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Abstract— Whole Slide Images (WSIs) or histopathology
images are used in digital pathology. WSIs pose great
challenges to deep learning models for clinical diagnosis,
owing to their size and lack of pixel-level annotations. With
the recent advancements in computational pathology, newer
multiple-instance learning-based models have been proposed.
Multiple-instance learning for WSIs necessitates creating
patches and uses the encoding of these patches for diagnosis.
These models use generic pre-trained models (ResNet-50 pre-
trained on ImageNet) for patch encoding. The recently proposed
KimiaNet, a DenseNet121 model pre-trained on TCGA slides,
is a domain-specific pre-trained model. This paper shows the
effect of domain-specific pre-training on WSI classification.
To investigate the effect of domain-specific pre-training,
we considered the current state-of-the-art multiple-instance
learning models, 1) CLAM, an attention-based model, and 2)
TransMIL, a self-attention-based model, and evaluated the
models’ confidence and predictive performance in detecting
primary brain tumors - gliomas. Domain-specific pre-training
improves the confidence of the models and also achieves
a new state-of-the-art performance of WSI-based glioma
subtype classification, showing a high clinical applicability
in assisting glioma diagnosis. We will publicly share our
code and experimental results at https://github.com/
soham-chitnis10/WSI-domain-specific.
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I. INTRODUCTION

Currently, histopathology is the clinical gold standard
for tumor assessment and diagnosis. With advancements
in digital pathology and artificial intelligence (AI), deep
learning techniques have shown great potential in assisting
tumor diagnosis. However, deep learning-based approaches
require either manually annotated whole slide images (WSIs)
or large datasets with slide-level labels in a weakly su-
pervised setting. The slide-level labels may correspond to
small regions from the gigapixel WSIs. Therefore, most of
the approaches rely on pixel, patch, or regions-of-interest
(ROI) level annotations [1], [2], [3], [4]. There have been
attempts to assign the same label to each patch [5], but these
approaches suffer from noisy training and are not applicable
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when the slide-level label corresponds to tiny regions from
the image.

Recently proposed multiple-instance learning models use
feature embedding [6], [7], [8], [9], [10], [11]. Clustering-
constrained Attention Multiple instance learning (CLAM)
[10] is a deep learning-based digital pathology framework
for weakly supervised WSI classification using attention-
based instance-level clustering. The CLAM algorithm does
not require ROI extraction, or pixel or tile or patch-level
annotations. The algorithm works based on the attention
scores assigned to the tiles or patches during the training,
where the highest attention scores are considered positive
evidence of the class. A ResNet50 network [12] pre-trained
on the ImageNet dataset is used for extracting features from
tiles or patches obtained from the segmented tissue region.
CLAM produces interpretable heatmaps that allow medical
practitioners to visualize the tissue regions that contribute to
the predictions of the model. These heatmaps displaying the
morphological features can be verified by trained patholo-
gists whether the decisions made by the model align with
the manual diagnostic determinations. TransMIL [11] is a
recently proposed model which is based on a transformer
model. Just like CLAM, TransMIL only requires a slide-level
label and also shows great interpretability.

Training a deep neural network from scratch for specific
problem statements may not be feasible due to limited avail-
able data, or training may take a very long time. Therefore,
many researchers exploit pre-trained models. In domain-
specific pre-training, the models are first pre-trained on a
large dataset, followed by a fine-tuning over the domain-
specific dataset. Generally, in computer vision, models pre-
trained on ImageNet data have been used for domain-specific
downstream tasks. We call a model pre-trained on ImageNet
as generic pre-trained, and the model fine-tuned on a domain-
specific dataset as domain-specific pre-trained.

Current state-of-the-art WSI classification models, such
as CLAM and TransMIL, are based on features extracted
by generic pre-trained models, e.g., ResNet50 pre-trained
on ImageNet samples, which differ from WSIs in terms of
color, texture, morphological, and geometric representations.
However, the impact of domain-specific pre-training on WSI
classification has not yet been investigated. Our main con-
tributions are as follows:

• We introduce Confidence as an evaluation metric for
WSI classification.

