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Abstract—The use of feature extraction and selection from 

EEG signals has shown to be useful in the detection of epileptic 

seizure segments. However, these traditional methods have 

more recently been surpassed by deep learning techniques, 

forgoing the need for complex feature engineering. This work 

aims to extend the conventional approach of epileptic seizure 

detection utilizing raw power spectra of EEG signals and 

convolutional neural networks (CNN). The proposed technique 

utilizes wavelet transform to compute the frequency 

characteristics of multi-channel EEG signals. The EEG signals 

are divided into 2 second epochs and frequency spectrum up to 

a cutoff frequency of 45 Hz is computed. This multi-channel 

raw spectral data forms the input to a one-dimensional CNN 

(1-D CNN). Spectral data from the current, previous, and next 

epochs is utilized for predicting the label of the current epoch. 

The performance of the technique is evaluated using a dataset 

of EEG signals from 24 cases. The proposed method achieves 

an accuracy of 97.25% in detecting epileptic seizure segments. 

This result shows that multi-channel EEG wavelet power 

spectra and 1-D CNN are useful in detecting epileptic seizures. 

I. INTRODUCTION 

Globally, an estimated 50 million people suffer from 
epilepsy [1] and about 2.4 million people are diagnosed with 
epilepsy every year [2]. Epilepsy is one of the most common 
neurological disorders having social and psychological 
effects [3]. As such, accurate diagnosis and subsequent 
treatment of epilepsy can lead to improvement in quality of 
life [4]. 

Epilepsy is marked by short disturbance to the normal 
patterns of neuronal activity of the brain leading to seizures. 
Electroencephalogram (EEG), neuroimaging, and 
neuropsychological tests are amongst the techniques used to 
help diagnose epilepsy [5]. Over the past decades, the use of 
EEG signal analysis for detection of epileptic seizures has 
gained significant attention. This has been supported by the 
availability of relevant databases such as the CHB-MIT scalp 
EEG database (https://physionet.org/content/chbmit) and the 
EEG database from the seizure prediction project Freiburg 
(http://epilepsy.uni-freiburg.de/database), now superseded by 
the European Epilepsy Database (http://epilepsy-
database.eu).  

The availability of robust EEG signal analysis algorithms 
has the potential to automate detection of epileptic seizure 
segments. This could save clinicians significant time in 
manual or semi-automated detection and analysis of seizure
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segments in EEG signals recorded over several hours. 

Frequency domain analysis of EEG signals has shown to 
be useful in epileptic seizure detection [6, 7]. Various feature 
extraction, feature selection, and classification strategies have 
been proposed in this regard. In [6], subband energies are 
used for epileptic seizure onset detection. In [7], frequency 
domain features, such as peak frequency, median frequency, 
etc., are considered in combination with various feature 
selection methods, such as statistical significance, principal 
component analysis, and linear discriminant analysis. Also, 
support vector machines have proven to be accurate in 
feature classification, as seen in [6-8]. 

Deep learning techniques have recently produced 
encouraging results in various classification tasks, without 
the need for complex feature extraction and selection. One 
such method is convolutional neural networks (CNN). 
Originally developed as an image classification method [9], it 
has been successfully applied to audio signal classification 
tasks [10]. Similar techniques have also been applied to EEG 
signal classification [11, 12] 

In this work, the use of CNN for detection of epileptic 
seizure segments as manifested in EEG signals is explored. In 
particular, it is proposed to represent each EEG epoch or 
segment in frequency domain using wavelet transform (WT), 
which has been shown to be more useful than fast Fourier 
transform (FFT) based frequency domain analysis of EEG 
signals, for epileptic seizure detection [13]. This yields a one-
dimensional (1-D) feature vector, thereby, utilizing 1-D 
CNN. It is also proposed to use EEG signals from multiple 
channels for this purpose requiring the use of a multi-channel 
1-D CNN. Spectral information from the previous and 
following epochs is also utilized to improve the classification 
performance [14]. The proposed method achieves robust 
seizure detection performance when compared to several 
baseline methods.  

