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A B S T R A C T

Medical image datasets are often imbalanced due to biases in data collection and limitations in acquiring
data for rare conditions. Addressing class imbalance is crucial for developing reliable deep-learning algorithms
capable of effectively handling all classes. Recent class imbalanced methods have investigated the effectiveness
of self-supervised learning (SSL) and demonstrated that such learned features offer increased resilience to class
imbalance issues and obtain much improved performances over other types of class imbalanced methods.
However, existing SSL methods either lack end-to-end capabilities or require substantial memory resources,
potentially resulting in sub-optimal features and classifiers and limiting their practical usage. Moreover, the
conventional pooling operations (e.g., max-pooling, or average-pooling) tend to generate less discriminative
features when datasets pose high inter-class similarities. To alleviate the above issues, in this study, we present
a novel end-to-end self-supervised learning framework tailored for imbalanced medical image datasets. Our
framework constitutes an adaptive contrastive loss that can dynamically adjust the model’s learning focus
between feature learning and classifier learning and a feature aggregation mechanism based on Graph Neural
Networks to further enhance feature discriminability. We evaluate the effectiveness of our framework on
four medical datasets, and the experimental results highlight its superior performance in imbalanced image
classification tasks.
1. Introduction

Deep learning has demonstrated remarkable advancements in med-
ical image classification. Typically, a substantial amount of labelled
samples across all classes is required to train deep learning deep-
learning classifiers. However, data collection for biomedical tasks can
be challenging, often due to the low incidence of certain diseases (Gao,
Zhang, Liu, & Wu, 2020). Thus, medical image datasets are often im-
balanced, where certain classes possess far higher numbers of samples
compared to other classes in the datasets.

Training deep learning models on imbalanced datasets often results
in biased models. As depicted in Fig. 1, we observe that a ResNet
model (He et al., 2016) (base), trained on the imbalanced APTOS2019
dataset, demonstrates better performance on classes with larger sample
sizes, while exhibiting relatively poorer performance on the minor-
ity classes. The inherent challenge lies in the fact that the minority
classes, which have fewer samples, struggle to accurately represent the
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true distribution within the embedding space. Additionally, the major-
ity classes, with their larger sample sizes, exert significant influence,
thereby compressing the spatial span of the minority classes. Conse-
quently, the predominance of gradients originating from the majority
class samples biases the learning process in favour of these majority
classes.

In order to address the class imbalance issue in medical datasets, ex-
isting studies have explored various techniques. Data re-sampling (Chai
et al., 2022; Dai, Li, Tang, Wang, & Peng, 2022; Galdran, Carneiro, &
González Ballester, 2021; Rana, Sowmya, Meijering, & Song, 2022b,
2023) is one the most widely explored approach. However, it is often
observed that employing these techniques without taking into account
the inherent characteristics of the task at hand causes over-fitting which
in turn leads to poor classification performance. On the other hand,
loss-weighting techniques (Ghorbani, Kazi, Baghshah, Rabiee, & Navab,
2022; Pan et al., 2023; Wei, Zhou, Li, & Xu, 2023; Yoon, Hamarneh,
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Fig. 1. The distribution of class instances in the APTOS2019 dataset and the
corresponding per-class F1 scores of different models are depicted.

Fig. 2. The TSNE visualisation of the features obtained by a ResNet model trained
with different feature aggregators on APTOS2019. In addition to the inherent challenge
of class imbalance, the dataset presents significant inter-class similarities, further
complicating the classification task in medical datasets.

& Garbi, 2019; Zhang, Tan, Li, & Hong, 2018) are also widely used.
However, they typically achieve enhanced performance in minority
classes at the expense of performance in majority classes and they
often disregard the distinct properties of feature learning and classifier
learning.

Accordingly, feature learning-based approaches have been pro-
posed. These methods, which resort to contrastive Learning (CL) tech-
niques (Cui, Zhong, Liu, Yu, & Jia, 2021; Marrakchi, Makansi, &
Brox, 2021), often show state-of-the-art performances in alleviating the
issue of class imbalance by acquiring more robust feature representa-
tions (Liu, HaoChen, Gaidon, & Ma, 2021). To further illustrate the
effectiveness of CL, we conducted a two-stage training using a ResNet
model, where we performed CL in the first stage followed by classifier
training in the second stage. The results, shown in Fig. 1, reveal that
the inclusion of CL (w CL) significantly enhances the representation
of under-represented classes. This, in turn, facilitates more precise
and robust classification. Although effective, the conventional two-
stage learning scheme in CL often brings two drawbacks, namely, the
model is not trained end-to-end, which leads to incompatible feature
and classifier learning, and a large batch size which requires an extra
memory queue to achieve a robust feature representation. These issues
significantly increase the training costs and impact their practical
applicability in real clinical scenarios.

