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ABSTRACT
The proliferation of online video content has triggered nu-
merous works on its evolution and popularity, as well as on
the effect of social sharing on content propagation. In this
paper, we focus on the observable dependencies between the
virality of video content on a micro-blogging social network
(in this case, Twitter) and the popularity of such content
on a video distribution service (YouTube). To this end, we
collected and analysed a corpus of Twitter posts containing
links to YouTube clips and the corresponding video meta-
data from YouTube. Our analysis highlights the unique
properties of content that is both popular and viral, i.e., at-
tracts high number of views on YouTube and achieves fast
propagation on Twitter. With this in mind, we proceed
to the predictions of popular-and-viral clips and propose a
framework that can, with high degree of accuracy and low
amount of training data, predict videos that are likely to be
popular, viral, and both. The key contribution of our work
is the focus on cross-system dynamics between YouTube and
Twitter. We conjecture and validate that cross-system pre-
diction of both popularity and virality of videos is feasible,
and can be performed with a reasonably high degree of ac-
curacy. One of our key findings is that YouTube features
capturing user engagement, have strong virality prediction
capabilities. This findings allows to solely rely on data ex-
tracted from a video sharing service to predict popularity
and virality aspects of videos.
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1. INTRODUCTION
Over the past decade, video sharing services like YouTube

have witnessed exponential traffic growth. In these services,
some videos achieve immense popularity and have over a bil-
lion views, while others fall into oblivion without attracting
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any interest. In this corner of the attention economy, views –
sometimes called eyeballs – directly impact advertising rev-
enues and are, therefore, of prime importance for content
producers, marketing agencies, and service providers. As a
result, over the recent years, the dynamics and prediction
of user-generated content popularity has captured the at-
tention of service providers, media agencies, and academics
alike [26, 6, 9, 3, 22, 17].

In this paper, we study the popularity of content on a
video sharing platform (YouTube), while simultaneously ob-
serving its propagation in an online social network for micro-
blogging (Twitter). Our methodology allows us to evaluate
the interplay between a video content popularity, i.e., its
inherent propensity to attract views on YouTube, and con-
tent virality, i.e., its potential to elicit Twitter posts from its
viewers. Our underlying assumption is that two main types
of diffusion channel contribute in combination to a content’s
popularity: conventional channels and online social network-
ing (OSN) channels. Conventional diffusion channels are
essentially mass-media outlets, such as news sites, product
reviews, and popular blogs, which can be considered as di-
rect marketing efforts designed to steer traffic and atten-
tion towards the videos. OSN channels, in contrast, make
use of the crowd to generate traffic toward the videos, as
users leverage their social circles to share video links with
friends and followers. What drives users to share videos still
remains largely under-studied [20], but empirical evidence
shows that only some videos (referred to as viral), generate
enough interest for a user to share the video.

We use the Twitter service as a proxy for OSN channels.
We collect data about tweets and re-tweets containing links
to YouTube videos, while simultaneously collecting statis-
tics pertaining to these videos (view counts, number of com-
ments, tags, and so on) from the YouTube service. The data
collected simultaneously on both systems allows us to quan-
tify two system-specific metrics for each video: popularity
and virality. The popularity reflects the exposure of the
video, driven by both the conventional and OSN diffusion
channels, whereas virality measures the propagation of the
clip on Twitter. Note that the two metrics are measured
independently on the two services, although they may be
inter-related and fuel each other. Based on those metrics,
we define video classes by selecting the set of most popu-
lar and most viral videos, and characterize their evolution
on the YouTube and Twitter platforms. We then extract
a suite of Twitter- and YouTube-specific features, and feed
these into a Gradient Boosted Decision Tree classifier [13],
trained to predict popularity and/or virality of videos.
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Table 1: Overview of example video sub-groups.

popular 5,000 videos with highest view count during
the labeling window

viral 5,000 videos with the highest number of
mentions during the labeling window

recent 5,000 videos that are less than 2 days old
at the time of data collection

random 5,000 videos randomly selected from the
seed set of 200,000 videos

We make a number of observations. We demonstrate that
we can produce highly accurate predictions of video pop-
ularity and virality using only a small amount of training
data. For example, our classifier is able to predict with
high accuracy the videos in the viral-and-popular class up
to 7 days in advance, using only 1 day of training data.
We find that only the fundamental features, such as past
number of views and tweet count, are insufficient to obtain
a reasonable classification accuracy for these videos. Using
feature importance analysis, we show that the current tweet-
ing rate, along with the volume of original tweets received
since upload are the two most important Twitter features
to consider for the classification of these videos. Further, an
important result presented is on cross-system predictions:
we show that YouTube features, and in particular features
reflecting the level of user engagement, have a strong predic-
tion capability for the viral-and-popular class, especially for
recently uploaded videos. This result in itself motivates the
application of our approach for identification of both pop-
ular and viral items solely based on data extracted from a
video sharing service.