The rest of the paper is organized as follows. Section II 
describes the dataset used in this work and overviews the 
proposed method. The results are presented in Section III and 
discussions and conclusions are given in Section IV. 

II. METHOD 

A. Dataset 

This work utilizes the CHB-MIT scalp EEG dataset [6, 
15]. The dataset was collected at the Children’s Hospital 
Boston and consists of EEG recordings from pediatric 
subjects with intractable seizures. The recordings were 
collected from 23 subjects and have been grouped into 24 
cases, chb01 – chb24. Cases chb01 and chb21 were obtained 
from the same subject 1.5 years apart. 
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Figure 1.  An overview of the proposed method. 

 

 

The demographic data is available for 22 subjects of 
which 5 are male, aged 3 to 22 years, and 17 are female, aged 
1.5 to 19 years. Each case has 9 to 42 EDF recordings that 
are mostly 1 to 4 hours long. The sampling frequency of the 
signals is 256 Hz with 16 bit resolution. Each recording has 
23 or more channels. The EEG electrode positions and 
nomenclature follow the international 10-20 system. 

In total, the dataset contains 686 EDF files. Of these, 141 
files contain one or more seizures with a total of 198 seizures. 
Four files were excluded due to different channel montages 
or corrupt data. As such, the useable dataset for this study 
contains 682 EDF files with a total of 185 seizure files. For 
the problem of seizure/non-seizure epoch classification, data 
over the following 18 common channels, as given in the 
dataset, are analyzed: FP1-F7, F7-T7, T7-P7, P7-O1, FP1-F3, 
F3-C3, C3-P3, P3-O1, FP2-F4, F4-C4, C4-P4, P4-O2, FP2-
F8, F8-T8, T8-P8, P8-O2, FZ-CZ, and CZ-PZ. 

B. Proposed Method 

An overview of the proposed EEG based epileptic seizure 
segment detection method is shown in Fig. 1. The EEG 
signals are divided into short time-windows or epochs. The 
filtered time-domain epochs are transformed to frequency 
domain. The 1-D feature vectors from all the channels form 
input to a CNN for seizure/non-seizure prediction. 

Similar to [7], the signals are filtered using a second order 
Butterworth filter and up to a cutoff frequency of 45 Hz [16]. 
Epochs of different durations have been used in earlier 
works. For example, 1 second epochs are used in [17], 2 
second epochs in [18], and 60 second epochs in [7]. In this 
work, non-overlapping epochs of 2 seconds are used. Due to 
the scarcity of the seizure segments, the use of short duration 
epochs of 2 seconds yields more seizure epochs for training 
the CNN model.   

An epoch containing seizure, regardless of the duration, 
was marked as a seizure epoch. Otherwise, it was labeled as a 
non-seizure epoch. This results in a total of 5,748 seizure 
epochs and 1,424,564 non-seizure epochs. The number of 
non-seizure epochs is significantly higher than the number of 
seizure epochs. In this work, all seizure epochs are used and 
an equal number of non-seizure epochs are randomly selected 
for training and validation. As such, the final dataset contains 

5,748 seizure epochs and 5,748 non-seizure epochs for 
training and validation. 

FFT and WT are used for transforming the time-domain 
EEG signal to frequency domain. FFT is applied to the 
windowed signal as 
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where 𝑁 is the length of the window, 𝑥(𝑛) is the EEG signal, 

𝑆(𝑘, 𝑟) is the 𝑘𝑡ℎ harmonic corresponding to the frequency 

𝑓(𝑘) = 𝑘𝐹𝑠 𝑁⁄  for the 𝑟𝑡ℎ epoch, 𝐹𝑠 is the sampling 
frequency, and 𝑤(𝑛) is the window function. The window 
function in this case refers to a 2 second non-overlapping 
rectangular window. 

