users we need them to start

building their personal libraries as soon as possible. For this, we rely on a

smooth onboarding interface, simple bulk uploads, and prompts to upload

articles throughout the product.

18.5. Implementation resources

As we discussed in Section 18.2, Menedeley Suggest’s recommender sys-

tem is made up of a number of core components of varying importance

and with different responsibilities. Mendeley’s architecture cleanly sepa-

rates these components out from one another, thus making their relative

responsibilities clear. The implementation is robust, allowing it to scale to

massive quantities of data and to serve large volumes of traffic.

18.5.1. Recommendation Generation

At Mendeley, we have a crowd sourced catalogue of over one hundred mil-

lion unique research articles, originating from user libraries all of different

sizes. Since the recommender system needs to generate recommendations

October 25, 2018 9:13 ws-rv9x6-9x6 Book Title 11131-18 page 613

Academic Recommendations: The Mendeley Case 613

for millions of users from a pool of millions of articles, we need a scal-

able technology stack. Using scalable technologies means that as the user

base grows, our system can scale with it by adding more computational

infrastructure. It also means that jobs can be scheduled with relative ease,

allowing recommendations to be generated on a daily basis, from fresh

Mendeley activity, serving up-to-date recommendations to the end user.

Mendeley Suggest is implemented using Apache Hadoop7 and Apache

Spark8 as processing engines for the data collection, batch generation and

post-processing of the recommendations. For the UBCF algorithm we have

two custom implementations, one with Apache Mahout9 and another with

Spark. Although other parallel implementations of neighborhood-based CF

are now available (see Chapter 11), we chose these technologies in order to

distribute the job across a cluster while integrating with the existing Java

codebase. We made the transition from Mahout to Spark to align with the

rest of the technology stack as well as for performance benefits. All of these

batch processes are orchestrated via Amazon Web Services (AWS)10 data

pipelines and Amazon EMR.

18.5.2. Recommendation Service

Mendeley Suggest implements a number of different services all exposed

via a single recommender service API and hosted in AWS. Most recom-

mendations are uploaded to HBase or Redis, popular <key, value> stores,

where the key is the user’s profile and the value is the JSON object with

his or her recommendations. We also use ElasticSearch11 (which horizon-

tally scales more gracefully than other systems such as Lucene12 or Solr13)

to index research article metadata and return recommendations based on

article content and users’ research interests.

The API returns a JSON object with three elements: resource being

recommended; explicit rank; and trace token. The resource being recom-

mended in this case is the id and metadata of the article that may be

interesting for the user to read. The explicit rank is an integer that tells

the client the order in which the resources are expected to be of interest to

7https://hadoop.apache.org
8https://spark.apache.org
9http://mahout.apache.org
10https://aws.amazon.com
11https://www.elastic.co
12http://lucene.apache.org/
13http://lucene.apache.org/solr/

https://hadoop.apache.org
https://spark.apache.org
http://mahout.apache.org
https://aws.amazon.com
https://www.elastic.co
http://lucene.apache.org/
http://lucene.apache.org/solr/

October 25, 2018 9:13 ws-rv9x6-9x6 Book Title 11131-18 page 614

614 M. Hristakeva et al.

the user. The trace token is a 64-bit encoded string and is unique for the re-

quest that was made. It serves an important purpose, allowing clients that

consume recommendations to provide feedback, letting the recommender

system know, for example, that a recommended article was received, dis-

played to the user and within view on the scrollable page.

For a selection of user actions, the client records events and sends them

back to the recommender system, so that it can learn from them and im-

prove the recommendations that it serves (e.g. impression discounting).

When the client sends these events to the recommender system, they are

relayed on to Mendeley’s main event handling service, which is built on an

inherently scalable framework.

18.6. Historical evolution

Mendeley Suggest has gone through a number of incremental iterations

over the years aimed at better serving the users’ needs and improving user

engagement and retention. These changes can be seen in the various user

interfaces as well as the algorithms and data used to generate the recom-

mendations.

Mendeley Suggest was initially released as a feature within the Mende-

ley desktop client, with recommendations shown in their own tab (Fig-

ure 18.5). In order to access their recommendations, users had to use the

desktop client installed on their computer. This had some limitations, as

Fig. 18.5. Mendeley Suggest Desktop.

October 25, 2018 9:13 ws-rv9x6-9x6 Book Title 11131-18 page 615

Academic Recommendations: The Mendeley Case 615

researchers normally engage with online databases and portals when look-

ing for new articles to read. To better serve the use case of keeping up to

date, the Mendeley Suggest web portal was built (see Section 18.6). For

the first iteration of the portal, a number of recommender approaches were

developed in addition to collaborative filtering, such as articles that are

popular and trending in the users’ disciplines (see Section 18.4.5). This

addressed the cold start problem, and also allowed us to compare the rec-

ommendation approaches in a live setting. The recommendations from the

different approaches were displayed in their own carousels, with the collab-

orative filtering recommendations being the most prominent at the top and

with the subsequent carousels going down the page becoming less person-

alised. The order of carousels was decided based on the results of offline

evaluation (Section 18.7.1).

Through user testing, we received feedback that the carousel layout

(Figure 18.6) displayed a lot of recommendations on the screen with not

enough detail (e.g. abstract, citations) for the user to decide the usefulness

of a recommendation. In order to incorporate more detail for each rec-

ommendation, the interface was simplified by removing the carousels and

going back to a single list of recommendations (Figure 18.2). The different

recommender approaches are still displayed, but rather than showing them

in separate carousels we add the approach used as an explanation. We also

added more details for each article such as the abstract, the number of

Mendeley users who have it in their libraries, and the number of citations

the paper has, in order to make it easier for the user to judge the relevance

of the recommendation without having to leave Suggest (Figure 18.2).

In addition to user interface changes, the UBCF algorithm at the core

of Mendeley Suggest has also gone through a number of iterations and

improvements. Initially, the Suggest recommender was launched using a

vanilla UBCF implementation. However, we quickly realised from user

feedback that even though the recommendations were good, they did not

track users’ current research interests very well. In order to make the rec-

ommendations more reflective of recent activity, we introduced time decay

as explained in Section 18.3.3. Once Mendeley Suggest was live, we also

noticed that although the recommendations were regenerated daily, they

were becoming stale and user engagement was dropping. So we introduced

dithering (see Section 18.3.5) and impression discounting (Section 18.3.4)

which utilised logged events from user interactions with the Suggest portal.

These changes increased the rate at which recommendations refresh over

time.

October 25, 2018 9:13 ws-rv9x6-9x6 Book Title 11131-18 page 616

616 M. Hristakeva et al.

Fig. 18.6. First iteration of Mendeley Suggest web portal.

18.7. Evaluation

With a plethora of possible recommendation approaches, it is essential to

be able to compare recommender systems and choose the approaches that

deliver the greatest value. Right from the beginning, we placed focus on the

October 25, 2018 9:13 ws-rv9x6-9x6 Book Title 11131-18 page 617

Academic Recommendations: The Mendeley Case 617

evaluation as well as the implementation. This allowed us to make data-

driven decisions when designing the recommender system and improving it

after release. Agreeing on evaluation metrics up front allowed the recom-

mender team to focus on finding ways to improve quality according to the

metrics.

As advocated in Chapter 9, we used a combination of offline and online

evaluation. Offline evaluation assesses the recommender system’s accuracy

in emulating the research work flow of our users; in other words predicting

which articles a researcher would add next in the absence of a recommender

system. This is useful because we can use historical logs from the reference

management system to evaluate many model variations within a few hours.

To determine which recommendations users find more relevant, we use on-

line evaluation (A/B testing) to compare click rates by randomly selected

groups of users, where each group’s recommendations come from a different

variant of the recommender system.

Offline and online evaluation complement each other. In general, we use

offline evaluation to steer our choice of algorithms and parameters, and then

online evaluation to determine which candidates to promote to production.

For example, when choosing how strongly to bias recommendations towards

users’ more recent activity, we ran offline evaluation of a wide range of

parameter values, and then tested the winning value online against a control

with no recency bias. When first building the system, online evaluation was

impossible, so we relied on a combination of offline evaluation, user testing,

and qualitative spot checks. On the other hand, offline testing focuses on

accuracy rather than novelty and diversity (see Chapter 10), which makes

it all the more important to conduct online evaluation and user testing.

18.7.1. Offline Evaluation

To compare recommender algorithms, we adopted a time-based evaluation

protocol [Gunawardana and Shani (2009)]. We collated all additions to

Mendeley user libraries and split them into test and training sets across a

distinct time boundary. Methods were assessed by testing how well recom-

mendations generated from the training set were able to predict what users

added to their libraries in the test set. We compared algorithms using pre-

cision, recall, F1-score, and mean average precision (MAP). Each of these

can be evaluated on the top k recommendations. Recall is more appropri-

ate than precision in this evaluation context, because we know that false

negatives are relevant to the user, whereas false positives include relevant

October 25, 2018 9:13 ws-rv9x6-9x6 Book Title 11131-18 page 618

618 M. Hristakeva et al.

articles that the user failed to find. We used MAP as a ranking metric

because our test set consisted of binary relevance data rather than graded

relevance.

This evaluation procedure is very strict, as it tries to predict exactly

what the users would interact with in the next time period, from a catalogue

consisting of millions of items. This protocol, however, is close to the real

task that a recommender system in production has to tackle. For this

reason, precision and recall values are quite low compared to evaluation

procedures that do not take into account time, such as repeated holdout

or cross validation. In this evaluation setting, low values for precision,

recall, etc. do not necessarily indicate low quality. The relative values from

different approaches are our main concern and it is important not to be

discouraged by the absolute values.

18.7.1.1. Recommendation approaches

We compared UBCF to the other recommendation approaches explained

in Section 18.2.3. UBCF performed best, followed by the content-based

methods that used recently read and recently added articles, respectively

(Figure 18.7). User profile data were poorer predictors of which articles

users browsed. Of the approaches to using profile data, the best method

was to find popular articles that matched key terms entered as research

interests. In the absence of research interests, a user’s discipline (a broad

category chosen from a list) was an even poorer basis for recommendations.

The overall implication is that we should prioritise recommendations

based on user libraries rather than profile data. For ‘warm’ users who have

library data, we should display collaborative filtering results with greater

prominence than the content-based recommendations.

18.7.1.2. Variants of user-based collaborative filtering

When tuning our implementation of user-based nearest-neighbor collabo-

rative filtering, we tested the impact of inverted neighborhoods and signif-

icance weighting, as explained in Sections 18.3.2 and 18.3.1. The highest

metrics were obtained by using the inverted neighborhood with significance

weighting to reduce the contribution of neighbors who had fewer than 5 ar-

ticles in common (Figure 18.8).

October 25, 2018 9:13 ws-rv9x6-9x6 Book Title 11131-18 page 619

Academic Recommendations: The Mendeley Case 619

4 8 12 16 20
k

10
4

10
3

10
2

10
1

va
lu

e

F1 score

4 8 12 16 20
k

precision

Discipline - Trending
Implicit (CF)
Discipline - Popularity
Recently Added

Recently Read
Research Intrest - Popularity
Research Intrest - Trending

4 8 12 16 20
k

recall

Fig. 18.7. Offline evaluation to compare article recommendation approaches. We cal-

culated F1-score, precision, and recall for the top k recommendations, where k = 5, 10,
15, 20. The values of the metrics are shown on a log scale.

2 6 10 14
k

10
2

2 × 10
2

3 × 10
2

4 × 10
2

va
lu

e

F1 score

2 6 10 14
k

MAP

sw = 5, inverted neighborhood
sw = 0, inverted neighborhood

sw = 5
sw = 0

2 6 10 14
k

recall

Fig. 18.8. Offline evaluation of collaborative filtering variants. A standard user-based

nearest-neighbor method (blue) is compared to inverted neighborhoods (green). Each
neighborhood method was tested with significance weighting (sw = 5, triangles) and

without (sw = 0, circles). F1-score, MAP, and recall were calculated for the top k

recommendations, where k = 3, 6, 9, 12, 15.

October 25, 2018 9:13 ws-rv9x6-9x6 Book Title 11131-18 page 620

620 M. Hristakeva et al.

18.7.1.3. Time decay

By applying time decay to collaborative filtering input, we can bias rec-

ommendations towards users’ more recent activity (Section 18.3.3). This is

implemented by applying exponential decay to all user-article interactions

(two-sided), or to the interactions of the focal user only and not the candi-

date neighbors (one-sided). We compared the two variants, in both cases

using inverted neighborhoods and significance weighting, as were found to

perform best above (Section 18.7.1.2).

The highest MAP@15 was obtained using the two-sided variant with a

moderate rate of decay (Figure 18.9). With the optimum value of β = 2,

articles added to the library one year ago have half the weight of articles

added now. More extreme time decay with β > 3 reduced MAP@15 relative

to the control. The one-sided variant reduced MAP@15 for all tested values

of β. Based on these results, we carried out an A/B test with β in the range

[2, 3], and found that it improved click rates on recommended articles sent

via email, compared to no time decay.

10
0

10
1

0.0130

0.0135

0.0140

0.0145

0.0150

0.0155

0.0160

va
lu

e

MAP@15

Algorithm Name
Two-sided time decay
One-sided time decay

Fig. 18.9. Offline evaluation of collaborative filtering with time decay. For the one-sided

and two-sided versions of time decay, we tested time decay constants of β = 1, 2, e, 3, 4,
5, 6, 10, 20, 40 (shown on a log scale). β = 1 is the control, with no time decay applied.
MAP was calculated for the top k = 15 recommendations.

October 25, 2018 9:13 ws-rv9x6-9x6 Book Title 11131-18 page 621

Academic Recommendations: The Mendeley Case 621

18.7.2. Online Evaluation

Our best candidate algorithms from offline evaluation are ultimately com-

pared against the current production model via A/B testing. The experi-

ments are conducted in two separate scenarios: recommendations delivered

via email and web-based recommendations. This strategy has resulted in

optimizing the recommender system for both of these use cases. For both

scenarios we use the same metric as a measure of success, namely click

through rates. If a user clicks on a recommendation then we deem this as a

positive interaction with the recommender system and if they do not click

then it is deemed as negative.

For email-based experiments, statistical inference is based on a classi-

cal, fixed-sample hypothesis testing approach. For web-based experiments

we use instead a variable-size hypothesis testing approach for statistical

inference (sequential testing). A type-I error of 0.05 is typically used in

both settings, with Bonferroni correction for multiple comparisons if the

test compares more than 2 variants.

The online tests can be classified into user interface changes and con-

tent/algorithm changes. An example change to the user interface was to

personalise email subject lines, which resulted in 16.7% increase in email

open rate. An example change to the algorithm was to apply time decay

(see Sections 18.3.3 and 18.7.1.3), which resulted in a 26% increase in the

proportion of users who clicked on at least one recommendation sent via

email.

Online testing is an essential tool for making data-driven improvements

to the recommender system, but it is impossible to test the entire parameter

space of possible improvements to the user interface, algorithms, and busi-

ness logic. Therefore, user testing and qualitative evaluation are necessary

to guide our experimentation. Feedback from internal and external users

often prompts common-sense changes to the user interface and business

logic. Keeping an eye on the actual recommendations, in addition to click

rates, helps us get around the fact that A/B testing only compares average

engagement. There may be outlying cases of irrelevant recommendations,

where a simple business logic change can help us to avoid alienating users.

18.8. Lessons learned and future directions

In this chapter we have introduced Mendeley Suggest, a recommender sys-

tem for academic literature. We emphasised that the system is not only

October 25, 2018 9:13 ws-rv9x6-9x6 Book Title 11131-18 page 622

622 M. Hristakeva et al.

composed of smart algorithms but also other core components aimed at cre-

ating the best user experience possible. For the Mendeley use case, we found

that user-based collaborative filtering not only scales better than item-based

collaborative filtering and matrix factorization, but it also generates better

quality recommendations. We were also able to get significant improve-

ments in the system by introducing two-sided time decay (Section 18.3.3),

impression discounting (Section 18.3.4), and dithering (Section 18.3.5).

To take Suggest from a prototype to production serving millions of users,

we went through a number of iterations of the algorithms, the technology

stack, and the user interface. We quickly learnt that running experiments

using the same technologies as the production stack, whenever possible,

significantly shortened the time needed to both evaluate and productionize

new ideas. From the start of the project, we also focused on setting up an

evaluation framework and agreeing on metrics, which allowed us to quantify

the impact of different ideas and prioritise accordingly.

A key challenge we still need to address is to identify users’ current

research interests and adapt the recommendations as their interests change

over time, be this a slow drift or a sudden change in direction. In Sec-

tion 18.3.3, we explained how applying time decay to the input of the

collaborative filtering algorithm helped us bias the recommendations to-

wards the recent activity of the user. However, this approach is simplistic

and could be improved in several ways. First of all, it applies the same

time decay rate to all users, regardless of the user’s subject area and usage

pattern. Furthermore, the continuous decay function is not a good model

for discrete jumps between subject areas, for example when a researcher

changes jobs or begins a new collaboration.

So far, the article usage data has proved the most useful for generating

recommendations. However, there are many other features available to us

that could also factor into an article’s relevance to a user, including the

article’s text, authors, journal, publication date, and its citation links to

other articles the user has read. To combine these features with collabo-

rative filtering into a single relevance score, we experimented with adding

a learning to rank (LtR) module to Suggest, which takes candidate rec-

ommendations from collaborative filtering, enriches them with additional

features, and then re-ranks them using a model trained on previous user

interactions. Preliminary results have shown that citation-based features

had the greatest effect in offline evaluation, particularity if the article was

cited within a user’s library or if it cited an article from his or her library.

An initial A/B test was also promising, so we plan to add LtR to the

production system.

October 25, 2018 9:13 ws-rv9x6-9x6 Book Title 11131-18 page 623

Academic Recommendations: The Mendeley Case 623

Another way to generate hybrid recommendations is with neural net-

works (see Chapter 3 on Deep learning). As with matrix factorization,

neural networks can be used to learn latent dense representations (embed-

dings) of users and items, based on user-item interactions [Sedhain et al.

(2015); He et al. (2017)]. In addition to usage data, the neural network can

handle multimodal inputs, such as user profile features [Covington et al.

(2016)] and article text [Wang and Blei (2011)]. We plan to experiment

with this approach because of its flexibility for leveraging all available in-

formation when generating recommendations.

Although a more complex hybrid approach may eventually replace user-

based collaborative filtering within our system, the main message of this

chapter is that one can use well established methods to implement scal-

able personalised recommendations for a large and growing user and item

base. Regardless of the collaborative filtering approach, additional tweaks

are needed to ensure data quality and recommendation freshness. There

is much more data we can draw on to further personalise research arti-

cle recommendations, but using standard collaborative filtering approaches

remain powerful and not trivial to improve upon.

References

Beel, J., Gipp, B., Langer, S. and Breitinger, C. (2016). Research-paper rec-
ommender systems: a literature survey, International Journal on Digi-
tal Libraries 17, 4, pp. 305–338, doi:10.1007/s00799-015-0156-0, https:

//doi.org/10.1007/s00799-015-0156-0.
Beel, J., Langer, S., Genzmehr, M. and Nürnberger, A. (2013). Introducing

docear’s research paper recommender system, in Proceedings of the 13th
ACM/IEEE-CS Joint Conference on Digital Libraries, JCDL ’13 (ACM,
New York, NY, USA), ISBN 978-1-4503-2077-1, pp. 459–460, doi:10.1145/
2467696.2467786, http://doi.acm.org/10.1145/2467696.2467786.

Bhowmick, A., Prasad, U. and Kottur, S. (2014). Movie Recommendation
based on Collaborative Topic Modeling, satwikkottur.github.io https://

satwikkottur.github.io/reports/F14-ML-Report.pdf.
Canny, J. (2002). Collaborative filtering with privacy, in Proceedings of the

2002 IEEE Symposium on Security and Privacy, SP ’02 (IEEE Com-
puter Society, Washington, DC, USA), ISBN 0-7695-1543-6, pp. 45–,
http://dl.acm.org/citation.cfm?id=829514.830525.

Covington, P., Adams, J. and Sargin, E. (2016). Deep neural networks for youtube
recommendations, in Proceedings of the 10th ACM Conference on Recom-
mender Systems, RecSys ’16 (ACM, New York, NY, USA), ISBN 978-1-
4503-4035-9, pp. 191–198, doi:10.1145/2959100.2959190, http://doi.acm.
org/10.1145/2959100.2959190.

https://doi.org/10.1007/s00799-015-0156-0
https://doi.org/10.1007/s00799-015-0156-0
http://doi.acm.org/10.1145/2467696.2467786
https://satwikkottur.github.io/reports/F14-ML-Report.pdf
https://satwikkottur.github.io/reports/F14-ML-Report.pdf
http://dl.acm.org/citation.cfm?id=829514.830525
http://doi.acm.org/10.1145/2959100.2959190
http://doi.acm.org/10.1145/2959100.2959190

October 25, 2018 9:13 ws-rv9x6-9x6 Book Title 11131-18 page 624

624 M. Hristakeva et al.

Dunning, T., Friedman, E. and Ellen Friedman, M. D. (2014). Practical Machine
Learning: Innovations in Recommendation (O’Reilly Media, Inc.), ISBN
1491915722.

Gunawardana, A. and Shani, G. (2009). A survey of accuracy evaluation metrics
of recommendation tasks, J. Mach. Learn. Res. 10, pp. 2935–2962, http:
//dl.acm.org/citation.cfm?id=1577069.1755883.

He, X., Liao, L., Zhang, H., Nie, L., Hu, X. and Chua, T.-S. (2017). Neural
collaborative filtering, in Proceedings of the 26th International Conference
on World Wide Web, WWW ’17 (International World Wide Web Con-
ferences Steering Committee, Republic and Canton of Geneva, Switzer-
land), ISBN 978-1-4503-4913-0, pp. 173–182, doi:10.1145/3038912.3052569,
https://doi.org/10.1145/3038912.3052569.

Henning, V. and Reichelt, J. (2008). Mendeley - a last.fm for research? in 2008
IEEE Fourth International Conference on eScience, pp. 327–328, doi:10.
1109/eScience.2008.128.

Hristakeva, M. (2015). Sparking Science up with Research Recommenda-
tions, in Spark Summit, https://spark-summit.org/eu-2015/events/

sparking-science-up-with-research-recommendations/.
Hristakeva, M., Kershaw, D., Rossetti, M., Knoth, P., Pettit, B., Vargas, S. and

Jack, K. (2017). Building recommender systems for scholarly information,
in Proceedings of the 1st Workshop on Scholarly Web Mining, SWM ’17
(ACM, New York, NY, USA), ISBN 978-1-4503-5240-6, pp. 25–32, doi:10.
1145/3057148.3057152, http://doi.acm.org/10.1145/3057148.3057152.

Jannach, D., Lerche, L., Kamehkhosh, I. and Jugovac, M. (2015). What rec-
ommenders recommend: an analysis of recommendation biases and possi-
ble countermeasures, User Modeling and User-Adapted Interaction 25, 5,
pp. 427–491, doi:10.1007/s11257-015-9165-3, https://doi.org/10.1007/

s11257-015-9165-3.
Jomsri, P., Sanguansintukul, S. and Choochaiwattana, W. (2010). A framework

for tag-based research paper recommender system: An ir approach, in 2010
IEEE 24th International Conference on Advanced Information Networking
and Applications Workshops, pp. 103–108, doi:10.1109/WAINA.2010.35.

Küçüktunç, O., Saule, E., Kaya, K. and Çatalyürek, Ü. V. (2012). Recommen-
dation on academic networks using direction aware citation analysis, arXiv
preprint arXiv:1205.1143.

Larsen, P. O. and von Ins, M. (2010). The rate of growth in scientific pub-
lication and the decline in coverage provided by science citation index,
Scientometrics 84, 3, pp. 575–603, doi:10.1007/s11192-010-0202-z, https:
//doi.org/10.1007/s11192-010-0202-z.

Lee, P., Lakshmanan, L. V., Tiwari, M. and Shah, S. (2014). Modeling impression
discounting in large-scale recommender systems, in Proceedings of the 20th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’14 (ACM, New York, NY, USA), ISBN 978-1-4503-2956-
9, pp. 1837–1846, doi:10.1145/2623330.2623356, http://doi.acm.org/10.
1145/2623330.2623356.

http://dl.acm.org/citation.cfm?id=1577069.1755883
http://dl.acm.org/citation.cfm?id=1577069.1755883
https://doi.org/10.1145/3038912.3052569
https://spark-summit.org/eu-2015/events/sparking-science-up-with-research-recommendations/
https://spark-summit.org/eu-2015/events/sparking-science-up-with-research-recommendations/
http://doi.acm.org/10.1145/3057148.3057152
https://doi.org/10.1007/s11257-015-9165-3
https://doi.org/10.1007/s11257-015-9165-3
https://doi.org/10.1007/s11192-010-0202-z
https://doi.org/10.1007/s11192-010-0202-z
http://doi.acm.org/10.1145/2623330.2623356
http://doi.acm.org/10.1145/2623330.2623356

October 25, 2018 9:13 ws-rv9x6-9x6 Book Title 11131-18 page 625

Academic Recommendations: The Mendeley Case 625

McNee, S. M., Albert, I., Cosley, D., Gopalkrishnan, P., Lam, S. K., Rashid,
A. M., Konstan, J. A. and Riedl, J. (2002). On the recommending of ci-
tations for research papers, in Proceedings of the 2002 ACM Conference
on Computer Supported Cooperative Work, CSCW ’02 (ACM, New York,
NY, USA), ISBN 1-58113-560-2, pp. 116–125, doi:10.1145/587078.587096,
http://doi.acm.org/10.1145/587078.587096.

Mehta, B. and Nejdl, W. (2008). Attack resistant collaborative filtering, in Pro-
ceedings of the 31st Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, SIGIR ’08 (ACM, New
York, NY, USA), ISBN 978-1-60558-164-4, pp. 75–82, doi:10.1145/1390334.
1390350, http://doi.acm.org/10.1145/1390334.1390350.

Ricci, F., Rokach, L. and Shapira, B. (2015). Recommender Systems Handbook,
2nd edn. (Springer Publishing Company, Incorporated), ISBN 1489976361,
9781489976369.

Sarwar, B., Karypis, G., Konstan, J. and Riedl, J. (2001). Item-based collabo-
rative filtering recommendation algorithms, in Proceedings of the 10th In-
ternational Conference on World Wide Web, WWW ’01 (ACM, New York,
NY, USA), ISBN 1-58113-348-0, pp. 285–295, doi:10.1145/371920.372071,
http://doi.acm.org/10.1145/371920.372071.

Sedhain, S., Menon, A. K., Sanner, S. and Xie, L. (2015). Autorec: Autoencoders
meet collaborative filtering, in Proceedings of the 24th International Con-
ference on World Wide Web, WWW ’15 Companion (ACM, New York, NY,
USA), ISBN 978-1-4503-3473-0, pp. 111–112, doi:10.1145/2740908.2742726,
http://doi.acm.org/10.1145/2740908.2742726.

Subasic, I., Gvozdenovic, N. and Jack, K. (2016). De-duplicating a large crowd-
sourced catalogue of bibliographic records, Program 50, 2, pp. 138–156,
doi:10.1108/PROG-02-2015-0021.

Vargas, S. and Castells, P. (2014). Improving sales diversity by recommend-
ing users to items, in Proceedings of the 8th ACM Conference on Recom-
mender Systems, RecSys ’14 (ACM, New York, NY, USA), ISBN 978-1-
4503-2668-1, pp. 145–152, doi:10.1145/2645710.2645744, http://doi.acm.
org/10.1145/2645710.2645744.

Vargas, S., Hristakeva, M. and Jack, K. (2016). Mendeley: Recommendations
for researchers, in Proceedings of the 10th ACM Conference on Recom-
mender Systems, RecSys ’16 (ACM, New York, NY, USA), ISBN 978-1-
4503-4035-9, pp. 365–365, doi:10.1145/2959100.2959116, http://doi.acm.
org/10.1145/2959100.2959116.