The remainder of the paper is structured as follows. Sec-
tion 2 presents the datasets used in this work, describes our
data collection methodology, and includes a high-level char-
acterization of the collected data. Section 3 presents our
results, analyses, and observations in detail. Then, section
4 present related work, before concluding and stating direc-
tions for future work in section 5.

2. DATASETS
In this section, we describe our data collection methodol-

ogy and present a high-level characterization of our datasets.
The characterization provides insights into the interplay be-
tween popularity and virality, and serves as a prelude to the
modeling and analyses presented later in the paper.

2.1 Data collection
We initially selected a set of videos to study by sam-

pling the Twitter stream for 24 hours searching for links to
YouTube videos. Specifically, we used the Twitter stream-
ing API with the expanded_url keyword matching with
the domain names used by YouTube, like youtube.com and
youtu.be. Note that the Twitter streaming API is able to
resolve shortened URL links, so tweets containing a short-
ened, e.g., through bit.ly, URL to a YouTube video were
also captured by our search. Using this search facility over
a 24-hour period, we collected links to a large number of
videos from which we randomly selected 200,000 videos to
form the seed set for our dataset. Then, for a period of two

Figure 1: Venn diagram showing the overlaps among the
popular, viral, and recent sub-groups.

Figure 2: Distribution of video age for different classes.

weeks we collected YouTube and Twitter data for each video
included in the seed set. Specifically, we collected statistics
from YouTube once per day and concurrently tracked men-
tions of these videos using the Twitter streaming API. A
detailed description of the collected data and extracted fea-
tures will be presented in Section 3.1.

Out of the 200,000 seed videos, we focus on four sub-
groups, described in Table 1, which are then used in the
remainder of this paper. The popular sub-group contains
the 5,000 videos that attracted the largest number of views
on YouTube. Specifically, among the 200,000 videos in the
seed set, the popular videos account for the most viewed
2.5% of videos. We also define the viral sub-group, which
consists of the 5,000 videos that were mentioned the most on
Twitter1. The recent sub-group consists of 5,000 randomly
selected videos, which are two days old or younger, at the
time of data collection. Finally, the random sub-group con-
sists of a sample of 5,000 videos selected at random from
our initial seed set of 200,000 videos. The relative size of
the intersections of these sub-groups is shown in Figure 1.

Given these sub-groups, we define another sub-group, de-
noted by viral-and-popular. As the name suggests, this sub-
group includes videos that are both viral and popular, i.e.,
videos in the intersection of the viral and popular video sets.
Note that the cardinality of the viral-and-popular sub-group
is close to a half of either sub-group individually.

1We define popularity and virality based on YouTube views
and Twitter mentions captured during the observation pe-
riod, referred to as the labeling window. More details on the
labeling will be given in section 3.1.
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Figure 3: Average daily increase in view count for the vari-
ous video sub-groups.

Figure 4: Average number of tweet mentions for the various
video sub-groups.

2.2 High-Level Characterization
This section presents a high-level characterization of the

datasets used in this study. Figure 2 shows the video age
distribution, for the random, viral, popular, and viral-and-
popular sub-groups. We observe that the video age has a
wide range of values, and varies across the three classes, with
videos in the random class skewed towards younger videos
more than in the other three classes. This shows that, as
expected, a random sample of YouTube videos has a higher
portion of young videos than the viral and popular sub-
groups. Somewhat surprisingly, we find that some very old
videos, which are over 7 years old, are amongst the viral-
and-popular videos. On investigation, we find that these
older videos are music video clips, with a significant number
being Michael Jackson’s videos that were released in 2009.

Figure 3 shows the average increase in the number of
YouTube views per day for the video sub-groups introduced
above. We notice that with the exception of the videos in the
recent sub-group, videos in all other sub-groups add views
at a steady rate, showing that the popularity of these sub-
groups is not affected during the observation window. Focus-
ing on the standalone viral and popular sub-groups, we no-
tice that, on average, popular videos receive a larger number
of additional views per day than those in the viral category.

Figure 5: Ratio between the original and overall number of
tweets averaged per day and video class.

Figure 6: Average number of users reached per day by tweets
for videos in the various sub-groups.

However, it is interesting to note that videos categorized as
viral-and-popular add more views per days than any other
sub-group, which presumably stems from their definition of
being viral and popular at the same time.

Figure 4 shows the average number of Twitter mentions
observed, for the various video sub-groups, during our mea-
surement window. As expected, videos in the standalone
viral sub-group are the most active ones in Twitter, and
are mentioned more often than those that are categorized
as popular only. Note that videos in the random and recent
sub-groups, on average, are hardly mentioned in Twitter.
The important takeaway here, though, is that videos that
are both viral-and-popular are mentioned, on average, six
times as much as videos that are only popular but not viral,
and, on average, twice as much as videos that are only vi-
ral but not popular. This observation highlights again our
proposition regarding the special attention that needs to be
paid to the viral-and-popular sub-group.