Moreover, medical images typically pose high inter-class similar-
ities. For example, as shown in Fig. 2, fundus images from the AP-
TOS2019 dataset exhibit notable inter-class similarity. This characteris-
tic poses additional challenges when dealing with imbalanced medical
2

datasets. The existing methods described in the literature commonly
utilise a CNN-based classifier with a pooling layer for feature aggre-
gation, followed by a fully-connected classification layer. However,
as illustrated in Fig. 2(a), while a conventional pooling-based feature
aggregator can generate discriminative features for the majority classes,
it often produces inseparable features for the minority classes, which
leads to poor performance on minority classes. Hence, there is a need
for improved feature aggregators to achieve effective classification re-
sults when dealing with datasets characterised by significant inter-class
similarities.

To address the limitations of existing SSL-based methods and en-
hance their performance on medical image datasets, which frequently
exhibit high inter-class similarities, we propose Adaptive Unified con-
trastive learning with a Graph-based feature aggregator (AdUniGraph).
AdUniGraph is an end-to-end self-supervised learning framework that
simultaneously performs feature and classifier learning. To combine
two different learning stages, we employ an adaptive unified loss which
effectively fuses the contrastive loss with the cross-entropy loss with
an adapter parameter. Such a design allows us to obtain better feature
quality and remove the requirement of a memory queue, leading to re-
duced training costs and better performance. Moreover, to obtain more
discriminative features for minority classes, we include a Convolutional
Graph Neural Networks (ConvGNN) algorithm as the feature extractor.
Replacing the conventional pooling operations with ConvGNN-based
aggregator better captures the inter-dependencies among different re-
ceptive fields, which leads to more discriminative features. As demon-
strated in Fig. 2(b), ConvGNN-based pooling facilitates the formation of
denser and more distinct feature clusters, thereby enhancing intra-class
interactions while weakening inter-class interactions. Specifically, our
contributions can be summarised as follows:

• We propose an end-to-end self-supervised learning framework
designed to produce enhanced feature representations across all
classes for alleviating the issue of class imbalanced medical image
classification.

• Our framework employs an adaptive unified loss which effectively
fuses the feature learning process and the classifier learning pro-
cess for better compatibility between both learning processes and
obtaining enhanced memory efficiency.

• We employ a ConvGNN-based aggregator that extracts more dis-
tinctive features, especially in datasets with significant inter-class
similarities.

• Extensive experiments on the CAMELYON16 (Bejnordi et al.,
2017), ISIC2018 (Codella et al., 2019), and APTOS2019 (APTOS,
2019), OCTMNIST (Yang, Shi, & Ni, 2021) datasets show that
our method achieves superior performance over other class im-
balanced methods with performance improvement in all classes.

Differences with previous works. This work is an extended version of our
preliminary works (Cong et al., 2022a; Cong, Yang, Liu, Pagnucco, &
Song, 2022). The single-stage contrastive learning framework (AdUni)
proposed in Cong et al. (2022a) explores the effectiveness of end-to-
end self-supervised learning under class imbalance. However, AdUni
faces challenges with datasets having high inter-class similarities. On
the other hand, DeepGAT (Cong et al., 2022) explores the usefulness
of graph neural network feature representations in capturing complex
relationships between different receptive fields. This inspires us to
integrate their advantages.

In this work, we build AdUniGraph on the basis of AdUni and
integrate the strengths of ConvGNN-based aggregators. Subsequently,
we implement the following modifications:

• ConvGNN-based feature representations for contrastive learning. In
conventional contrastive learning frameworks, a multi-layer per-
ceptron (MLP) is used to combine features from pooling layers.
However, replacing pooling layers with ConvGNN-based aggre-
gators, as seen in DeepGAT, could lead to over-parameterisation.
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Meanwhile, traditional pooling before aggregation may result in
sub-optimal features, especially for minority classes. To address
this, we introduce a novel approach by replacing MLP and fully
connected layers with ConvGNN-based aggregators. These ag-
gregators generate high-level features first, followed by global
averaged pooling (GAP). This design reduces the risk of over-
parameterisation (e.g., cutting parameter count from 11.5M to
11.2M for a ResNet18 backbone) and improves performance.