Walker, D., Xie, H., Yan, K.-K. and Maslov, S. (2007). Ranking scientific pub-
lications using a model of network traffic, Journal of Statistical Mechan-
ics: Theory and Experiment 2007, 6, pp. P06010–P06010, doi:10.1088/
1742-5468/2007/06/P06010, http://stacks.iop.org/1742-5468/2007/

i=06/a=P06010?key=crossref.fcef8050577d38451490d5f4f0d7df10.
Wang, C. and Blei, D. M. (2011). Collaborative topic modeling for recommending

scientific articles, in Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’11 (ACM,
New York, NY, USA), ISBN 978-1-4503-0813-7, pp. 448–456, doi:10.1145/
2020408.2020480, http://doi.acm.org/10.1145/2020408.2020480.

http://doi.acm.org/10.1145/587078.587096
http://doi.acm.org/10.1145/1390334.1390350
http://doi.acm.org/10.1145/371920.372071
http://doi.acm.org/10.1145/2740908.2742726
http://doi.acm.org/10.1145/2645710.2645744
http://doi.acm.org/10.1145/2645710.2645744
http://doi.acm.org/10.1145/2959100.2959116
http://doi.acm.org/10.1145/2959100.2959116
http://stacks.iop.org/1742-5468/2007/i=06/a=P06010?key=crossref.fcef8050577d38451490d5f4f0d7df10
http://stacks.iop.org/1742-5468/2007/i=06/a=P06010?key=crossref.fcef8050577d38451490d5f4f0d7df10
http://doi.acm.org/10.1145/2020408.2020480

October 25, 2018 9:13 ws-rv9x6-9x6 Book Title 11131-18 page 626

October 25, 2018 10:41 ws-rv9x6-9x6 Book Title 11131-19 page 627

Chapter 19

MoocRec.com: Massive Open Online Courses

Recommender System

Panagiotis Symeonidis1 and Dimitrios Malakoudis2

1Faculty of Computer Science, Free University of Bolzano, Italy
email: psymeonidis@unibz.it

2Faculty of Electrical Engineering,
Aristotle University of Thessaloniki, Greece

email: dmalakoudis@gmail.com

Massive open online courses (MOOCs) have recently gained a huge
users’ attention on the Web. They are considered as a highly promising
form of teaching from leading universities such as Stanford and Berke-
ley. MoocRec.com is a web site that recommends courses to users so
that, they can acquire those skills, that are expected from their ideal
job posting. MoocRec’s recommendation engine is based on a Matrix
Factorization (MF) model, which exploits information from external re-
sources (i.e., job-skill, user-skill, course-skill, etc.), which are extractred
from EdX, Coursera and Linkedin. Based on the aforementioned addi-
tional matrices we are able to predict course trends and to make rating
predictions for users over courses. Based on these rating predictions, we
find the similar neighbors of a target user and we provide to her top-N
course recommendations.

19.1. Introduction

Massive Open Online Courses (MOOCs) platforms offer thousands of differ-

ent courses and each course’s registration/enrolment can be in the hundreds

of thousand students. It would be very useful, if someone could be recom-

mended a course to acquire those skills, that are expected from his ideal

job description.

MoocRec.com is a web site that provides to users recommendations of

MOOCs. Firstly, users provide some information about their studies and

their dream job. Then, MoocRec.com recommends to them related courses,

to acquire the required skills for getting their dream job. The heart of the

627

October 25, 2018 10:41 ws-rv9x6-9x6 Book Title 11131-19 page 628

628 P. Symeonidis and D. Malakoudis

recommendation engine of MoocRec.com is matrix decomposition over a

user-course rating matrix R to reduce its dimensions and remove noise

from data. To do this, we preserve a small number of k latent features (i.e.,

dimensions) with the objective to reveal the mainstream users’ preferences.

For example, in Figure 19.1, we plot users and courses, assuming that k

has been tuned to 2.

Fig. 19.1. Users and Courses in the 2-D space.

As shown in Figure 19.1, courses/users that are placed in close distance,

are the most suitable/similar to each other. As shown, women prefer lit-

erature courses, whereas men choose the technical ones. Specifically, the

course “English Grammar and Style” can be recommended to Maria and

Irene, whereas “From Java to Android” course is more suitable to John.

Please notice that matrix decomposition has also revealed a second sepa-

ration, which takes place among people’s preference, towards practical and

theoretical types of courses. In MoocRec.com, we predict users’ ratings

over courses based on matrix factorization (MF) technique, which exploits

information from several external resources/matrices. These matrices (i.e.,

job-skill, user-skill, course-skill, etc.) are constructed after retrieving data

about MOOCs (extracted from EdX and Coursera) and the skills that are

related to each job description (extracted from Linkedin).

October 25, 2018 10:41 ws-rv9x6-9x6 Book Title 11131-19 page 629

MoocRec.com: Massive Open Online Courses Recommender System 629

The rest of this chapter is organized as follows. Section 19.2 summa-

rizes the related work. Section 19.3 describes the system’s architecture,

whereas Section 19.4 describes in details the web site services. Section 19.5

describes the database, whereas Section 19.6 describes three different web

crawlers (EdX, Coursera, Linkedin). Section 19.7 describes our recommen-

dation engine and developed algorithms. Finally, Section 19.8 concludes

this chapter.

19.2. Related work

Furnas et al. (Furnas et al., 1988) proposed Singular Value Decomposition

(SVD) in Information Retrieval research field. More specifically, SVD cap-

tures latent associations between the terms and the documents. SVD is a

well-known factorization technique that factors a matrix into three matri-

ces. An instance of SVD, known as UV-decomposition, searches for two

matrices (U and V), whose their multiplication gives an approximation of

the original matrix R. A significant improvement on the prediction accu-

racy of classic MF algorithm may be obtained through the incorporation of

implicit feedback into the MF model (Koren, 2008; Koren and Bell, 2011;

Paterek, 2007).

Extensions of classic MF algorithm and other methods [Bendakir and

Aı̈meur (2006); Parameswaran et al. (2011)] have been applied for course

recommendations. Elbadrawy and Karypis (Elbadrawy and Karypis, 2016)

provided top-N course recommendation based on MF, by incorporating into

their models additional student and course academic features (e.g., student

major, course topic, etc.) and by building multi-granularity student and

course groups accordingly. In the MOOC domain, to reduce the high stu-

dents’ drop-out rates, Yang et al. (Yang et al., 2014b) provided recom-

mendations of useful forum threads to students based on their blog history

inside a MOOC discussion forum. Their model matches forum threads with

users based on their previous blog history. To capture the implicit feed-

back of students, they have incorporated into their model, the consumed

content, the social interaction of students and other forum activities. They

have shown that learners’ preferences over forum threads are almost equal

to their preferences for the contents of those threads. Moreover, Yang et al.

(Yang et al., 2014a) proposed a matrix factorization method that considers

also constraints (e.g., students should not be over-burdened with too many

questions, etc.) for the task of providing question recommendations in

discussion forums that concern a MOOC. To reduce the high students’

October 25, 2018 10:41 ws-rv9x6-9x6 Book Title 11131-19 page 630

630 P. Symeonidis and D. Malakoudis

drop-out rates, Yang et al. (Yang et al., 2014b) provided recommenda-

tions of useful forum threads to students based on their blog history inside

a MOOC discussion forum. Recently, Almutairi et al. (Almutairi et al.,

2017) exploited temporal and other kinds of contextual information to pre-

dict students’ grades on courses and recommend courses to reduce student

retention. They proposed two methods based on coupled matrix and tensor

factorization. The latent factors obtained can be used to predict grades,

which can be later used for course recommendation.

Except the MF techniques for course recommendation, there are also

other methods. For example, Aher et al. (Aher and Lobo, 2013) proposed

a combination of a clustering with an association rule algorithm to recom-

mend courses to students based on choice of other students for particular

set of courses collected from Moodle. Their approach uses combination

of clustering technique (K-means) and association rule algorithm (Apriori)

and finds the recommendation results. Finally, Koutrika et al. (Garcia-

Molina, 2008; Koutrika et al., 2009) proposed FlexRecs that can provide

course recommendations to students, who rank them, add comments, and

rank the accuracy of each others’ comments. FlexRecs is a framework for

defining recommendations combining traditional relational operators with

other special recommendation operators. They experimented with differ-

ent recommendation types, such as recommending majors or courses, where

users could get flexible (e.g. extensible, novel, etc.) course recommenda-

tions.

19.3. System’s Architecture

The MoocRec1 system is a web site that provides recommendations of

MOOCs, so that its registered users can acquire new skills that they lack,

in order to get their dream job. The process is very simple: They de-

scribe us their studies and their dream job and we recommend them re-

lated courses/skills. User registration is very simple, through the usage of

Wordpress, which is a Content Management System (CMS). Figure 19.2

introduces the architecture of the MoocRec system. As shown, the system

consists of the web site, the recommendation engine, the database and the

web crawler.

The web crawler scans edX and Coursera web sites and inserts all the

MOOCs found in a MySQL database. Moreover, the web crawler gets

information from Linkedin about the skills that each job description is
1www.moocrec.com

October 25, 2018 10:41 ws-rv9x6-9x6 Book Title 11131-19 page 631

MoocRec.com: Massive Open Online Courses Recommender System 631

Web Site

Skill based
recommender

User profile based
recommender

Rating system

Alerts
Search engine

User monitoring system

Recommender
System

Advanced matrix
factorization
recommender

Content based
recommender

Database
Users

Courses

Skills

Jobs

Alerts

Watch lists

User actions

Studies

Web Crawler
Searches MOOC
providers and social
networks.

Fig. 19.2. MoocRec System Architecture.

related to. The database holds information that correlates jobs with skills

and skills with courses, making the job-driven recommendation possible.

Our website has a search engine for finding MOOCs. It supports two dif-

ferent types of searching (i.e., the open-type search, where you can search

for MOOCs similar to the way that google search engine works and the

closed-type search, where you have to fill in a web form with several search-

ing criteria).

Our website also incorporates a MOOC recommender system based on

the skills of each user and his ideal job characteristics. Specifically, the

website provides the user with personalised content according to the skills

he wishes to acquire for getting his ideal job. Therefore, we have to connect

a course description with the desired skills.

Moreover, using alerts the registered user may be notified of MOOCs

when they become available. He may also rate courses and add them to his

watch list. A user monitoring system records the user’s actions and helps

in constructing the user profiles. Please notice that MoocRec members are

always able to watch and update the log files and the information which

concerns them.

19.4. The Website

19.4.1. Homepage

The home page of MoocRec consists of several parts, some of which are

shared with other pages. As shown in Figure 19.3, on the upper right we

October 25, 2018 10:41 ws-rv9x6-9x6 Book Title 11131-19 page 632

632 P. Symeonidis and D. Malakoudis

Fig. 19.3. MoocRec homepage.

placed the register and login links. Underneath appears the MoocRec logo,

at the left side of an AdSense advertisement. Thereafter, comes the top-

menu. For the unregistered visitor, we temporarily allow the usage of the

job-driven recommender by clicking on the Recommend Me Courses tab.

All visitors may also use the search engine by selecting and clicking on Find

MOOCs choice.

Immediately below the menu, we provide an introduction to the op-

eration of the job-driven recommender. For this reason, we display three

images that demonstrate the procedure followed.

19.4.2. A Skill-aware Recommender System

The most innovative feature of MoocRec is the job-driven recommender

system. When a user visits the Recommend Me Courses page, the system

asks him to select his studies from a drop-down list. This is the first op-

tional step and it results in a prediction for the skills he possesses based on

his education, as pointed out in Figure 19.4. Subsequently, in the second

step the candidate, has the options to add skills which he already masters

or to discard the missing ones. The reason for the two aforementioned op-

tional steps is that we want to exclude already possessed skills from the

recommendation procedure.

Immediately after, as shown in Figure 19.5, the user selects his ideal

job from a drop-down list consisting of 78 different top-rated jobs. Then,

his predicted missing skills appear on step 4/4 and the user can correct

October 25, 2018 10:41 ws-rv9x6-9x6 Book Title 11131-19 page 633

MoocRec.com: Massive Open Online Courses Recommender System 633

Fig. 19.4. First two optional steps of Recommend Me Courses page.

Fig. 19.5. Final two steps and Recommend Me Courses button.

them. At this point, as presented in Figure 19.5, MoocRec’s visitor is

ready to push Recommend Me Courses button and get recommendations

about courses to acquire the skills he may lack.

19.4.3. The search engine

MoocRec system offers two types of search forms, the simple and the ad-

vanced. Using the advanced search (Figure 19.6), visitors can search in a

specific provider and select to view either active and upcoming courses or

extend their results by checking the checkboxes which refer to self-paced

and all active courses.

October 25, 2018 10:41 ws-rv9x6-9x6 Book Title 11131-19 page 634

634 P. Symeonidis and D. Malakoudis

Fig. 19.6. Advanced search form.

As shown in Figure 19.6, we set as default that most of the time our users

would like to view results for courses that have already started recently

or are going to start in a few days. Of course, a user can also search

for upcoming courses or can access past but still active ones in order to

download their educational content.

As shown in Figure 19.7, the search results are retrieved from the

database with the current and upcoming courses to appear first.

Fig. 19.7. Search results.

19.4.4. The Alert Creation page

When a registered user logs in, two more choices are added to the main

menu. For example, the Alert Creation page is only available for the regis-

tered users. The purpose of this page is to allow users to insert their alerts

October 25, 2018 10:41 ws-rv9x6-9x6 Book Title 11131-19 page 635

MoocRec.com: Massive Open Online Courses Recommender System 635

and get informed every time a new MOOC is inserted in the database and

matches their alert preferences.

As shown in Figure 19.8, users can import their course preferences and

get informed by email as soon as MOOCs like the ones they are interested

in, become available.

Fig. 19.8. Alert Creation page.

For inserting their preferences, they may choose one or both of the

following two options:

• Choose from predefined skills. This option allows the user to

select his desired skills from a similar drop-down list as the one

used in the Recommend Me Courses page described on Subsection

19.4.2. As it is illustrated in Figure 19.8, skills are disposed in

order of importance, meaning that most popular skills are listed

first. Of course this helps users discover the most popular skills

they may lack, but on the other hand users may want to search

for a specific (not popular) skill. Therefore, we have added also a

search function.

• Write their Favorite Skills. Users can simply write down the

skills that they would like to be alerted. Similar to the open-type

search, users should divide each skill keyword by comma in order

to insert more than one of them.

October 25, 2018 10:41 ws-rv9x6-9x6 Book Title 11131-19 page 636

636 P. Symeonidis and D. Malakoudis

Finally, a Create Alert button has been placed on the bottom of the

aforementioned two options. By clicking on it, user views his updated

alerts. From that moment and on, each time a new MOOC provides at

least one of the desired skills which were inserted in user alerts, we send

him an informative email message. A characteristic email message is shown

on Figure 19.9.

Fig. 19.9. Alert email message.

We have created the email account mail@moocrec.com to send the alert

email messages. Thus, the user is prompted to visit the MoocRec system in

order to view the MOOCs we have found and proposed. When users click

on the MOOC recommender link, he visits his special alerts page.

19.4.5. Administrator’s privileges

MoocRec web site was implemented with CMS Wordpress. Administrators

have access to MoocRec’s control panel, which is shown in Figure 19.10.

Therefore, they may add pages or menu items, change web site’s appear-

ance, modify users data and view statistics. In addition, we have created a

Google Analytics web page to capture in more detail users’ behavior.

19.5. Database

The database contains all the information necessary for the entities of the

MoocRec system and the correlations between them. The database system

is MySQL and includes 23 tables. According to the entity — relationship

model (ER model) we distinguish the following main participating entities

in our system (Figure 19.11):

• Users. It is the set of registered users. Each user has his own

preferences and by the time he logs in, we collect information con-

cerning his behavior. Our goal is to create a personal user profile

and recommend him the most appropriate courses. As it is illus-

trated in Figure 19.11, a user may (i) get alerted of a course he is

October 25, 2018 10:41 ws-rv9x6-9x6 Book Title 11131-19 page 637

MoocRec.com: Massive Open Online Courses Recommender System 637

Fig. 19.10. Wordpress control panel.

Users

SkillsStudies

Jobs

Courses

Alerts
prefer

Sessions

insert

have given

performed at

provide demand

get alerted for

wait for
have taken

want

rate
have

Fig. 19.11. MoocRec database entities and relationships.

interested in, (ii) view a course description, and (iii) rate a course.

He can also add a MOOC in his watch list. In addition, he may

insert his studies, and find the adequate skills to get his dream job.

• Courses. These are the MOOCs. Normally a MOOC is performed

at several time periods/session.

October 25, 2018 10:41 ws-rv9x6-9x6 Book Title 11131-19 page 638

638 P. Symeonidis and D. Malakoudis

• Sessions. This means that the same MOOC may be repeated time

by time during a year.

• Studies. These are actually the subjects or the categories of the

available MOOCs. We have connected each course with particular

skills. Therefore, we assume that studies provide the skills of their

courses.

• Jobs. The top-ranked jobs, web-mined from social networks such

as Linkedin.

• Skills. Users have to acquire the skills they lack in order to get

the job they dream of.

• Alerts. When issuing an alert, a user is in fact asking and waiting

for courses.

19.5.1. Database Tables

In the following, we will briefly describe the database tables:

(1) Users. The table that saves user information. Normally, this is the

Wordpress table wp users. Column ID is used as primary key and

serves as a user index for other database tables.

(2) Courses. The main table containing useful MOOC information. We

hold the MOOC’s id in the provider’s database, the provider, the

short name of the course which sometimes is used to form the link

of the official MOOC page, the title, the short description which we

reveal in Recommend Me Courses and Search Results pages, the about

description which we present in the MOOC Description page, the

studies in which the course is part of, the estimated class workload, the

duration, the start and end dates, the price, the link and information

about whether MOOC is in the English language and is a self-paced

course.

(3) Sessions. The current and future sessions of each MOOC. This table

is used as an intermediate step to discover the current session of each

Coursera MOOC.

(4) Saved alerts. The courses for which users have been alerted. User

views them in his personal My Alerts page.

(5) Pending alerts. Intermediate information table which holds new

MOOCs, we have found but not yet informed users about.

(6) User seen MOOCs. We save the event of a user viewing a MOOC’s

description page. We also hold the useful information of the time

stamp.

October 25, 2018 10:41 ws-rv9x6-9x6 Book Title 11131-19 page 639

MoocRec.com: Massive Open Online Courses Recommender System 639

(7) User favorite MOOCs. We capture the action of a user viewing a

MOOC’s official page outside the MoocRec System.

(8) User watch list. Every user’s MOOC watch list and time stamp of

the event.

(9) User rated MOOCs. The ratings users have given to the MOOCs

and the time they have rated them.

(10) Jobs. The jobs which the MoocRec system offers as selection options

in the drop-down lists.

(11) User jobs. The dreamed job of each user.

(12) Skills. All the skills we have web mined.

(13) Skills popularity. Resulting of the web mining we have conducted,

we classify skills according to their popularity. In our drop down lists

of Recommend Me Courses and Alert Creation pages, we present the

most popular skills first.

(14) Skills popularity per job. We save the skills according to their

different popularity for every particular job. Thus, we discover the

top desired skills for each one and we present them to users after they

select their desired job.

(15) User skills. The skills each user lacks and desires to acquire.

(16) Studies. The studies which also serve as categories-subjects of the

MOOCs.

(17) User Studies. The studies users have taken.

(18) User Studies acquired skills. The skills users have acquired from

their studies.

(19) Alerts. The alerts table. We save the names of the skills and the

keywords users have inserted while creating their alerts.

(20) New alert definition. By default if 6 months have passed since the

last alert of a MOOC to a user, we re-alert him. Administrator may

change this time period from the selection list of Manage Alerts page.

The new alert definition will be saved in this table.

(21) My new alert definition. Similar to the previous table. The dif-

ference is that we save a different new alert definition for each user.

(22) Course skills. The skill keywords that are contained in a MOOC’s

title and short description.

(23) Study skills. The skill keywords that are contained in the MOOCs

which belong to a particular study.

October 25, 2018 10:41 ws-rv9x6-9x6 Book Title 11131-19 page 640

640 P. Symeonidis and D. Malakoudis

19.6. Web Crawler

The web crawler is implemented using PHP and SeleniumHQ’s2 PHP web

driver. We periodically mine edX and Coursera MOOC providers to up-

date our database with new or updated courses. We have also mined the

LinkedIn social network to discover the top jobs and the top skills per each

job. Unfortunately, only Coursera provides an API that offers easy access

to MOOCs. Instead, edX and LinkedIn do not offer any API’s which would

have helped us. Moreover, edX and LinkedIn are using JavaScript to load

pages, so the usage of SeleniumHQ is obligatory to succeed in getting the

data we need. The web crawler was developed as an external module.

In Figure 19.12 we illustrate the graphical user interface of the web

crawler. The administrator has the options to insert MOOCs from Coursera

and edX, mine skills from LinkedIn, correlate skills to MOOCs and Studies

and transfer the whole database to the MoocRec system. Thereafter, we

will explain the operation of each selection.

Fig. 19.12. MoocRec’s web crawler.

19.6.1. Coursera mining

Coursera’s catalog API3 is a RESTful API that uses JSON for the data ex-

change format. Coursera’s web mining process is executed by the following

steps:

(1) We start by retrieving the HTML code of the courses URL4. We

request the fields id, shortName, name, language, shortDescription,

2www.seleniumhq.org
3tech.coursera.org/app-platform/catalog/
4api.coursera.org/api/catalog.v1/courses

October 25, 2018 10:41 ws-rv9x6-9x6 Book Title 11131-19 page 641

MoocRec.com: Massive Open Online Courses Recommender System 641

aboutTheCourse, targetAudience, estimatedClassWorkload and we

ask the inclusion of the categories (Studies) of each course.

(2) Using the well-known from the Linux operating system function preg-

match-all(), we are able to do pattern matching. Essentially, we man-

age to export content between HTML tags to be able to keep data

such as Coursera’s course id, MOOC’s short name, title, language,

short description, about description etc.

(3) If a MOOC has not yet been inserted in the MoocRec’s database, we

enter it together with the web mined information.

(4) If a MOOC has been removed from Coursera, we declare it as not ex-

isting in our database. This is very important, as MOOCs are related

to users and we do not want to miss past user preferences by deleting

the MOOC.

(5) We retrieve the HTML code of the sessions URL5. We ask for the

fields id, courseId, homeLink, status, active, durationString, startDay,

startMonth and startYear.

(6) We execute pattern matching and keep data such session’s start date.

(7) We update database with new sessions.

(8) We retrieve the HTML code of the categories (Studies) URL6.

(9) We update the database with new categories (Studies).

(10) We search sessions database table for current, upcoming or just active

courses.

(11) We update courses database table and insert MOOC’s start date and

status (current, upcoming and just active).

In Figure 19.13 we may view the result of a Coursera web mining (March

4, 2016).

19.6.2. EdX mining

EdX mining process is accomplished using SeleniumHQ PHP web driver.

We present a sample of edX’s web mining code in Appendix A.3. EdX

mining is managed as follows:

(1) SeleniumHQ connects to firefox and gets edX courses URL7.

(2) We select English MOOCs automatically with PHP coding from edX’s

sidebar, so firefox loads the first English MOOCs.

5api.coursera.org/api/catalog.v1/sessions
6api.coursera.org/api/catalog.v1/categories
7www.edx.org/course

October 25, 2018 10:41 ws-rv9x6-9x6 Book Title 11131-19 page 642

642 P. Symeonidis and D. Malakoudis

Fig. 19.13. Coursera’s web mining result.

(3) We automatically move to the end of the page to load more edX

courses. We repeat this step until we load all MOOCs. While we load

MOOCs, firefox looks like Figure 19.14.

Fig. 19.14. EdX’s mining process.

(4) We save the full loaded page in a file and execute pattern match-

ing. We retrieve MOOC’s link, code, title, date and all other relevant

information.

(5) We test if each MOOC already exists in our database and if not we visit

MOOC’s link and get the page. Then, we do pattern matching and

retrieve course’s short description, about description, length, effort,

October 25, 2018 10:41 ws-rv9x6-9x6 Book Title 11131-19 page 643

MoocRec.com: Massive Open Online Courses Recommender System 643

price and subjects (Studies). We save all the retrieved information in

the database.

(6) If a MOOC has been removed from edX, we declare it as not existing in

our database. This is very important, as MOOCs are connected with

users and we do not want to miss past user preferences by deleting

the MOOC.

(7) If a MOOC’s link or date has been changed, we update database with

the new values.

In Figure 19.15 we may view an excerpt of the result of an edX web

mining (March 4, 2016). We present the update of a date and a link of

an edX MOOC. As it is depicted, 37 MOOCs were updated. Many times

archived courses become active again, therefore we need to always check

and update when needed.

Fig. 19.15. EdX’s web mining result.

19.6.3. LinkedIn mining

LinkedIn web mining was executed with two different goals. Firstly, we

have web mined LinkedIn profiles and retrieved jobs. Thus, we have dis-

covered the most common jobs inside LinkedIn members. The second and

most important target was to discover the appropriate skills for each job.

We have again used SeleniumHQ because many LinkedIn pages load with

JavaScript. The skill mining process is described below:

October 25, 2018 10:41 ws-rv9x6-9x6 Book Title 11131-19 page 644

644 P. Symeonidis and D. Malakoudis

(1) SeleniumHQ connects to firefox and gets LinkedIn’s webpage8.

(2) We log in LinkedIn automatically using PHP and SeleniumHQ.

(3) We search for those users, who have worked or currently work in the

job, we are looking for its required skills.

(4) For each user we find, we visit his personal page and get his skills using

pattern matching.

(5) Therefore, for each job we save the relevant skills in the database.

(6) We classify skills according to their total and job-related popularity.

The next step is to correlate skills to courses and studies. By clicking on

Add Skills to Courses and Studies tab of web crawler’s menu (Figure 19.12),

we sweep all MOOCs and search if a skill keyword exists inside a MOOC’s

title or description. We calculate also, how many times a skill exists in

and save the information to our database. Afterwards, we download the

studies of each MOOC and save the aforementioned information to the

database table which connects studies with skills. Finally, we may connect

MoocRec’s database, using the Transfer database option of crawler’s menu

and transfer the mined data. The connection is secured because we are

using Static IP as additional login ID.

19.7. Recommendation Engine and Developed Algorithms

The recommendation engine is a key part of the system, which is intercon-

nected with the web site and the database. It is the part that performs

the recommendation algorithms, takes input data from the database and

finally displays the results to the users through the web site.

In MoocRec system we use two recommendation algorithms for recom-

mending MOOCs to the users. The algorithm we have already added is a

content-based filtering one, while the upcoming one is the enhanced matrix

factorization which will be also analyzed. In particular, we describe the

two implementations in the next two subsections.

19.7.1. Content-based filtering

The purpose of this algorithm is to display the most relevant MOOCs,

taking account of the skills each user is interested in. This is accom-

plished by comparing the skill keywords with the title and the description

of the MOOCs. We have preinserted the aforementioned information while

8www.linkedin.com

October 25, 2018 10:41 ws-rv9x6-9x6 Book Title 11131-19 page 645

MoocRec.com: Massive Open Online Courses Recommender System 645

executing the Correlate skills to courses and studies function of the web

crawler. Thereafter, we access the Course skills database table and make

an SQL query, ordering the MOOC’s according to the number of skills they

provide. The execution is really fast because of the preprocessing we have

done, after the web mining phase. Consequently, we propose the top 10

MOOCs to the user in Recommend Me Courses page which was described

in Subsection 19.4.2.

In Figure 19.16, we illustrate the recommendations we provide to a user,

after he has clicked on Recommend Me Courses to cover skills I lack button,

which was presented in Figure 19.5. As it is depicted, the recommendation

includes a short description of the course and useful information such as

when the course starts, whether the course is self-paced, the total duration,

the effort required, the price and the related categories. The user may click

on the title and be directed to a page describing the course in more detail.