• We investigate the impact of domain-specific pre-
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training on the model’s performance and confidence.

II. EMPIRICAL EVALUATION

A. Aims

We conjecture that domain-specific pre-training improves
not just the accuracy, but also the confidence in prediction of
the models for WSI classification. We will test this conjecture
using the following pre-training methods (a) a generic pre-
trained model, DenseNet121 (pre-trained on ImageNet Data),
(b) a domain-specific pre-trained model, KimiaNet (pre-
trained on WSIs). Generic and domain-specific pre-trained
models are used as inputs to two different approaches for
constructing models for WSI: (a) CLAM and (b) TransMIL.

B. Datasets

Two datasets are used for pre-training feature extrac-
tors, including ImageNet and The Cancer Genome Atlas
(TCGA). ImageNet dataset is a classical collection of nat-
ural images for the visual recognition task [13]. ResNet50
and DenseNet121 Networks are pre-trained on this dataset.
TCGA is the large domain-specific dataset on which Kimi-
aNet was trained. This is a publicly available repository [14],
[15], [16] with 30,072 WSIs. KimiaNet was trained on a
subset of this dataset with 11,579 WSIs with permanent
hematoxylin and eosin (H&E) sections. Further details are
available in [17].

The Digital Brain Tumor Atlas (DBTA) dataset [18] is
used to train and test the classification models. DBTA
dataset consists of 3,115 slides of 126 brain tumor types. A
subset of this dataset contains a total of 866 histopathology
slides of 791 patients with the 5 primary brain tumor types
with molecular subtypes based on the 2021 WHO classi-
fication of central nervous system tumors [19], including
117 astrocytoma-IDH mutant, 66 astrocytoma-IDH wildtype,
176 oligodendroglioma-IDH wildtype, 34 glioblastoma-IDH
mutant, and 473 glioblastoma-IDH wildtype WSIs. The
70:15:15 split is used for the training, validation, and test
sets. As several patients have multiple slides, we ensure that
different slides of a patient do not exist in both the training
and test sets.

C. Models

We focus on the recently developed state-of-the-art
models, CLAM [10], and TransMIL [11], both of which are
multiple-instance learning models.

CLAM: We consider two variants of CLAM, namely
single branch (CLAM-SB) and multiple branches
(CLAM-MB). CLAM uses attention-based pooling [6]
to aggregate the slide-level representations from patch-level
representations. CLAM has N multi-class attention branches
for the N multi-classification problem, which are used to
score the class-specific slide-level representations. During
training, it has the instance clustering level, which can learn
the class-specific features; therefore, CLAM uses a weighted
loss of the slide-level classification, and the instance-level
clustering loss is used. The slide-level classification is the

standard cross-entropy loss, and the instance clustering loss
is a smooth SVM loss. For the instance clustering level,
we consider B = 8, which is 8 positive and negative samples.

TransMIL It uses a self-attention-based mechanism to
model the correlation between the patches. TransMIL has
two transformer layers for aggregating the morphological
information. TransMIL has adopted the approximation for
self-attention proposed in the Nyström method [20]. It uses
the Pyramid Positional Encoding Generator (PPEG) for
positional encoding, which can encode global and context
information. TransMIL uses the standard cross-entropy loss
for training the model.

D. Evaluation Metrics

The state-of-the-art models have used accuracy and Area
Under the Receiver Operating Characteristic Curve (AUC) as
the evaluation metrics for benchmarking. We also evaluate
the confidence of models, which is the average class prob-
ability of the predicted class. Confidence is given by the
equation (1), where ypred is the predicted class-label, and x
is a sample from the test set X .

Confidence =

∑
x
P (ypred|x)
|X| (1)

E. Algorithms and Machines

We train all models on NVIDIA Tesla V100-SXM2 GPU
with 32GB memory. The code has been implemented using
PyTorch Deep Learning Framework, and Python net:cal
library [21] is used for evaluation of the confidence of the
model.