• An improved loss function with a sharp adapter parameter (𝛼).
AdUni’s transition function for calculating 𝛼 is too smooth, un-
intentionally emphasising the feature learning process and poten-
tially hindering classifier learning. We enhance the loss functions
by introducing a more effective function to obtain the adapter,
fostering a better integration between feature and classifier learn-
ing.

• Extensive experiments on more diverse datasets. In addition to the
imbalanced datasets (ISIC2018 and APTOS2019) used previously,
we conduct extensive experiments on a large histopathology
dataset (CAMELYON16) and a retinal dataset (OCTMNIST).
AdUniGraph’s superior performance on these datasets showcases
the effectiveness of ConvGNN-based feature aggregation and em-
phasises the advantages of unifying feature and classifier learning.

. Related work

.1. Class imbalanced classification

Class-imbalanced learning is important for achieving an unbiased
odel applicable in real-world settings. Accordingly, in the past, data

mbalance has been studied extensively in the medical image domain
nd the general domain as well. This section provides a comprehensive
verview of these methods.

ethods in the medical image domain. Data re-sampling methods, in-
luding up-sampling the minority classes or down-sampling the major-
ty classes, have been widely used to address imbalanced datasets via
onstructing a more balanced data distribution (Bokhorst et al., 2018;
ong, Gong, & Zhu, 2018; Galdran et al., 2021; Rana et al., 2023; Reza
Ma, 2018). Furthermore, to alleviate the issue of low variances within
inority classes, several methods employ generative networks (Chai

t al., 2022; Dai et al., 2022; Park, Liu, Wang, & Zhu, 2019; Rana,
owmya, Meijering, & Song, 2022a; Rana et al., 2022b) or mix-up
trategies (Rana et al., 2022a, 2022b; Zhang, Cisse, Dauphin, & Lopez-
az, 2018) to generate synthetic samples. For instance, Galdran et al.
2021) utilised mix-up for blending samples from two distributions
o create synthetic samples for a balanced training distribution. Sim-
larly, Bal-Mxp (Galdran et al., 2021) adopted mix-up to fuse samples
rom both regular and balanced distributions to promote effective
odel training without under-fitting the minority classes. Moreover,
hao et al. Zhao, Chen, Chen, and Li (2022) perform feature space
ugmentation on the minority classes by distilling features from the
ample-abundant majority classes. In addition, Zhuang et al. Zhuang,
ai, Zhang, Zheng, and Wang (2023) proposed to integrate an at-
ention mechanism to help the model focus on learning the lesion
egions of rare diseases. While data re-sampling techniques can be
ffective, they often ignore the specific characteristics of downstream
asks. This frequently leads to overfitting, potentially resulting in sub-
ptimal classification performance. Another approach to handle class
mbalance is cost-sensitive training, which involves assigning different
eights to classes based on their number of samples (Ghorbani et al.,
022; Lin, Wu, Wen, & Qin, 2021; Luo, Xu, Chen, Wong, & Heng,
022; Pan et al., 2023; Wei et al., 2023; Yoon et al., 2019; Zhang,
an, et al., 2018; Zhao et al., 2022). Typically, higher weights are
ssigned to the minority classes, indicating stronger penalties for their
is-classifications. For instance, Sivapuram et al. (2023) introduced
3