Fig. 19.16. Recommendation appearance and reasoning.

One very important characteristic of the recommendation is that user is

informed about the reason he was recommended that course. For example,

course Data Analysis for Life Sciences: High-Performance Computing for

Reproducible Genomics is recommended because it is related to Life Sci-

ences and Genomics. The content-based recommendation algorithm, places

first the courses which provide the greatest number of skills. Moreover,

courses that start soon or are self-paced have priority towards others.

October 25, 2018 10:41 ws-rv9x6-9x6 Book Title 11131-19 page 646

646 P. Symeonidis and D. Malakoudis

19.7.2. Enhanced Matrix Factorization

In this Section, we will describe and present with pseudocode the imple-

mentation of enhanced matrix factorization algorithm.

First of all, we have to set the requirements of the algorithm. So,

the input data which will be used to implement the method are the two-

dimensional sparse user-course rating matrix R (R ∈ Rm×n), the two-

dimensional sparse user-skill matrix US ∈ Rm×s, the two-dimensional

sparse course-skill matrix CS ∈ Rn×s, the objective function G, the cosine

similarity function SIM , the learning rates η1 and η2, the regularization

parameters λ1, λ2 and λ3, the number of total latent-features K and the

steps of algorithm’s predictions. The objective function is shown in the

following:

G = min
∑
i,j

(
rij − µ− bui − bcj −

K∑
k=1

(
uik +

∑S
s=1 usisus

∗
sk∑S

s=1 usis

)(
vkj +

∑S
s=1 csjscs

∗
ks∑S

s=1 csjs

))2

+ λ1(bu
2
i + bc

2
j) + λ2

K∑
k=1

(
u
2
ik + v

2
kj

)
+ λ3

K∑
k=1

S∑
s=1

usis(us
∗
sk)

2
+ csjs(cs

∗
ks)

2

(19.1)

The next step in the implementation is to initialize with random values

the two vectors bu and bc and the four matrices U , V , US∗ and CS∗, as

shown in the first line of Algorithm 1. Due to the fact that our enhanced

UV-Decomposition method uses four thin matrices to produce the com-

plete prediction rating matrix R̂, one of the dimensions of U , V , US∗ and

CS∗ matrices is K (k = K). At line 2 we calculate the mean value of

matrix R. Subsequently, as shown at lines 3 to 12 we create an adjacency

list uSkill to hold user’s possessed skills and insert relative information in

arrays uSkillsIndex and uSkillsSum. In the same way, at lines 13 to 22,

we construct the same data structures referring to courses.

After all these initializations and data preparations the algorithm is

ready to start the repetitive process of prediction. We firstly (lines 26 to 32)

compute
∑S
s=1 usisus

∗
sk∑S

s=1 usis
for each user and save the result in SCUP vector.

Also, using the same procedure (lines 33 to 39) we calculate
∑S
s=1 csjscs

∗
ks∑S

s=1 csjs

and insert the result in SCCP vector. After that, at the next important

step (lines 40 to 43) we find the prediction error e which is the difference

between real and predicted rating. The prediction error e is then used to

update the two vectors and the four matrices: bu and bc are updated at lines

October 25, 2018 10:41 ws-rv9x6-9x6 Book Title 11131-19 page 647

MoocRec.com: Massive Open Online Courses Recommender System 647

Algorithm 1 Implementation of our enhanced UV-Decomposition Method

in pseudo-code

Require: 2D sparse user-course rating matrix R ∈ Rm×n, 2D sparse user-skill matrix US ∈
Rm×s, 2D sparse course-skill matrix CS ∈ Rn×s, G objective function, similarity function
SIM , η1 and η2 learning rates, λ1, λ2 and λ3 regularization parameters, K number of
total latent-features and steps maximum number of algorithm’s predictions.

Ensure: Complete prediction matrix R̂ ∈ Rm×n, Top-N recommendation matrix TOPN

1: Initialize bu,bc, U ,V ,US∗, CS∗;
2: Calculate µ = mean(R);
3: for i = 1 : m do
4: uSkillsSum[i] = uSkillsIndex[i] = 0;
5: for j = 1 : s do
6: if US[i][j] > 0 then
7: uSkill[i][uSkillsIndex[i]] = j;
8: uSkillsIndex[i]+ = 1;
9: uSkillsSum[i]+ = US[i][j];
10: end if
11: end for
12: end for
13: for i = 1 : n do
14: cSkillsSum[i] = cSkillsIndex[i] = 0;
15: for j = 1 : s do
16: if CS[i][j] > 0 then
17: cSkill[i][cSkillsIndex[i]] = j;
18: cSkillsIndex[i]+ = 1;
19: cSkillsSum[i]+ = CS[i][j];
20: end if
21: end for
22: end for
23: repeat
24: for i = 1 : m do
25: for j = 1 : n do
26: for k = 1 : K do
27: SCUP [k] = 0;
28: for m = 1 : uSkillsIndex[i] do
29: SCUP [k]+ = US[i][uSkill[i][m]]US∗[uSkill[i][m]][k] ;
30: end for
31: SCUP [k]/ = uSkillsSum[i];
32: end for
33: for k = 1 : K do
34: SCCP [k] = 0;
35: for m = 1 : cSkillsIndex[j] do
36: SCCP [k]+ = CS[j][cSkill[j][m]]CS∗[k][cSkill[j][m]] ;
37: end for
38: SCCP [k]/ = cSkillsSum[j];
39: end for
40: e = R[i][j]− µ− bu[i]− bc[j];
41: for k = 1 : K do
42: e− = (U [i][k] + SCUP [k])(V [k][j] + SCCP [k]);
43: end for
44: bu[i]+ = η1(e− λ1bu[i]);
45: bc[j]+ = η1(e− λ1bc[j]);
46: for k = 1 : K do
47: tempU [k] = U [i][k];
48: tempV [k] = V [k][j];
49: temp = η2 [e(V [k][j] + SCCP [k])− λ2U [i][k]];
50: V [k][j]+ = η2 [e(U [i][k] + SCUP [k])− λ2V [k][j]];
51: U [i][k]+ = temp;
52: end for

October 25, 2018 10:41 ws-rv9x6-9x6 Book Title 11131-19 page 648

648 P. Symeonidis and D. Malakoudis

53: for m = 1 : uSkillsIndex[i] do
54: for k = 1 : K do
55: skill = uSkill[i][m];
56: US∗[skill][k]+ =

η2US[i][skill]
[

e
uSkillsSum[i]

(tempV [k] + SCCP [k])− λ3US
∗[skill][k]

]
;

57: end for
58: end for
59: for m = 1 : cSkillsIndex[j] do
60: for k = 1 : K do
61: skill = cSkill[j][m];
62: CS∗[k][skill]+ =

η2CS[j][skill]
[

e
cSkillsSum[j]

(tempU [k] + SCUP [k])− λ3CS
∗[k][skill]

]
;

63: end for
64: end for
65: end for
66: end for
67: until G ceases to improve OR maximum algorithms predictions steps reached
68: for i = 1 : m do
69: for j = 1 : n do
70: r̂[i][j] = µ+ bu[i] + bc[j];
71: for k = 1 : K do
72: Calculate SCUP [k], SCCP [k];
73: r̂[i][j]+ = (U [i][k] + SCUP [k])(V [k][j] + SCCP [k]);
74: end for
75: end for
76: end for
77: Create vector users ∈ Zn

′
with all users of dataset and vector courses ∈ Zm

′
with all

courses, respectively;
78: Create list userRatedCourses to hold the courses each user rated and list

userCoursesRatings to hold the corresponding ratings;
79: for i = 1 : n′ do
80: for j = 1 : n′ do
81: Calculate sim[i][j];
82: end for
83: Quick sort sim[i] in descending order and create neighborhood list N [i];
84: end for
85: for i = 1 : n′ do
86: Initialize freq[i] elements at zero;
87: for j = 1 : M do
88: for m = 1 : userRatedCoursesSize do
89: if userCoursesRatings[N [i][j]][m] > Pτ then
90: course = userRatedCourses[N [i][j]][m];
91: freq[i][course]+ = 1;
92: end if
93: end for
94: end for
95: Quick sort freq[i] list in descending order;
96: while n < N AND freq[i][courseElement] > 0 do
97: TOPN [i][n] = courseElement;
98: n = n+ 1;
99: end while
100: end for
101: return TOPN ;

October 25, 2018 10:41 ws-rv9x6-9x6 Book Title 11131-19 page 649

MoocRec.com: Massive Open Online Courses Recommender System 649

44 and 45, while U and V at the following lines 46 to 52, respectively. One

can observe that we use temporary vectors in order not to lose previous

values of U and V . The reason for this becomes evident at lines 53 to

63, when we use the previous saved values to update US∗ and CS∗. The

execution of the update rules is really fast, as we have already calculated

useful variables, such as the user-skill and course-skill sum (lines 9 and 19)

and the skill contribution to user and course profile (lines 26 to 39). The

process that has just described above will be repeatedly executed, until

objective function G ceases to improve or until the maximum predictions

number that we have set is reached (line 67). So far, we have created bu, bc,

U , V , US∗ and CS∗ with the minimum G. The next step is to use them to

calculate the prediction rating matrix R̂. The R̂ matrix is complete without

any sparsity. We compute this matrix in lines 68 to 76 and we are ready to

start finding the right courses to recommend, using any method we decide.

For the purpose of our work, we have chosen to present the pseudocode

of the Most-Frequent item recommendation technique. Please notice that

the Most-Frequent item recommendation algorithm counts the majority

vote of an item inside the neighborhood of the target user. The neighbor-

hood of the target user consists of his most similar users. In order to save

processing time, we construct two vectors holding all the unique users and

courses (line 77) and two lists to save the specific courses each user has

rated and the related ratings (line 78). The first stage of this technique is

to find out each user’s neighbors. So, we compute cosine similarity function

for every different pair of users (line 81). Subsequently, we quick sort the

similarity results and pick up the top ones to create target user’s neighbor-

hood (line 83). The neighborhood’s size is an external input, illustrated by

variable M . Moreover, at line 85, we start the loop to discover the TOP-N

courses, which we propose to every user. For every neighbor user (line 87),

we scan all of his rated courses (line 88) and if a rating is greater than Pτ ,

we increase course’s frequency inside user’s neighborhood. Over and above,

we quick sort courses’ frequencies (line 95) and finally we select the top N

to deliver TOP −N course recommendations to every target user (lines 96

to 101).

19.8. Conclusions

In this chapter, we have described MoocRec.com, which exploits informa-

tion from external resources (i.e., users’ skills, courses’ characteristics, job

descriptions details, etc.) to provide course recommendations. In future,

October 25, 2018 10:41 ws-rv9x6-9x6 Book Title 11131-19 page 650

650 P. Symeonidis and D. Malakoudis

when there will be an adequate number of registered users, we want to test

experimentally our system to check its effectiveness in terms of accurate

recommendations. Moreover, we want to explore different ways of explain-

ing our recommendations, so that we make our system more transparent

and reliable. Finally, we want to crawl more MOOC platforms and websites

that contain information about job descriptions and required skills.

References

Aher, S. B. and Lobo (2013). Combination of machine learning algorithms for
recommendation of courses in e-learning system based on historical data,
Knowledge-Based Systems 51, pp. 1–14.

Almutairi, F. M., Sidiropoulos, N. D. and Karypis, G. (2017). Context-aware
recommendation-based learning analytics using tensor and coupled matrix
factorization, IEEE Journal of Selected Topics in Signal Processing 11, 5,
p. 729.

Bendakir, N. and Aı̈meur, E. (2006). Using association rules for course recommen-
dation, in Proceedings of the AAAI Workshop on Educational Data Mining,
Vol. 3.

Elbadrawy, A. and Karypis, G. (2016). Domain-aware grade prediction and top-
n course recommendation, in Proceedings of the 10th ACM conference on
Recommender systems.

Furnas, G. W., Deerwester, S., Dumais, S. T., Landauer, T. K., Harshman, R. A.,
Streeter, L. A. and Lochbaum, K. E. (1988). Information retrieval using a
singular value decomposition model of latent semantic structure, in Proceed-
ings of the 11th annual international ACM SIGIR conference on Research
and development in information retrieval, SIGIR ’88 (ACM, New York, NY,
USA), ISBN 2-7061-0309-4, pp. 465–480, doi:http://doi.acm.org/10.1145/
62437.62487, http://doi.acm.org/10.1145/62437.62487.

Garcia-Molina, H. (2008). Flexible recommendations in courserank, in OTM Con-
federated International Conferences “On the Move to Meaningful Internet
Systems” (Springer), pp. 7–7.

Koren, Y. (2008). Factorization meets the neighborhood: a multifaceted col-
laborative filtering model, in Proceeding of the 14th ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining (ACM),
pp. 426–434, http://scholar.google.de/scholar.bib?q=info:oARx59_

hO4MJ:scholar.google.com/&output=citation&hl=de&as_sdt=0,5&ct=

citation&cd=0.
Koren, Y. and Bell, R. M. (2011). Advances in Collaborative Filtering in F. Ricci,

L. Rokach, B. Shapira and P. B. Kantor (eds.), Recommender Systems
Handbook (Springer), ISBN 978-0-387-85819-7, pp. 145–186.

Koutrika, G., Bercovitz, B. and Garcia-Molina, H. (2009). Flexrecs: express-
ing and combining flexible recommendations, in Proceedings of the 2009
ACM SIGMOD International Conference on Management of data (ACM),
pp. 745–758.

http://doi.acm.org/10.1145/62437.62487
http://scholar.google.de/scholar.bib?q=info:oARx59_hO4MJ:scholar.google.com/&output=citation&hl=de&as_sdt=0,5&ct=citation&cd=0
http://scholar.google.de/scholar.bib?q=info:oARx59_hO4MJ:scholar.google.com/&output=citation&hl=de&as_sdt=0,5&ct=citation&cd=0
http://scholar.google.de/scholar.bib?q=info:oARx59_hO4MJ:scholar.google.com/&output=citation&hl=de&as_sdt=0,5&ct=citation&cd=0

October 25, 2018 10:41 ws-rv9x6-9x6 Book Title 11131-19 page 651

MoocRec.com: Massive Open Online Courses Recommender System 651

Parameswaran, A., Venetis, P. and Garcia-Molina, H. (2011). Recommendation
systems with complex constraints: A course recommendation perspective,
ACM Transactions on Information Systems (TOIS) 29, 4, p. 20.

Paterek, A. (2007). Improving regularized singular value decomposition for col-
laborative filtering, in Proceedings of KDD cup and workshop, Vol. 2007,
pp. 5–8.

Yang, D., Adamson, D. and Rosé, C. P. (2014a). Question recommendation with
constraints for massive open online courses, in Proceedings of the 8th ACM
Conference on Recommender systems (ACM), pp. 49–56.

Yang, D., Piergallini, M., Howley, I. and Rose, C. (2014b). Forum thread recom-
mendation for massive open online courses, in Proceedings of 7th Interna-
tional Conference on Educational Data Mining.

October 25, 2018 10:41 ws-rv9x6-9x6 Book Title 11131-19 page 652

October 25, 2018 11:57 ws-rv9x6-9x6 Book Title 11131-20 page 653

Chapter 20

Food Recommendations

Christoph Trattner† and David Elsweiler‡

†University of Bergen, Norway
‡University of Regensburg, Germany

The recommendation of food items is important for many reasons. At-
taining cooking inspiration via digital sources is becoming evermore pop-
ular; as are systems, which recommend other types of food, such as
meals in restaurants or products in supermarkets. Researchers have been
studying these kinds of systems for many years, suggesting not only that
can they be a means to help people find food they might want to eat, but
also help them nourish themselves more healthily. This paper provides a
summary of the state-of-the-art of so-called food recommender systems,
highlighting both seminal and most recent approaches to the problem, as
well as important specializations, such as food recommendation systems
for groups of users or systems which promote healthy eating. We more-
over discuss the diverse challenges involved in designing recsys for food,
summarise the lessons learned from past research and outline what we
believe to be important future directions and open questions for the field.
In providing these contributions we hope to provide a useful resource for
researchers and practitioners alike.

20.1. Introduction

Online recommendation systems have proved to be useful in diverse situa-

tions by empowering the user to overcome the information overload prob-

lem, assisting with the decision making process and serving as a means

to change user behavior [Ricci et al. (2011)]. One domain, which has his-

torically received comparatively little attention, however, especially when

compared to areas relating to leisure and entertainment, is the recommen-

dation of food items. This is surprising given the importance of food for

human sustenance, the range of options available, the fact that making

food choices is particularly challenging [Scheibehenne et al. (2010)], and

653

October 25, 2018 11:57 ws-rv9x6-9x6 Book Title 11131-20 page 654

654 C. Trattner and D. Elsweiler

the high personal and societal costs of poor choices. Worldwide, lifestyle-

and diet-related illnesses, such as obesity and diabetes, account for 60%

of total deaths [Beaglehole (2016)]. Both are conditions which can be pre-

vented and sometimes even reversed by appropriate dietary choices [Ornish

et al. (1990)].

As such, health-aware food recommendation systems are often mooted

as an important part of the solution to encourage healthier nutritional

choices [Freyne and Berkovsky (2010); Freyne et al. (2011b); Harvey et al.

(2012, 2013)].

There are many reasons, however, which make food recommendation

challenging, not only in terms of encouraging healthy behaviour, but also

in predicting what people would like to eat because this is complex, multi-

faceted, culturally determined, not to mention context-dependent. More-

over, when developing food recommendation systems, there are additional

issues for practitioners and researchers to consider, which do not arise in

other recommendation domains. These include that users may have com-

plex, constrained needs, such as allergies or life-style preferences, such as

the desire to eat only vegan or vegetarian food. In such cases, standard

approaches work poorly and adequate data sources to filter recipes are not

freely available. Other challenges include food items may have multiple

names, ingredients can be prepared in different ways and, unlike domains

where products or media are recommended, it is not always clear if a rec-

ommended item can be prepared or consumed due to the potential for poor

availability of ingredients, cooking knowledge or equipment.

This chapter makes two primary contributions. Firstly, we provide a

summary of the state-of-the-art in food recommendation systems, high-

lighting both seminal and most recent approaches to the problem, as well as

important specializations, such as food recommendation systems for groups

of users or systems which promote healthy eating. We examine which al-

gorithms have been used in the food domain, how systems are typically

evaluated, and the resources available to those interested in building or

studying recommendation systems in practice. In a second contribution we

discuss the diverse challenges involved, as well as a summary of the lessons

learned from past research, and an outline of important future directions

and open questions. In providing these contributions we hope to provide a

useful resource for researchers and practitioners alike.

October 25, 2018 11:57 ws-rv9x6-9x6 Book Title 11131-20 page 655

Food Recommendations 655

20.2. Developed Approaches

Despite food recommendation being a comparatively understudied problem

in the research community, a decent body of literature exists. Table 20.1

provides a list of important research contributions relating to food recom-

mendation. We list 25 popular, highly cited, recent and relevant papers in

chronological order, selected using our experience in the domain in com-

bination with bibliographic tools, such as Google scholar1, to identify the

most relevant for the targeted readership. Special care was taken to iden-

tify work relating to different types of food item. As such, the papers cited

relate to the recommendation of recipes, meal plans, groceries and menus.

Although the problem of recommending restaurants to people, e.g. [Park

et al. (2008)], is related, especially when the meals served there are taken

into consideration, we focus here on research relating to systems directly

recommending the food items themselves.

The columns in Table 20.1 relate to dimensions that we believe charac-

terize the nature of different contributions in the area. Algorithm defines

the various algorithmic approaches that have been tested in the food do-

main ranging from content based approaches, to collaborative filtering, to

machine learning classifiers, some of which involve personalization (Per-

sonalized). Recommended Items describes the food item involved; Feedback

describes the means by which the system is informed on user preferences

and the suitability of any recommendation provided; Context provides the

context dimension(s) utilised if applicable; dietary constraint informs on

whether nutrition was considered; Target details who the end user(s) of

the system was(were); and finally Dataset details the proprietary or open

dataset utilized. The remainder of the chapter uses Table 20.1 as a struc-

tural basis.

In this section, we explain the approaches that have been taken in the

literature to implement food item recommenders. In the literature the

most prominent form of food recommendation system provides single item

recommendations mostly in the form of recipes.

We structure the section around the approaches employed, summarizing

content-based, collaborative filtering and hybrid approaches. We continue

to show how context information is important and how this has been utilized

in practice. Next, we broaden our focus to particular scenarios, which have

been addressed, firstly looking at group-recommendations before reviewing

research on food recommenders for healthy nutrition.

1http://scholar.google.com

October 25, 2018 11:57 ws-rv9x6-9x6 Book Title 11131-20 page 656

656 C. Trattner and D. Elsweiler

T
a
b

le
2
0
.1

.
O

v
er

v
ie

w
o
f
d

iff
er

en
t

ty
p

es
o
f
re

co
m

m
en

d
a
ti

o
n

sy
st

em
s

st
ra

te
g
ie

s
d

ev
el

o
p

ed
fo

r
re

co
m

m
en

d
in

g
fo

o
d

(r
ec

ip
es

,
m

ea
l

p
la

n
s,

g
ro

ce
ri

es
a
n

d
m

en
u

s)
to

p
eo

p
le

so
rt

ed
in

ch
ro

n
o
lo

g
ic

a
l

o
rd

er
b
y

p
u

b
li
ca

ti
o
n

d
a
te

.

A
u
th

o
r
(s
)

A
lg
o
r
it
h
m

(s
)

P
e
r
so

n
-

a
li
z
e
d

R
e
c
.S

y
s

T
y
p
e
(s
)

F
e
e
d
b
a
c
k

C
o
n
te

x
t/

C
o
n
te

n
t

F
e
a
tu

r
e
(s
)

D
ie
ta

r
y

C
o
n
st
r
a
in

s
T
a
r
g
e
t

D
a
ta

se
t

[E
ls

w
ei

le
r
et

a
l.

(2
0
1
7
b

)]
L

o
g
is

ti
c

R
a
n

d
o
m

F
o
rr

es
t

N
a
iv

e
B

a
y
es

n
o

R
ec

ip
es

R
a
ti

n
g
s

B
in

a
ry

T
it

le

Im
a
g
e

In
g
re

d
ie

n
ts

N
u

tr
it

io
n

P
o
p

.
&

A
p

p
r

n
o

S
in

g
le

U
se

r
A

ll
re

ci
p

es

[T
ra

tt
n

er
a
n

d
E

ls
w

ei
le

r
(2

0
1
7
)]

L
D

A

W
R

M
F

A
R

S
L

IM

B
P

R
M

o
st

P
o
p

U
se

r-
It

em
K

N
N

y
es

/
n

o
R

ec
ip

es
M

ea
l

P
la

n
s

B
o
o
k
m

a
rk

s
R

a
ti

n
g
s

C
o
m

m
en

ts

W
H

O
-F

S
A

h
ea

lt
h

sc
o
re

n
o

S
in

g
le

U
se

r
A

ll
re

ci
p

es

[C
h

en
g
et

a
l.

(2
0
1
7
)]

B
P

R
M

o
st

P
o
p

y
es

/
n

o
R

ec
ip

es
R

a
ti

n
g
s

C
it

y
S

iz
e

n
o

S
in

g
le

U
se

r
K

o
ch

b
a
r

[Y
a
n

g
et

a
l.

(2
0
1
7
)]

L
ea

rn
in

g
to

R
a
n

k
y
es

R
ec

ip
es

B
in

a
ry

Im
a
g
e

E
m

b
ed

d
in

g
s

y
es

S
in

g
le

U
se

r
Y

u
m

m
ly

[R
o
k
ic

k
i
et

a
l.

(2
0
1
6
)]

U
se

rK
N

N
M

o
st

P
o
p

y
es

/
n

o
R

ec
ip

es
R

a
ti

n
g
s

G
en

d
er

n
o

S
in

g
le

U
se

r
K

o
ch

b
a
r

[G
e
et

a
l.

(2
0
1
5
a
)]

M
F

C
B

y
es

R
ec

ip
es

R
a
ti

n
g
s

T
a
g
s

T
a
g
s

n
o

S
in

g
le

U
se

r
W

el
lb

ei
n

g

D
ie

t
B

o
o
k

[E
ls

w
ei

le
r

a
n

d
H

a
rv

ey
(2

0
1
5
)]

S
V

D
-H

y
b

ri
d

y
es

M
ea

l
P

la
n

s

(S
et

o
f

re
ci

p
es

)
R

a
ti

n
g
s

In
g
re

d
ie

n
ts

y
es

S
in

g
le

U
se

r
Q

u
iz

in
e

[S
a
n

o
et

a
l.

(2
0
1
5
)]

U
se

rK
N

N

S
V

D

H
y
b

ri
d

N
L

-P
C

A

y
es

G
ro

ce
ri

es
P

u
rc

h
a
se

s
F

o
o
d

C
a
te

g
o
ri

es
n

o
S

in
g
le

U
se

r
G

ro
ce

ry

st
o
re

d
a
ta

[T
re

v
is

io
l
et

a
l.

(2
0
1
4
)]

U
se

rK
N

N

C
B

y
es

M
en

u
s

(S
et

o
f

d
is

h
es

)
B

in
a
ry

T
ex

t

S
en

ti
m

en
t

n
o

S
in

g
le

U
se

r
Y

el
p

[E
la

h
i
et

a
l.

(2
0
1
4
)]

M
F

y
es

R
ec

ip
es

R
a
ti

n
g
s

T
a
g
s

ta
g
s

n
o

G
ro

u
p

o
f

U
se

rs
W

el
lb

ei
n

g

D
ie

t
B

o
o
k

[H
a
rv

ey
et

a
l.

(2
0
1
3
)]

C
B

,
C

F
L

o
g
is

ti
c

R
eg

.

S
V

D
-H

y
b

ri
d

y
es

R
ec

ip
es

R
a
ti

n
g
s

In
g
re

d
ie

n
ts

et
c.

n
o

S
in

g
le

U
se

r
Q

u
iz

in
e

October 25, 2018 11:57 ws-rv9x6-9x6 Book Title 11131-20 page 657

Food Recommendations 657

T
a
b

le
2
0
.1

.
(C

o
n
ti
n
u
ed

)

A
u
th

o
r
(s
)

A
lg
o
r
it
h
m

(s
)

P
e
r
so

n
-

a
li
z
e
d

R
e
c
.S

y
s

T
y
p
e
(s
)

F
e
e
d
b
a
c
k

C
o
n
te

x
t/

C
o
n
te

n
t

F
e
a
tu

r
e
(s
)

D
ie
ta

r
y

C
o
n
st
r
a
in

s
T
a
r
g
e
t

D
a
ta

se
t

[T
en

g
et

a
l.

(2
0
1
2
)]

S
V

M
n

o
R

ec
ip

es
R

a
ti

n
g
s

In
g
re

d
ie

n
ts

N
u

tr
it

io
n

C
o
o
k

eff
o
rt

C
o
o
k

m
et

h
o
d

s

n
o

S
in

g
le

U
se

r
A

ll
re

ci
p

es

[K
u

o
et

a
l.

(2
0
1
2
)]

G
ra

p
h

-b
a
se

d

C
B

y
es

M
en

u
s

(S
et

o
f

re
ci

p
es

)
T

a
g
s

In
g
re

d
ie

n
ts

n
o

S
in

g
le

U
se

r
F

o
o
d

[E
l-

D
o
su

k
y
et

a
l.

(2
0
1
2
)]

C
B

K
B

y
es

F
o
o
d

it
em

s
Q

u
er

y
ta

g
s

n
o

S
in

g
le

U
se

r
U

S
D

A

[F
re

y
n

e
et

a
l.

(2
0
1
1
a
)]

C
F

y
es

M
ea

l
p

la
n

s

(S
et

o
f

re
ci

p
es

)
R

a
ti

n
g
s

-
n

o
S

in
g
le

U
se

r
W

el
lb

ei
n

g

D
ie

t
B

o
o
k

[U
et

a
et

a
l.

