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Abstract— Exercising has various health benefits and it
has become an integral part of the contemporary lifestyle.
However, some workouts are complex and require a trainer
to demonstrate their steps. Thus, there are various workout
video tutorials available online. Having access to these, people
are able to independently learn to perform these workouts by
imitating the poses of the trainer in the tutorial. However,
people may injure themselves if not performing the workout
steps accurately. Therefore, previous work suggested to provide
visual feedback to users by detecting 2D skeletons of both the
trainer and the learner, and then using the detected skeletons for
pose accuracy estimation. Using 2D skeletons for comparison
may be unreliable, due to the highly variable body shapes,
which complicate their alignment and pose accuracy estimation.
To address this challenge, we propose to estimate 3D rather than
2D skeletons and then measure the differences between the joint
angles of the 3D skeletons. Leveraging recent advancements
in deep latent variable models, we are able to estimate 3D
skeletons from videos. Furthermore, a positive-definite kernel
based on diversity-encouraging prior is introduced to provide
a more accurate pose estimation. Experimental results show
the superiority of our proposed 3D pose estimation over the
state-of-the-art baselines.

I. INTRODUCTION

Exercising and physical activity have many benefits for
physical and mental health [1]. It is commonplace these days
that more and more people take part in fitness workouts.
This is mainly due to the contemporary sedentary lifestyle,
which subtly motivates people to improve their health by
exercising. Due to time and financial limitations, many
prefer to perform their workouts independently at home. As
such, numerous workout video tutorials have been published
online, to illustrate the steps of doing the exercises correctly
[2]. However, improperly following these workout tutorials
may cause harm and body injuries.

To this end, Nagarkoti et al. developed a system pro-
viding visual feedback to people learning a workout from
online video tutorials [3]. Firstly, the system required the
learners to capture the video of themselves performing the
workout. Then, dynamic time warping was deployed [4],
to align the learner’s and trainer’s videos and match video
frames for pose accuracy measurement. Upon selecting the
matching frames, a 2D pose estimation method was applied
to detect the 2D skeleton in the frames [5]. Finally, affine
transformation was applied to align the 2D skeletons, detect
the differences between them, and provide feedback to the
learner. However, the main drawbacks of this approach were:
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• The affine transformation could not accurately align the
2D skeletons due to the body shape variations across
learners. The variability of the body shape affected the
size of the detected skeletons, so that the alignment with
the affine transformation could be inaccurate even if the
poses of the 2D skeletons were identical.

• The affine transformation struggled to align 2D skele-
tons when the poses were not identical, so that the pose
measurements were inaccurate. As a result, the system
provided biased feedback to learners.

Rather than using 2D skeletons, we propose to estimate
3D skeletons based on images and then directly compare the
joint angles between the 3D skeletons for the pose accuracy
measurements, without relying on the affine transformation.
To achieve this, we propose a diversified deep latent variable
model with a diversity-encouraging (DE) prior. The DE prior
ensures a greater diversity in the created latent variables, to
span all the possible types of poses and body sizes. As a
result, the model allows to achieve more accurate 3D pose
estimations.

We experimentally evaluated the accuracy of the 3D
skeleton estimations. The Human 3.6M dataset containing
15 types of poses with ground truth was utilized to evaluate
the estimations [10]. We compared the performance of our
method – with and without the DE prior – to a state-of-the-
art baseline. We evaluated the accuracy of the detection of
all the 15 poses in Human 3.6M and computed the mean
error. The results show that the proposed method with DE
prior outperformed the evaluated baseline methods.

II. SYSTEM AND METHODS

A. Pre-processing and Overview

Our method aims to perform vision-based workout analy-
sis. The workflow of the method is shown in Fig. 1. Given
two videos of a trainer and a learner, dynamic time warping
is applied to align the video images [3]. Upon matching
the two, our algorithm estimates the pose accuracy in order
to provide visual feedback to the learner. The trainer’s and
learner’s images serve as the inputs. The 2D skeletons are
detected first and their key points are used to fit to 3D
skeletons. The differences between the two 3D skeletons are
then identified and visually highlighted, to help the learner.

Algorithm 1 summarizes the proposed 3D skeleton recon-
struction algorithm. As can be seen, the algorithm relies
on a pre-trained deep latent variable model and the 2D
skeleton detection method proposed by [5]. Having detected
the 2D skeleton, the algorithm iteratively optimizes the
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Fig. 1. Workout analysis workflow: (a) Trainer and learner images, (b) 2D skeletons, (c) 3D skeletons, (d) Dissimilarities between the 3D skeletons.
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Fig. 2. Sampling the latent space of the upper body skeleton.