modified version of cross-entropy loss by integrating a modified
angular margin alongside the Euclidean margin. Moreover, Ghorbani
et al. Ghorbani et al. (2022) devised a Re-weighted Adversarial Graph
Convolutional Network (RA-GCN). RA-GCN adjusts the weights as-
signed to class samples and alters the significance of each sample to
help alleviate the class imbalanced issue on graph-structured datasets.
Though effective, cost-sensitive trainings typically encounter challenges
in determining suitable cost values for various classes and inaccurate
cost assignments can heighten the risk of overfitting to the minor-
ity class. Additionally, recent studies have explored self-supervised
learning (SSL) in class imbalance learning. For example, Marrakchi
et al. (2021) introduced a two-stage supervised contrastive learning
framework and demonstrated its effectiveness in improving the per-
formance of tasks such as lesion diagnosis and blindness detection in
imbalanced settings. Moreover, ProCo (Yang et al., 2022) proposed to
generate generating contrastive pairs consisting of category prototype
and adversarial proto-instance, and a proto-loss was used to enable
single-stage training. Such SSL-based approaches tend to outperform
re-sampling or cost-sensitive training at the cost of substantial com-
putational resources. Additionally, the two-stage training mechanism
inherent in these approaches is not end-to-end, potentially leading to
a mismatch between feature learning and classifier training processes.
Despite the demonstrated efficacy of these methods, there is still much
space for improvement in the domain of class-imbalanced learning,
particularly within the context of medical images.

Methods in the general image domain. Unlike the medical image do-
main, the issue of class imbalance in the general image domain is
well-studied. These methods can be roughly divided into two main
categories, the single-model-based methods, and the multi-expert-based
methods.

Single-model-based methods perform learning without introducing
extra models. These methods can be further divided into three sub-
categories. The first is the class re-balance method which aims to
balance the class contributions to the learning by re-sampling (Zhang,
Wu et al., 2021) or loss re-weighting (Deng et al., 2021; Wang, Zhang
et al., 2021; Zhu, Niu, Hua, & Zhang, 2022). For example, Soltanzadeh,
Feizi-Derakhshi, and Hashemzadeh (2023) recently proposed a under-
sampling approach that simultaneously addresses both the imbalanced
class distribution and the issue of class overlap. Moreover, model
predictions are used to re-weight classes in Focal loss (Lin, Goyal,
Girshick, He, & Dollár, 2017), greater weights are assigned to the
more challenging tail classes while lower weights are assigned to the
easier head classes. On the other hand, LADE (Hong et al., 2021)
was proposed to adopt the test label distribution to post-adjust the
model prediction. The second category relies on knowledge transfer.
Since the majority classes have more samples with higher variances,
it is feasible to transfer the knowledge from the data abundant ma-
jority classes to help the model learning on the minority classes. To
achieve this, distribution calibration methods (Liu, Li, & Sun, 2022)
and augmentation techniques (Chu, Bian, Liu, & Ling, 2020) have been
proposed. These methods aim to align the distributions of minority
and majority classes or augment the minority class samples to improve
the model’s performance on the underrepresented classes. The third
category consists of multi-stage learning approaches based on self-
supervised learning (SSL). Since SSL extracts more robust features than
the standard supervised learning approach, it is believed to be more
capable of handling class imbalance (Liu et al., 2021). Consequently,
these methods (Kang et al., 2019; Zhang, Li, Yan, He & and Sun, 2021)
initially employ SSL and subsequently finetune a classifier based on the
learned features, leveraging the benefits of self-supervised learning for
mitigating the effects of class imbalance. For instance, TSC (Li, Cao
et al., 2022) increased the uniformity of the feature distribution by
mapping the learned features to a set of class-balanced targets.

Current single-model strategies effectively diminish bias towards
minority classes; however, they concurrently increase variance across

all classes. This increase in variance results in a decrease in accuracy for
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majority classes. Thus, various multi-expert-based methods have been
introduced to enhance model variance by ensembling the predictions of
multiple models or model branches. One such approach is RIDE (Wang,
Lian, Miao, Liu, & Yu, 2020), which leverages a multi-expert design to
capture complementary knowledge from individual models. Similarly,
NCL (Li, Tan, Wan, Lei, & Guo, 2022) improves knowledge transfer
between experts through an online distillation module. Additionally,
SADE (Zhang, Hooi, Hong & Feng, 2022) adopts a distinct focus for
each expert on different data distributions and incorporates a self-
supervised test-time aggregation mechanism to fuse the outputs of the
experts, and DO (Cong et al., 2024) proposes to effectively improve
the interaction between sub-models by dynamically allocating model
parameters into sub-groups based their importance to different classes.
These techniques aim to diversify model predictions, exploit comple-
mentary expertise, and ultimately enhance the overall performance by
effectively leveraging multiple experts. While multi-expert models have
demonstrated impressive performance, it is important to note that their
training requires significant computational resources.