(2
0
1
1
)]

K
B

y
es

R
ec

ip
es

Q
u

er
y

ta
g
s

n
o

S
in

g
le

U
se

r
C

o
o
k
p

a
d

[v
a
n

P
in

x
te

re
n
et

a
l.

(2
0
1
1
)]

C
B

y
es

R
ec

ip
es

C
o
o
k
ed

re
ci

p
es

R
ec

ip
e

co
n
te

n
t

fe
a
tu

re
s

n
o

S
in

g
le

U
se

r
S

m
u

lw
eb

[F
re

y
n

e
a
n

d
B

er
k
o
v
sk

y
(2

0
1
0
)]

U
se

rK
N

N

C
B

H
y
b

ri
d

y
es

R
ec

ip
es

R
a
ti

n
g
s

In
g
re

d
ie

n
ts

n
o

S
in

g
le

U
se

r
W

el
lb

ei
n

g

D
ie

t
B

o
o
k

[B
er

k
o
v
sk

y
a
n

d
F

re
y
n
e

(2
0
1
0
)]

U
se

rK
N

N

G
ro

u
p

K
N

N
H

y
b

ri
d

y
es

R
ec

ip
es

R
a
ti

n
g
s

-
n

o
G

ro
u

p
o
f

U
se

rs
W

el
lb

ei
n

g

D
ie

t
B

o
o
k

[A
b

er
g

(2
0
0
6
)]

C
F

y
es

M
ea

l
P

la
n

s

(S
et

o
f

re
ci

p
es

)
R

a
ti

n
g
s

-
y
es

S
in

g
le

U
se

r
U

n
k
n

o
w

n

[K
h

a
n

a
n

d
H

o
ff

m
a
n

n
(2

0
0
3
)]

C
B

R
y
es

M
ea

l
P

la
n

s
Q

u
er

y
N

u
tr

it
io

n
C

o
n
te

n
t

y
es

S
in

g
le

U
se

r
U

n
k
n

o
w

n

[M
a
n

k
o
ff
et

a
l.

(2
0
0
2
)]

C
B

y
es

G
ro

ce
ri

es
P

u
rc

h
a
se

s
F

o
o
d

g
ro

u
p

s
n

o
S

in
g
le

U
se

r
G

ro
ce

ry

st
o
re

d
a
ta

[L
a
w

re
n

ce
et

a
l.

(2
0
0
1
)]

A
R

C
F

C
B

y
es

G
ro

ce
ri

es
P

u
rc

h
a
se

s
P

ro
d

u
ct

cl
a
ss

n
o

S
in

g
le

U
se

r
G

ro
ce

ry
st

o
re

d
a
ta

[H
in

ri
ch

s
a
n

d
K

o
lo

d
n

er
(1

9
9
1
)]

C
B

R
y
es

M
ea

l
P

la
n

s
Q

u
er

y
C

o
n
te

n
t

y
es

S
in

g
le

U
se

r

G
ro

u
p

o
f

U
se

rs
U

n
k
n

o
w

n

[H
a
m

m
o
n

d
(1

9
8
6
)]

C
B

R
y
es

S
in

g
le

N
ew

R
ec

ip
e

Q
u

er
y

-
y
es

S
in

g
le

U
se

r
U

n
k
n

o
w

n

October 25, 2018 11:57 ws-rv9x6-9x6 Book Title 11131-20 page 658

658 C. Trattner and D. Elsweiler

Reflecting the literature as a whole, the majority of section details work

recommending recipes to end users. That being said, there are other kinds

of food items, which have been studied, albeit to a lesser extent. This is

reflected in Table 20.1. As datasets are becoming more readily available

(see Section 20.4), we expect interest in other food items to increase. The

work published to date has largely employed the same standard approaches

that have been applied when studying recipe recommendations. For exam-

ple, content-based, collaborative filtering and hybrid approaches have been

applied to restaurant review data to recommend menus [Trevisiol et al.

(2014)] and online shopping data to recommend groceries [Lawrence et al.

(2001); Mankoff et al. (2002); Sano et al. (2015)].

20.2.1. Content-Based Methods (CB)

Content-based approaches have been used as a means to tailor recommen-

dations to the user’s individual tastes. Freyne and Berkovsky, for ex-

ample, made recommendations by breaking recipes down into individual

ingredients and scoring based on the ingredients contained within recipes,

which users had rated positively [Freyne and Berkovsky (2010); Freyne

et al. (2011b)]. That is, if tomatoes had been present in recipes a user had

reported liking, further recipes containing tomatoes would be predicted

to also be liked by the user. Later work progressed this approach by not

only accounting for positive ingredient biases, but also negatively weighting

recipes based on contained ingredients featuring in recipes the user reported

disliking [Harvey et al. (2013)].

[Teng et al. (2012)] proposed the use of complement and substitu-

tion networks as a means to generate accurate predictions. Complement

networks of ingredients are constructed via co-occurrence of the same in-

gredients in the same recipes, while substitute networks are derived from

user-generated suggestions for modifications. Experiments show that the

use of these networks can predict the user preferences significantly bet-

ter than approaches that rely on for example ingredient lists as features,

cooking method, style, etc.

Other content-based approaches are more applicable to food recommen-

dation systems than other domains. For example, as food decisions are of-

ten visually driven [Mormann et al. (2012); Schur et al. (2009)], the images

associated with recipes can be exploited. Yang and colleagues have shown

baseline approaches can be outperformed by algorithms designed to extrap-

olate important visual aspects of food images [Yang et al. (2015, 2017)].

October 25, 2018 11:57 ws-rv9x6-9x6 Book Title 11131-20 page 659

Food Recommendations 659

In their work, Convolutional Neural Networks (CNN) provide a powerful

framework for automatic feature learning. [Elsweiler et al. (2017b)] also

show that automatically extracted low-level image features, such as bright-

ness, colorfulness and sharpness can be useful for predicting user food pref-

erence.

20.2.2. Collaborative Filtering-Based Methods (CF)

Collaborative filtering-based recommendation methods (see Chapter 1) for

food reccommender systems have also been proposed and evaluated. Freyne

and Berkovsky tested a nearest neighbour approach using Pearson corre-

lation on the ratings matrix, which offered poorer performance than the

content approach described above [Freyne and Berkovsky (2010)]. [Harvey

et al. (2013)] showed that SVD outperformed both the content and col-

laborative filtering approaches suggested in [Freyne and Berkovsky (2010)].

[Ge et al. (2015a)] propose a matrix factorization (MF) approach for food

recommendation systems that fuses ratings information and user supplied

tags to achieve significantly better prediction accuracy than content-based

and standard matrix factorization baselines. They also present a mobile

interface for the approach as shown in Figure 20.1. These screenshots show

how a finer granularity of feedback can be assigned via tags, complementing

the standard binary and scaled ratings typically used.

Fig. 20.1. Example of a mobile food recommender interface as proposed by [Elahi et al.

(2014)] using not only ratings for preference elicitation but also tags at the same time.

Taken with permission from the authors.

October 25, 2018 11:57 ws-rv9x6-9x6 Book Title 11131-20 page 660

660 C. Trattner and D. Elsweiler

More recently, [Trattner and Elsweiler (2017)] tested a diverse range of

collaborative filtering approaches implemented in the LibRec2 framework

using a large dataset crawled from the online recipe portal allrecipes.com.

The highest performing CF approaches were Latent Dirichlet Allocation

(LDA) [Griffiths (2002)] and Weighted matrix factorization (WRMF) [Hu

et al. (2008)]. The results of their experiments are shown in Table 20.2

below.

Table 20.2. Recommender ranking accuracy sorted by nDCG and recommender ac-

curacy post-filtered by FSA scores. The mean FSA scores of the top-5 recommended
recipes are also reported along with the different average nutriens of the lists and the

according FSA health labels (taken from [Trattner and Elsweiler (2017)]).

Algorithm nDCG@5
FSA

score
Fat (g) Sat. Fat (g) Sugar (g) Sodium (g)

LDA .0395 9.110 8.70 3.73 8.73 0.32

WRMF .0365 9.114 9.50 3.89 8.84 0.34

AR .0343 9.206 9.27 4.12 10.50 0.25

SLIM .0326 8.907 9.27 3.82 7.91 0.33

BPR .0325 9.252 8.69 3.82 7.83 0.29
MostPop .0294 9.004 9.02 3.94 10.01 0.23

UserKNN .024 8.985 8.96 3.73 7.98 0.31

ItemKNN .0178 8.652 8.59 3.51 6.03 0.31
Random .0029 8.486 8.74 3.49 5.71 0.30

FSA score post-filtered (scoreu,i,fsa)

LDA .0321 7.323 6.51 2.42 4.03 0.29
WRMF .0303 7.361 6.48 2.30 4.75 0.31

SLIM .0248 7.008 6.20 2.56 2.59 0.24

AR .0238 6.984 5.64 1.94 3.95 0.28
MostPop .0228 7.334 5.37 2.02 2.46 0.24

BPR .0205 6.722 6.42 2.30 4.95 0.26

UserKNN .0168 6.722 6.88 2.73 3.33 0.33
ItemKNN .0109 6.124 5.15 1.79 3.51 0.25

Random .0022 4.305 1.59 0.43 1.45 0.09

20.2.3. Hybrid Methods (Hybrid)

Hybrid recommenders (see Chapter 4) have been proposed by other schol-

ars for the recipe recommendation task. For example, [Freyne and

Berkovsky (2010)] combined a user-based collaborative filtering method

with a content-based method. Moreover, in their follow-up work, which

targeted groups of users (described in more detail in Sub-section 27.2.5),

2http://www.librec.net/

October 25, 2018 11:57 ws-rv9x6-9x6 Book Title 11131-20 page 661

Food Recommendations 661

they employed a hybrid approach to combine three different recommenda-

tion strategies in a single model, using a switching strategy. The switching

was based on the ratio between the number of items rated by a user and

overall number of items. This approach was motivated by [Burke (2002)].

Another example of a hybrid approach can be found in the work of [Harvey

et al. (2013)] who tested various collaborative filtering and content-based

approaches. They achieved the best performance in their experiments,

however, by combining an SVD approach with user and item biases in

a weighted linear model.

20.2.4. Context-Aware Approaches

Numerous exploratory data analyses have demonstrated that context (see

Chapter 5) is important in food recommendation, with gender [Rokicki et al.

(2016)], time [Kusmierczyk et al. (2015)], hobbies [Trattner et al. (2017c)],

location [Cheng et al. (2017); De Choudhury et al. (2016); Zhu et al. (2013)]

and food availability [De Choudhury et al. (2016)] being identified as im-

portant variables. All of these studies employed relatively simple filtering

techniques to split naturalistic datasets in order to explore how recipes were

rated [Freyne et al. (2011a)], bookmarked [Trattner and Elsweiler (2017)],

shared [Abbar et al. (2015)] or related to health statistics [Trattner et al.

(2017b)].

[Harvey et al. (2012)] collected detailed context data encapsulating the

ratings participants provided for their dataset, where participants could

identify a broad range of factors to justify the rating assigned to a recipe

as a meal to cook for dinner that day. Analyzing these with regression

modeling showed that factors, such as how well the preparation steps are

described, as well as the nutritional properties of the dish, the availability

of ingredients and temporal factors such as day of the week have a bearing

on the user’s opinion of the recommendation.

What is lacking with respect to context is an understanding of which

variables are the most important and how best to account for these algo-

rithmically. Despite studying numerous factors, [Harvey et al. (2013)], for

example, limited their algorithmic efforts to approaches with only nutri-

tional, user and item biases.

In summary, although the problem of improving the precision of rec-

ommendations has been attended to by numerous researchers with diverse

approaches, the results achieved for the recommendation of recipes to in-

dividual users, measured on standard metrics are typically poorer than in

October 25, 2018 11:57 ws-rv9x6-9x6 Book Title 11131-20 page 662

662 C. Trattner and D. Elsweiler

other domains. To demonstrate typical results achieved with standard ap-

proaches on recipe data, we present the results of our own experiments

with standard techniques on a well-known dataset in Table 20.2. These

results underline the challenge of predicting which dishes people will like

and emphasize that further effort is required.

20.2.5. Group-Based Methods

Of course people do not always eat or make food choices alone. Often these

are activities done together with friends, families or colleagues. It is well

known in social psychology that the social situation within which one will

eat (who is present, why they are present, and what their preferences are)

influences the food choices taken [Wansink (2006)]. In food recommenda-

tion systems, such social contexts are addressed by group recommendation

systems (see Chapter 6). In this setting, a list of items is produced for

a group of people rather than for an individual user. Despite the per-

vasiveness of shared food consumption experiences, group-based food rec-

ommendation systems research has been limited, even though the earliest

efforts can be traced to the early 1990’s [Hinrichs and Kolodner (1991)].

[Berkovsky and Freyne (2010)] not only studied different strategies for rec-

ommending recipes to a group of people but evaluate these methods with

real users in a family scenario. In particular their work introduces four

different strategies: a general strategy (which employs a most popular ap-

proach to recommend items), an aggregated model (which first combines

individual user models into a single model before applying the collabora-

tive filter), aggregated predictions strategies (which first computes CF on

the individual user profiles and then combines the predicted rating) and

finally a personalized strategy (which exploits a standard CF algorithm).

The results show that the personlized version works the best, but it was

not possible to create personalized recommendations for all of the users.

More recently [Elahi et al. (2014)] proposed a mobile interface and algo-

rithm for food recommendation system in a group-context. In addition to

improving the prediction algorithm with tags, the authors use group-based

preference elicitation, in which users play different roles in the food choice

process. One user is designated as the group leader or cook to whom the

system delivers meal recommendations based on the group utility score,

which aggregates predictions using the tags and ratings of all the group

members.

October 25, 2018 11:57 ws-rv9x6-9x6 Book Title 11131-20 page 663

Food Recommendations 663

20.2.6. Health-Aware Methods

When motivating research on food recommendation systems, health prob-

lems and improving nutritional habits are usually mentioned e.g. [Freyne

and Berkovsky (2010); Freyne et al. (2011b); Harvey et al. (2012, 2013)].

Incorporating health into the recommendation, however, has largely been

a recent focus [Schäfer et al. (2017); Elsweiler et al. (2017a, 2016)]. One

means of achieving this is to incorporate nutritional aspects into the rec-

ommendation approach directly. [Ge et al. (2015b)] took this approach by

accounting for calorie counts in the recommendation algorithm. They did

this based on a so-called “calorie balance function” that accounts for the

differences between the calories the user needs and the calories in a recipe.

[Elsweiler et al. (2015)] refer to the trade-off for most users between

recommending the user what she wants and what is nutritionally appropri-

ate. This is a trade-off applicable for a large proportion of users [Harvey

et al. (2013)] and should be optimized [Elsweiler et al. (2015)]. The authors

proposed combining to two aspects linearly as a framework for evaluating

different algorithmic approaches to incorporate health in the recommenda-

tion process.

The formula (see Equation 20.1) illustrates the simple concept. Here,

i is a given recipe, ˆr(i) is the estimated rating for recipe i, Max(ˆr(i)) is

the maximum estimated rating over all recipes. n(i) is the nutritional

“error” incurred when recommending this recipe (relative to some ideal set

of nutritional values). λ is a free parameter that can be set to suit the

researcher/practitioner’s priorities, although λ=.5 is probably preferable

initially as it gives equal weighting to rating and nutrition. Note that all

of these estimates are implicitly conditioned on a specific user u.

score(i) = λ
r(i)

max(r(i))
+ (1− λ)− 1× n(i)

max(n(i))
(20.1)

[Trattner and Elsweiler (2017)] employed a post-filtering (see Equa-

tions 20.2 and 20.3) approach to incorporate further nutritional aspects.

To post-filter items a straightforward scoring function is applied which re-

weights the scores of a recipe for a particular user based on the WHO or

inverse FSA score, employing a simple multiplication. The scoreu,i in the

equation stands for the score of the item i for user u and whoi, fsai de-

note the health scores for that item. The two nutrition metrics are based on

widely accepted nutritional standards from The World Health Organisation

(WHO) [WHO (2003)] and the United Kingdom Food Standards Agency

(FSA) [FSA (2016)] (see Section 20.4). Their previous work had used these

October 25, 2018 11:57 ws-rv9x6-9x6 Book Title 11131-20 page 664

664 C. Trattner and D. Elsweiler

measures to establish the (un)healthiness of recipes from a popular Internet

food portal [Trattner et al. (2017a)].

scoreu,i,who = scoreu,i · (whoi + 1) (20.2)

scoreu,i,fsa = scoreu,i · (16− fsai − 4 + 1) (20.3)

Table 20.2 describes the performance of 9 prominent recommendation

algorithms as implemented in the LibRec framework in Trattner and El-

sweiler’s experiments. The top and bottom halves of table shows the per-

formance without and with post-filtering respectively. Full details of the

experimental setup can be found in [Trattner and Elsweiler (2017)].

These experiments with post-filtering on nutritional properties show

that 1) it is possible to balance and potentially optimize the trade-off be-

tween recommendation accuracy and the healthiness of recommendations,

2) some recommendation algorithms may be more (e.g., LDA and WRMF)

or less suitable (e.g., MostPop and BPR) to this process.

Nevertheless, the results also show that 3) while the approach shows

potential benefit and future work should try to optimize the trade-off, the

method by itself will not lead to healthy nutrition — at least not with

the collection evaluated in this work. Despite offering a significant im-

provement on the standard approaches, the post-filtered results show that

the best FSA and WHO scores achieved were not particularly high and

are associated with extremely poor recommendation accuracy. These rep-

resent the best health values which can be achieved using an individual

item recommendation approach, indicating that complementary ideas are

necessary.

One such complementary approach is to combine individual recom-

mended items for a user, such that they meet the recommended intake

for that user over a longer period of time (e.g. day, week etc.). [Freyne

et al. (2011a)] presented an interface, which allowed users to generate their

own meal plans from individually recommended dishes. The recommen-

dations were generated using the authors’ hybrid approach as described

above [Freyne and Berkovsky (2010)]. The interface for such plans evalu-

ated on 5000 people in Australia. To encourage variation in meal plans a

decay function was applied to meals appearing regularly in plans. Users

manually created plans from lists of recommendations but the lists were

filtered such that only meals that could be added and still ensure plans met

guidelines featured in the list of recommended items.

[Harvey and Elsweiler (2015)] presented a similar interface, which

automated the creation of plans consisting of a combination of breakfast,

October 25, 2018 11:57 ws-rv9x6-9x6 Book Title 11131-20 page 665

Food Recommendations 665

lunch and dinner plus an allowance for snacks and drinks. The same authors

evaluated their planning approach systematically by deriving plans from

taste profiles (i.e. from users featuring in naturalistic datasets) combined

with diverse personas (simulated user properties, such as height, weight,

gender, age, nutritional goal (lose/gain/maintain weight) and activity level

(from sedentary to highly active) [Elsweiler and Harvey (2015)]. In a first

step, the authors predicted the ratings users with particular profiles might

assign to recipes (using approaches like those described above). In a second

step, following approaches from nutritional science, the recommended nu-

tritional intake was calculated for the user persona, including the required

calories, but also where these should be sourced (proteins, carbohydrates

etc.). Lastly, plans were generated for a given user (persona-profile com-

bination) by taking the top-n recommendations from the recommendation

system for the taste profile, splitting these into two separate sets, one for

breakfasts and one for main meals and performing a full search finds every

combination of these recipes in the sequence [breakfast, main meal, main

meal] meeting the target nutritional requirements as defined above.

Using this method the authors were able to generate plans for 4025/6400

cases (63%) and at least 1 plan was generated for 58 out of the 64 (91%)

user profiles and for each of the 100 personas. The authors moreover ana-

lyzed the factors, which made the development of plans challenging. When

personas required a relatively high calorie intake, e.g. if the persona was

tall or wanted to gain weight, the simple approach using 3 meals of fixed

portions was often unable to address this properly. Similarly, profiles with

little diversity in preferred ingredients were also hard to satisfy.

Substituting meals has been mooted as a further approach to influenc-

ing food choices. [Elsweiler et al. (2017b)] developed predictive models

with the aim of forecasting the choices people will make. After evaluating

the models for prediction accuracy using cross-validation, these were used

to select recipe replacements such that users were be “nudged” towards

making healthier choices. Aligning with the findings reported above, visual

and nutritional features were important. A user study found that using

the predictive models as the basis for recommendations, participants were

significantly more likely to choose a recipe with much less fat content —

the opposite of the trend that one typically sees.

Substituting ingredients within recipes has also been proposed to im-

prove the health credentials of individual recipes healthier e.g. [Teng et al.

(2012); Achananuparp and Weber (2016)]. This approach has, however,

yet to be evaluated properly in a nutritional context. Initial steps in this

October 25, 2018 11:57 ws-rv9x6-9x6 Book Title 11131-20 page 666

666 C. Trattner and D. Elsweiler

direction were taken by [Kusmierczyk et al. (2016)], whose findings illus-

trate to what extent it may be possible to recommend a user substitute

ingredients based on the user’s previous recipe uploads and accounting for

social-, temporal and geographic-context.

In our experience the standard approaches applied to date in the liter-

ature do not work well when dealing with specialist diets, e.g. vegetarian,

vegan or allergies3. Constraint-based approaches are found surprisingly

rarely in the literature.

One exception is [Yang et al. (2017)] who had access to the data basis

to apply filters based on vegetarian, vegan and gluten-free food. A fur-

ther example can be found in the nutritional science literature whereby

linear programming is used to ensure Malawian children achieve the re-

quired nutritional intake recommended by experts [Ferguson et al. (2004)].

As comparable datasets exist (see Section 20.4 below), there is no reason

why a similar approach cannot be taken to promote healthy eating patterns

in other demographics.

20.3. Addressed Challenges and Problems

As should now be clear the food recommendation task brings additional

challenges to those in other recommender systems domains. There are also

standard challenges, applicable to all domains, which have been addressed,

at least to some extent, in food recommendation research. In this section

we first relate the generic challenges and how these have been addressed or

not in the food domain, before switching focus to the challenges unique to

food recommendation.

User preference sources (see Chapter 7). Food recommendation research

has mainly exploited explicit sources of user feedback in the form of rat-

ings [Freyne et al. (2011a); Freyne and Berkovsky (2010); Harvey et al.

(2013)], bookmarks [Trattner and Elsweiler (2017)] or shares [Abbar et al.

(2015)]. Methods of implicit feedback have been used less often, but ex-

amples include recipe views [West et al. (2013); Wagner et al. (2014)] and

the sentiment of reviews submitted about recipes [Trattner and Elsweiler

(2017)].

User preference scarcity (see Chapter 8). To our knowledge the prob-

lems of scarcity of user feedback, illustrated by the cold-start prob-

lem and sparse matrices, has not been directly addressed in the food

3We have not published our findings, but we have run several test runs with vegetarian,
vegan, and gluten allergy user profiles.

October 25, 2018 11:57 ws-rv9x6-9x6 Book Title 11131-20 page 667

Food Recommendations 667

recommendation systems literature. Rather standard solutions, which cope

well, such as SVD have been applied [Harvey et al. (2013); Trattner and

Elsweiler (2017)].

Offline and online evaluation of recommendations (see Chapter 9). To

our knowledge, evaluation in the food recommendation domain has been

almost offline. Typically, as is explained in more detail below, datasets have

been created naturalistically e.g. [Yang et al. (2017); Trevisiol et al. (2014);

Trattner and Elsweiler (2017)] or via user studies [Freyne and Berkovsky

(2010); Harvey et al. (2013)]. These datasets form the basis of offline eval-

uations in the form of prediction tasks. Other evaluations have taken the

form of user studies, where users test interfaces in a semi-controlled [Ge

et al. (2015a)] or naturalistic environment [Freyne et al. (2011a)]. How-

ever, full-online evaluations have to our knowledge not yet been published.

Beyond accuracy (see Chapter 10). Accuracy has been the overwhelm-

ing focus of research efforts to date but nevertheless, as described above,

it remains a challenge, which in the food domain, has yet to be adequately

solved. Accuracy, however, is not the only important aspect to consider

when recommending food. Novelty and serendipity are both properties of

food recommendations, which users appreciate [Harvey et al. (2013)], but to

our knowledge, these are yet to be studied. [Elsweiler and Harvey (2015)]

did acknowledge the importance of dietary diversity in their meal plan

work. Moreover, the preference-healthfulness trade-off bears many simi-

larities to traditional work on novelty and serendipity in that it involves

recommending non-preferred items while minimizing the loss in precision.

While preliminary research in this direction exists [Elsweiler and Harvey

(2015); Trattner and Elsweiler (2017)], there is much work to do in order

to understand how to optimize this trade-off appropriately.

Recommendation visualizations and explanations. Methods of visu-

alization and the explanation of recommendations have been, at best,

implemented in a superficial way within food recommendation research.

Examples include the traffic light system employed by [Trattner and El-

sweiler (2017)] and the plan meta-data provided in the demo system pre-

sented by [Harvey and Elsweiler (2015)]. [Elahi et al. (2014)] provide the

best example of explanations for the recommendations offered by their sys-

tem as can be seen in Figure 20.1. Nevertheless, only superficial evaluations

of any of these systems have been published.

Other common challenges. Despite their importance generally to rec-

ommendation systems, there is nothing to report from the food domain in

terms of significant contributions on the issues of privacy and collaborative

October 25, 2018 11:57 ws-rv9x6-9x6 Book Title 11131-20 page 668

668 C. Trattner and D. Elsweiler

recommenders, scalability and distribution of collaborative recommenders

or issues of robustness or attacks on food recommenders.

Challenges unique to food recommendation systems. We can see from the

numerous challenges yet to be addressed in the food domain, that research

in this area is still preliminary. That being said, we wish to acknowledge

some domain specific challenges, which have been addressed to some extent.

Firstly, as Section 20.2 shows, the challenge of tailoring standard approaches

to the problem has been tackled.

There have been efforts to better process and understand the content of

items to be recommended. These include normalizing ingredients and in-

gredient quantities [Müller et al. (2012); Kusmierczyk et al. (2015)]; under-

standing the role of context in user decision processes (see Section 20.2.4),

and understanding which visual features are helpful in guiding these choices

[Yang et al. (2017); Elsweiler et al. (2017b)].

With respect to health, there have been preliminary efforts to model

nutritional aspects of the process [Schäfer et al. (2017)], which include

user requirements [Gibney et al. (2002)], user intake [Straßburg (2010)]

and the estimation of portion sizes [Zhang et al. (2011)]. Other work has

pre-processed recipes to establish the nutritional content either by ingre-

dient matching [Müller et al. (2012)] or by visually analyzing food images

[Chokr and Elbassuoni (2017)]. Finally, as we described in detail above,

progress has been made in incorporating health in the recommendation

process either by considering nutrition in item recommendation e.g. [Ge

et al. (2015a)], generating meal plans [Elsweiler and Harvey (2015)] or via

algorithmic nudging [Elsweiler et al. (2017b)]. It is unclear, however, which

method works most effectively.

20.4. Implementation Resources

In this section we summarize resources that can help in the development of

food recommendation systems. We summarize (i) datasets typically used to

study food consumption patterns and to evaluate algorithmic approaches,

(ii) nutrition and health resources, available to implement health-aware

recommendation systems. Finally, frameworks typically employed to build

these are described.

October 25, 2018 11:57 ws-rv9x6-9x6 Book Title 11131-20 page 669

Food Recommendations 669

20.4.1. Recipe, Meal plan, Menu and Grocery Store

Datasets

To date research in the food recommendation systems domain typically

relies on proprietary and none standardized datasets. This contrasts with

domains such as movie recommendation domain, where the well-known

MovieLens and Netflix datasets have set a standard. The following list

highlights datasets usually employed when it comes to the implementation

of recipe, meal plan, grocery and menu recommendation systems.