Figure 5 further investigates the observed tweeting activ-
ity across the video sub-groups, focusing on the level of user
engagement. For a given video, we consider the ratio of orig-
inal tweets to the overall number Twitter mentions, i.e., the
ratio between the number of tweets and the sum of the num-
ber of tweets and re-tweets. We observe that this ratio is
relatively steady across all the video sub-groups. However,
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Feature Description

yt viewsn Number of views added on day n
yt likesn Number of likes added on day n
yt ratingsn Number of ratings added on day n
yt commentsn Number of comments added on day n
yt uploaded Video upload timestamp
yt category Video category
yt rating Average rating (0-5)
yt uploader.uploads Number of videos uploaded by the uploader
yt uploader.favorites Number of times the uploader was favorited
yt uploader.subscribers Number of uploader’s subscribers

Table 2: YouTube features for a video (n ≥ 1).

we observe also here that a video simply being popular is
not sufficient for it to be highly mentioned on Twitter. The
viral-and-popular videos not only receive a larger fraction of
original tweets than viral and popular sub-groups individu-
ally, but also substantially larger than those videos that are
only popular but not viral.

Figure 6 depicts how the Twitter OSN facilitates the
spread of content. For every day of the observations, we
compute the fan-out of the tweets, i.e., the average num-
ber of users reached by tweets mentioning videos in various
sub-groups. We observe that this number is relatively stable
over time in all the sub-groups. Note that the average num-
ber of users reached by tweets mentioning viral videos (both
popular and not popular) is higher than that of the non-
viral videos. Interestingly, the number of users reached by
tweets mentioning viral-and-popular videos is inferior to the
one reached by tweets mentioning only viral but not popular
videos. We posit that this is explained by the large number
of short and low-quality videos that are often tweeted by
users with many followers. As we show later in the analy-
ses, the number of followers, which is a proxy for a number
of users reached by a tweets, is indeed an important feature
for detecting content virality.

3. CLASSIFICATION AND PREDICTION
RESULTS

In this section, we present performance evaluation of
the classifiers trained to predict virality and/or popular-
ity of videos, and analyze cross-system interactions between
YouTube and Twitter. We also discuss the results of the fea-
ture importance analysis that provide valuable insights on
the performance of the classifiers and underpin the observed
cross-system interactions. Finally, we present a sensitivity
analysis assessing the effect of the training and labeling win-
dows sizes on the classification performance.

3.1 Methodology and Experimental Setting
Our analysis consists of a classification task, where we aim

to classify each video, based on a set of input features, as vi-
ral and/or popular. For this, we train two binary classifiers
capable of separately predicting the virality and popularity
label for any given video. Given the outputs of these classi-
fiers, we define the viral-and-popular class as the intersection
of the viral and popular video sets. We implement the clas-
sifiers using a Gradient Boosted Decision Tree, widely used
for general classification problems [13].

Table 2 shows a sample of YouTube features extracted per
video. Some features refer to the video characteristics and
some to the uploader of the video. It is important to note
that the YouTube API returns the cumulative number of

Individual features Description

tw tweetsn Number of tweets on day n
tw orig tweetsn Number of original tweets on day n
tw retweetsn Number of retweets posted on day n
tw repliesn Number of tweet-reply posted on day n
tw en language Number of tweets in English
tw user.en language Number of users who set English as language
tw user.statuses Number of user’s status updates
tw user.friends Number of user’s friends (i.e., ‘followees’)
tw user.followers Total number of followers
tw user.favoritesn Number of tweets that were favorited on day n

Table 3: Twitter features for tweets mentioning a video (n ≥
1)

video views, likes, ratings, and comments from the upload
to the time of query. The value of the desired counters for
any given day or period can be derived from the cumulative
counts. Table 3 shows a sample of Twitter features extracted
for an individual tweet mentioning a YouTube video. Again,
some of them refer to the tweet itself and some to the user
who posted the tweet.

In addition to the above features, we derive additional
features, which we denote using the following modifiers:

• The superscript ratio is used to relate a feature value to
its magnitude. For example, yt viewsration is the ratio
between the number of views on day n, yt viewsn, and
the total number of views since upload.

• The superscript acc denotes the acceleration of the fea-
ture, i.e., yt viewsaccn is the ratio between yt viewsn
and yt viewsn−1.

• The subscript dif denotes the difference between the
accumulated value of a feature at the first and last day
of a period, e.g., yt viewsdif . For instance, if collecting
data over a three-day period, yt viewsdif = yt views3
- yt views1.