III. METHOD

A. Pre-Processing

The gigantic size of WSIs poses challenges in training a
model in an end-to-end fashion and would require expensive
computing power; therefore, multiple-instance learning
models are proposed. In the context of WSI classification,
we consider the slide as the bag and the patches of the
slides as the instances. Figure 1 shows the key steps of the
WSI pre-processing pipeline.

Segmentation and patching For the segmentation and
patching of each slide, we use the highly efficient method
proposed by CLAM [10]. Patches of size 256 x 256 are
cropped from the segmented foreground contours. DBTA
has the slide image captured at 20x and 40x resolution.
The higher the magnification, the higher the number
of patches, leading to higher computational requirements.
Therefore all models have been trained at 20x magnification.

Feature extraction The MIL-based models require cre-
ating patches from the slides. CLAM [10] and TransMIL
[11] methods require a feature extraction process. They
extract the features using a generic pre-trained model,
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Fig. 1. The WSI pre-processing pipeline.

ResNet50 network pre-trained of the ImageNet data. There-
fore, ResNet50 is considered the baseline. DenseNet archi-
tecture has shown better results on the ImageNet dataset due
to the dense connections between all layers with match-
ing feature-maps sizes [22]. Instead of the generic pre-
trained model (DenseNet121), we propose to use the domain-
specific pre-trained network called KimiaNet [17], which is
a DenseNet121 network pre-trained on TCGA data. We will
consider the DenseNet121 network, pre-trained on ImageNet,
for comparison with KimiaNet, whose structure is the same.

B. Experimental Procedure

Our procedure to test the experimental conjecture in Sec.
II-A is straightforward:

1) Let a slide be denoted by s , where s ∈ S , the set of
slides

2) For each s ∈ S , segment and create patches; the set
of all patches of s is denoted by p

3) For each pre-training method in {ResNet50,
DenseNet121, KimiaNet}

• For each p, extract features
• Let D denote an array of data seeds, and M denote

an array of model seeds
• For each data-seed in D :

– Split the dataset into train/validation/test sets
– For each model-seed in M :

∗ Use the selected features to train each classi-
fication model in {CLAM-SB, CLAM-MB,
TransMIL}

∗ Estimate the test accuracy, AUC, and confi-
dence of the classification model

The following additional details are relevant:
- data-seed is responsible for the train/validation/test

split, and model-seed is responsible for the initializa-
tion of model parameters. The number of data-seed is
5 and the number of model-seed is 3 in this study, so
there are 15 combinations in total. In all cases, average
values over all 15 experiments of accuracy, AUC, and
confidence are used for comparison.

- We train models for 200 epochs in each run and use
‘early stopping’ with patience of 20 epochs. We train
the model for at least 50 epochs to ensure the model has
converged. The learning rate is set to 2e-4 with weight
decay of 1e-5. The batch size is set to 1.

- Adam optimizer [23] is used for training CLAM, and
Lookahead optimizer [24] is used for training Trans-
MIL.

- Multinomial sampling is used to mitigate the class
imbalance problem in the training set. The multinomial
sampling probabilities are inversely proportional to the
frequency of the ground truth.

IV. RESULTS

The main results from our experiments comparing generic
and domain-specific pre-training are presented in Table I.
The most interesting observation is that domain-specific pre-
training results in higher average confidence in prediction (by
0.3% to 1.3%), which appears to be less well-known. The
impact of domain-specific pre-training on the model’s test
accuracy and AUC are not conclusive. For example, when
using CLAM as the classification model, KimiaNet results
in higher accuracy, but DenseNet results in higher AUC, and
it is the opposite when using TransMIL. We also note that,
unlike the results in [11], which showed a clear advantage
of using the transformer-based approach, we find results for
TransMIL are mixed. This may be due to differences in the
dataset we have used, which is different to the benchmarks
used, or due to differences in hyper-parameter tuning.