Algorithm 1 3D Skeleton Reconstruction Algorithm
Input: trained diversified deep latent variable model with

latent variables zpose and zskel
Input: reference trainer image Iref , input learner image Iinp
Output: reconstructed 3D skeletons of Iref and Iinp

1: 2D skeleton: apply the method of [5] to Iref and Iinp
2: while not converged do
3: optimize rigid transformation parameters s, R and t

for fixed latent variables zpose and zskel
4: optimize latent variables zpose and zskel for fixed

rigid transformation parameters s, R and t
5: calculate the error of objective function (6)
6: end while

rigid transformation parameters and the skeleton/pose latent
variables, until convergence.

B. CMU Motion Capture Database

To train our method, we used the CMU motion capture
database1, which provides video recordings of more than
100 humans. The CMU database also contains hundreds of
motions grouped into categories, which renders it perfect for
training. Since our pose estimation algorithm is 3D-oriented,
it fits the CMU 3D human skeleton to an image, to estimate
the 3D skeleton. To estimate the 3D pose, our algorithm

1http://mocap.cs.cmu.edu/

learns the latent variables of human motions. Then, specific
3D skeleton is estimated by optimizing the learned latent
space.

C. Diversified Deep Latent Variable Model

1) Deep Gaussian Process: In a deep Gaussian process
[6], we define output variable Y ∈ RN×D, intermediate layer
latent variable X ∈ RN×Qx , and bottom layer latent variable
Z ∈ RN×Qz . Thus, the output Y of the deep Gaussian
process is associated with two stacked latent variables X
and Z, and the objective function is defined as:

F (θ) = log

∫
X,Z

p(Y |X)p(X|Z)p(Z)dXdZ. (1)

The model parameters θ are learned by variational inference.
In our case, Y refers to the estimated 3D skeleton. With

the learned model parameter θ, a new 3D human skeleton
can be generated by sampling the bottom layer’s latent space
Z, as shown in Fig. 2.

2) Kernel-Based Diversity Prior: In our model, the ker-
nel Kφ consists of a positive-definite correlation function
R(φi, φj) and the “prior kernel”

√
π(φi)π(φj) [7]. Then,

the kernel can be expressed as:

K(φi, φj) = R(φi, φj)
√
π(φi)π(φj), (2)

where R(φi, φi) = 1.
Here, the kernel-based diversity prior allows for repulsion,

where we use the probability product kernel to construct each
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TABLE I
3D EUCLIDIAN JOINT DETECTION ERROR OF THE BASELINE METHOD OF [9] VS THE PROPOSED METHOD WITH AND WITHOUT THE

DIVERSITY-ENCOURAGING PRIOR. EVALUATED ON THE 15 POSES OF THE HUMAN3.6M DATASET.

Method Direction Discuss Eat Greet Phone Pose Purchase Sit SitDown Smoke Photo Wait Walk WalkDog WalkPair Mean
Yasin et al. [9] 67.8 58.7 90.3 72.1 78.2 75.7 71.9 103.2 132.8 91.3 91.6 84.7 70.9 81.2 76.7 83.7
w/o DE prior 71.6 49.5 86.1 53.2 89 74.9 79.3 107.4 126.5 97.7 74.3 88.2 65.8 86.4 71.9 81.4
with DE prior 73.4 43.2 82.1 60.7 84.8 70.4 76.8 97.1 114.6 102.4 68.9 79.4 64.3 78.5 66.2 77.5

element of the kernel matrix and define the repulsion. Thus,
every kernel element is expressed as an inner product of two
probability distributions:

K(φi, φj ; ρ) =

∫
χ

f(x|φi)ρf(x|φj)ρdx, (3)

where ρ > 0. For simplicity, let ρ = 1. The normalized
variant R(φi, φj) can be derived as follows:

R(f1, f2) = K(f1, f2)/
√
K(f1, f1)K(f2, f2). (4)

3) Diversity-Encouraging Objective Function: In the pro-
posed model, we maximize F (θ)

F (θ) = log

∫
X,Z

p(Y |X)p(X|Z)p(Z)dXdZ

+ log |KX
φ |λ1 + log |KZ

φ |λ2 . (5)

Here, |KX
φ | and |KZ

φ | are the diversity encouraging (DE)
priors on the intermediate and bottom layers, respectively.

