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Abstract 

Physiological responses contain rich affective 

information even when humans are not expressing any 

external signs. In this paper, we investigate the use of 

the Blood Volume Pulse (BVP) signals for indexing 

cognitive load. An experiment, which introduced 

cognitive load as a secondary task in a decision making 

context was conducted in the study. BVP signals were 

analyzed in order to establish relationships between 

BVP and cognitive load levels. A set of features (e.g. 

peak and max features) was found to be significantly 

distinctive across different cognitive load levels. The 

identified BVP features can be used to set up machine 

learning models for the automatic classification of CL 

levels in intelligent systems. 

Author Keywords 
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ACM Classification Keywords 
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Introduction 

Cognitive load (CL, also known as mental workload) has 

important implications for various application areas 

such as adaptive automation and training, driving 

safety, and military command and control [5]. It refers 
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to the amount of mental demand imposed on a user by 

a particular task, and is associated with the limited 

capacity of the user’s working memory and the ability 

to process novel information [3]. The concept of 

working memory has set the foundation for the 

cognitive load analysis, and cognitive load research is 

often considered as the examination of how and to 

what extent the working memory is deployed and 

utilized during a specific cognitive task.  

The cognitive load experienced by a user in a task can 

strongly influence productivity and performance, as 

high levels of cognitive load is known to cause stress, 

decrease performance and experience of users, and 

hinder their ability to learn [2]. Cognitive load 

measurement (CLM), therefore, plays an important role 

in applications involving human-machine interactions. 

In recent years, a number of methods have been 

developed to estimate the CL level. These methods can 

be categorized into four types, ranging from subjective 

ratings, performance, behavioral to physiological 

measures [3,20]. Among these, physiological 

approaches allow CL to be measured at a high rate and 

with a high degree of sensitivity because of the 

continuous availability of human physiological signals. 

Much work has focused on finding physiological 

features indexing CL, especially emphasizing galvanic 

skin response (GSR) and electroencephalogram (EEG) 

features. 

Sympathetic activation has been found to cause 

changes in heart rate, stroke volume and peripheral 

cardiovascular resistance [19]. These effects can be 

sensed by monitoring the amount of blood perfusion in 

a peripheral region of the body, such as the tip of a 

finger, which is proportional to the opposition presented 

by blood to the infrared light. This technology is called 

Blood Volume Pulse (BVP), and it measures the blood 

volume in the skin capillary bed in the finger with 

photoplethysmography (PPG). BVP is often used as an 

indicator of affective processes and emotional arousal, 

which play an essential role in rational decision making, 

learning and cognitive tasks [19]. Because of its wide 

usage (even available on some smart phones or 

watches), BVP is considered a user-friendly method for 

obtaining an individual’s physiological signals.  

This paper aims to investigate the use of BVP features 

for indexing CL levels in cognitive tasks. Various BVP 

features are extracted and analyzed, in order to find 

their correlations with CL. It is found that peak features 

and max features of the BVP signal showed significant 

differences at various CL levels, especially for short-

time BVP signals where Heart Rate Variability (HRV) is 

difficult to assess. 

Related Work 

BVP signal is an ideal means for CL investigation as it is 

robust, relatively cheap to collect, and unobtrusive to 

the user. It yields a continuous measure related to 

arterial activity changes correlated with the 

sympathetic branch of the neural system. Zhai et al. 

[19] used BVP to detect stress in HCI applications. BVP 

signal features such as BVP period (also called inter-

beat interval), amplitude, and HRV related frequency 

features were extracted to index stress. It was 

observed that the Low Frequency (LF) bands of heart 

beat signals are consistently related to CL, while high 

frequency (HF) bands were also shown to be sensitive 

to mental effort [13]. In general, the heart rate 

increases and overall HRV decreases when mental 

effort increases [14]. Kennedy and Scholey [9] found 

that cognitive processing is associated with higher 

heart rate values. The 0.1 Hz component of HRV is 
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often considered as an effective measure of mental 

strain and is likely to indicate emotional strain (stress 

reactions) or general activation [15].  

There has been a large body of work that uses 

Respiratory Sinus Arrhythmia (RSA) to classify an 

individual’s health or mental state. For example, Healey 

and Picard [6] found the physiological links between 

the RSA and a driver’s stress level. Although these 

studies have shown the links between the mental state 

and RSA changes, these correlations have largely been 

analyzed manually.  

Therefore, BVP, which is used to measure the heart 

rate and related features, can serve as an objective 

indicator and an automatic physiological measure, 

relatively free from demand characteristics and report 

biases in CLM. However, little work has looked into the 

use of BVP for indexing user’s CL levels.  

Experiment 

A user experiment was designed and it aimed at 

determining CL levels from the measured BVP signals. 