The spectrogram values are then obtained by 
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A 768-point FFT is computed for each epoch for each of the 
18 channels. Frequency bins in the range 0-45 Hz are 
considered for classification using CNN. A total of 135 
frequency bins were present in this frequency range. 

For the time-domain EEG epoch signal 𝑥(𝑡), the 
continuous wavelet transform at scale 𝑠 and position 𝑢 can be 
computed as [19] 
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where   is the mother wavelet (complex). The Morlet 

wavelet is used in this work which was shown to produce the 
best classification results in [20]. The number of voices per 
octave is set to 28. There are 132 continuous wavelet 
transform complex values in the frequency range 0-45 Hz. 
These values are transformed in similar to (2). 

The layout of the CNN, shown in Fig. 1, was determined 
via offline experiments. The raw spectral data from the 18 
channels forms the input layer of the CNN. As such, the input 
layer is of size 135×1×18 using FFT and 132×1×18 using 
WT. In addition, combining spectral information from 
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the current, previous, and next epochs for predicting the label 
of the current epoch, the input layer size is 135×1×54 with 
FFT and 132×1×54 with WT. 

The CNN model is trained using adaptive moment 
estimation [21]. The network contains three convolution 
layers, each of which includes a rectified linear unit (ReLU) 
[22], and a max pooling layer [23] in the final layer. The 
filter size for the three convolution layers is 15×1, 10×1, and 
5×1, each with stride 1×1. The number of filters in each layer 
is 128 and the max pooling layer size is 2×1 and stride 2×1. 
This is followed by a fully connected layer, a softmax layer 
[24], and an output layer. 

The settings for other parameters are as follows: initial 
learn rate = 0.005, learn rate schedule = piecewise, learn rate 
drop factor = 0.6, learn rate drop period = 5, L2 
regularization = 0.5, mini batch size = 1/10 of training data, 
data shuffle = every-epoch, and max epochs = 50. The 
parameters were optimized based on the training/validation 
performance. The training stops after the maximum number 
of epochs is reached. 

C. Performance Evaluation 

The classification performance of the proposed method is 
evaluated using 10-fold cross-validation using the following 
metrics: sensitivity, specificity, accuracy, and area under the 
ROC curve (AUC). In each fold, the optimal cut-off point on 
the ROC curve was determined as the intersection of the 
sensitivity and specificity on the training performance. The 
corresponding threshold was then applied to the validation 
data in the fold. 

III. RESULTS 

The overall results for seizure and non-seizure epoch 
classification using FFT and WT and 1-D CNN are given in 
Table I. First, the spectral information from the current epoch 
only (1 epoch) is used for predicting the label of the current 
epoch. Next, spectral information from adjacent epochs is 
combined with the spectral information from the current 
epoch (current, previous, and next epochs, 3 epochs in total) 
for predicting the label of the current epoch.  

An accuracy of 93.01% is achieved using FFT data from 
the current epoch only. With WT this increases to 94.76%, an 
increase of 1.75%. The classification performance improves 
further when the spectral data from adjacent epochs is also 
included in predicting the label of the current epoch for both 
the FFT and WT methods. The classification accuracy 
increases to 96.31% with FFT and 97.25% with WT, an 
increase of 3.30% and 2.49%, respectively. The classification 
results using WT are superior to those using FFT in both 
cases. The best overall sensitivity, specificity, and accuracy 
of 97.25%, 97.25%, and 97.25% in seizure and non-seizure 
epoch detection are achieved using WT when combining 
with spectral data from adjacent epochs.  

To further evaluate the performance of the different 
techniques, the ROC curves for the validation data output 
from all 10 folds are shown in Fig. 2. An AUC of 0.9723 is 
achieved using the best performing method, combined 
epochs using WT and 1-D CNN. 