2.2. Supervised contrastive learning

Contrastive learning serves as a proxy task within the realm of
self-supervised learning, facilitating the acquisition of a more refined
feature space (Chen, Kornblith, Norouzi, & Hinton, 2020; Oord, Li, &
Vinyals, 2018). In recent years, contrastive learning has been exten-
sively studied. The proposed methods use an instance discrimination
task (Chen, Fan, Girshick & He, 2020; Chen et al., 2020) or clustering-
based approaches (Caron, Bojanowski, Joulin, & Douze, 2018) to max-
imise mutual information between the positive image pairs and discrep-
ancy among the negative pairs. Additionally, supervised contrastive
learning has improved performance using label information (Khosla
et al., 2020). However, these existing methods often require large
memory queues or multi-stage training procedures. In contrast, our
work presents a unified single-stage CL framework that eliminates the
need for a memory queue and introduces a unified single-stage super-
vised contrastive learning framework tailored for imbalanced medical
datasets.

2.3. Graph representation learning

Inspired by the astonishing progress of CNNs in the deep-learning
era, Convolutional Graph Neural Networks (ConvGNNs) generalise con-
volution to the graph domain by stacking multiple graph convolutional
layers to extract high-level graph representations. These methods can
be divided into two categories, namely spectral approaches (Bruna,
Zaremba, Szlam, & LeCun, 2013; Defferrard, Bresson, & Vandergheynst,
2016; Li, Wang, Zhu, & Huang, 2018), and spatial approaches (Huang,
Zhang, Rong, & Huang, 2018; Niepert, Ahmed, & Kutzkov, 2016;
Veličković et al., 2017). In particular, both ChebNet (Defferrard et al.,
2016) and Graph Convolutional Networks (GCN) (Kipf & Welling,
2016) adopt the spectral method to parameterise the convolution ker-
nel, resulting in significant reductions in both time and space complex-
ity. These methods have introduced the concept of a weight matrix for
each node from a spectral perspective. Inspired by these advancements,
spatial methods (Huang et al., 2018; Veličković et al., 2017) were
subsequently developed, incorporating attention mechanisms and se-
rialisation models to consider the weight of modelling nodes. In recent
years, numerous variants of ConvGNNs have emerged. Notably, with
the advancement of CNN, researchers have proposed several studies
to develop deeper networks that incorporate residual connections and
dense connections (Li, Muller, Thabet, & Ghanem, 2019). Further-
more, Han, Wang, Guo, Tang, and Wu (2022) introduce a graph-based
representation for images, enabling more flexible feature extraction
and aggregation by incorporating a graph structure. However, training
4

ConvGNNs can be memory extensive, since ConvGNNs usually require t
storing the entire graph and intermediate node features into mem-
ory during training. In our approach, we use the high-level feature
representations as inputs for ConvGNNs, which tend to have smaller
sizes. This strategy is designed to enhance the training efficiency of
ConvGNNs.

Recently, Graph Contrastive Learning (GCL) has been studied to
establish a new paradigm for learning effective graph representations.
Specifically, the current GCL methods can be roughly catergorised into
two main categories (Liu, Jin et al., 2022): (1) same-scale (Hafidi,
Ghogho, Ciblat, & Swami, 2020; Jovanović, Meng, Faber, & Watten-
hofer, 2021; Qiu et al., 2020; Wang, Liu, Han & Shi, 2021; Zhu,
Xu et al., 2020) and (2) cross-scale (Hassani & Khasahmadi, 2020;
Sun et al., 2021; Wang & Liu, 2021; Zhu, Yang et al., 2020) con-
trastive learning. Same-scale contrastive learning discriminates features
on the same scale (i.e., node to node, or graph to graph). For example,