• The superscript age ratio is used to relate a feature
value to its age. For example, yt viewsage ratio

n is
the ratio between the number of views on day n,
yt viewsn, and the time since yt uploaded.

The classifiers use these features to predict binary labels
of virality and popularity. We define the training window
as the period used to train the classifier. When the training
window is greater than one day, we populate also the above
ratio, acceleration, daily, difference, and age ratio features.
The ground truth2 regarding the viral and popular (and the
derived viral-and-popular) labels of a video is determined by
its uptake during the labeling window that comes after the
training window. By the uptake we refer to the number of
YouTube views as the indicator of popularity and number of
tweets mentioning the video as the indicator of virality. The
period between the training and labeling windows is referred
to as the offset. The offset can be set to 0, when predicting
the virality and popularity classes of a video immediately
after the training period, or to, e.g., 7 days, when predicting
these one week after the training period.

We would like to highlight the importance of parameters
pertaining to the size of these windows. Clearly, the most

2As presented earlier, we label top 2.5% most-viewed videos
as popular and top 2.5% most-tweeted videos as viral.
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Figure 7: Time line of the experimental methodology and
data availability.

challenging predictions are those aiming to predict the vi-
rality and/or popularity of new videos as long as possibly in
advance, i.e., small to none training window and large offset.
This is the use case for predictive analytics in applications
like advertisement and content placement. The size of the
labeling window is not as important, and generally ranges
from days to several weeks. Due to practical limitations,
the data collection period was limited in our study to one
month. Hence, in the sensitivity analysis we vary the size of
the training window, offset, and labeling window from 1 to 7
days. To assess the accuracy of predictions for recently up-
loaded videos, we break the analysis into two groups: videos
that are younger than 2 weeks and older videos.

For the evaluation of the predictive accuracy, we use the
10-fold validation methodology. That is, for 90% of videos
we have the data referring both to the training window and
the labeling window, such that we know what videos quali-
fied to the viral and popular classes. For the remaining 10%
of videos we have the training window data only and predict
the the viral and/or popular class labels at the labeling win-
dow. The predicted and real labels of these 10% are used
to compute the precision and recall scores. Also, the perfor-
mance of the classifier is quantified using the area under the
precision-recall curve (AUC) and the mean F1 score. We
then repeat the experiment 10 times for differently chosen
10% chunks and average the obtained accuracy scores across
these experiments. Figure 7 visualizes the time line of the
windows and the evaluation methodology.

3.2 Prediction Accuracy
We start with examining the accuracy of predicting viral-

ity or popularity, or both. Here, we set the training window
size to 2 days and the labeling window size to the immedi-
ately following 7 days, i.e., no offset. We use all the above
mentioned YouTube and Twitter features to train the clas-
sifiers. As a comparison baseline, we chose a simple clas-
sifier that only uses two features: the number of original
tweets and the number of views, i.e., tw orig tweetscnt as
the Twitter feature and yt views as the YouTube feature.
This reflects a simple baseline classifier that uses only the
raw statistics on the uptake of the videos in both systems.
The analysis splits the videos into two groups, according to
their age: those uploaded less than 14 days prior to data
collection (referred to as recent) and the rest (others).

In Figure 8 we show the obtained precision-recall graphs.
The rows show the source of features used by the clas-
sifiers (Twitter, YouTube, both) and the columns show
the video class being predicted (viral, popular, viral-and-
popular). In every graph, we depict 4 curves: classifier
considering all the features vs. only the baseline counter
features tw orig tweetscnt and yt views, and accuracy of
recent videos’ classification vs. older videos.

3.2.1 Virality or popularity predictions

First, we focus on predicting the standalone viral and pop-
ular class labels. Prior work has shown that high predic-
tion accuracy can be achieved by using simple features [25,
29, 10]. Our results reaffirm this finding, as shown by the
high AUC values obtained when predicting virality with
Twitter features (top-left graph in Figure 8) and popular-
ity with YouTube features (central graph). The bottom-left
and bottom-center graphs in Figure 8 show the performance
when features from both systems are used to predict virality
and popularity, respectively. In comparison to the previous
Twitter- and YouTube-only graphs, we observe that there is
little difference in performance. This suggests that, as ex-
pected, Twitter features are predominant when predicting
virality on Twitter, whereas YouTube features are the most
important for YouTube popularity predictions.

Note that very close AUC values are achieved when using
only the baseline features from both systems, which suggests
that applying regression to the training data is sufficient
when predicting viral or popular videos. However, it should
be highlighted that the AUC values obtained for predict-
ing recent videos are substantially lower than those obtained
when predicting older videos. This is explained by the abun-
dance and reliability of data available for older videos, which
allows achieving more accurate predictions. This result in-
dicates that early detection of popularity and/or virality of
recent videos, which may be the ultimate goal of content
providers, is a rather challenging task that requires mobiliz-
ing many predictive features.