  

TABLE I.  CLASSIFICATION RESULTS FOR SEIZURE DETECTION USING 

MULTI-CHANNEL 1-D CNN WITH DIFFERENT FREQUENCY TRANSFORMATION 

TECHNIQUES AND EPOCH COMBINATIONS 

 
Sensitivity 

(%) 
Specificity 

(%) 
Accuracy 

(%) 

FFT - 1 Epoch 93.30 92.71 93.01 

FFT - 3 Epochs 97.03 95.60 96.31 

WT - 1 Epoch 95.25 94.28 94.76 

WT - 3 Epochs 97.25 97.25 97.25 

 

 
Figure 2.  ROC curves for seizure and non-seizure epoch 

classification using multi-channel 1-D CNN with different 

frequency transformation techniques and epoch combinations. 

 

 

IV. DISCUSSION AND CONCLUSION 

This work proposes the use of wavelet power spectra of 
multi-channel EEG signals and 1-D CNN for detecting 
epileptic seizure segments. When combined with data from 
adjacent epochs, a classification accuracy of 97.25% is 
achieved on the CHB-MIT scalp EEG database. This shows 
the robustness of the proposed method in automatic detection 
of epileptic seizure segments. 

Results from three other studies which utilize the same 
dataset are summarized in Table II. Although the method and 
experimental setup of these works was different from ours, 
they allow for an indicative comparison of results. A 
classification accuracy of 93% is achieved in [12] with 
spectral data computed using FFT and CNN. This is similar 
to the 93.01% we achieved using FFT and CNN. However, 
we could achieve substantially improved accuracy of 97.25% 
using WT and epoch combination.  

Another close comparison to the method proposed here 
would be [25] where a classification accuracy of 88.67% was 
achieved using CNN. However, their work utilized the EEG 
database from the seizure prediction project Freiburg. This 
database has since been superseded by the new European 
Epilepsy Database which is not freely available. As such, the 
proposed method could not be evaluated on another dataset. 
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TABLE II.  A SUMMARY OF RESULTS FROM SOME OTHER STUDIES 

UTILIZING THE CHB-MIT DATABASE 

Ref. No of Samples Method Results 

[7] 
Seizure: 171 

Non-seizure: 171 

Several features, 

LDA backward feature 
selection, 

KNN classifier 

Epoch length=60s 
Val: 80% holdout 

Sens. = 93% 

Spec. = 94% 

[12] Not known 

FFT and CNN 

Epoch length=1s 

Val: 6-fold cross-val. 

aAcc. = 93% 

[20] bNot known 

Wavelet transform, 

PCA, SDAE 

Epoch length=3s 
Val: 4:1 holdout 

Acc. = 

95.71% 

This 

work 

Seizure: 5748 

Non-seizure: 5748 

Wavelet transform, 

1D-CNN 

Epoch length=2s 

Val: 10-fold cross-val. 

Acc. = 

97.25% 

a. Results for the problem of interictal vs preictal vs ictal classification. 

b. Data from 9 subjects is used. 

 

Sensitivity and specificity of 93% and 94%, respectively, 
were achieved in [7] with the CHB-MIT scalp EEG database. 
However, they find only 171 seizure recordings useable 
compared to the 185 used in this work. They also utilize a 
different validation technique and 60 second epochs 
compared to 2 second epochs in this work, which collectively 
prevents us from directly comparing the obtained results. 

Our work, however, has limitations. The dataset used in 
this work has only 24 cases. Epileptic seizure affects millions 
of people worldwide and having data from more subjects 
may help improving the generalizability of the models. Also, 
various EEG devices are available on the market with 
different number of channels. It is not clear how well the 
model developed here would perform with a different EEG 
device or with the same EEG device in a different setting. 

Furthermore, the method proposed here is best suited for 
offline analysis of EEG signals for epileptic seizure detection. 
This would be beneficial to clinicians in analyzing several 
hours of EEG signals automatically for epileptic seizure 
diagnosis. While this could also be extended to detect 
seizures in real-time, epileptic seizures can be detected by 
clinical observations, such that it would be more beneficial to 
epileptic subjects if seizures could be detected before onset. 
We plan to focus on this in the future, building on earlier 
work in this area, such as in [26]. 
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