Recipes. Most of the research for recommending recipes relies on Web

resources, e.g., Allrecipes4 or Food.com5 which comprise rich item and user

profiles. Although these offer an extensive basis for conducting research

in that direction, most of the datasets cannot be shared as the terms of

services of the sites explicitly forbid it. As such, few publicly accessible

datasets comprising recipe and user profiles are available. Researchers must

typically develop their own crawlers or seek a license agreement with the

platform providers. The Australian government agency CSIRO’S Wellbeing

Diet Book6 has been used by Australian researchers [Freyne and Berkovsky

(2010)] and connected researchers in Italy [Elahi et al. (2014)], but is not

readily available to other researchers. Cookpad7 and Yummly8 have both

supported academic research by providing licensed access to recipe and

profile data, and Yummly also supports broad access to restricted data

via a no-cost API. One dataset has recently been made available by the

Massachusetts Institute of Technology (MIT)9 comprising of over 1 million

recipes including food images and some meta-data. The dataset is limited,

however, in that no user profiles or interactions are available, and as such

the dataset may not be suitable for evaluating a recipe recommendation

system in an offline scenario. The lack of standard collections restricts the

reliability and generalizability of research published to date.

Meal plans and restaurant menus. Meal plan recommender research has

typically relied on the same recipe datasets as above. To our knowledge

no freely available datasets containing meal plans exist. Yelp10 has been

used as a resources to build and evaluate menu recommendation systems.

4http://www.allrecipes.com
5http://www.food.com
6https:

//www.csiro.au/en/Research/Health/CSIRO-diets/CSIRO-Total-Wellbeing-Diet
7http://www.cookpad.com
8http://www.yummly.com
9http://im2recipe.csail.mit.edu
10http://www.yelp.com

October 25, 2018 11:57 ws-rv9x6-9x6 Book Title 11131-20 page 670

670 C. Trattner and D. Elsweiler

As with recipe datasets, in order to obtain the data one might need to

implement a crawling framework as the terms of services of the site to date

omit data sharing

Groceries. In the grocery recommendation scenario, to our knowledge,

only one dataset is freely available. This dataset was published via Kag-

gle11 and contains 3 millions purchases of users on instacart and comprises

limited meta-data (such as grocery name) in respect to the groceries bought

out in a basket. Table 20.1 refers to some other datasets but these are not

available publicly.

20.4.2. Nutrition & Health Resources

When it comes to the implementation of food recommendation systems it is

not only beneficial to have open-data datasets comprising of user and item

profiles (as discussed earlier), but also other external resources that help in

building such a system. For instance, to build a health-aware recipe rec-

ommendation system, it is essential to know the nutritional values of food

items and to what extent these may be healthy or unhealthy. To estimate

nutrition, the typical approach is to map ingredients to standard databases,

such as those provided by the USDA12 (US) or the BLS13 (Germany). As

an example, Table 20.3 provides a partial entry for the ingredient ‘apple’14.

The example is far from being complete, as also ‘Minerals’, ‘Vitamins’,

‘Lipids’ and other macro nutrients can be obtained such as ‘Caffeine’ are

also accessible in the database. One of the challenges typically involved in

the matching process is the normalization of the ingredients in a recipe,

as different names are often used to express the same entity, such as ‘100g

Parmesan cheese’ vs ‘100g of shredded Parmesan cheese’. The method

of processing or cooking may additionally influence the nutritional value.

Moreover, units are often not expressed using normalized units of quantity.

One recipe may refer to ‘one cup of water’ whereas another may refer to the

same item as ‘235ml water’. Detailed descriptions of the challenges involved

can be found in [Müller et al. (2012)]. Standard NLP techniques such as

stop-word removal, conjunction splitting, string matching, etc. can be ap-

plied to address some of these (see for example [Kusmierczyk et al. (2015)]).

A more practical means to extract this kind of information is though to

11https://www.kaggle.com/c/instacart-market-basket-analysis
12https://ndb.nal.usda.gov/ndb
13https://www.blsdb.de
14https://ndb.nal.usda.gov/ndb/foods/show/2122

October 25, 2018 11:57 ws-rv9x6-9x6 Book Title 11131-20 page 671

Food Recommendations 671

Table 20.3. Example of an nutrition entry for the query ‘apple’

in the USDA database.

Nutrition Unit Value per 100g

Water g 85.56
Energy kcal 52

Protein g 0.26

Total lipid (fat) g 0.17
Carbohydrate, by difference g 13.81

Fiber, total dietary g 2.4

Sugars, total g 10.39

for instance employ a Web services such as provided by Spoonacular15,

whose API is able to extract ingredient names and amounts in a unified

way, which can in some cases be accessed for free for purposes of academic

research.

Other resources to identify the nutritional properties of a meal (recipe)

are provided by [Müller et al. (2012)]. These output the nutritional prop-

erties for a given German recipe by utilizing the BLS database. Müller

employ a multi-step process, first utilising a rule-based infrastructure be-

fore a learning to rank approach to identify the most appropriate database

entry for a given ingredient. The framework can be obtained from the

authors without cost but a license for the BLS is required to use the soft-

ware. The Edamam16 Web service offers similar functionality for English

and Spanish recipes. This service is a commercial product, but as with

Spoonacular, can in some cases used without cost for academic purposes.

To estimate the healthiness of a meal [Trattner et al. (2017a)], one

may rely on standards as set by nutrition scientists. There are many of

such standards for different countries and other geographical regions. The

ones which have been successfully applied to the food recommendation

problem (see [Trattner and Elsweiler (2017); Elsweiler et al. (2017b)]) are

provided by the Food Standard Agency (FSA) [FSA (2016)] and the World

Health Organization (WHO) [WHO (2003)]. Both provide tables based on

a 2000kcal diet that contain ranges of nutrients, such as for example Fat,

Saturated Fat, Sugar and Sodium (see Table 20.4 and Table 20.5). The

WHO guidelines account for macronutrients, such Fiber content, and so

on. The FSA guidelines are typically used to derive front of package labels

for meals and other food products sold in UK. In addition to the nutrients

per portion or per 100g, a traffic light system (red, amber, green) is used

15https://market.mashape.com/spoonacular
16https://www.edamam.com

October 25, 2018 11:57 ws-rv9x6-9x6 Book Title 11131-20 page 672

672 C. Trattner and D. Elsweiler

Table 20.4. FSA front of package guidelines as proposed in [FSA (2016)] and as, for

example, used in [Trattner and Elsweiler (2017)].

Text LOW MEDIUM HIGH

Color code Green Amber Red

Fat ≤ 3.0g/100g > 3.0g to ≤ 17.5g/100g > 17.5g/100g or > 21g/portion
Saturates ≤ 1.5g/100g > 1.5g to ≤ 5.0g/100g > 5.0g/100g or > 6.0g/portion

Sugars ≤ 5.0g/100g > 5.0g to ≤ 22.5g/100g > 22.5g/100g or > 27g/portion

Salt ≤ 0.3g/100g > 0.3g to ≤ 1.5g/100g > 1.5g/100g or > 1.8g/portion

Table 20.5. WHO guidelines as originally proposed in [WHO (2003)] and adopted to
recipes by [Howard et al. (2012)] and as, for example, used in [Trattner and Elsweiler

(2017)].

Dietary Factor Range (percentage of kcal per meal/recipe)

Protein 10-15

Carbohydrates 55-75
Sugar < 10

Fat 15-30

Saturated Fat < 10
Fiber density (g/MJ) > 3.0†

Sodium density (g/MJ) < 0.2‡

†Based on 8.4 MJ/day (2,000 kcal/day) diet and recommended daily fiber intake of
>25g.
‡Based on 8.4 MJ/day (2,000 kcal/day) diet and recommended daily sodium intake of

<2g.

to inform the consumer, whether the meal is healthy (green) or unhealthy

(red) with respect to a given property. We employed these guidelines in

Table 20.2. As the FSA scoring system is rather unpractical to use in a

recommender scenario, one might want to use a single metric by following

the procedure proposed by [Sacks et al. (2009)] who first assign an integer

value to each color (green=1, amber=2 and red=3) then sum the scores

for each macro nutrient, resulting in a final range from 4 (very healthy) to

12 (very unhealthy). A further health index, which may offer utility is the

‘Healthy Eating Index’ [HEI (2016)] proposed by the USDA. The index was

developed to target the US population. To date it has not been applied in

any food recommendation systems project.

Other useful resources for building food recommendation systems are

provided by foodsubs17, a food thesaurus service which can suggest food

substitutes. This might be helpful to implement food recommendation

systems promoting healthier eating (see [Achananuparp and Weber (2016)])

by replacing unhealthy ingredients in a meal with more healthy variants,

but also assist people with allergies or intolerances.
17http://www.foodsubs.com

October 25, 2018 11:57 ws-rv9x6-9x6 Book Title 11131-20 page 673

Food Recommendations 673

Food word lists, such as provided by enchantedlearning18 and

Wikipedia19 provides a rich knowledge base relating to food and cooking

and may be used to assist with the normalization process of ingredients.

Finally, one may also employ health data as provided by the Centers

for Disease Control and Prevention (CDC) in the US. The reports contain

state and county data of diabetes and obesity. As different regions have

different impact on what and how people eat (see [Trattner et al. (2017b)]),

this might be a useful source of information when implementing food rec-

ommendation systems for different regions and areas in the US [Said and

Belloǵın (2014)].

20.4.3. Food recommendation System Frameworks

To date, research in the food recommendation systems domain relies mostly

on software custom built by researchers themselves explicitly for the pur-

pose of their research. To the best of our knowledge, there is no food

recommendation systems framework available that has been shared by the

research community or on open-access platforms, such as Github20. This

makes it challenging not only to progress the research in that area, but

also to reproduce or validate findings published already. To counter this

trend, in our own research, we have recently started to use publicly avail-

able frameworks, such as the well-known LibRec library. The framework

is implemented in the Java programming language and comprises a rela-

tively complete set of standard recommendation systems algorithms, such

as UserKNN, ItemKNN, BPR, SVD++, and so on, to tackle the rating pre-

diction and item ranking problem. In [Trattner and Elsweiler (2017)] we

adopted the framework with pre- and post-filtering functions (as described

in the previous section) to re-rank items (in our case) recipes in terms of

their healthiness. We are happy to share this code upon request. The

framework can also be easily extended to the problem of recommending,

e.g., recipes to a group of people as well as generating personalized meal

plans. Other examples of frameworks in other programming languages may

be found on Graham Jenson’s Github page21 as well as on the Rec.Sys

Wiki22.

18http://www.enchantedlearning.com/wordlist/food.shtml
19https://en.wikipedia.org/wiki/Lists_of_foods
20http://www.github.com
21https://github.com/grahamjenson/list_of_recommender_systems
22http://www.recsyswiki.com/wiki/Recommendation_Software

October 25, 2018 11:57 ws-rv9x6-9x6 Book Title 11131-20 page 674

674 C. Trattner and D. Elsweiler

20.5. Historical Evolution and Versions of the System

The earliest examples of food recommendation systems were proposed by

the case-based reasoning (CBR) community [Hammond (1986); Hinrichs

(1989)]. In contrast to current state-of-the-art food recommendation ap-

proaches both employed planning algorithms taking a set of queries e.g.

groceries as input to generate meal plans or a single new recipe. Techni-

cally speaking these systems bear little relation to modern systems. Later,

systems emerged employing simple variants of today’s well-known content-

based and collaborative filtering recommendation algorithms. Examples

include, for instance the works of [Lawrence et al. (2001); Mankoff et al.

(2002); Aberg (2006)].

The first food recommenders built which are directly comparable to

modern systems, i.e. which employ standard algorithms such as UserKNN

was presented in [Freyne and Berkovsky (2010); Berkovsky and Freyne

(2010)]. These were the first examples where recipe datasets were used

as a basis and the system was reliably evaluated. Subsequently other works

emerged employing more advanced techniques to recommend food to peo-

ple. Examples include the work of [van Pinxteren et al. (2011)], which was

the first to derive a similarity metric for recipes to be used for recommend-

ing healthful meals; [Ueta et al. (2011)] and [El-Dosuky et al. (2012)], which

employ knowledge-based food recommendation approaches; and [Kuo et al.

(2012)] which employs tags to derive a knowledge graph to connect recipes

and exploit this graph for recommending menus.

Other break through work was performed by [Teng et al. (2012)], who

proposed the use of ingredient networks to produce recommendations or

the work of [Harvey et al. (2013)], who proposed a model accounting for

food selection biases.

A significant break-through was recently made by [Yang et al. (2017)]

who were able to develop a constraint-based (with different types of diets)

mobile food recommendation system exploring food images to learn about

user food preferences. All previous approaches had relied on ratings or to

some extent on tags [Ge et al. (2015a)].

Behavior-based investigations, which go beyond the classic food recom-

mendation systems papers can also be considered to have progressed the

field. We include our own work showing that people typically prefer the

unhealthy recipes in this bracket [Trattner and Elsweiler (2017)]. This was

the first study in the context that deals with the health-aware recipe recom-

mendation systems problem. Other work in this direction include [Trattner

October 25, 2018 11:57 ws-rv9x6-9x6 Book Title 11131-20 page 675

Food Recommendations 675

et al. (2017c)] (not shown in Table 20.1) and [Rokicki et al. (2016)] which

illustrate differences in online food consumption with respect to hobbies

and gender.

Finally, we would like to highlight our most recent work [Elsweiler et al.

(2017b)] which investigated to which extent food recommendation systems

can nudge people towards healthier food choices.

20.6. Evaluation: Metrics and Methodologies

The methods of evaluation applied to food recommendation systems have

evolved over time. The early concept papers found in the literature do not

employ any kind of evaluation [Hammond (1986); Hinrichs and Kolodner

(1991)]. With the work of [Freyne and Berkovsky (2010)] researchers started

to employ evaluation techniques recognized by the community today as

standard practices [Herlocker et al. (2004); Ricci et al. (2011)].

The most commonly taken approach (as can be seen in the summarized

literature in Table 20.1) is to perform simulations using historical data

(see Section 20.4). The experimental design specifics vary, but typically

datasets are split into training and testing subsets to mimic user-profiles

and feedback given for recommendations. Similar to other recommender

domains, historical datasets are typically split such that 80% of the data is

used for training with the remaining 20% held-out for testing. Alternatives

are to use k-fold validation [Harvey et al. (2013); Trattner and Elsweiler

(2017)] or leave-one out protocol [Freyne and Berkovsky (2010)]. The ex-

act means by which collections are sourced varies from using naturalistic

collections crawled from the web [Trattner and Elsweiler (2017)] or from

donated sources [Trevisiol et al. (2014)] to running user studies to collect

small sets of data [Harvey et al. (2013)].

Different metrics have been applied to measure the performance of al-

gorithms in such systems. These typically reflect the error in the predicted

ratings [Freyne and Berkovsky (2010); Harvey et al. (2013)] e.g. Mean Ab-

solute Error (MAE) or Root Spare Mean Error (RSME) or the quality of

the top-n ranked list of items e.g. Recall, Precision, Mean Average Precision

(MAP) and Normalized Discounted Cumulative Gain (NDCG).

Mirroring the developments in the recommendation systems commu-

nity generally, earlier contributions focused on the rating prediction task

whereas more recent and current work treats recommendation as a ranking

problem (e.g., [Trattner and Elsweiler (2017); Yang et al. (2017); Cheng

et al. (2017)]).

October 25, 2018 11:57 ws-rv9x6-9x6 Book Title 11131-20 page 676

676 C. Trattner and D. Elsweiler

Assessing the accuracy of recommendation is typically not enough for

recommendation systems and in food recommenders is no exception. Diver-

sity of ingredients used in profiles was measured using Simpson and simple

diversity metrics [Elsweiler and Harvey (2015)].

Incorporating health-aspects in the process requires additional metrics

to be defined. As our own work shows, see [Trattner and Elsweiler (2017)],

metrics derived from the guidelines published by governmental bodies or

health organizations are appropriate (see again Section 20.4.2).

In addition to calculating a mean over all food items recommended

on per user basis (see Table 20.2), we additionally introduced two further

measures referred to as ∆FSA and ∆WHO, which capture the difference

in healthfulness between test set items of the users and actual predicted

items, as shown in the formulae below

∆WHO =
1

|U |

|U |∑
u=1

 1

|Trainu|

|Trainu|∑
i=1

whoi −
1

|Predu|

|Predu|∑
j=1

whoj

(20.4)

∆FSA =
1

|U |

|U |∑
u=1

 1

|Trainu|

|Trainu|∑
i=1

fsai −
1

|Predu|

|Predu|∑
j=1

fsaj

 ,

(20.5)

where |U | denotes the total number of users in the dataset, |Trainu| the

size of the train set for user u respectively, |Predu| the size of the set for

the predicted items and whoi, whoj and fsai, fsaj represent the WHO,

FSA health scores for items (i and j) in these sets.

These delta measures are useful as they capture whether the recom-

mended items are more or less healthy than those already rated positively

by the user. The same procedure can also be applied to calculate a delta

between the test and prediction sets to observe whether the recommended

items are actually more or less healthy to what the user would actually eat

in the future.

Similar to other recommendation domains, studies employing online

evaluation protocols, such as A/B testing or laboratory studies for the

purpose of testing the performance of food recommendation systems are

rare. Among the studies to employ online testing is for instance the work

of [Freyne et al. (2011a)] who ran two types of meal planners in a live sys-

tem. The two methods tested were a personalized and a non-personalized

algorithm. Over the course of 12 weeks over 5000 users participated in the

October 25, 2018 11:57 ws-rv9x6-9x6 Book Title 11131-20 page 677

Food Recommendations 677

study. According to the authors an A/B like setup was chosen to refer half

of the users to the personalized condition and half of the user to the non-

personalized one. Earlier work from the same authors employed also some

variant of online experiment to gather ratings from users on recipes by e.g.

using Amazon’s Mechanical Turk platform [Freyne et al. (2011b); Freyne

and Berkovsky (2010)]. However, rather than generating the recommen-

dations on the fly to test their validity, in the end, an offline protocol was

utilized. A recent study by [Yang et al. (2017)] employed not only offline

testing but also an online study protocol to evaluate a mobile food recom-

mendation system. In particular they recruited 60 participants through the

university mailing list, Facebook, and Twitter. The study, conducted as a

online Web service, consisted of three phases. First, each participant was

questioned on any dietary restrictions that may apply, such as the need to

avoid gluten. Second, each user was asked to express their preferences by

highlighting images of food they find appealing. Lastly, 20 meal recommen-

dations were generated of which 10 were shown in a random order and 10

as proposed by the authors’ “Yum-me” algorithm. The participants had

the task of classifying the 20 recipes as to whether it is appealing or not.

A final work worthy of mention is an online study that has been re-

cently conducted by the authors with the goal of investigating the potential

to nudge people towards healthier food choices via recommendations [El-

sweiler et al. (2017b)]. The work employed three online studies. Similar to

the previously mentioned work we implemented a Web service and recruited

between 107 and 138 participants per study. By varying the amount of in-

formation shown about two algorithmically determined similar recipes, we

were able to learn about the choices people make, the users’ perception of

these recipes and what influenced these. By applying machine learning ap-

proaches we were able to predict with relative certainty, which recipe of the

two participants would prefer and demonstrate that the models developed

can be used to influence the choices made.

None of evaluation strategies applied to date in food recommendation

accounts for one of the primary differences of recommending items in this

domain. Presented food items are not the actual item that should be eval-

uated because varying the cook, the ingredients and any number of other

contextual features will certainly influence the experience. It is not yet

clear how to best account for this challenge.

In summary, no specialized offline protocols exist for the evaluation

food recommendation systems. Typically standard metrics are used to de-

termine prediction accuracy and diversity. Furthermore, no standardized

October 25, 2018 11:57 ws-rv9x6-9x6 Book Title 11131-20 page 678

678 C. Trattner and D. Elsweiler

or specialized online evaluation protocols exist for food recommendation

systems. Current approaches rely on methods that have been previously

developed in other recommendation domains such as movies or music (see

also Chapter 9). Exceptions are the metrics specifically designed to incor-

porate healthy nutrition into the process, such as the WHO and FSA scores

in [Trattner and Elsweiler (2017)].

20.7. Lessons Learned and Future Directions

Food recommendation is an important domain both for individuals and so-

ciety. What the work described in this chapter shows is that despite its

importance, food item recommendation, in comparison to other domains

is relatively under-researched. The work that has been performed to date

shows that although user taste predictions for food can be achieved with ex-

isting methods, the performance achieved is poorer than in other domains.

This means that preference learning should remain a focus for the food

domain because experiments described in the literature have shown that

even regardless of the source of user feedback applied (i.e. ratings, tags

or comments) standard methods are only capable of producing relatively

unsatisfactory performance. It is clear that new methods are required for

the food domain and some work has shown promise. Yang and colleague’s

(2017) work uses images and embeddings (DNNs) to learn user preferences

and the results are very promising.

Other key findings in the literature relating to preference prediction

are those illustrating the importance of context variables. One promising

research direction would be to capture important context variables via dif-

ferent sensors and incorporate these into recommendation models. For ex-

ample, one could imagine using activity sensors, such as Fitbits, which have

become popular to influence recommendations. Do people choose calorie

richer food when they have done more exercise?

Relating to context, social situations and recommendation for groups

needs to be considered more concretely. The pervasiveness of social culinary

experiences and how these influence food choices need to be considered by

technological systems.

One particular task in food recommendation systems which, for soci-

etal and socio-economic reasons, has become a hot research focus is food

recommenders for nutritional health. Researchers have proposed diverse

methods of incorporating nutrition (nutritional components in algorithm,

meal plans, and nudging), but to date all of these proposals remain prelim-

inary and it is not yet clear, which is the best approach to take.

October 25, 2018 11:57 ws-rv9x6-9x6 Book Title 11131-20 page 679

Food Recommendations 679

Specialist diets or users with strong constraints (e.g. vegetarians, vegans

or those with food intolerance), have largely been omitted from studies to

date. This is challenging both in the case of recommending single food items

to individual users, for which we expect standard approaches to offer poor

performance and in the case of group recommendations when one member

of the group has strong constraints. Should systems attempt to maximize

the satisfaction of certain members or minimize the misery of the group on

average?

One further aspect which needs to develop in the community is the eval-

uation of food recommenders and the methods employed to do so. In the

literature evaluation has mostly been offline with proprietary collections.

As a community we need to work together to achieve standard data collec-

tions, standard base-line approaches and importantly, more online studies

to understand how our approaches work as live systems used in naturalistic

scenarios. We reported the problem in food recommendation that presented

items will vary from experience due to factors such as the cooking skills of

the user and available ingredients etc. Perhaps using a living-lab setting

e.g. [Balog et al. (2014)] is one approach that could be tested to address

this problem.

As a final note, we emphasized in the the reviewed literature that most of

the food recommendation literature has focused on recipe recommendation.

Now that the new datasets, such as the Instacart dataset, are being made

available to researchers, we hope to see this situation change.

References

Abbar, S., Mejova, Y. and Weber, I. (2015). You tweet what you eat: Studying
food consumption through twitter, in Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems, pp. 3197–3206.

Aberg, J. (2006). Dealing with malnutrition: A meal planning system for elderly,
in AAAI Spring Symposium: Argumentation for Consumers of Healthcare,
pp. 1–7.

Achananuparp, P. and Weber, I. (2016). Extracting food substitutes from food
diary via distributional similarity, CoRR abs/1607.08807, http://arxiv.
org/abs/1607.08807.

Balog, K., Elsweiler, D., Kanoulas, E., Kelly, L. and Smucker, M. D. (2014).
Report on the cikm workshop on living labs for information retrieval eval-
uation, in ACM SIGIR Forum, Vol. 48 (ACM), pp. 21–28.

Beaglehole, R. (2016). Misunderstaning vs reality, http://www.who.int/chp/

advocacy/MediaFeatures_EN_web.pdf.

October 25, 2018 11:57 ws-rv9x6-9x6 Book Title 11131-20 page 680

680 C. Trattner and D. Elsweiler

Berkovsky, S. and Freyne, J. (2010). Group-based recipe recommendations: anal-
ysis of data aggregation strategies, in Proceedings of the fourth ACM con-
ference on Recommender systems (ACM), pp. 111–118.

Burke, R. (2002). Hybrid recommender systems: Survey and experiments, User
modeling and user-adapted interaction 12, 4, pp. 331–370.

Cheng, H., Rokicki, M. and Herder, E. (2017). The influence of city size on di-
etary choices and food recommendation, in Proceedings of the 25th Confer-
ence on User Modeling, Adaptation and Personalization, UMAP ’17 (ACM,
New York, NY, USA), ISBN 978-1-4503-4635-1, pp. 359–360, doi:10.1145/
3079628.3079641, http://doi.acm.org/10.1145/3079628.3079641.

Chokr, M. and Elbassuoni, S. (2017). Calories prediction from food images, in
AAAI, pp. 4664–4669.

De Choudhury, M., Sharma, S. and Kiciman, E. (2016). Characterizing dietary
choices, nutrition, and language in food deserts via social media, in Pro-
ceedings of the 19th ACM Conference on Computer-Supported Cooperative
Work & Social Computing, CSCW ’16 (ACM, New York, NY, USA), ISBN
978-1-4503-3592-8, pp. 1157–1170, doi:10.1145/2818048.2819956, http://

doi.acm.org/10.1145/2818048.2819956.
El-Dosuky, M., Rashad, M., Hamza, T. and El-Bassiouny, A. (2012). Food rec-

ommendation using ontology and heuristics, in International Conference
on Advanced Machine Learning Technologies and Applications (Springer),
pp. 423–429.

Elahi, M., Ge, M., Ricci, F., Massimo, D. and Berkovsky, S. (2014). Interactive
food recommendation for groups, in RecSys Posters.

Elsweiler, D. and Harvey, M. (2015). Towards automatic meal plan recom-
mendations for balanced nutrition, in Proceedings of the 9th ACM Con-
ference on Recommender Systems, RecSys ’15 (ACM, New York, NY,
USA), ISBN 978-1-4503-3692-5, pp. 313–316, doi:10.1145/2792838.2799665,
http://doi.acm.org/10.1145/2792838.2799665.

Elsweiler, D., Harvey, M., Ludwig, B. and Said, A. (2015). Bringing the “healthy”
into food recommenders, in DMRS, pp. 33–36.

Elsweiler, D., Hors-Fraile, S., Ludwig, B., Said, A., Schäfer, H., Trattner, C.,
Torkamaan, H. and Valdez, A. C. (2017a). Second workshop on health
recommender systems: (healthrecsys 2017), in Proceedings of the Eleventh
ACM Conference on Recommender Systems, RecSys 2017, Como, Italy,
August 27-31, 2017, pp. 374–375, doi:10.1145/3109859.3109955, http://

doi.acm.org/10.1145/3109859.3109955.
Elsweiler, D., Ludwig, B., Said, A., Schäfer, H. and Trattner, C. (2016). En-

gendering health with recommender systems, in Proceedings of the 10th
ACM Conference on Recommender Systems, Boston, MA, USA, Septem-
ber 15-19, 2016, pp. 409–410, doi:10.1145/2959100.2959203, http://doi.
acm.org/10.1145/2959100.2959203.

Elsweiler, D., Trattner, C. and Harvey, M. (2017b). Exploiting food choice biases
for healthier recipe recommendation, in Proceedings of the 40th Interna-
tional ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, SIGIR ’17 (ACM, New York, NY, USA), ISBN 978-1-4503-

October 25, 2018 11:57 ws-rv9x6-9x6 Book Title 11131-20 page 681

Food Recommendations 681

5022-8, pp. 575–584, doi:10.1145/3077136.3080826, http://doi.acm.org/
10.1145/3077136.3080826.

Ferguson, E. L., Darmon, N., Briend, A. and Premachandra, I. M. (2004). Food-
based dietary guidelines can be developed and tested using linear program-
ming analysis, The Journal of nutrition 134, 4, pp. 951–957.