3.2.2 Cross-system predictions
Next, we proceed to cross-system predictions and assess

the feasibility of using YouTube features to predict virality
on Twitter, and vice versa, of using Twitter features to pre-
dict popularity on YouTube. This scenario investigates the
interplay between Twitter and YouTube in terms of similar-
ities between the evolution of content virality and popular-
ity. The results are shown in the top-central and middle-left
graphs in Figure 8.

We observe that both cross-system predictions are less ac-
curate than the direct using data from the same system, i.e.,
virality predictions using Twitter data and popularity pre-
dictions using YouTube data. However while the obtained
AUC values are lower than previously, we note that a reason-
able accuracy is still achieved for all features and not-recent
videos. At recall of 0.5, the precision is about 0.75 for both
the virality and popularity predictions. For recent videos
though, the accuracy deteriorates and the precision drops
below 0.5 at a recall of 0.5. Focusing on predictions using
all the available features, we observe that virality predictions
using YouTube data are more accurate than popularity pre-
dictions using Twitter data. We posit that this is due to the
fact that some YouTube views can be attributed to Twitter
propagation, which is a strong predictive feature of virality.
We also note that the baseline features perform consider-
ably worse than all the features, which indicates that fea-
tures mined from the original data improve the accuracy of
cross-system predictions.

3.2.3 Viral-and-popular predictions
Videos in this class are usually mentioned and viewed

more frequently than those in the standalone viral and pop-
ular classes. The accuracy of the classifier, shown in the
right column in Figure 8, suggests that the highest accu-
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Figure 8: Prediction of top 5,000 (2.5%) most viral and popular videos. Precision-recall graphs and AUC values for all features
vs baseline features and recent vs other videos.

racy is achieved when using both Twitter and YouTube fea-
tures. Comparing the all features and the baseline features
classifiers, we observe a substantial difference between the
two when only Twitter features (top-right graph) or only
YouTube features (middle-right) are used. This indicates
that in this scenario, just like in the cross-system prediction
task, the mined features substantially improve the accuracy
of the classification.

On the contrary, the baseline feature are sufficient when
using both YouTube and Twitter features, and the differ-
ence observed between the two classifiers is minor. This is
also consistent with previous analysis that showed that the
baseline features led to reasonably accurate classification.
This observation, however, does not hold when focusing on
the recent videos, where the gap between the two classi-
fiers is wider. Our analysis reaffirms that early prediction
of recently uploaded videos is challenging and, in this case,
the baseline features need to be augmented with additional
features mined from the original data. Moreover, virality-
and-popularity predictions for recent videos achieve lower
accuracy than their standalone prediction, showing that this
task is hard even with the additional features.

3.3 Feature Importance Analysis
In this section, we focus on the importance of features

for the classification task. We infer the feature importance
scores3 from the outputs of the Gradient Boost Decision
Tree. They communicate the contribution of features to
classifying each instance correctly (readers may refer to [19]
for more details). Like in the experiments in section 3.2, the
feature importance scores are computed for the setting of 2
training days, 7 labeling days, and no offset between the two.
Hence, only simple dif and ratio features are considered.
Since the direct predictions of virality using Twitter data
(Figure 8, top-left) and of popularity using YouTube data
(Figure 8, central graph) achieved high AUC values, we focus
here on the cross-system and viral-and-popular predictions.

3.3.1 Cross-system predictions
Feature importance values when predicting video popular-

ity on YouTube using Twitter features are shown in Table 4.
For recently uploaded videos, we find that the current tweet-

3Note that the importance scores of the features do not sum
up to 100%. Instead, the most important feature is marked
as 100% and the importance of other features is computed
relatively to the importance of the top feature.
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Other (> 14 days) Recent (≤ 14 days)

feature import. feature import.

tw orig tweets2 100% tw orig tweets2 100%
tw orig tweetsratio1 69.6% tw user.favoritesdif 66.6%
tw tweetsdif 69.6% tw user.friendsdif 60.9%
tw orig tweets1 60.5% tw user.favorites2 57.1%
tw orig tweetsratio2 51.7% tw user.statusesdif 47.9%
tw user.statusesacc 47.2% tw orig tweets1 47.3%

Table 4: Popularity predictions using Twitter features.