Task Design 

The experiment was designed using water pipe failure 

prediction task [1,11] replicated in the lab 

environment. Each subject was asked to make a budget 

plan, i.e. a budget in terms of pipe length to be 

inspected, using the failure prediction models learned 

from the historical pipe failure records, in order to 

minimize water pipe failure. Two ML models were 

provided for each estimation task. Participants were 

required to make decisions by selecting one of two 

presented ML models and then making a budget 

estimate based on the selected ML model.  CL was 

induced using the dual-task design: the primary task 

was predicting the pipe length to check using the data 

displayed via graphs; and the secondary task was 

retaining a random sequence of digits for the duration 

of the primary task [4]. Four increasing levels of 

cognitive load (labeled as CL1, CL2, CL3 and CL4) were 

induced using three, five, seven and nine digits to be 

retained during the primary task and then to be 

recalled after the primary task. Every subject 

undertook 36 prediction tasks – 9 under each CL level. 

The order of tasks was randomized. 

Participants 

A total of 42 participants were recruited for the study. 

Ages of participants ranged from 20 to 57 years. The 

participants were with different background of 

researchers and administrative staff.  

Experimental Conditions & Data Collection  

In this study, participants were to perform similar tasks 

under four increasing cognitive load level conditions 

(independent variable). The CL levels administered 

were labeled from CL1 to CL4. BVP devices from 

ProComp Infiniti of Thought Technology Ltd were used 

and worn on the proximal part of the middle finger of 

the left hand to collect blood volume pulse of subjects. 

Analysis 

BVP Features 

An example BVP signal collected in the experiment is 

shown in Figure 1. As a periodical signal, BVP is 

associated with three frequency bands: Very Low 

Frequency (VLF) (0.00-0.04Hz), Low Frequency (LF) 

(0.05-0.15Hz), and High Frequency (HF) (0.16-

0.40Hz). The duration of the BVP signal in this study is 

under 5 minutes and this is too short to consider VLF 

activity. On the other hand, LF band reflects 

sympathetic activity and HF band is related to 

parasympathetic activity [19]. Kristal-Boneh et al. [10] 
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showed that when experiencing mental stress, the 

sympathetic activity increases whereas 

parasympathetic activity decreases.  

The feature extraction process of BVP signals involves 

the following steps: 1) signal smoothing, 2) signal 

normalization, 3) extrema detection, and 4) feature 

encoding.  

At the signal smoothing step, the observed signal is 

convolved with a Hanning window [16]. The window 

size, which behaves as a cut off frequency, is dictated 

by the maximal admissible heart rate in a normal 

situation, namely 200 beats/minute [8][18]. This 

filtering removes the dicrotic notches from the original 

signal, because they are not part of the stress reaction 

[17]. We observed that BVP was highly subjective, and 

it differed across participants. Therefore, BVP signals 

are normalized using Z-Normalization, to compensate 

for subjective differences between various signals 

before the extrema detection:    

                                      (1) 

where µ and σ are the mean and variance of the BVP 

signal of all tasks conducted by a subject respectively, 

and S and SN are the original and normalized BVP 

signals respectively.  

As emotional responses create variations in HRV, the 

mean and variance of the BVP are extracted as features 

to index CL. The RSA features such as LF, HF and the 

LF/HF ratio are extracted to measure the activity of the 

parasympathetic nervous system. In this work, besides 

statistical features and frequency features, peak 

features that reflect the strength of the BVP signals are 

also extracted. In order to extract peak features 

(illustrated with stars in Figure 1), extremum detection 

is performed on the smoothed signal.  

In summary, BVP features extracted in this study 

include:  

• Statistical features: mean of the BVP values in a 

task, variance of the BVP values in a task; 

• Peak features: mean of peaks of the BVP signal in a 

task, variance of peaks of the BVP signal in a task; 

• Max features: amplitude of the maximum of the 

BVP signal in a task (or the largest peak of the 

signal in a task), time of the maximum of the BVP 

signal in a task, relative (to the entire task 

duration) time of the maximum of the BVP signal in 

a task. 

• Frequency features: LF, HF, LF/HF ratio. 

BVP Feature Analysis 

One-way ANOVA tests with post-hoc analysis using t-

test were performed to evaluate CL level discrimination 

with BVP features. The ANOVA tests found that features 

of peak mean BVP (F3,1248=19.685, p<.000), peak 

variance BVP (F3,1248=19.157, p<.000), amplitude of 

max (F3,1248=3.359, p<.018), and time of max 

(F3,1248=7.714, p<.000) showed statistically significant 

differences among the four CL levels. Figure 2 shows 

peak mean BVP among four CL levels of tasks. The 

other three significant features (peak variance, 

amplitude of max, time of max) demonstrate similar 

trends. 