Freyne, J. and Berkovsky, S. (2010). Intelligent food planning: Personalized
recipe recommendation, in Proceedings of the 15th International Con-
ference on Intelligent User Interfaces, IUI ’10 (ACM, New York, NY,
USA), ISBN 978-1-60558-515-4, pp. 321–324, doi:10.1145/1719970.1720021,
http://doi.acm.org/10.1145/1719970.1720021.

Freyne, J., Berkovsky, S., Baghaei, N., Kimani, S. and Smith, G. (2011a). Per-
sonalized techniques for lifestyle change, Artificial Intelligence in Medicine,
pp. 139–148.

Freyne, J., Berkovsky, S. and Smith, G. (2011b). Recipe recommendation: Accu-
racy and reasoning, in International Conference on User Modeling, Adap-
tation, and Personalization, pp. 99–110.

FSA (2016). Guide to creating a front of pack (fop) nutrition la-
bel for pre-packed products sold through retail outlets. Available
at https://www.food.gov.uk/sites/default/files/multimedia/pdfs/

pdf-ni/fop-guidance.pdf last accessed on 20.6.2016.
Ge, M., Elahi, M., Fernaández-Tob́ıas, I., Ricci, F. and Massimo, D. (2015a).

Using tags and latent factors in a food recommender system, in Proceedings
of the 5th International Conference on Digital Health 2015, DH ’15 (ACM,
New York, NY, USA), ISBN 978-1-4503-3492-1, pp. 105–112, doi:10.1145/
2750511.2750528, http://doi.acm.org/10.1145/2750511.2750528.

Ge, M., Ricci, F. and Massimo, D. (2015b). Health-aware food recommender
system, in Proceedings of the 9th ACM Conference on Recommender Sys-
tems, RecSys ’15 (ACM, New York, NY, USA), ISBN 978-1-4503-3692-
5, pp. 333–334, doi:10.1145/2792838.2796554, http://doi.acm.org/10.

1145/2792838.2796554.
Gibney, M., Vorster, H. and Kok, F. (2002). Introduction to human nutrition.
Griffiths, T. (2002). Gibbs sampling in the generative model of latent dirichlet

allocation, pp. x–y.
Hammond, K. J. (1986). Chef: A model of case-based planning, in Proceedings of

AAAI, pp. 267–271.
Harvey, M. and Elsweiler, D. (2015). Automated recommendation of healthy, per-

sonalised meal plans, in Proceedings of the 9th ACM Conference on Recom-
mender Systems (ACM), pp. 327–328.

Harvey, M., Ludwig, B. and Elsweiler, D. (2012). Learning user tastes: A first
step to generating healthy meal plans, in First international workshop on
recommendation technologies for lifestyle change (lifestyle 2012), p. 18.

Harvey, M., Ludwig, B. and Elsweiler, D. (2013). You are what you eat: Learning
user tastes for rating prediction, in Proceedings of the 20th International
Symposium on String Processing and Information Retrieval - Volume 8214,
SPIRE 2013 (Springer-Verlag New York, Inc., New York, NY, USA), ISBN
978-3-319-02431-8, pp. 153–164, doi:10.1007/978-3-319-02432-5 19, http:
//dx.doi.org/10.1007/978-3-319-02432-5_19.

October 25, 2018 11:57 ws-rv9x6-9x6 Book Title 11131-20 page 682

682 C. Trattner and D. Elsweiler

HEI (2016). Healthy eating index,
https://www.cnpp.usda.gov/healthyeatingindex.

Herlocker, J. L., Konstan, J. A., Terveen, L. G. and Riedl, J. T. (2004). Eval-
uating collaborative filtering recommender systems, ACM Transactions on
Information Systems (TOIS) 22, 1, pp. 5–53.

Hinrichs, T. R. (1989). Strategies for adaptation and recovery in a design prob-
lem solver, in Proceedings of the 2nd Workshop on Case-Based Reasoning,
pp. 115–118.

Hinrichs, T. R. and Kolodner, J. L. (1991). The roles of adaptation in case-based
design, in AAAI, Vol. 91, pp. 28–33.

Howard, S., Adams, J. and White, M. (2012). Nutritional content of supermarket
ready meals and recipes by television chefs in the United Kingdom: cross
sectional study, BMJ 345, p. e7607.

Hu, Y., Koren, Y. and Volinsky, C. (2008). Collaborative filtering for implicit
feedback datasets, in Proc. of ICDM’08 (IEEE), pp. 263–272.

Khan, A. S. and Hoffmann, A. (2003). Building a case-based diet recommendation
system without a knowledge engineer, Artificial Intelligence in Medicine 27,
2, pp. 155–179.

Kuo, F.-F., Li, C.-T., Shan, M.-K. and Lee, S.-Y. (2012). Intelligent menu plan-
ning: Recommending set of recipes by ingredients, in Proceedings of the
ACM multimedia 2012 workshop on Multimedia for cooking and eating ac-
tivities (ACM), pp. 1–6.

Kusmierczyk, T., Trattner, C. and Nørv̊ag, K. (2015). Temporal patterns in online
food innovation, in Proceedings of the 24th International Conference on
World Wide Web (ACM), pp. 1345–1350.

Kusmierczyk, T., Trattner, C. and Nørv̊ag, K. (2016). Understanding and pre-
dicting online food recipe production patterns, in Proceedings of the 27th
ACM Conference on Hypertext and Social Media, HT ’16, ISBN 978-1-4503-
4247-6, pp. 243–248.

Lawrence, R. D., Almasi, G. S., Kotlyar, V., Viveros, M. and Duri, S. S. (2001).
Personalization of supermarket product recommendations, in Applications
of Data Mining to Electronic Commerce (Springer), pp. 11–32.

Mankoff, J., Hsieh, G., Hung, H. C., Lee, S. and Nitao, E. (2002). Using low-cost
sensing to support nutritional awareness, in International Conference on
Ubiquitous Computing (Springer), pp. 371–378.

Mormann, M. M., Navalpakkam, V., Koch, C. and Rangel, A. (2012). Relative
visual saliency differences induce sizable bias in consumer choice.

Müller, M., Mika, S., Harvey, M. and Elsweiler, D. (2012). Estimating nu-
trition values for internet recipes, in Pervasive Computing Technologies
for Healthcare (PervasiveHealth), 2012 6th International Conference on
(IEEE), pp. 191–192.

Ornish, D., Brown, S., Billings, J., Scherwitz, L., Armstrong, W., Ports, T.,
McLanahan, S., Kirkeeide, R., Gould, K. and Brand, R. (1990). Can
lifestyle changes reverse coronary heart disease?: The lifestyle heart trial,
The Lancet 336, 8708, pp. 129–133, http://www.sciencedirect.com/

science/article/pii/014067369091656U.

October 25, 2018 11:57 ws-rv9x6-9x6 Book Title 11131-20 page 683

Food Recommendations 683

Park, M.-H., Park, H.-S. and Cho, S.-B. (2008). Restaurant recommendation for
group of people in mobile environments using probabilistic multi-criteria
decision making, in Computer-Human Interaction (Springer), pp. 114–122.

Ricci, F., Rokach, L. and Shapira, B. (2011). Introduction to recommender systems
handbook (Springer).

Rokicki, M., Herder, E., Kuśmierczyk, T. and Trattner, C. (2016). Plate and
prejudice: Gender differences in online cooking, in Proceedings of the 2016
Conference on User Modeling Adaptation and Personalization, UMAP ’16
(ACM, New York, NY, USA), ISBN 978-1-4503-4368-8, pp. 207–215, doi:
10.1145/2930238.2930248.

Sacks, G., Rayner, M. and Swinburn, B. (2009). Impact of front-of-pack traffic-
lightnutrition labelling on consumer food purchases in the UK, Health pro-
motion international 24, 4, pp. 344–352.

Said, A. and Belloǵın, A. (2014). You are what you eat! tracking health through
recipe interactions, in RSWeb@ RecSys.

Sano, N., Machino, N., Yada, K. and Suzuki, T. (2015). Recommendation system
for grocery store considering data sparsity, Procedia Computer Science 60,
pp. 1406–1413.

Schäfer, H., Elahi, M., Elsweiler, D., Groh, G., Harvey, M., Ludwig, B., Ricci, F.
and Said, A. (2017). User nutrition modelling and recommendation: Bal-
ancing simplicity and complexity, in Adjunct Publication of the 25th Confer-
ence on User Modeling, Adaptation and Personalization (ACM), pp. 93–96.

Schäfer, H., Hors-Fraile, S., Karumur, R. P., Calero Valdez, A., Said, A., Torka-
maan, H., Ulmer, T. and Trattner, C. (2017). Towards health (aware) rec-
ommender systems, in Proceedings of the 2017 International Conference on
Digital Health, DH ’17 (ACM, New York, NY, USA), ISBN 978-1-4503-
5249-9, pp. 157–161, doi:10.1145/3079452.3079499, http://doi.acm.org/
10.1145/3079452.3079499.

Scheibehenne, B., Greifeneder, R. and Todd, P. M. (2010). Can there ever be
too many options? a meta-analytic review of choice overload, Journal of
Consumer Research 37, 3, pp. 409–425.

Schur, E., Kleinhans, N., Goldberg, J., Buchwald, D., Schwartz, M. and Mar-
avilla, K. (2009). Activation in brain energy regulation and reward centers
by food cues varies with choice of visual stimulus, International journal of
obesity (2005) 33, 6, p. 653.

Straßburg, A. (2010). Ernährungserhebungen - methoden und instrumente,
Ernährungs Umschau.

Teng, C.-Y., Lin, Y.-R. and Adamic, L. A. (2012). Recipe recommendation using
ingredient networks, in Proceedings of the 4th Annual ACM Web Science
Conference (ACM), pp. 298–307.

Trattner, C. and Elsweiler, D. (2017). Investigating the healthiness of internet-
sourced recipes: implications for meal planning and recommender systems,
in Proceedings of the 26th International Conference on World Wide Web
(International World Wide Web Conferences Steering Committee), pp. 489–
498.

October 25, 2018 11:57 ws-rv9x6-9x6 Book Title 11131-20 page 684

684 C. Trattner and D. Elsweiler

Trattner, C., Elsweiler, D. and Howard, S. (2017a). Estimating the healthiness
of internet recipes: A cross sectional study, Frontiers in Public Health 5,
p. 16, doi:10.3389/fpubh.2017.00016, http://journal.frontiersin.org/

article/10.3389/fpubh.2017.00016.
Trattner, C., Parra, D. and Elsweiler, D. (2017b). Monitoring obesity prevalence

in the united states through bookmarking activities in online food portals,
PloS one 12, 6, p. e0179144.

Trattner, C., Rokicki, M. and Herder, E. (2017c). On the relations between
cooking interests, hobbies and nutritional values of online recipes: Im-
plications for health-aware recipe recommender systems, in Adjunct Pub-
lication of the 25th Conference on User Modeling, Adaptation and Per-
sonalization, UMAP ’17 (ACM, New York, NY, USA), ISBN 978-1-4503-
5067-9, pp. 59–64, doi:10.1145/3099023.3099072, http://doi.acm.org/10.
1145/3099023.3099072.

Trevisiol, M., Chiarandini, L. and Baeza-Yates, R. (2014). Buon appetito: Rec-
ommending personalized menus, in Proceedings of the 25th ACM Con-
ference on Hypertext and Social Media, HT ’14 (ACM, New York, NY,
USA), ISBN 978-1-4503-2954-5, pp. 327–329, doi:10.1145/2631775.2631784,
http://doi.acm.org/10.1145/2631775.2631784.

Ueta, T., Iwakami, M. and Ito, T. (2011). A recipe recommendation system
based on automatic nutrition information extraction, in Proceedings of the
5th International Conference on Knowledge Science, Engineering and Man-
agement, KSEM’11 (Springer-Verlag, Berlin, Heidelberg), ISBN 978-3-642-
25974-6, pp. 79–90, doi:10.1007/978-3-642-25975-3 8, http://dx.doi.org/
10.1007/978-3-642-25975-3_8.

van Pinxteren, Y., Geleijnse, G. and Kamsteeg, P. (2011). Deriving a recipe
similarity measure for recommending healthful meals, in Proceedings of the
16th International Conference on Intelligent User Interfaces, IUI ’11 (ACM,
New York, NY, USA), ISBN 978-1-4503-0419-1, pp. 105–114, doi:10.1145/
1943403.1943422, http://doi.acm.org/10.1145/1943403.1943422.

Wagner, C., Singer, P. and Strohmaier, M. (2014). The nature and evolution of
online food preferences, EPJ Data Science 3, 1, p. 1.

Wansink, B. (2006). Mindless eating (Bantam Books).
West, R., White, R. W. and Horvitz, E. (2013). From cookies to cooks: Insights

on dietary patterns via analysis of web usage logs, in Proceedings of the
22nd international conference on World Wide Web, pp. 1399–1410.

WHO (2003). Diet, nutrition and the prevention of chronic diseases, World Health
Organ Tech Rep Ser 916, i-viii.

Yang, L., Cui, Y., Zhang, F., Pollak, J. P., Belongie, S. and Estrin, D. (2015).
Plateclick: Bootstrapping food preferences through an adaptive visual in-
terface, in Proceedings of the 24th ACM International on Conference on
Information and Knowledge Management (ACM), pp. 183–192.

Yang, L., Hsieh, C.-K., Yang, H., Pollak, J. P., Dell, N., Belongie, S., Cole,
C. and Estrin, D. (2017). Yum-me: A personalized nutrient-based meal
recommender system, ACM Transactions on Information Systems (TOIS)
36, 1, p. 7.

October 25, 2018 11:57 ws-rv9x6-9x6 Book Title 11131-20 page 685

Food Recommendations 685

Zhang, Z., Yang, Y., Yue, Y., Fernstrom, J., Jia, W. and Sun, M. (2011). Food
volume estimation from a single image using virtual reality technology, in
Bioengineering Conference (NEBEC), 2011 IEEE 37th Annual Northeast.

Zhu, Y.-X., Huang, J., Zhang, Z.-K., Zhang, Q.-M., Zhou, T. and Ahn, Y.-Y.
(2013). Geography and similarity of regional cuisines in China, PloS one 8,
11, p. e79161.

October 25, 2018 11:57 ws-rv9x6-9x6 Book Title 11131-20 page 686

October 25, 2018 12:20 ws-rv9x6-9x6 Book Title 11131-21 page 687

Chapter 21

Clothing Recommendations:

The Zalando Case

Antonino Freno

Zalando SE
Mühlenstr. 25, Berlin 10243, Germany

antonino.freno@zalando.de

21.1. Introduction

Developing a real-world recommender system, i.e. for use in large-scale on-

line retail, poses a number of different challenges. Interestingly, only a

small part of these challenges are of algorithmic nature, such as how to se-

lect the most accurate model for a given use case. Instead, most technical

problems usually arise from operational constraints, such as: adaptation to

novel use cases; cost and complexity of system maintenance; capability of

reusing pre-existing signal and integrating heterogeneous data sources. In

this chapter, we describe the system we developed in order to address those

constraints at Zalando, which is one of the most popular online fashion

retailers in Europe. In particular, we explain how moving from a collabora-

tive filtering approach to a learning-to-rank model helped us to effectively

tackle the challenges mentioned above, while improving at the same time

the quality of our recommendations. A fairly detailed description of our

software architecture is also provided, along with an overview of the algo-

rithmic approach. On the other hand, we illustrate the typical workflow

through which different versions of our recommender system are experimen-

tally evaluated, by means of both offline and online assessment protocols.

Zalando (http://www.zalando.com/) provides a unique hub for digital

fashion content in Europe. In the online shop, machine-learned product

687

http://www.zalando.com/

October 25, 2018 12:20 ws-rv9x6-9x6 Book Title 11131-21 page 688

688 A. Freno

recommendations are disseminated over many different contexts, ranging

from general navigation aid on the homepage to personalized sorting in the

catalog and item-to-item recommendations on product detail pages. In or-

der to keep up with an ever-changing market and the constantly growing

customer needs, algorithmic progress has always been a crucial requirement

for our recommendation services. Yet, when viewed from the trenches of

online retail industry, recommender systems development assumes a signif-

icantly different shape than we are used to think from an academic per-

spective.

From a scientific point of view, research on machine-learned recom-

mender systems tries to identify optimal recommendation algorithms. Here,

optimality is typically defined in terms of maximum achievable accuracy

(possibly weighted by computational efficiency) with respect to specific rec-

ommendation goals, settings, and constraints. Accuracy is measured by a

number of different metrics, which formally measure the quality of recom-

mendations in terms of the ranking they induce on a set of candidate items.

However, real-world recommender systems, such as those powering all ma-

jor e-commerce platforms, have to face a sensibly different question, i.e. how

to maximize business value in the long term. In this context, the notion of

business value has at least two different sides. On the one hand, we want to

generate value for our customers, e.g. in terms of user engagement, reten-

tion, conversion rate, revenue, and related performance indicators. On the

other hand, we want to generate internal value, in terms of the long-term

profitability of our technology assets. Here, profitability means operational

excellence, on at least three different dimensions: (i) possibility of adapting

the recommender system to novel use cases; (ii) cost and complexity of the

involved maintenance; (iii) capability of capitalizing on pre-existing signal

and effectively integrating newly available data sources. In this sense, an

optimal recommender system is one that achieves operational excellence

along at least these three dimensions, while also generating value for cus-

tomers.

Back in the past, most of the recommendation contexts on Zalando

were powered by machine learning models based on collaborative filtering

(CF). As we tried to improve on these models and replace them by more

sophisticated approaches, we carefully redesigned our system by keeping in

mind the three guidelines of operational excellence mentioned above. To

this purpose, we moved to a recommendation framework based on learning

to rank (L2R). In this chapter, we provide an in-depth overview of our L2R

architecture. In particular, we discuss how the chosen framework enabled

October 25, 2018 12:20 ws-rv9x6-9x6 Book Title 11131-21 page 689

Clothing Recommendations: The Zalando Case 689

our recommendation stack to address operational concerns. Our goal is to

stress the importance of treating the operational quality of recommender

systems as a major criterion for the scientific analysis of those systems. We

believe that by achieving a tighter integration of operational and algorith-

mic concerns, faster and more effective technology transfer can be achieved

for the outcome of recommender systems research. In Section 21.2, we

describe the main contexts where we serve recommendations in the fash-

ion store. Section 21.3 reviews the theoretical framework underlying our

machine learning system, whereas the system architecture is illustrated in

Section 21.4. Section 21.6 presents some results from offline and online

experiments. Finally, in Section 21.7 we draw some conclusions and sketch

directions for future research.

21.2. Use Cases and General Approach

In Sections 21.2.1–21.2.3 we review three different recommendation contexts

from the Zalando web store. At the same time, we sketch the backbone of

our modeling approach.

21.2.1. Item-based Recommendations

The first type of recommendations we serve at Zalando are the ones avail-

able on product detail pages, namely the ones usually presented in a

“Similar items” carousel. These recommendations are not necessarily per-

sonalized, in that they simply model the relevance of additional candidate

products with respect to the item that the user is currently checking out

(i.e. the main subject of the currently open page). An example is provided

in Figure 21.1.

The way we model the relevance of candidate products for a given ref-

erence item is via the scoring function s:

s(ii, ij) = ϕ(ψI(ii, ij)) (21.1)

where ii is the reference item, and ij is a candidate product for which we

want to compute the relevance score. Once we score all relevant candidates

ij , we rank them by score, and then recommend the top k.

The key ingredients to define are on the one hand the scoring function

ϕ, and on the other hand ψI , which combines the base article and the

candidate recommendation into the feature vector to be fed into ϕ. We will

address the definition of ϕ in Section 21.3.2. While ϕ will be estimated by

a general L2R routine, ψI encodes instead some of our domain knowledge

October 25, 2018 12:20 ws-rv9x6-9x6 Book Title 11131-21 page 690

690 A. Freno

Fig. 21.1. Item-based recommendations on a product detail page.

by specifying how the attributes of ii and ij interact to one another. For

example, if articles have a color attribute, their interaction ψI(ii, ij) might

contain an attribute specifying whether the two articles have the same color

or not. Another interaction attribute might be given by the price difference

of the two products, and so on. Therefore, we refer to ψI as an interaction

function. Virtually, there is no limit to the type and quantity of interaction

attributes we can encode into our model, as long as the information required

to calculate them is available from the attributes of the input items. And

October 25, 2018 12:20 ws-rv9x6-9x6 Book Title 11131-21 page 691

Clothing Recommendations: The Zalando Case 691

of course, whenever relevant to the task at hand, non-relational attributes

from the interacting items (e.g. the popularity of candidate articles) can

also be incorporated into ψI .

21.2.2. Personalized Recommendations

General personalized recommendations are served to customers whenever

no specific context or intention is assumed for the current context. For ex-

ample, we serve personalized recommendations on the Zalando home page,

usually presenting them in a “Recommended for you” box.

Fig. 21.2. Personalized recommendations on the Zalando home.

The scoring function for personalized recommendations can be modeled

as follows:

s(ui, ij) = ϕ(ψU (ui, ij)) (21.2)

where ui is a user, and ij is the candidate product we want to score with

respect to ui. The key difference between Eq. 21.1 and Eq. 21.2 is that

now, the function ψU has to model the interaction between user and arti-

cle attributes (rather than an article-to-article interaction). For example,

if we know the user’s favorite brand, we can encode a boolean attribute

specifying whether the brand of ij is the same as ui’s favorite brand. In

other words, ψU encapsulates the feature-engineering side of our user-to-

item recommendation model.

October 25, 2018 12:20 ws-rv9x6-9x6 Book Title 11131-21 page 692

692 A. Freno

21.2.3. Personalized Item-based Recommendations

Another recommendation context arises when we attempt to personalize

the recommendations we show in product detail pages, such as the ones

that appear in the carousel already displayed in Figure 21.1. In this case,

there are three different entities to be accounted for in our scoring function,

namely the user ui, the base article ij , and the candidate product ik:

s(ui, ij , ik) = ϕ(ψU,I(ui, ij , ik)) (21.3)

To address this context, we have to leverage both item-to-item and user-to-

item interactions. For example, we might simply define ψU,I as a concate-

nation of the values returned by the previously defined functions ψI and

ψU , i.e. ψU,I(ui, ij , ik) = (ψU (ui, ik), ψI(ij , ik)). Also, we might want to

include ternary interaction attributes. For example, we can have a boolean

feature specifying whether the user’s most frequently purchased brand, the

base item’s brand, and the candidate article’s brand are all the same or

not, or a real-valued feature calculating the fraction of pairs (x, y) from the

set {(ui, ik), (ij , ik)} such that x and y can be assigned to the same brand.

21.3. Developed Algorithm: Learning to Rank

We now review the L2R framework underlying our recommender system.

In Section 21.3.1, we summarize some of the vast literature available on the

topic, whereas Section 21.3.2 outlines the approach we use to estimate our

models from data.

21.3.1. Related Work

L2R approaches are usually classified into three broad families: pointwise,

pairwise, and listwise methods [Liu (2009)]. Pointwise models attempt to

estimate the relevance score of each item as an independent data point.

The supervision for learning the relevance score is typically extracted from

previously (e.g. manually) labeled lists of candidates, by using either the

relevance ratings attached to candidates or their positions within ranked

lists as the respective labels. At prediction time, the items returned for a

query are sorted according to their scores. Linear or logistic regression are

examples of scoring functions used in pointwise methods. Among the ear-

liest pointwise models available from the literature, we can mention [Fuhr

(1989)] and [Cooper et al. (1992)], which focus on estimating the probabil-

ity distribution of item relevance given a user/query. Pairwise approaches

October 25, 2018 12:20 ws-rv9x6-9x6 Book Title 11131-21 page 693

Clothing Recommendations: The Zalando Case 693

score ordered pairs of items instead of individual items. Here, the goal is

to learn the correct order of these pairs. In other words, the goal is to

score the more relevant items higher than less relevant ones. The advan-

tage of this approach over pointwise methods is that it does not require to

learn absolute relevance scores. RankSVM [Herbrich et al. (2000); Joachims

(2002)] is one of the most popular pairwise models. It formalizes ranking as

a binary classification problem for item pairs and uses support vector ma-

chines as the underlying classifier. Another one is Rank Logistic Regression

[Sculley (2009)]. RankBoost [Freund et al. (2003)] is also a pairwise model,

where the ranking is learned through boosting. The idea is to construct

a sequence of “weak” rankers in an iterative fashion, and then to predict

ranks using a linear combination of the weak learners. Finally, listwise ap-

proaches rely on ranked lists as training examples. In particular, they try

to minimize a loss function defined over full lists instead of ordered pairs

sampled from those lists. ListNet [Cao et al. (2007)] is a listwise ranking

algorithm, which performs gradient descent over a loss function based on

cross-entropy. AdaRank [Xu and Li (2007)] is also a listwise approach,

based instead on boosting. Gradient-boosted trees (GBTs) have recently

become quite popular in learning to rank [Burges et al. (2011); Mohan

et al. (2011)]. Although GBTs have been shown to outperform simpler ap-

proaches (such as linear models), training them over web-scale datasets can

be very expensive. Moreover, scoring latency is a serious issue for GBTs

whenever we are not able to precompute and cache predictions. An alterna-

tive model, which is very suitable for the large-scale setting, is the WSABIE

algorithm [Weston et al. (2011)], which relies on low-dimensional embed-

dings and data sub-sampling. Yet another model is given by ElasticRank

[Freno et al. (2015)], inspired by a former approach known as LambdaRank

[Burges et al. (2006)]. ElasticRank inherits from LambdaRank the idea

of weighting the loss function by a listwise penalization scheme. The loss

is minimized by stochastic gradient descent, where the training algorithm

is allowed to perform only one pass through the training data. Moreover,

the special focus of this model is given by sparsity-inducing regularization

schemes.

21.3.2. Ranking Loss Minimization

Let our training sample be a set X containing the pairs (x+
1 ,x

−
1), . . .,

(x+
n ,x

−
n), where each pair (x+

i ,x
−
i) is such that x+

i should be ranked

higher than x−i . If the setting is given by personalized recommendation, as

October 25, 2018 12:20 ws-rv9x6-9x6 Book Title 11131-21 page 694

694 A. Freno

described in Section 21.2.2, each training pair will be defined as follows:

(x+
i ,x

−
i) = (ψU (uj , i

+), ψU (uj , i
−)) (21.4)

where item i+ is more relevant to user uj than item i−. Relevance labeling

might be obtained in several different ways, via implicit or explicit feed-

back. For example, uj might have clicked (or purchased) i+ but not i−,

assuming that both items where available in the same candidate set. Or,

uj might have explicitly labeled some articles, by rating them or placing

them in a wishlist. The way we sample user feedback clearly depends on

the available data (and especially on the quality and limitations of user

feedback tracking), the specific use case, and possibly on computational re-

quirements, and it is tuned for each application both by offline and online

experimentation. The definition given in Eq. 21.4 can easily be cast to suit-

able forms for the item-based and personalized item-based recommendation

setting, respectively.

For each training pair (x+
i ,x

−
i), our ranking loss is defined as follows:

`(x+
i ,x

−
i ;ϕ) = max

{
0, ϕ(x−i)− ϕ(x+

i) + ε
}

(21.5)

for some tunable parameter ε > 0. Different choices are possible other than

the hinge loss specified in Eq. 21.5, e.g. the logistic loss log{1+exp(ϕ(x+
i)−

ϕ(x−i))}. For our applications, we found the hinge loss completely satisfy-

ing.

Given a training pair (x+
i ,x

−
i), we can optimize the parameters in ϕ by

minimizing the ranking loss over (x+
i ,x

−
i). This task can be accomplished

via standard (sub-)gradient descent methods. Any choice for the parametric

form of ϕ, ranging from simple linear regression to a multilayer perceptron,

will be compatible with the ranking metric we are adopting as long as we

are able to compute the corresponding (sub-)gradients. Throughout our

applications, we assume a linear form for the scoring function ϕ, i.e. ϕ(x) =

wᵀx. This is not only practical from the computational point of view, but

it also preserves the convexity of the ranking loss defined in (21.5), which

is a convenient property for the purpose of parameter optimization.