Other (> 14 days) Recent (≤ 14 days)

feature import. feature import.

yt likes2 100% yt ratingsdif 100%
yt likes1 61.9% yt likes1 86.1%

yt views2 58.6% yt viewsage ratio
2 81.0%

yt views1 49.5% yt likes2 69.6%
yt user.uploads 31.5% yt views2 67.8%

Table 5: Virality predictions using YouTube features.

ing rate, captured by tw orig tweets2 is amongst the most
predictive features. (Recall that training window size is 2
days, and, thus, the number of tweets on the second day is
the measure of the current tweeting rate.) We also note that
the propagation measured by the volume of users reached
by tweets over the training period, tw user.friendsdif , is
an important feature. Features capturing the user engage-
ment with the Twitter eco-system, such as the number and
ratio of tweets that were favorited, also play an important
role in the video popularity classification accuracy. When
considering predictions for less recent videos, we observe
that active user engagement indicated by user’s propensity
to write original tweets, tw orig tweetsratio2 , is also an im-
portant feature. Summarizing, we find that there are three
key factors in predicting a future video via Twitter: the
current tweeting rate, the propagation effect, and the user’s
engagement with Twitter content. A combination of these
factors communicates the magnitude of audience that can
potentially be achieved by a tweet.

When predicting virality of recently uploaded videos us-
ing YouTube features (shown in Table 5), we observe that
the difference in terms of ratings added to the video,
yt ratingsdif , is the most dominant predictive feature. Sim-
ilarly, the rates capturing the number of likes per day are
also important features. It could be argued that rating and
liking videos in YouTube is similar in flavor to tweeting ac-
tivity, which explains their predictive importance. Another
relevant feature in the virality classification relates to the
ratio between the number of views at the time of classifica-
tion and the time since the video upload, yt viewsage ratio

2 .
In essence, the growth rate of likes, ratings, and likes are
the predominant features for predicting the virality of re-
cent videos based solely on YouTube features. Similarly, the
number of likes and views seem to be the predominant fea-
tures when predicting the virality of not-recent videos. In
addition, we observed that the number of video uploaded by
the uploader plays a role in such predictions.

3.3.2 Viral-and-popular predictions
Lastly, Table 6 shows feature importance values obtained

when predicting the viral-and-popular class. As can be seen,

Other (> 14 days) Recent (≤ 14 days)

feature import. feature import.

yt views2 100% yt views2 100%
yt views1 29.0% yt likes2 12.7%
tw orig tweets2 18.8% yt comments2 6.42%
yt viewsageRate 14.3% tw en languageacc 4.98%
yt comments1 13.2% tw user.en languageacc 4.45%

Table 6: Virality-and-popularity predictions using all the
features.

YouTube features generally dominate Twitter features, with
the number of YouTube views in the second training day
substantially outweighing other features for predictions of
both recent and other videos.

Recall that the viral-and-popular videos are the sub-group
that adds, on average, the largest number of views per day,
and are also the videos that, on average, receive the high-
est number of tweets per day. However, for the purposes
of prediction, these results indicate that a YouTube video’s
most recent viewing rate may have sufficient predictive ca-
pability for this particular class of videos (as also supported
by AUC scores in the right column in Figure 8). Our anal-
ysis also indicates that the addition of Twitter features to
YouTube features yields a better accuracy of the viral-and-
popular classifier. Hence, Twitter features contribute addi-
tional knowledge that facilitates more accurate predictions.

All in all, we observe the dominance of the recent fea-
tures in the predictive mechanism. This is not surprising,
considering that recent activity signal are normally reliable
indicators for the near future behavior. Hence, we point now
to the investigation of the effect ofthe training window size,
the labeling window size, and the offset between the two.

3.4 Sensitivity Analysis: Effect of Training
and Labeling Window Size

In these section, we vary the size of the training and label-
ing windows, and the offset between them. We compute the
mean F1 score as the performance metric. Again, we focus
on the cross-system and viral-and-popular predictions.

3.4.1 Cross-system predictions
Table 7 shows the impact of training, labeling, and offset

window sizes on the accuracy of virality predictions using
YouTube features. As can be seen, wider training window
steadily yields higher F1 scores, where using a training win-
dow of more than one day produces a noticeable improve-
ment, since the difference between the training window of 3
and 7 days is minor. On top of the mere data availability,
training window of more than one day allows for the inclu-
sion of the difference features (subscript dif ), which were
found to be influential in the feature importance analysis.

Turning to the labeling window size (left part of table),
we observe that windows of 3 and 7 days allow for more
accurate predictions than a 1-day window. We posit that
this is explained by the more stable nature of the virality
labels based on 3 and 7 days of data. The observed impact
of increasing the offset window from 1 day to 7 days (right
part of the table) is minor. This finding reaffirms our earlier
observation regarding the stability of content virality over
reasonably short periods of time, in particular, over a short
period closely following the training window.
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Label window size Offset
(offset = 1) (label window size= 3)

Training
window size

1 day 3 days 7 days 1 day 3 days 7 days

1 day 0.336 0.382 0.407 0.383 0.385 0.400
3 days 0.440 0.496 0.510 0.496 0.494 0.484
7 days 0.447 0.501 0.517 0.506 0.495 0.494

Table 7: Effect of training, labeling, and offset window size
on F1 of virality predictions using YouTube data.