TABLE I
EVALUATION OF DOMAIN-SPECIFIC PRE-TRAINING

AUC Accuracy Confidence
Models DenseNet KimiaNet DenseNet KimiaNet DenseNet KimiaNet

CLAM-SB 95.86
(± 1.80)

95.69
(± 1.99)

88.24
(± 3.74)

89.84
(± 2.60)

92.64
(± 3.37)

93.51
(± 2.52)

CLAM-MB 96.53
(± 1.73)

96.27
(± 1.51)

88.74
(± 2.64)

89.72
(± 4.03)

93.08
(± 2.67)

94.37
(± 4.18)

TransMIL 95.52
(± 2.76)

96.85
(± 1.20)

90.58
(± 1.93)

89.36
(± 2.30

93.28
(± 4.98)

93.57
(± 3.43)

Table II shows a comparison between ResNet50 and
DenseNet121. We note that the structure of the generic pre-
trained model also plays an important role in improving
both predictive accuracy (by 1.1% to 4.6%) and confidence
(by 1.6% to 9.6%). Since the DenseNet structure is uti-
lized by KimiaNet, the gains made by using the DenseNet
structure are incorporated in the results with KimiaNet. In
combination, we believe the results provide evidence for the
improved performance on model’s confidence with domain-
specific pre-training, irrespective of the CLAM or TransMIL
models used for classification.
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Classification of glioma types (i.e., astrocytoma, oligoden-
droglioma, and glioblastoma) is generally a difficult task;
the current state-of-the-art performance is accuracy of 0.861
and AUC of 0.961 [25]. Classification of glioma molecular
subtypes is also challenging; for instance, the best binary
classification performance of the IDH-gene molecular sub-
type is accuracy of 0.882, and AUC of 0.931 [26]. We test
our models on the classification of both glioma types and
molecular subtypes, which is a more challenging task, yet
the models that use KimiaNet or DenseNet with TransMIL
outperform this prior art.

TABLE II
EVALUATION OF THE STRUCTURE OF FEATURE EXTRACTOR

AUC Accuracy Confidence
Models ResNet DenseNet ResNet DenseNet ResNet DenseNet

CLAM-SB 95.43
(± 1.35)

95.86
(± 1.80)

83.67
(± 4.23)

88.24
(± 3.74)

83.05
(± 4.85)

92.64
(± 3.37)

CLAM-MB 96.70
(± 1.03)

96.53
(± 1.73)

87.65
(± 2.87)

88.74
(± 2.64)

89.07
(± 4.18)

93.08
(± 2.67)

TransMIL 95.40
(± 2.53)

95.52
(± 2.76)

88.18
(± 3.53

90.58
(± 1.93)

91.69
(± 3.92)

93.28
(± 4.98)

V. CONCLUSIONS

This work is the first study that investigates the impact of
domain-specific pre-training in WSI classification and uses
confidence as a metric to evaluate the model’s performance.
We first consider the DenseNet model pre-trained on Im-
ageNet and assess its accuracy, AUC and confidence when
combined with CLAM and TransMIL to classify brain tumor
WSIs. We then explore KimiaNet, a DenseNet121 model pre-
trained on TCGA slides to tackle the same problem. We
propose domain-specific pre-training of KimiaNet improves
the classification accuracy, AUC and confidence of CLAM
and TransMIL. The evaluation of our proposal on the DBTA
dataset suggests that KimiaNet is a better feature extractor
than generic DenseNet and ResNet, as it improves CLAM
and TransMIL’s confidence. Additionally, using TransMIL
with KimiaNet achieves a new state-of-the-art performance
of WSI-based glioma classification, which shows high clini-
cal applicability of the model in assisting glioma diagnosis,
particularly in predicting the molecular subtypes. This study
also sheds light on the impact of the feature extractor’s
structure on the prediction performance. In our future work,
we will investigate if advanced convolutional structures can
further benefit multiple-instance learning models and im-
prove their classification performance.
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