In order to induce sparsity in the learned scoring function, i.e. to com-

pletely drop some components in the weight vector w, we can add `1-based

regularization to the loss defined in Eq. 21.5. The resulting objective func-

tion will be convex, with both theoretical guarantees and efficient opti-

mization schemes [Negahban et al. (2009)]. As previously advocated in

the large-scale setting [McMahan et al. (2013)], we additionally consider a

October 25, 2018 12:20 ws-rv9x6-9x6 Book Title 11131-21 page 695

Clothing Recommendations: The Zalando Case 695

squared `2-term, hence leading to the following ranking loss:

`∗(x+
i ,x

−
i ;ϕw) = `(x+

i ,x
−
i ;ϕw) + λ1‖w‖1 +

1

2
λ2‖w‖22 (21.6)

where λ1 and λ2 are non-negative hyperparameters determining, respec-

tively, the weight of the `1 and `2 penalties within the overall loss. The

resulting regularization model is usually referred to as elastic-net [Zou and

Hastie (2005)]. It is worth stressing that, for our web-scale application,

sparsity is an extremely important requirement for the learned model. The

reason is that, to extract useful signal from the available training data,

we often need to exploit very high-dimensional feature representations, e.g.

by considering all possible pairwise interactions of categorical attributes

through a one-hot encoding scheme. This easily leads to feature vectors

having billions of components. Therefore, dropping as many irrelevant fea-

tures as possible is especially useful both to improve generalization and

to reduce the memory footprint (and possibly the latency) of the learned

model.

In order to learn our parameter vector from a training set X =

{(x+
1 ,x

−
1), . . . , (x+

n ,x
−
n)}, we use gradient descent to address the following,

averaged regularized problem:

min
w

1

n

n∑
i=1

`(x+
i ,x

−
i ;ϕw) + λ1‖w‖1 +

1

2
λ2‖w‖22 (21.7)

In our applications, the number of training data points is typically in the

order of several millions. To cope with the dataset size, we distribute the

training load over several workers using the in-memory cluster computing

capabilities offered by Apache Spark (http://spark.apache.org/). This

way, we can easily calculate and sum up the gradient of `∗ over the full

dataset in no more than a couple of seconds, and hence perform a few

hundreds of gradient descent iterations in just a few minutes.

As proposed in [Langford et al. (2009)], we can simply enforce sparsity

by adding a pruning operation to gradient descent. The pruning step,

scheduled every k gradient iterations, simply consists of setting to 0 all

the weights wi such that, for a chosen threshold θ, |wi| < θ. Clearly,

the higher the value we choose for θ, the sparser the model will become.

The experiments reported in [Freno et al. (2015)] show that this simple

technique performs surprisingly well as compared to way more sophisticated

approaches available from the literature [Duchi and Singer (2009); Xiao

(2010)]. Therefore, we adopt such regularization scheme as our default

choice.

http://spark.apache.org/

October 25, 2018 12:20 ws-rv9x6-9x6 Book Title 11131-21 page 696

696 A. Freno

21.4. System Architecture

This section provides an overview of our system architecture. Our stack

is fully deployed on Amazon AWS (https://aws.amazon.com/), and it is

organized into a collection of offline jobs on the one hand, and a group

of online services on the other hand. Section 21.4.1 describes the former,

whereas the web services are presented in Section 21.4.2. A critical outlook

is then proposed in Section 21.5.

21.4.1. Offline Jobs

Let us look at how we organize all of the necessary batch calculations into a

graph of interdependent offline jobs. Here, the goal is to produce and persist

all data that will be necessary in order for the live recommendation engine

to serve fresh results to our visitors. The jobs architecture is depicted in

Figure 21.3.

Fig. 21.3. A diagram of our offline jobs: event aggregation, feature extraction, and
learning to rank.

https://aws.amazon.com/

October 25, 2018 12:20 ws-rv9x6-9x6 Book Title 11131-21 page 697

Clothing Recommendations: The Zalando Case 697

Everything starts from user action logs, which record every action per-

formed by our customers on the Zalando web store. The first job aggre-

gates all actions on a per-user basis. The difficulty here is that the volume

of server logs is massive and distributed over multiple locations. There-

fore, we cannot afford to crunch and re-aggregate all of this data every

time we need to retrieve actions for a given customer. Pre-aggregation of

customer actions allows subsequent jobs to selectively retrieve the relevant

information in a much more convenient way.

Once the user histories have been aggregated, they are used for two

purposes. On the one hand, we can extract a number of dynamic article

features (i.e. quantities that change over time), such as number of clicks

received by a product within a given time window, number of purchases,

and so on. Here, we might be tempted to extract such features directly from

the (non-aggregated) event logs. The drawback of such an idea is that it

would prevent us from filtering out undesirable data points, such as events

generated by robots or crawlers, which pollute our data by introducing noise

and distorting their distribution. These problematic events can typically be

identified only once we analyze the behavior of the respective cookies/user

identifiers, and this behavior only materializes once the relevant event sets

are aggregated and some basic statistics are derived from them.

On the other hand, we extract a wide range of user attributes, such

as time elapsed since the user was last active on the shop, how the user

choices are distributed over different product brands, or the price distribu-

tion of purchased articles. User feature extraction can also exploit already

computed article features. For example, if we want to measure how user

purchases are affected by product popularity, then for each purchase, we

need to check how popular the corresponding product was at the time it

was purchased (e.g. in terms of click-through rate).

Finally, the L2R job estimates the scoring function from the extracted

historical data, relying on both user and article features. A dedicated job

has to be run for each different recommendation setup (i.e. for each one of

the different models specified in Eqs. 21.1–21.3), since they lean on different

data representations and features. The learned scoring functions are then

deployed to our live ranking services.

The full offline job pipeline is run at short, regular intervals (e.g. daily).

This is important to ensure that new events ingested in our browsing logs

can contribute to the calculation of user and article features, as well as

to the adaptation of the machine-learned scoring function to drifting data

distributions.

October 25, 2018 12:20 ws-rv9x6-9x6 Book Title 11131-21 page 698

698 A. Freno

21.4.2. Web Services

The purpose of our recommendation services is to provide a RESTful API

[Fielding (2000)], returning sorted sets of results for queries that conform

to one of the following use cases: (i) get top-k recommendations for item ii;

(ii) get top-k recommendations for user ui; (ii) get top-k recommendations

for user ui and item ij . These patterns correspond to the three use cases

described in Section 21.2. A diagram of our online architecture is given in

Figure 21.4.

Fig. 21.4. A diagram of our web services: data indexing, real-time ranking, and post-
processing. ‘Spank’ is the name we use to refer to our content-based recommendation

stack.

The first step in setting up our live recommendation stack is to make

the user and article data available for real-time processing, as they are orig-

inally stored in large, distributed batches. To this aim, we index our data

into Apache Solr (http://lucene.apache.org/solr/), which allows us to

retrieve single feature vectors by (user/article) id within an average latency

of less than 5 milliseconds. Our Solr service is set up with a master/slave

architecture. That is, the master server only takes care of indexing data

coming from the offline jobs whenever new batches become available, which

is a computationally expensive operation. On the other hand, the slaves

http://lucene.apache.org/solr/

October 25, 2018 12:20 ws-rv9x6-9x6 Book Title 11131-21 page 699

Clothing Recommendations: The Zalando Case 699

mirror the content available from the master by mere data replication, and

they expose it to the ranking engine for real-time querying. This way, we

make sure that the computational load incurred while indexing new data

batches will not affect the latency of Solr queries, which would have a

tremendous impact on the responsiveness of the recommendation API.

A second component of the live system is given by the ranking servlet,

exposing the recommendation API mentioned above. We refer to this com-

ponent as the backdoor engine, for the following reason. As illustrated in

Figure 21.4, the backdoor service does not serve directly customer requests.

Such requests go first to the stack labeled as ‘Reco servlet’, which then for-

wards the relevant requests to the backdoor engine. The goal behind this

choice is to separate the problem of calculating and ranking recommen-

dations from the problem of post-processing (e.g. filtering or rendering)

them for the final customers. Such post-processing tasks are both complex

to perform and extrinsic to the genuine recommendation problem, as they

typically come from ad hoc business requirements or from interoperating

with external services, such as sales, campaigns, hand-coded rules, adver-

tising, de-duplication, front-end restrictions, and so on. Therefore, the

backdoor-based architecture frees up the recommendation engine from the

complexity of managing extrinsic logic, hence streamlining both software

development and system operation work.

As shown in the diagram, the L2R model artifact can be loaded directly

from the location where it is saved by the offline jobs, i.e. it does not

need any sort of indexing, since this artifact is nothing but a self-contained

weight-vector (possibly enriched with some additional configuration). This

happens as soon as the backdoor servlet is started, while the model is also

immediately refreshed whenever more recent artifacts become available. On

the other hand, article features can be usefully cached in the same servlet, to

a more or less significant extent. Caching will be crucial to minimize serving

latency. Differently from user data, which have to be queried according to

more unpredictable patterns, article queries tend to be generated according

to a power-law distribution, because of the popularity patterns which are

intrinsic to fashion shopping. Because of this, we can not only achieve

relatively high cache-hit rates, but also initialize the cache with the most

popular articles whenever new instances are added to the stack, which will

be immensely beneficial to the initial responsiveness of these instances.

October 25, 2018 12:20 ws-rv9x6-9x6 Book Title 11131-21 page 700

700 A. Freno

21.5. Addressed Challenges and Problems

We now proceed to discuss, in Sections 21.5.1–21.5.3, how the system pre-

sented so far copes, respectively, with the three operational concerns moti-

vating our general approach.

21.5.1. Adaptation to Diverse Use cases

As described in Section 21.2, product recommendation takes different forms

as soon as we move through different contexts, e.g. depending on whether

personalization is involved, whether a reference article is currently the fo-

cus, and so on. Therefore, being able to seamlessly adapt the available

infrastructure to the different use cases is crucial to maximize the value of

the adopted recommendation technology. This is the main consideration we

had in mind when choosing a model such that only one specific component

(i.e. the interaction function ψ) has to be modified whenever we tackle a

new context. ψI , ψU , and ψU,I are self-contained, plug and play modules,

which are completely decoupled from anything but the offline L2R job and

the online backdoor servlet. Of course, these last two components need to

be aware of which interaction function has to be loaded for each specific

use case. But the logic of the encompassing system remains completely

untouched whenever we move from one context to another.

21.5.2. System Operation

Maintaining a recommendation architecture can require significant efforts,

for a variety of reasons. The amount of data to be processed, both for

offline modeling and for online serving, is typically huge, which requires

distributed processing infrastructure on both sides. Also, because of the

system complexity and the need to continuously improve over time (in order

to tackle new challenges and meet continuously evolving customer needs),

the system components need to be easily replaceable and modifiable, while

avoiding the risk of breaking the whole system whenever a local change

is operated. While the system described in Sections 21.4.1–21.4.2 takes a

non-trivial cognitive effort to be operated and mastered, it does not require

expensive operations whenever a component has to be modified in some

way. For example, extracting some more user features from the historical

data only requires a change in the corresponding feature extraction job, and

the outcome will be automatically available for all subsequent stages, inde-

pendent on when and how the other components will start using the new

October 25, 2018 12:20 ws-rv9x6-9x6 Book Title 11131-21 page 701

Clothing Recommendations: The Zalando Case 701

input. Similarly, adding one more L2R job, e.g. in order to move from non-

personalized to personalized item-based recommendations, only requires to

implement and add one job to the offline pipeline, without affecting any

other component, and independent of whether and when the new model

will go live. In other words, while designing the presented architecture, we

strived to decouple as much as possible all different system components,

so that the cost of operating the whole system could be minimized by iso-

lating the scope of the most typically required interventions. Furthermore,

the sharp separation between offline and online stack encapsulates the live

system from unpredictable, possibly breaking changes happening in any of

the ingested data sources, allowing us to detect the problem from its im-

pact on the offline jobs, and to fix it before it starts affecting our customers

through its downstream effects.

21.5.3. Exploitation of Pre-existing Signal

Whenever new data sources become available or whenever new signal can

be exploited from a (possibly pre-existing) predictive model, the novel in-

formation can be homogeneously fed into the L2R engine in the form of

additional features. Such an incremental modeling approach can lead to

continuous improvement in recommendation quality, due to the seamless

exploitation of the novel information. As we will illustrate in Section 21.6,

we found this strategy to generate a lot of momentum in the process of

replacing the engines currently used in production by increasingly accurate

ones.

An extremely simple example of how we incorporated a pre-existing

recommender into L2R is given by how we integrated the output of our

previous CF engine for item-to-item scoring. Here, we just started to in-

gest the predicted item-to-item relevance into the article feature-extraction

job, so that the similarities were made available to the interaction function

ψI as pre-calculated features. A more sophisticated example of how we

added a new type of signal is offered by the integration of a Word2Vec-

based article embedding model [Mikolov et al. (2013)]. For the purpose

of article recommendation, we were interested in extracting a latent-vector

representation of our products, by capturing the contextual relation of ar-

ticle views with the articles explored within the same browsing sessions. To

this purpose, we simply model sessions as sequences of article views, and

have a Word2Vec learning routine run on these sequences. The job flow is

described in Figure 21.5. As shown in the diagram, a simple entry point for

October 25, 2018 12:20 ws-rv9x6-9x6 Book Title 11131-21 page 702

702 A. Freno

Fig. 21.5. Integration of Word2Vec-based article embeddings into our offline pipeline:

the entry point is provided by the article feature extraction job.

the new embeddings into our offline job graph is provided by the feature

extraction job for articles. The new data source is thereby made available

to the L2R stage.

21.6. Experimental Evaluation

As Zalando is mainly focused on online shopping, the most reliable way for

us to choose between competing recommendation algorithms and models

is by comparing their live (i.e. online) performance in terms of a number

of metrics, such as click-through rate, customer conversion rate, number

of sales, generated revenue, effective catalog size [Gomez-Uribe and Hunt

(2016)], and additional indicators as well. However, when the candidates

for online testing are too many, the only way to prioritize the different op-

tions is given by offline testing, i.e. by measuring the performance of the

alternative models on historical data. The advantage of offline experiments

is not only that the same data can be used to benchmark an arbitrary num-

ber of models, but also that poor models can be prevented from hurting our

customers by exposing inaccurate recommendations. Moreover, whenever a

new machine learning model is developed, extensive hyperparameter tuning

October 25, 2018 12:20 ws-rv9x6-9x6 Book Title 11131-21 page 703

Clothing Recommendations: The Zalando Case 703

and hypothesis testing needs to be done on validation data. Performing this

task on online data is simply prohibitive both in terms of time and in terms

of business risk. On the other hand, the drawback of offline testing is both

that it suffers from bias (as the historical data are generated by the very

same models we are trying to supersede), and that it does not capture all

subtleties involved in a live system (such as the interaction with other com-

ponents, the impact on user experience of higher/lower latencies, and so

on). Therefore, we usually select between competing models by first de-

ciding, through offline experimentation, which ones we want to benchmark

in a live setting, and then by running dedicated A/B tests to determine

whether the current production model should be replaced by a new one.

The purpose of this section is to illustrate how we learned one of the

lessons discussed in the previous sections, namely the one considered in

Section 21.5.3. One point that became clear to us both via offline and online

experimentation is that focusing on the feature-based model described so far

allows us to significantly speed-up algorithmic innovation, throughout our

recommendation use cases, via inherently incremental improvements. The

reason is that, without forcing us to go for the operational risk and expense

of substituting new systems for the current production model, the adopted

L2R framework makes room for a seamless integration of heterogeneous

models and data sources, by merging all of them into the final scoring

model in the form of additional features. Sections 21.6.1–21.6.2 give an

example of how this incremental benefit was detected and brought live in

one of our personalized recommendation contexts, namely on the Zalando

Home.

21.6.1. Offline Evaluation

One way to test the ranking accuracy of a given recommendation engine

from historical data is the following. We build our training set by sampling

browsing sessions from user action logs, covering whatever time interval is

suitable for training our algorithms. Typically, we use data from at least

7 consecutive days, going up at most to 4 consecutive weeks. Then, if our

training sample extends to day d at latest, we use day d + 1 for testing.

For hyperparameter tuning, day d is actually held out of the training data,

so that it can be used to build a validation set, and the algorithms are

trained using data generated no later than on day d − 1. Such a train-

ing sample is enough to provide several millions of user sessions, whereas

for the test set we usually subsample about half a million sessions. To

October 25, 2018 12:20 ws-rv9x6-9x6 Book Title 11131-21 page 704

704 A. Freno

construct test queries from a user session, we proceed as follows. All ar-

ticles that the user clicks on (or purchases) within the session are labeled

as relevant items, i.e. as items that the ranking/recommendation algorithm

should rank/recommend on top of anything else. Then, we check the po-

sition of the relevant items in the top-k recommendation lists produced

by the competing algorithms, and we measure the corresponding ranking

accuracy.

Our chosen metric for this measurement is normalized discounted cu-

mulative gain (NDCG) at k [Croft et al. (2009)]. A formal comparison of

different evaluation metrics goes beyond the scope of this chapter. How-

ever, it is worth mentioning that, on our datasets, alternative metrics (such

as precision or recall at k) usually give consistent indications about which

models are most accurate. NDCG is a normalized version of the following

metric:

DCG@k(r, l) =

min{k,n}∑
i=1

2li − 1

log2(ri) + 1
(21.8)

where r = (r1, . . . , rn) is the ranking induced by a given algorithm on n

candidate products, and li is the relevance label of the i-th product in the

list. We set the relevance label to 1 if the product was clicked/purchased,

whereas li = 0 otherwise. DCG has non-negative values, and larger DCG

values correspond to better rankings. NDCG normalizes the right-hand side

of Eq. 21.8, dividing it by the DCG of a perfect ranking, i.e. the ranking

induced by the relevance labels themselves.

As we started experimenting with L2R, the very first feature to use was

simply the score calculated by the pre-existing CF engine. Basically, the

CF engine was an adaptation of the approach presented in [Aiolli (2013)].

The key idea behind that CF approach is to estimate relevance scores from

(implicit) binary ratings, which in our case are given by the preferences

(implicitly) revealed by user clicks. As a number of static article features

were available from our product catalog, such as brand, price, category,

colors, and a variety of high-level tags, we simply added all such attributes

to the L2R model. To this purpose, we engineered several types of attribute

interactions and encoded them into our ψU function, using the strategy

described in Section 21.2.2. We then compared this first version of our L2R

model (L2R #1) to the CF baseline, leading to the NDCG measurements

plotted in Figure 21.6.

As the figure shows, L2R #1 achieves some noticeable improvement over

CF, although the ranking deteriorates for large values of k. We notice that

October 25, 2018 12:20 ws-rv9x6-9x6 Book Title 11131-21 page 705

Clothing Recommendations: The Zalando Case 705

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0 10 20 30 40 50 60 70 80 90 100

N
D

C
G

k

CF

L2R #1

L2R #2

Fig. 21.6. NDCG@k measurements on a one-day traffic sample for: (i) CF; (ii) L2R
using CF-based features plus static product attributes (L2R #1); (iii) L2R model using

all the features from L2R #1 plus Word2Vec-based similarity (L2R #2).

the measurement was seen to be statistically significant, as the experiment

was repeated on several occasions, for different data samples. The evidence

was enough for us to set up and run an A/B test, which we describe in

Section 21.6.2. It is important to note that, in order to see the mentioned

improvement in NDCG, it was not enough to add a bunch of features to

the CF score, as described above, and then just hope for the learned model

to regularize away all noise while learning the optimal scoring. Instead,

extensive feature selection was necessary, which we performed by repeated

cross-validation on held-out data. Unfortunately, when the features are

poorly engineered, or just too noisy, the model accuracy can be hurt to

a more or less significant extent, and regularization does not seem to be

enough to isolate the good signal from noise.

Once the Word2Vec-based article embeddings were available from our

modeling pipeline, we also started to experiment with features extracted

from the embeddings. The simplest way to engineer such a feature into ψU

is, for example, to calculate the cosine similarity between the latent vector

October 25, 2018 12:20 ws-rv9x6-9x6 Book Title 11131-21 page 706

706 A. Freno

representation of the candidate product and a suitable vector representa-

tion of the user. As a heuristic, the user vector might be calculated as the

average of the article vectors from the relevant shopping history. We then

add the new feature to the ones already used in L2R #1, and refer to the

resulting model as L2R #2. As plotted in Figure 21.6, L2R #2 significantly

improves over L2R #1. Presumably, this happens because the newly en-

gineered feature conveys signal which is not captured by the pre-existing

features. This makes the L2R #2 model a second, even more promising

candidate for further A/B testing (which is currently work in progress). As

the Word2Vec model requires a dedicated training routine to be run, relying

on specific hyperparameter tuning, the chosen hyperparameters turn out to

have a non-trivial effect on the accuracy of the final L2R model. However, a

convenient property of the used L2R framework is that, while we observed

a poor hyperparameter setup to make the Word2Vec-based similarity com-

pletely inaccurate if used as a stand-alone article-relevance predictor, using

it instead as one of several L2R input features makes the final predictions

way more robust to inaccuracies in the learned embeddings. In particular,

if we refer to the plot in Figure 21.6, what we observed is that, for less

accurate settings of the Word2Vec hyperparameters, the NDCG curve of

L2R #2 would get closer and closer to L2R #1, without however falling be-

low that level. On the other hand, we did not see a stand-alone prediction

model based only on the Word2Vec similarity coming anywhere close to the

CF baseline. As a side remark, it is fair to say that the L2R solutions we

adopt are still some kind of collaborative approach at their essence. This

is because we make crucial use of collaborative features in order to learn

the final scoring function, such as the scores calculated by our legacy CF

engine or the Word2Vec-based similarity measurements.

21.6.2. Online Evaluation

Offline NDCG measurements do not tell us with certainty how the L2R

model will impact our business performance indicators in production.

Therefore, we ran some A/B tests in order to compare L2R to the CF base-

line. The tested L2R model is L2R #1 from the previous section (i.e. not

including Word2Vec-based features, which were not yet available when the

online tests were run). The tests concern the Zalando Home, where general

personalized recommendations are shown to visitors (along with other con-

tent) as hints for navigation. The metrics we used for the evaluation were

mainly click-through rate (CTR) and conversion rate (CR). The former is

October 25, 2018 12:20 ws-rv9x6-9x6 Book Title 11131-21 page 707

Clothing Recommendations: The Zalando Case 707

defined as the fraction of displayed recommendations that receive at least

one-click, while the latter is the fraction of visitors who end up making at

least one purchase during the relevant time window. The results are sum-

marized in Table 21.1 for five different countries. To avoid disclosing any

sensitive information with respect to our business performance, for CTR

we report the relative difference between control (CF) and treatment group

(L2R), whereas for CR, instead of mentioning explicit values, we report

whether a statistically significant improvement (p < 0.1) was achieved or

not. For an overview of the A/B testing methodology on the web and

the involved significance calculations, we refer the reader to [Kohavi et al.

(2009)].

As shown in the table, the treatment group consistently outperforms

control in CTR. All CTR measurements were statistically significant, where

the p values very quickly converged to 0. An interesting point to remark

is that, although the gap between L2R and CF is significantly positive ev-

erywhere, different countries display a noticeably different behavior in this

respect, as the relative difference between the two algorithms exhibits a

relatively large variance over different domains. This country-specific be-

havior is the reason why it is extremely important to run a dedicated test

for each involved domain, in order to avoid making false (and financially

risky) generalizations. On the other hand, our previous experience with

the subtleties of fashion shopping shows that CR, as compared to CTR,

is much more difficult to increase by mere algorithmic change. Neverthe-

less, CR increases significantly in two out of the five reported experiments,

i.e. in countries #2 and #5, while it does not deviate significantly from

the control in all other experiments. Besides the metrics discussed here, we

also monitored additional revenue- and engagement-based measurements,

Table 21.1. Click-through rate and conversion rate results

from A/B tests run over five different countries. Country
names are masked in order to not disclose possibly sensitive

information. L2R is used for treatment, while CF is used for
the control group.

Country ∆CTR ∆CR> 0 & p < 0.1

#1 +15.22% ×
#2 +20.44% X
#3 +33.13% ×
#4 +23.93% ×
#5 +37.88% X

October 25, 2018 12:20 ws-rv9x6-9x6 Book Title 11131-21 page 708

708 A. Freno

which also showed, overall, either an improvement or no statistically sig-

nificant difference. Therefore, the L2R engine was rolled out to production

in all involved domains. In our interpretation, the key strategy by which

L2R superseded CF in our production systems is by enriching the signal

provided by CF through the integration of additional data sources into the

final predictions, rather than discarding the old system and building on

entirely different foundations.

21.7. Conclusions and Future Directions

In this chapter, we discussed how the operational challenges involved in

applying recommender systems to large-scale online retail provide some

fundamental dimensions for a formal analysis of such systems. Our anal-

ysis was based on an in-depth overview of the software architecture used

at Zalando for machine-learned ranking of clothing recommendations. In

order to explain the rationale behind many of our design decisions, we for-

mulated three criteria by which such an analysis can be fruitfully conducted,

namely: (i) flexibility of the recommender system with respect to different

recommendation use cases; (ii) cost of the operations involved in maintain-

ing the system; (iii) ease of integration of heterogeneous data sources and

signal types into a unified machine-learning workflow. According to the

experience we made in the clothing recommendation domain, these guiding

principles have turned out to be extremely effective in helping us to ensure

steady progress and reliable improvement patterns throughout our algo-

rithmic innovation efforts. Therefore, we believe that a strong and explicit

focus on operational excellence should never be missing from a scientific

investigation of recommender systems.

Although several directions are open for further development, at least

one of them deserves to be explicitly mentioned here. Deep neural networks

were recently shown to have significant innovation potential also in the

recommendation domain [Covington et al. (2016)]. In particular, one of

their key selling points is that they promise to alleviate the burden of the

feature engineering process, by automating and improving signal extraction

and transformation to a significant extent. In this respect, our current setup

crucially relies on the quality of the feature engineering pipeline, which still

involves a non-trivial amount of domain insight and quite a few iterations

of manual work in order to deliver satisfying results. Therefore, we are

also working in order to be able to extract and ingest within our system

additional signal based on deep-learning models. The extent to which a

October 25, 2018 12:20 ws-rv9x6-9x6 Book Title 11131-21 page 709

Clothing Recommendations: The Zalando Case 709

deep learning component can ultimately relieve us from manual work is

probably something that only a joint effort from the scientific and industrial

community can uncover.

Acknowledgments

The author is extremely grateful to everyone in the Recommendation Team

at Zalando for the outstanding support they provided throughout all phases

of this project.

References

Aiolli, F. (2013). Efficient top-n recommendation for very large scale binary rated
datasets, in Q. Yang, I. King, Q. Li, P. Pu and G. Karypis (eds.), Sev-
enth ACM Conference on Recommender Systems, RecSys ’13, Hong Kong,
China, October 12-16, 2013 (ACM), pp. 273–280.

Burges, C. J. C., Ragno, R. and Le, Q. V. (2006). Learning to rank with nons-
mooth cost functions, in Advances in Neural Information Processing Sys-
tems (NIPS), pp. 193–200.

Burges, C. J. C., Svore, K. M., Bennett, P. N., Pastusiak, A. and Wu, Q. (2011).
Learning to Rank Using an Ensemble of Lambda-Gradient Models, in Pro-
ceedings of the Yahoo! Learning to Rank Challenge, held at ICML 2010,
Haifa, Israel, June 25, 2010, pp. 25–35.

Cao, Z., Qin, T., Liu, T.-Y., Tsai, M.-F. and Li, H. (2007). Learning to rank:
from pairwise approach to listwise approach, in Proceedings of the 24th
International Conference on Machine learning (ICML 2007) (ACM, New
York, NY, USA), pp. 129–136.