Label window size Offset
(offset = 1) (label window size= 3)

Training
window size

1 day 3 days 7 days 1 day 3 days 7 days

1 day 0.418 0.426 0.430 0.428 0.412 0.413
3 days 0.464 0.468 0.467 0.469 0.466 0.452
7 days 0.487 0.477 0.480 0.480 0.474 0.479

Table 8: Effect of training, labeling, and offset window size
on F1 of popularity predictions using Twitter data.

Table 8 shows a similar analysis conducted for popularity
predictions using Twitter data. Again, popularity classi-
fication accuracy increases with the training window size,
although not to the extent observed for virality predictions.
This is in line with our previous observations regarding the
greater stability of the popularity scores over time. The
main difference with respect to virality predictions refers to
the weak impact of the labeling window size (left part of the
table), which reaffirms that YouTube popularity is more sta-
ble and less susceptible to fluctuations than Twitter virality.
Like in the previous case, changes in the offset window size
have little impact on the F1 scores.

3.4.2 Viral-and-popular predictions
Finally, Table 9 shows the training and labeling window

size analysis when predicting the viral-and-popular class,
using features from both YouTube and Twitter. We ob-
serve that the impact of the training window size here is
weaker than in the previous case of cross-system predictions.
We posit that this is explained by the higher ratio of data,
which complements and hardly augments previously avail-
able data. As such, little new information is introduced over
over time and increasing the training window size does not
substantially improve the accuracy.

On the contrary, we observe here a stronger impact of the
labeling window size and of the offset. The accuracy of the
predictions is found to decrease with the offset between the
training and test data, indicating that the viral-and-popular
class label is more volatile over time than the standalone vi-
ral and popular classes, and, therefore, it is more difficult to
predict at greater offsets. Since the viral-and-popular class
is more volatile, larger labeling window produces a more sta-
ble labeling data and leads to a higher predictive accuracy,
as we observe in this experiment.

4. RELATED WORK
This section provides an overview of research related to

various aspects of our work.
The extensive body of research on video popularity pre-

diction spans a number of sub-disciplines. In particular, a
number of prior studies analyzed the popularity of YouTube

Label window size Offset
(offset = 1) (label window size= 3)

Training
window size

1 day 3 days 7 days 1 day 3 days 7 days

1 day 0.769 0.809 0.825 0.807 0.798 0.788
3 days 0.770 0.823 0.830 0.824 0.817 0.790
7 days 0.778 0.815 0.824 0.816 0.800 0.771

Table 9: Effect of training, labeling, and offset window size
on F1 of viral-and-popular predictions.

videos, and interrelation between video popularity and OSN
activity. Abisheva et al. combined user data from Twit-
ter with video data from YouTube to discover correlations
and temporal dependencies between user features, shares
on Twitter, and the number of Twitter views [2]. Wang
et al. designed a neural network-based learning framework
for predicting the number of video views by exploring pat-
terns of video link propagation in a microblogging system
[29]. Several studies exploited the social and contextual
activity related to video sharing, aiming at predicting the
video view count [25, 11, 26]. Other studies measured the
spread of videos within OSNs [10, 16]. Li et al. developed
a propagation-based model for predicting peaks and bursts
of video views basing on spread patterns [17]. Likewise, by
understanding the geographic aspects of video popularity
and extracting information from social activity, Scellato et
al. proposed various caching strategies for improving the
performance of content delivery networks [24].

Furthermore, there have been several efforts towards an-
alyzing the popularity of online video content using early
view trends and content meta-data extracted from the video
provider data. Pinto et al. proposed a multivariate linear
model, configured to capture information about the popu-
larity evolution patterns of videos, which was later on used
as an early indicator to predict longer-term popularity [22].
Borghol et al. characterized and modeled video popular-
ity dynamics using a set of measures, such as the video
age, churn statistics, the evolution of the viewing rate, and
the distribution of view counts over time [9]. Borghol et
al. also developed an approach for assessing the impacts
of various content-agnostic factors on video popularity, and
showed that when controlling for video content strong lin-
ear “rich-get-richer” behavior is seen with the total number
of previous views as the most important predictor for future
views except for very young videos [8]. Ahmed et al. devel-
oped an approach that first clustered the temporal data into
discretized states, such that transition probabilities between
the states were learned and then used to predict future pop-
ularity of content [3].

Many previous studies have also examined the popularity
of social media content. For example, Lee et al. [14] and
Lerman et al. [15] proposed somewhat similar models based
on endogenous factors, aimed at predicting the popularity of
content published in online discussion groups. Their works
showed that social activity alone could be a key explanatory
factor for accurate popularity predictions. Wang et al. [28]
studied the interrelation between the trendiness of content in
microblogging systems and its popularity in search queries,
and showed that topics of interests in Twitter could serve
as reliable early indicator of sudden popularity of related
keywords in Google search. Romero et al. [23] focused on
the connections between the social graph structure and the
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topical affiliations, i.e., interests and hashtags, of Twitter
users, and concluded that both the hashtags applied by users
can predict their social connections and the existing social
connections can predict the popularity of hashtags.