RACE (Zhu, Xu et al., 2020) adopts node feature masking and edge
ropping to obtain two contrastive views. This approach brings similar
odes closer together in two different views of the graph while pushing
part dissimilar ones. Moreover, to increase the robustness of node
eatures, GROC (Jovanović et al., 2021) uses adversarial augmentation
n graphs. GCC (Qiu et al., 2020) leverages the MoCo (He, Fan, Wu,
ie, & Girshick, 2020) framework and implements random work as
ugmentations to generate augmented views of each node. On the
ther hand, cross-scale discrimination spans various graph topologies.
or example, EGI (Zhu, Yang et al., 2020) extracts high-level graph
epresentations by maximising the mutual information between the
ode embeddings and its surrounding ego-graphs. Additionally, MV-
RL (Hassani & Khasahmadi, 2020) uses graph diffusion (Gasteiger,
eißenberger, & Günnemann, 2019) and sub-graph sampling to gen-

rate graph views. It then enriches supervision signals by maximising
utual information between node embeddings in one view and the

raph-level representation in another view.
Though our work also shares similarities with Graph Contrastive

earning (GCL) in which both use different data views to conduct
ontrastive learning to find enhanced, low-dimensional representations
or graphs. We would like to highlight the fundamental differences
etween our work and GCL. Firstly, GCLs are typically limited to
raph-structured datasets and the effectiveness of GCL methods on
mbalanced image datasets is still under-explored. In contrast, our work
ndeed works on image datasets which do not always contain such
tructured samples. Secondly, GCLs usually generate data views from
raphs, whereas, our work uses image data as different views. Thirdly,
he level of imbalance is different. Most current integrated frameworks
f GNN with contrastive learning are proposed for the node-level im-
alance classification. Whereas, our focus is on image-level imbalance
lassification. In our context, the ‘nodes’ refer to features with distinct
eceptive fields that are extracted from the same input image.

. Methods

Our proposed approach, AdUniGraph, is a variation of the super-
ised contrastive learning (SCL) framework. Unlike others, AdUniGraph
onducts feature and classifier learning in a single stage and replaces
he commonly used pooling operation with a ConvGNN-based feature
ggregator. In the following sections, we first briefly describe the
onventional two-stage SCL scheme in class imbalanced classification,
hen we present our modification to conduct SCL in a single stage and
escribe our ConvGNN-based feature aggregator.

.1. Conventional two-stage supervised contrastive learning

A standard CNN is trained in a single stage with cross-entropy loss
or the classification task. However, when classes are imbalanced, the
radients computed from the cross-entropy loss can be dominated by

he majority class, which leads to a biased model. Cui et al. show
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Fig. 3. Comparison between our AdUniGraph and conventional Supervised Contrastive Learning (SCL) training. (a) SCL usually adopts a two-stage training in which the feature
learning is conducted at the first stage, then the features are fixed, and classifier learning is conducted at the second stage. In contrast, (b) our AdUniGraph adapts SCL by
dynamically adjusting the focus between feature and classifier learning in an end-to-end fashion. Additionally, our novel ConvGNN-based feature aggregator replaces standard
pooling and fully connected operations, enhancing intra-class interactions and reducing inter-class interactions.
Algorithm 1: Pseudocode of AdUniGraph training.
Data: Training set containing 𝑁 image-label pairs, randomly

initialised model 𝑀𝜃 with conventional CNN encoder
𝑀𝜃𝐶𝑁𝑁

and ConGNN feature aggregator 𝑀𝜃𝐺𝑁𝑁
, learning

rate 𝜂, # of epochs 𝐾.
for 𝑘 = 0,⋯ , 𝐾 − 1 do

for 𝑖 = 0,⋯ , 𝑁 − 1 do
/* Generate two views */

𝑥1𝑖 ← 𝑎𝑢𝑔𝑚𝑒𝑛𝑡1(𝑥𝑖);
𝑥2𝑖 ← 𝑎𝑢𝑔𝑚𝑒𝑛2(𝑥𝑖);
𝑥𝑖 ← 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑥1𝑖 , 𝑥

2
𝑖 );

/* Forward path */
𝑧𝑖 ← 𝑀𝜃𝐶𝑁𝑁

(𝑥𝑖);
𝑓𝑖 ← 𝐺𝑃 (𝑀𝜃𝐺𝑁𝑁1

(𝑧𝑖));
𝑔𝑖 ← 𝐺𝑃 (𝑀𝜃𝐺𝑁𝑁2

(𝑓𝑖));
/* Backward path */

𝜃 ← 𝜃 − 𝜂 × ∇𝜃𝑢𝑛𝑖
𝑖 (𝑓𝑖, 𝑔𝑖);

end
end

that robust features extracted using SCL can effectively alleviate this
issue (Cui et al., 2021).