Cooper, W. S., Gey, F. C. and Dabney, D. P. (1992). Probabilistic retrieval based
on staged logistic regression, in Proceedings of the 15th Annual International
ACM SIGIR Conference on Research and Development in Information Re-
trieval, SIGIR ’92 (ACM, New York, NY, USA), pp. 198–210.

Covington, P., Adams, J. and Sargin, E. (2016). Deep neural networks for youtube
recommendations, in Proceedings of the 10th ACM Conference on Recom-
mender Systems, RecSys ’16 (ACM, New York, NY, USA), pp. 191–198.

Croft, B., Metzler, D. and Strohman, T. (2009). Search Engines: Information
Retrieval in Practice (Addison-Wesley, Boston (MA)).

Duchi, J. C. and Singer, Y. (2009). Efficient online and batch learning using
forward backward splitting, Journal of Machine Learning Research 10,
pp. 2899–2934.

Fielding, R. T. (2000). Architectural Styles and the Design of Network-based Soft-
ware Architectures, Ph.D. thesis, University of California, Irvine.

Freno, A., Saveski, M., Jenatton, R. and Archambeau, C. (2015). One-Pass Rank-
ing Models for Low-Latency Product Recommendations, in Proceedings of
the 21th ACM SIGKDD International Conference on Knowledge Discovery

October 25, 2018 12:20 ws-rv9x6-9x6 Book Title 11131-21 page 710

710 A. Freno

and Data Mining, Sydney, NSW, Australia, August 10-13, 2015 (ACM),
pp. 1789–1798.

Freund, Y., Iyer, R., Schapire, R. E. and Singer, Y. (2003). An Efficient Boost-
ing Algorithm for Combining Preferences, Journal of Maching Learning
Research 4, pp. 933–969.

Fuhr, N. (1989). Optimum polynomial retrieval functions based on the probability
ranking principle, ACM Trans. Inf. Syst. 7, 3, pp. 183–204.

Gomez-Uribe, C. A. and Hunt, N. (2016). The netflix recommender system: Al-
gorithms, business value, and innovation, ACM Trans. Management Inf.
Syst. 6, 4, pp. 13:1–13:19.

Herbrich, R., Graepel, T. and Obermayer, K. (2000). Large Margin Rank Bound-
aries for Ordinal Regression, in Smola, Bartlett, Schölkopf and Schuurmans
(eds.), Advances in Large Margin Classifiers, chap. 7 (MIT Press), pp. 115–
132.

Joachims, T. (2002). Optimizing search engines using clickthrough data, in Pro-
ceedings of the Eighth ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (ACM, New York, NY, USA), pp. 133–142.

Kohavi, R., Longbotham, R., Sommerfield, D. and Henne, R. M. (2009). Con-
trolled experiments on the web: survey and practical guide, Data Mining
and Knowledge Discovery 18, 1, pp. 140–181.

Langford, J., Li, L. and Zhang, T. (2009). Sparse Online Learning via Truncated
Gradient, Journal of Machine Learning Research 10, pp. 777–801.

Liu, T.-Y. (2009). Learning to rank for information retrieval, Foundations and
Trends in Information Retrieval 3, 3, pp. 225–331.

McMahan, H. B., Holt, G., Sculley, D., Young, M., Ebner, D., Grady, J., Nie,
L., Phillips, T., Davydov, E., Golovin, D. et al. (2013). Ad click prediction:
a view from the trenches, in Proceedings of the 19th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining (KDD 2013)
(ACM), pp. 1222–1230.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S. and Dean, J. (2013). Dis-
tributed representations of words and phrases and their compositionality, in
C. J. C. Burges, L. Bottou, Z. Ghahramani and K. Q. Weinberger (eds.), Ad-
vances in Neural Information Processing Systems (NIPS 2013), pp. 3111–
3119.

Mohan, A., Chen, Z. and Weinberger, K. Q. (2011). Web-Search Ranking with
Initialized Gradient Boosted Regression Trees, in Yahoo! Learning to Rank
Challenge, pp. 77–89.

Negahban, S., Ravikumar, P., Wainwright, M. J. and Yu, B. (2009). A uni-
fied framework for high-dimensional analysis of M-estimators with de-
composable regularizers, in Y. Bengio, D. Schuurmans, J. D. Lafferty,
C. K. I. Williams and A. Culotta (eds.), Advances in Neural Information
Processing Systems 22 (NIPS 2009), pp. 1348–1356.

Sculley, D. (2009). Large scale learning to rank, in NIPS Workshop on Advances
in Ranking.

Weston, J., Bengio, S. and Usunier, N. (2011). WSABIE: Scaling Up to Large
Vocabulary Image Annotation, in IJCAI 2011, Proceedings of the 22nd

October 25, 2018 12:20 ws-rv9x6-9x6 Book Title 11131-21 page 711

Clothing Recommendations: The Zalando Case 711

International Joint Conference on Artificial Intelligence, Barcelona, Cat-
alonia, Spain, July 16-22, 2011, pp. 2764–2770.

Xiao, L. (2010). Dual Averaging Methods for Regularized Stochastic Learning and
Online Optimization, Journal of Machine Learning Research 11, pp. 2543–
2596.

Xu, J. and Li, H. (2007). Adarank: A boosting algorithm for information retrieval,
in SIGIR ’07: Proceedings of the 30th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (ACM,
New York, NY, USA), pp. 391–398.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic
net, Journal of the Royal Statistical Society. Series B 67, 2, pp. 301–320.

October 25, 2018 12:20 ws-rv9x6-9x6 Book Title 11131-21 page 712

October 25, 2018 15:26 ws-rv9x6-9x6 Book Title 11131-combined-index page 713

Index

ε nearest neighbor graph (εNNG), 375
k nearest neighbor graph (kNNG),

377

A/B testing, 305, 507, 587, 588, 594
A/B tests, 476
accuracy, 557
activation function, 82
active learning, 257, 258, 260, 261,

268, 274, 279, 280, 282–284
Adamic-Adar, 528
adaptive learning rate, 85
algorithmic transparency, 438–440
algorithms, 203, 204, 219, 220, 222
all-pairs similarity search, 375
alternating least squares (ALS), 391
Amazon AWS, 696
Apache Solr, 698
Apache Spark, 695
artificial neuron, 80
association rules, 583, 584, 594, 595
autoencoder, 93
average reciprocal hit rank (ARHR),

372, 388, 400

backpropagation, 81
backpropagation through time, 100
batch gradient descent, 84
beyond-accuracy measures, 20
beyond-accuracy metrics, 508
binary tree, 490
black sheep, 138
bpr-max loss, 108
business success, 510

canonical polyadic decomposition,
390

CARS, 174
CARSKit, 188
cascade hybrid, 131
CBOW, 89
circle of trust, 534
cold start, 233, 253, 255–257, 265,

266, 269, 270, 272, 274, 276, 279,
280, 282–284, 604, 611, 615

cold-start problem, 133
collaborate filtering, 466
collaborative filtering, 1, 127, 220,

225, 537
Comcast, 465–470, 472, 477, 478
commute time, 533
concentration bias, 332, 343–345
contact recommendation algorithms,

524
contact recommendations, 519
content-based recommendation, 127,

501
content-based RS, 12
context, 175
context condition, 177
context dimension, 177
context selection, 178
context situation, 177
context suggestion, 197
context-aware matrix factorization,

187
context-aware recommendation, 483,

486, 512
context-Aware Recommender

713

October 25, 2018 15:26 ws-rv9x6-9x6 Book Title 11131-combined-index page 714

714 Index

Systems, 174
contextual modeling, 184
contextual post-filtering, 183
contextual pre-filtering, 180
convolutional neural network, 96
coordinate descent (CCD++), 395
course recommendation, 627, 629, 630
coverage, 303

data privacy, 437, 439
dataset partition, 298
datasets, 25, 311, 508, 544
day parting, 472, 474, 476
deep collaborative filtering, 92
deep learning, 79
Deep Learning for Recommender

Systems workshop, 87
deep learning frameworks, 116
denoising autoencoder, 94
descision trees, 492
differential context modeling, 180
differential context relaxation, 180
differential context weighting, 180
differential privacy, 442
dimensionality reduction, 38
discovery, 487
distributed ledger technology, 457
distributed matrix factorization, 488
distributed memory, 386, 390, 391,

393–395
distributed processing, 700
dithering, 608
diversity, 20, 303, 332–335, 339,

347–352
dropout, 83

edge direction, 547
embedding, 89
ensemble design, 132
entity detection, 581
evaluation, 17, 502, 549

candidate items generation, 299
library, 310
reproducibility, 319

evaluation competition
CAMRa, 311

Netflix Prize, 311
RecSys Challenge, 311

evaluation metrics
error-based, 295, 301
non-accuracy, 302
precision-oriented, 296, 301

evaluation protocol, 17, 20, 508
experiments, 212, 223
explicit feedback, 233, 236, 237

Facebook, 543, 546
feature augmentation hybrid, 131
feature combination, 131
feature extraction, 696, 697, 700–702
feature vector, 89
feedfoward neural network, 80
forward pass, 81

garbled circuit, 443, 445, 449
gated recurrent unit, 103
generative adversarial network, 112
generative models, 112
Gini coefficient, 562
graph distance, 529
gray sheep, 138
group building, 204, 210, 211, 222
group modeling, 204, 205, 209, 211,

212, 218, 223
group recommender systems,

203–205, 219, 225, 226
group-based recommendation, 511
GroupLens, 2
gru4rec, 105

hit rate, 302
hit rate (HR), 372, 388, 400
HITS algorithm, 544
hitting time, 532
homomorphic encryption, 443, 445,

447, 449, 450
hybrid recommendation system, 468
hybrid recommendation technique,

130
hybrid recommender, 128, 601, 604,

612, 623
hybridization, 95, 496, 502, 511

October 25, 2018 15:26 ws-rv9x6-9x6 Book Title 11131-combined-index page 715

Index 715

hyperparameter optimization, 118

implicit feedback, 37, 233, 235, 236,
244, 245, 247, 600, 601, 603, 607,
608

impression discounting, 607, 608, 614
incremental updates, 15
Independent Context Similarity, 188
information retrieval, 538
interactional context, 177
Intra-List Diversity (ILD), 303
IR metrics, 549
item embedding, 89
item ranking, 8, 19
item splitting, 181
item-based CF, 6
item-based kNN, 538

Jaccard coefficient, 527
job recommendations, 571, 572, 574,

576–578, 581, 582, 585, 588, 589,
593

Katz, 529
keras, 118
knowledge-based RS, 12

Latent Context Similarity, 188
latent feature, 541
latent feature space, 35, 89
latent features, 35, 39
latent space approaches, 388
learning to rank, 622, 687, 688, 692,

693, 696
Leicht-Holme-Newman index, 530
libraries, 16
limited coverage problem, 36
linear regression, 694
linear TV, 465, 473, 474, 477
link prediction, 520
link recommendation, 519
LinkedIn, 543
listening logs, 488, 510
local path index, 530
long short term memory, 102
Love, 544

massive open online courses, 627

matrix completion, 2, 38

matrix factorization, 38, 388, 487,
541, 627–629, 646

hybrid approach, 60, 65

learning to rank, 63

low rank approximation, 39

weighted, 48

Mean Absolute Error (MAE), 301

Mean Average Precision (MAP), 302

mean first passage time, 532

Mean Reciprocal Rank (MRR), 302

memory-based CF, 4

meta-level hybrid, 131

metadata, 476–478

mini-batch, 84

missing not at random, 40

mixed hybrid, 130

mixed systems, 132

model-based CF, 4

Money algorithm, 533

monolithic design, 132

MOOC, 627–630, 636, 637, 640, 644

most common neighbors, 526

movie recommendations, 465, 466,
468

MovieLens, 25

multi-objective optimization, 505

Multidimensional Context Similarity,
188

music consumption, 485

music preferences, 485, 496

nearest neighbors, 3, 4, 10, 489, 494,
497, 537

nearest-neighbor approaches, 373

neighborhood-based collaborative
filtering, 606, 618

Netflix prize, 4

neural network, 80

new context, 255, 279, 280

new item, 253, 255, 262, 266, 267,
269, 279–281, 284

new user, 253, 255, 257, 259, 262,
266, 267, 279–281, 284

October 25, 2018 15:26 ws-rv9x6-9x6 Book Title 11131-combined-index page 716

716 Index

next-track music recommendation,
493

normalized discounted cumulative
gain (nDCG), 302

novelty, 303, 336–339, 352–354
novelty and diversity, 560

OCCF, 37
offline evaluation, 18, 20, 617, 619,

620
offline experiments, 154
offline jobs, 696, 698, 699, 701
offline metrics, 465, 466, 476
online evaluation, 617, 621
online experiment, 154
online metrics, 465, 466, 476
operational excellence, 688, 708
over-specialization, 136

pairwise preference elicitation, 247
paragraph2vec, 90
parallel architectures, 370
parallel computing, 370
path-based methods, 529
People You May Know, 543
personalization, 467, 471, 472, 474
pL2AP, 376
pL2Knng, 379
playlist continuation, 496
popularity bias, 331, 332, 343–347
popularity-based recommendation,

526
precision, 301
predictive popularity, 471, 472, 475
preference aggregation, 211, 221
preference elicitation, 233, 234, 236,

246, 253, 282
preferential attachment, 526
prod2vec, 91
profile injection, 407–409
PropFlow algorithm, 535
pros and cons, 12
PureSVD, 397
pytorch, 118

quality factors, 503, 504

quality perception, 510

radio station, 492
random walk, 531
ranking task, 549
rating elicitation, 258, 260, 261, 275,

282
rating matrix, 2
rating prediction, 4, 5, 18, 37, 371,

388
rating scale, 236, 237, 239–242, 247
recall, 301
recency, 15
recommendation purpose, 9
recommendation scenarios, 482
recommender system, 466, 468, 471,

473, 477
recommender systems libraries, 163
recommender systems paradigms, 12
recurrent neural network, 96, 100
regularization, 693–695, 705
repetition, 485
representational context, 177
reproducibility, 119
resource allocation, 528
Ringo, 481, 482
robustness, 405
Root Mean Squared Error (RMSE),

301, 373, 397
Rooted PageRank, 531

SALSA, 533
scalability, 14, 119, 485, 498, 548
semantic pre-filtering, 180
sequence learning, 495
serendipity, 303, 338, 354–356
session-based recommendation, 7, 97
session-based recommender system,

245, 247
shared memory, 379, 382, 391,

393–395
short-term intents, 9
similarity join, 375
SimRank, 536
singular value decomposition, 41

folding-in, 45

October 25, 2018 15:26 ws-rv9x6-9x6 Book Title 11131-combined-index page 717

Index 717

truncated SVD, 43
user and item bias, 54

singular value decomposition (SVD),
397
randomized, 399

skip-gram, 90
social network, 571
social networks, 519
SoRec algorithm, 542
sparse linear methods (SLIM), 381

global and local (GLSLIM), 384
sparsity, 137, 253, 255, 258, 264, 270,

272, 274, 281, 284
stochastic gradient descent, 84
stochastic gradient descent (SGD),

393
strong scaling, 377, 379, 383, 384
supervised methods, 540
supervised random walks, 536
switching hybrid, 130
system design, 233
system robustness, 438–440

tapestry, 2
tensor factorization, 184, 388
tensorflow, 117
tf-idf, 539
theano, 116
time-aware recommender systems,

174
top-N recommendation, 371, 381,

384, 397
top-N recommendation, 87
top-n recommendation, 37
Tumblr, 544, 546
TV recommendations, 465, 466, 468

Twitter, 544, 545

UISplitting, 181
user intention, 491
user interaction, 498
user interface, 15
user model, 235
user modeling, 582, 597
user personality, 257, 268
user preferences, 233, 234, 236, 238,

245
user studies, 23, 306, 510
user-based CF, 4
user-based collaborative filtering, 599,

601, 604, 605, 607, 609, 613, 615,
618

user-based kNN, 537
utility function, 36

value imputation, 41
vanishing gradient problem, 83
vanishing/exploding gradient

problem, 100
variational autoencoder, 114
vector space model, 538
video-on-demand, 471, 474

warm start, 383, 387
web services, 696, 698
weighted hybrid, 130
weighted matrix factorization, 48

folding-in, 51, 53
regularization, 49
user and item bias, 43

Who to Follow, 533, 544
word2vec, 89

October 25, 2018 15:26 ws-rv9x6-9x6 Book Title 11131-combined-index page 718

	11131-00a-preface
	11131-00b-toc
	11131-01-bookblock
	1. Collaborative Filtering:Matrix Completion and Session-Based Recommendation Tasks
	Dietmar Jannacha and Markus Zankerb
	Introduction
	Historical Background
	Collaborative Filtering as a Matrix Completion Task
	Basic Algorithms for Matrix Completion
	Collaborative Filtering as Session-Based Recommendation
	A Nearest-Neighbor Algorithm for Session-Based Recommendation

	Recommendation Paradigms
	Pros and Cons of Collaborative Filtering
	Pros and Cons of Nearest-Neighbor Methods

	Practical Implementation Considerations
	Practical Evaluation Considerations
	General Considerations
	Offline Evaluation
	The Role of User Studies
	Datasets

	Summary and Further Reading
	Bibliography

	Index

	11131-02
	11131-03-bookblock
	3. Cutting-Edge Collaborative Recommendation Algorithms: Deep Learning
	Balázs Hidasi
	Introduction to deep learning
	Neuron and neural networks
	Techniques for easier training of deep networks

	Deep learning for recommender systems
	Brief history of deep learning in recommender systems
	Advantages and drawbacks

	Learning item embeddings
	Word2vec
	Prod2vec

	Deep collaborative filtering
	Autoencoder based approaches

	Direct use of content
	Session-based recommendations
	Recurrent Neural Networks
	The GRU4Rec algorithm
	Extending the model
	Brief introduction to generative models

	Practical guide
	Frameworks
	Best practices

	Summary
	Bibliography

	Index

	11131-04-bookblock
	11131-05-bookblock
	11131-06-bookblock
	6. Group Recommendations
	Ludovico Borattoa and Alexander Felfernigb
	Introduction
	Families of Approaches: Architectural Solutions
	Constructing Group Preference Models
	Merging Recommendations Made for Single Users
	Aggregating Individual Predictions

	Group Building
	Group Modeling
	Existing Strategies
	Discussion

	Rating Prediction
	Memory-based Algorithms
	Model-based algorithms

	Case-study: Comparing Families of Approaches
	Experimental setup
	Results

	Future Directions: Open Issues and Challenges
	Conclusions
	Bibliography

	Index

	11131-07-bookblock
	7. User Preference Sources: Explicit vs. Implicit Feedback
	Paolo Cremonesi, Franca Garzotto and Maurizio Ferrari Dacrema
	Introduction
	Design dimensions
	Demographics vs. Preferences
	Sources of Preferences
	Categorical vs. Numerical Explicit Preferences
	Rating Scale
	Human vs. System Controlled Elicitation
	Number of Ratings

	Noise
	Rating scale
	Granularity
	Labels
	Mid-point

	Number of ratings
	Interface
	Implicit feedback
	Future directions
	Bibliography

	Index

	11131-08
	8. User Preference Elicitation, Rating Sparsity and Cold Start
	Mehdi Elahi, Matthias Braunhofer, Tural Gurbanov and Francesco Ricci
	Introduction
	Algorithmic solutions
	Active Learning
	Cross-Domain Recommendation
	Recommendation Based on Implicit Feedback
	Content-Based Recommendation
	Leveraging User Descriptions
	Better Using Existing Preference Knowledge

	Tools & Datasets
	Tools
	Datasets

	Performance Comparison
	Caveats

	Guidelines
	Conclusions and Future Directions
	Bibliography

	Index

	11131-09
	9. Offline and Online Evaluation of Recommendations
	Alejandro Bellogín and Alan Said
	Introduction
	Basic Concepts in Evaluation
	Offline evaluation
	Online evaluation and User studies

	Algorithmic Solutions
	Evaluating collaborative filtering algorithms
	Evaluating social recommendation algorithms
	Evaluating group recommendation algorithms
	Evaluating context-aware algorithms

	Available Resources
	APIs and libraries for evaluation
	Datasets for evaluation
	Competitions about evaluation

	Experimental Results
	Practical Considerations
	Design issues to evaluate recommender systems
	Reproducibility issues on evaluation

	Future directions
	Bibliography

	Index

	11131-10-bookblock
	10. Recommendations Biases and Beyond-Accuracy Objectives in Collaborative Filtering
	Pasquale Lops, Fedelucio Narducci, Cataldo Musto, Marco de Gemmis, Marco Polignano and Giovanni Semeraro
	Introduction
	Popularity Bias and Beyond Accuracy Metrics
	Popularity Bias
	Diversity
	Novelty
	Serendipity

	Algorithmic solutions
	Dealing with Popularity Bias
	Increasing Diversity
	Increasing Novelty
	Increasing Serendipity

	Available resources
	Challenges and Future directions
	Bibliography

	Index

	11131-11-bookblock
	11. Scalability and Distribution of Collaborative Recommenders
	Evangelia Christakopoulou
	Shaden Smith
	Mohit Sharma
	Alex Richards
	David Anastasiu
	George Karypis
	Introduction
	Notation
	Evaluation

	Scaling up nearest-neighbor approaches
	Use of neighborhoods in Recommender Systems
	-nearest neighbor graph construction
	k-nearest neighbor graph construction

	Efficiently Estimating Item-Item Similarities by solving an Optimization Problem
	Sparse LInear Methods for Top-N Recommendation (SLIM)
	Global and Local Sparse LInear Methods for Top-N Recommendation (GLSLIM)

	Scaling up latent factor approaches
	Overview of matrix and tensor factorization
	Alternating Least Squares (ALS)
	Stochastic Gradient Descent (SGD)
	Coordinate Descent (CCD++)
	Evaluation of optimization algorithms
	Singular Value Decomposition (SVD)

	Conclusion
	Bibliography

	Index

	11131-12-bookblock
	12. Robustness and Attacks on Recommenders
	Neil J. Hurley
	Introduction
	Robustness Analysis Context
	Attack Knowledge
	Toy Example

	Attack Profile Nomenclature
	Attack Strategies
	Noise Injection

	Purposeful Attack Strategies
	robustness library
	Measuring Robustness
	Evaluation
	Unbiased Noise Injection
	Targeted Push Analysis

	Detecting Profile Injection
	Supervised Classification using Neyman-Pearson Statistical Detection Theory
	Unsupervised Attack Detection using Profile Clustering
	Discussion

	Recommender Robustness and the Spread of Fake News
	Conclusion
	Bibliography

	Index

	11131-13-bookblock
	13. Privacy in Collaborative Recommenders
	Qiang Tang
	Introduction
	Recommender in a Nutshell
	Contribution and Organization

	Privacy Concerns in Recommenders
	Entanglement with Robustness and Transparency
	High-level Literature Review

	Examining some Cryptographic Solutions
	Extra Third-party enabled Solutions
	Auxiliary Information enabled Solution

	Examining some Differentially Private Solutions
	Global Differential Privacy Approach
	Local Differential Privacy Approach
	Comparison to Cryptographic Solutions

	Future Directions
	Bibliography

	Index

	11131-14-bookblock
	14. TV and Movie Recommendations: The Comcast Case
	Shahin Sefati, Jan Neumann and Hassan Sayyadi
	Introduction
	Developed Algorithms
	Collaborative Filtering
	Hybrid Recommendation System
	Implicit and Explicit Favorites (I know what I want to watch)
	Predictive Popularity
	Day Parting

	Addressed Challenges and Problems
	For You: Personalized Recommendation for TV Shows and Movies
	People Also Watched
	Because You Watched
	What Should I Watch?
	Taste-based menus: Menu Personalization
	Personalized Search

	Implementation Resources and Historical Evolution and Versions
	Evaluation
	Offline and Online metrics

	Lessons Learned and Future Directions
	Deep Learning-based Recommender System
	Automatic Content Analysis

	Bibliography

	Index

	11131-15-bookblock
	15. Music Recommendations
	Dietmar Jannacha, Iman Kamehkhoshb and Geoffray Bonninc
	Introduction
	Music Recommendation Tasks
	Specific Challenges of Music Recommendation
	Chapter Outline

	Computational Tasks and Algorithms
	Implicit Matrix Factorization for Discovery and Item Search
	Adaptive Playlist Generation

	Challenges
	Data-Related Aspects
	User Interaction Aspects
	Incorporating Song Feature Information

	Evaluation
	Quality Criteria
	Balancing Different Quality Factors
	Performance Assessment in Real-World Settings
	Comparing Algorithms in Academic Environments

	Lessons Learned, Open Challenges, and Outlook
	Bibliography

	Index

	11131-16-bookblock
	11131-17-bookblock
	17. Job Recommendations: The XING Case
	Katja Niemann, Daniel Kohlsdorf and Fabian Abel
	Introduction
	XING
	Challenges
	Structure of XING's Job Recommender System

	Data Processing Pipelines
	Users and Items
	Entity Recognition
	User Modeling

	Job Recommender System
	Recommender Engines
	Filtering and Ranking Components

	Evaluation
	Evaluation Setup
	Case: Recommender Engines
	Case: Rating Prediction

	A complex recommender system in production
	Architecture
	Online and Batch Processing
	Re-training and Deployment of Components

	Conclusion
	Bibliography

	Index

	11131-18
	18. Academic Recommendations: The Mendeley Case
	Maya Hristakeva, Daniel Kershaw, Benjamin Pettit, Saúl Vargas and Kris Jack
	Introduction
	Mendeley Suggest Overview
	User Interface
	Data Sources
	Recommender Approaches
	Recommendation Post-processing

	Developed Algorithms
	User-Based Collaborative Filtering
	Significance Weighting
	Time Decay
	Impression Discounting
	Dithering

	Addressed challenges and problems
	Generating recommendations at scale
	Recommending high quality articles
	Respecting users' privacy
	Serving fresh recommendations
	Recommending articles to all users

	Implementation resources
	Recommendation Generation
	Recommendation Service

	Historical evolution
	Evaluation
	Offline Evaluation
	Online Evaluation

	Lessons learned and future directions
	Bibliography

	Index

	11131-19-bookblock
	19. MoocRec.com: Massive Open Online Courses Recommender System
	Panagiotis Symeonidis1 and Dimitrios Malakoudis2
	Introduction
	Related work
	System's Architecture
	The Website
	Homepage
	A Skill-aware Recommender System
	The search engine
	The Alert Creation page
	Administrator's privileges

	Database
	Database Tables

	Web Crawler
	Coursera mining
	EdX mining
	LinkedIn mining

	Recommendation Engine and Developed Algorithms
	Content-based filtering
	Enhanced Matrix Factorization

	Conclusions
	Bibliography

	Index

	11131-20
	20. Food Recommendations
	Christoph Trattner and David Elsweiler
	Introduction
	Developed Approaches
	Content-Based Methods (CB)
	Collaborative Filtering-Based Methods (CF)
	Hybrid Methods (Hybrid)
	Context-Aware Approaches
	Group-Based Methods
	Health-Aware Methods

	Addressed Challenges and Problems
	Implementation Resources
	Recipe, Meal plan, Menu and Grocery Store Datasets
	Nutrition & Health Resources
	Food recommendation System Frameworks

	Historical Evolution and Versions of the System
	Evaluation: Metrics and Methodologies
	Lessons Learned and Future Directions
	Bibliography

	Index

	11131-21-bookblock
	21. Clothing Recommendations:The Zalando Case
	Antonino Freno
	Introduction
	Use Cases and General Approach
	Item-based Recommendations
	Personalized Recommendations
	Personalized Item-based Recommendations

	Developed Algorithm: Learning to Rank
	Related Work
	Ranking Loss Minimization

	System Architecture
	Offline Jobs
	Web Services

	Addressed Challenges and Problems
	Adaptation to Diverse Use cases
	System Operation
	Exploitation of Pre-existing Signal

	Experimental Evaluation
	Offline Evaluation
	Online Evaluation

	Conclusions and Future Directions
	Bibliography

	Index

	11131-combined-index
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.440 841.680]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.440 841.680]
>> setpagedevice