D. Objective Function and Optimization

With the detected 2D joint positions Jest,k, we can fit the
3D skeleton. To achieve this, an objective function

E =
∑
joint k

||sRF (p(zskel), p(zpose))k + t− Jest,k||2, (6)

is minimized, where s, R, t refer to the scaling, rotation and
translation parameters of a rigid transformation, and zskel
and zpose are the latent variables of the skeleton and pose,
respectively.

Given zskel and zpose, the output of F (p(zskel), p(zpose))
is the 3D skeleton in the coordinates of the CMU training
dataset. Thus, the reconstructed skeleton produced by F ()
is fit onto the estimated joint points Jest,k with the rigid
transformation. Here, 2D joint points of ankles, knees, hips,
elbows, wrists, and shoulders are estimated.

To solve (6), we initially estimate the parameters of the
rigid transformation with least squares using the mean shape
of the upper body. Then, the latent variables of the pose
and skeleton are optimized using the trust-region-reflective
algorithm [8]. The optimization is performed iteratively until
convergence.

III. EVALUATION

In the experiments, we compared our method with [9],
which integrated the annotated 2D pose images and the
3D motion capture data from the CMU dataset to achieve
simultaneous 2D pose estimation and 3D pose recovery. To
the best of our knowledge, this is the state-of-the-art pose

estimation method. It was trained on the same CMU data,
which allows us to use it as a comparative baseline.

We evaluated the proposed method on the Human 3.6M
dataset [10], which contains several subjects at 15 poses such
as eating, sitting, smoking, and more. The skeleton data in
Human 3.6M consists of 12 body joints including ankles,
knees, hips, wrists, elbows, and shoulders on both sides of
the body. In similar to the evaluation protocol of [9], we
drew one in every 64 frames from the sequences of Subject
11 in Human 3.6M for testing. Rigid transformation with
Procrustes analysis were used to align the reconstructed and
the ground truth 3D poses. After alignment, the average 3D
Euclidean joint error was measured [11].

Table I shows the error of the joint detection for the
proposed method (with and without the DE prior) and the
baseline method of [9]. The results show that for 11 out of
the 15 poses in Human 3.6M, our method outperforms the
baseline. Notably, for 10 out of the 11 poses, the DE prior
allowed to achieve a lower joint detection error. Overall, the
mean error achieved by the proposed method with the DE
prior is 4.8% lower than without the DE prior and 7.4%
lower than the baseline method.

We also demonstrate examples of the 3D skeleton recon-
structed by the proposed algorithm. We applied our method
to a video sequence of a woman dancing (selected frames
with the reconstructed 3D skeletons are shown in Fig. 3).
Although these poses are reasonably complex and diverse,
the estimated 3D skeletons closely resemble the poses of the
dancer. We also demonstrate two examples of test subject
11 from the Human 3.6M dataset (see Fig. 4). As can be
seen, the 3D skeletons generated by the proposed method
are accurate in both cases. These examples indicate that our
algorithm is applicable to both image- and video-based 3D
skeleton estimation tasks.

IV. DISCUSSION AND CONCLUSIONS

This work aimed to develop a 3D pose estimation tool,
allowing for provision of visual feedback to people learning
how to perform exercises. Prior methods, exploiting 2D
skeleton estimation and affine transformation, often struggle
with the varying human body sizes and the diversity of poses.
To alleviate this, we proposed a deep latent variable model
that was shown to accurately estimate 3D skeletons from
videos and images alike, and to outperform the state-of-the-
art methods. By integrating a diversity-encouraging prior into
the latent variable model, we were able to better capture the
characteristics of the poses and skeleton, and further improve
the accuracy of the 3D skeleton estimations.
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Fig. 3. Video-based 3D Pose Estimation. Top row: video frames with 2D skeletons detected with [5]. Bottom row: estimated 3D skeletons.

Fig. 4. Human 3.6M Dataset Examples: (left) input images, (right)
reconstructed 3D skeletons.

While our work achieved low error rates, it needs to
be integrated with video tutorials. It is important not only
to identify incorrect motions, but also the timing of these
motions, and be able to provide timely feedback to learners.
Our work paves the way to future adaptive applications
offering personalised feedback to learners. A range of in-
telligent interfaces and persuasive technologies can benefit
from the developed pose estimation methods [12], although
their usability and efficacy is yet to be validated.
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