Recent studies focused on understanding how content
spreads and becomes viral on microblogging services [5, 6,
21, 4]. For instance, Bakshy et al. defined influence in the
context of Twitter and analyzed the influence of content
linked by Tweets with respect to how the content spreads on
the network [5]. Their findings showed that both the overall
influence of the poster and the characteristics of the content
impacted the content’s spread range. A related study was
done in the context of news sharing behavior by Berger et al.
[6], and it was found that emotions evoked by news had a sig-
nificant effect on their dissemination over the network. Most
of the studies into content virality on Twitter assumed little
or no external influence on how URLs spread over the net-
work. Myers et al. proposed a model capable of capturing
such external influence for breaking news [21]. Somewhat
surprisingly, the authors concluded that roughly 30% of the
URLs mentions were attributed to external sources, while
70% - exclusively to network effects.

The massive quantity of social content constitutes a gold
mine for personalization services and content recommenda-
tion engines. Morales et al. [12] exploit Twitter personas to
recommend relevant news to users, by studying overall topic
popularity in the news and by combining the user profile
and the recent interest in the social neighborhood. Twit-
ter diffusion of information, and specifically links, was also
successfully leveraged to provide personalized recommenda-
tion of trending topics [18]. Content recommendations were
achieved by matching highly popular tweets to the recepi-
ent’s profile, constructed by analyzing their past posts, men-
tions, URLs, hashtags, and other observable past behaviour
[1]. An accurate model for scoring and re-ordering OSN ac-
tivity feed items through modeling user preferences towards
certain actions, users, and content, and matching these pref-
erences to the available network updates, was developed by
Berkovsky et al. in [7].

In contrast to the above prior works, our work examines
the simultaneous evolution of the popularity and virality of
video content, and highlights the inter-relations between the
two platforms contributing to these characteristics. We also
investigate the compound class of viral-and-popular video
content items, as this class is likely to be most attractive for
content producers and media agencies alike. We conjecture
and verify that cross-system predictions of both popularity
and virality of videos is feasible (although not straightfor-
ward in certain cases), and can be performed with a rea-
sonably high degree of accuracy. In addition, we analyse
the impact of temporal dimension on the predictions and
provide insights into the features extracted from both plat-
forms, which contribute to the accuracy of the predictions.
This work represents, to the best of our knowledge, the first
systematic data-driven study of the predictions of popularity
and virality aspects of online video content.

5. CONCLUSIONS
Prediction of content virality on microblogging services

and of video popularity on video sharing platforms have
been largely investigated so far as two independent tasks.
In this work, we propose a new unifying approach for pre-
dicting video content virality, popularity, as well as virality-

and-popularity at the same time, using a suite of features
extracted from Twitter and YouTube logs.

Our experiments indicate that these predictions are fea-
sible, can exhibit very high levels of accuracy, and can be
carried out with reasonably low amounts of training data.
Specifically, YouTube popularity predictions achieve a re-
markably high AUC scores (e.g., 0.95 using all the available
data), whereas predictions of rather volatile Twitter viral-
ity still achieve reasonably high AUC (e.g., 0.88 using all
the available data). Furthermore, we demonstrate that not
only direct but also cross-system predictions are possible,
although with a lower degree of accuracy. Lastly, the com-
pound predictions of video content virality-and-popularity
can also be predicted with high accuracy (e.g., AUC of 0.91,
when both Twitter and YouTube features are used for the
prediction), highlighting the importance of features mined
from the raw data.

We proceed with an analysis of feature importance and
highlight what features are predictive of future popularity
and virality of content, both for content having solid prior
history and for recently uploaded items, where the predic-
tion task is more important and more challenging at the
same time. We observe that recent information, and specif-
ically current growth rate, often comes through as a highly
predictive feature and that virality-and-popularity of video
content is mainly driven by YouTube features. Finally, we
analyze the sensitivity of the developed prediction mecha-
nism and its dependence on the availability of reliable train-
ing data. While predictions of virality and/or popularity
are feasible and accurate for non-recent content having rich
prior information, we observe that having training data of
only one day allows for the generation of accurate predic-
tions for up to seven days in advance.

In the future, we plan to extend our model and incorpo-
rate features mirroring the social facet of the systems, e.g.,
user influence [6] and external influence [21]. We also intend
to capitalize on more sophisticated temporal [3] and graph
models [27], and further investigate the evolution of popu-
larity and virality over time. We also intend to apply the
developed predictive models to other types of content, like
news and music. We believe that our work paves to way
to a broad stream of future research investigating the intri-
cacies of cross-system propagation of content, user-to-user
influence, and cross-system content discovery.
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