Post-hoc analyses with t-tests were conducted with a 

Bonferroni correction applied, resulting in a significance 

level set at p <.0125 (.05/4) for all pairwise 

differences. For the feature of peak mean BVP, the 

post-hoc tests found that (see Figure 2), CL1 showed a 

significantly lower peak mean BVP than CL2 (t =-4.099, 

p<.000), CL3 (t =-3.487, p<.000), and CL4 (t =-7.619, 

p<.000). It was also found that CL2 (t =-3.825, 

p<.000) and CL3 (t =-3.947, p<.000) had a lower peak 

 

Figure 1: An example of BVP 
signal. 

 

 

Figure 2: Peak mean BVP among 

four CL levels of tasks. 
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mean BVP than CL4. The post-hoc t-tests also found 

similar significant differences among the CL levels for 

the peak variance BVP feature.  

The post-hoc t-tests also found that CL3 (t =-2.6, 

p<.001) had a significantly lower amplitude of max BVP 

than CL4. It was found that CL1 had a significantly 

lower time of max BVP than CL3 (t =-3.727, p<.000) 

and CL4 (t =-4.662, p<.000).  

Discussions and Ongoing Work 

Discussions 

Our analyses have shown that both peak features and 

max features of the BVP signal achieved significant 

differences among tasks at different CL levels. 

However, frequency features such as LF, HF, or LF/HF 

did not show significant differences among the CL 

levels. 

This study found that the features of peak mean BVP 

and peak variance BVP showed significant differences. 

When the peaks of the BVP signal are analyzed, only 

the features with the frequency lower than the heart 

rate, i.e., VLF, LF, and HF are considered. These 

features are all associated with RSA. From this 

perspective, by analyzing peaks of the BVP signal, we 

approximate the features of RSA, which is a measure of 

the sympathetic and parasympathetic nervous system. 

Therefore, the significance of the peak features of BVP 

for CL levels is in line with previous findings [7].  

The LF and HF RSA features were not significant, 

possibly because the tasks were not long enough to 

capture the RSA cycle. The lower bound of the RSA 

feature is 0.04Hz, i.e., 25 seconds are required to 

capture the full period of RSA. To get an accurate 

measurement of the activity of parasympathetic 

nervous system, more cycles of the signal are required. 

In our experiment, the tasks ranged from 20 to 120 

seconds, which may not suffice to capture the activity 

of parasympathetic nervous system.  

The mean and variance of the peaks can be seen as a 

proxy for HF and LF, as the changes in the peaks 

represent the changes in RSA.  A larger variance may 

indicate an increased sympathetic and parasympathetic 

activity. If the value of both activities is higher than 

normal, this will result in a higher mean and variance of 

the signal.  

The max features were also found significantly different 

across the CL levels. A maximum in the BVP signals 

could occur when the change in the sympathetic and 

parasympathetic activity is largest. When a person 

experiences an extraordinary emotional state, the 

activation of the sympathetic division of the nervous 

system helps the body to better cope with this state 

[12]. These changes can be reflected in the BVP signals 

with the variation of stimulations. The maximum of the 

BVP signal could also be due to human body 

movement, which could create artifacts in the signals 

that are detected as a maximum. 

We acknowledge that physiological signals such as BVP 

may be affected by emotion besides cognition. In this 

study, we assume that subject’s emotion keeps 

constant during the short task period, and therefore, 

the BVP changes mainly reflect cognition variations 

during task time. 

Ongoing Work 

Our ongoing work focuses on the development of 

machine learning models to classify CL levels based on 

the identified BVP features. Different widely used 

classifiers such as Random Forest (RF), Naïve Bayes 

(NB), AdaBoost (AB), and Support Vector Machine 

(SVM) will be firstly applied to evaluate the 
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discrimination of BVP features in indexing CL levels. 

More advanced customized classifiers will then be 

developed to accurately classify CL levels. 

Besides, we plan to fuse multiple modalities such as 

GSR, pupillary responses and BVP for improving the CL 

classification performance. Our ultimate goal is to 

develop automatic and real time CL measurement 

approaches during task time. 

Implications 

The findings in this paper can be used in various HCI 

applications, where non-intrusive devices, e.g., smart 

phones or watches, are used to record the BVP signals. 

By analyzing the signals, the user’s CL level can be 

discovered in real time. The BVP based CLM has 

advantages of easily accessible and low cost and it is 

easier to implement than GSR or eye-tracker based 

CLM approaches.  

Conclusions and Future Work 

This paper investigated the use of BVP features for 

indexing CL levels. It was found that peak and max BVP 

features were significantly distinctive among cognitive 

tasks. This research suggested new directions and 

potentials of using everyday human hand-held/worn 

devices such as smart phones, watches for robust, 

relatively cheap, and unobtrusive human cognitive load 

monitoring. 

In the future, advanced CL load classification models 

will be developed to index CL levels based on BVP 

features. We also plan to fuse multiple modalities such 

as BVP, GSR, and pupil information for improving the 

CL classification performance.  
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