SCL methods typically follow a two-stage setting (Fig. 3(a)). Specifi-
cally, given a batch of 𝑁 image-label pairs (𝑥𝑖, 𝑦𝑖) where 𝑖 ∈ 1⋯𝑁 , we
generate two distinct views, namely 𝑥1𝑖 and 𝑥2𝑖 , by applying different
augmentation techniques to 𝑥𝑖. Subsequently, 𝑥1𝑖 and 𝑥2𝑖 are fed into an
encoder network. The resulting outputs pass through a pooling layer
and a two-layer multi-layer perception (MLP), yielding the respective
feature representations 𝑓 1

𝑖 and 𝑓 2
𝑖 . This ends up having 2𝑁 features

for processing, and we use 𝐵 to denote this feature set containing 2𝑁
5

features. Then the supervised contrastive loss (𝑆𝐶𝐿) can be calculated
using the following equation:

𝑆𝐶𝐿
𝑖 = −

∑

𝑓𝑝∈𝑃
log

exp(𝑓𝑖 ⋅ 𝑓𝑝)∕𝜏
∑

𝑓𝑗∈𝐵 exp(𝑓𝑖 ⋅ 𝑓𝑗 )∕𝜏
, (1)

where 𝑃 = {𝑓𝑘 ∈ 𝐵 ∶ 𝑦𝑘 = 𝑦𝑖} and 𝜏 is the temperature parameter.
Eq. (1) explicitly pulls features with the same label closer and pushes
away features from different classes, thus forming denser clusters.

Following the first stage of contrastive feature learning, the weights
in the encoder and MLP layers are fixed, and classifier learning is con-
ducted at the second stage. Specifically, a fully-connected classification
layer is learned to map the feature 𝑓𝑖 obtained from the first stage to the
label space (𝑙𝑖), and the cross-entropy (CE) loss can be used to update
the classification layer:

𝐶𝐸
𝑖 = −

∑

𝑘∈𝐾
𝑦𝑘 log 𝜌𝑖,𝑘, (2)

where 𝐾 denotes the total number of classes and 𝜌𝑖,𝑘 = 𝜎(𝑙𝑖) indicates
the probability of the image 𝑖 being classified as class 𝑘, and 𝜎(⋅) is the
softmax function.

Compared to standard CNN training with CE loss, since SCL involves
all instances within a batch, it helps alleviate the gradient imbalances,
SCL produces features that exhibit greater robustness to class imbal-
ance. While SCL effectively enhances model performance under dataset
imbalance, it is associated with some issues. The first one is a disjoint
learning process, where features and classifiers are learned separately
with two different targets, making the features learned from the first
stage less compatible with the classifier at the second stage. The second
issue is the requirement for a substantial batch size with an external
memory queue in order to acquire diverse features that contribute to
improved performance (Khosla et al., 2020). Moreover, the high inter-
class similarity in the classification of medical datasets further poses
further difficulties in learning discriminative features.
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3.2. Adaptive unified supervised contrastive learning with ConvGNN-based
aggregator

In order to tackle the above issues, we present an alternative so-
lution, which incorporates additional supervision from off-the-shelf
classifier learning into the feature learning process via an adaptive
unified loss function (𝑢𝑛𝑖). Furthermore, we adopt a more effective
feature aggregator based on graph convolutional graph neural network
(ConvGNN) (Cong et al., 2022) to obtain a more discriminative feature
space.

ConvGNN-based aggregator. We argue that the conventional CNN struc-
ture’s pooling layer cannot adequately capture the intricate relation-
ships between features with varying receptive fields. We therefore
adopt a more effective feature aggregator based on graph attention net-
works (GATs) (Veličković et al., 2017) to overcome this limitation. Our
framework is also compatible with other ConvGNN networks, but GAT
is chosen for its efficiency; please see the discussion in Section 5.2 for
details. As shown in Fig. 3, we use GAT layers for feature aggregation
instead of feeding the encoder outputs to a pooling layer. Specifically,
we denote 𝑧0 ∈ 𝑅ℎ×𝑤×𝑐 = (𝑧10, 𝑧

2
0, ⋯, 𝑧𝑤×ℎ

0 ) as the feature map extracted
by the encoder with width 𝑤, height ℎ and expanding over 𝑐 channels,
nd different 𝑧𝑚0 , indicates features with different receptive fields. Then,
e construct a graph by treating each 𝑧𝑚0 as initial node features with
imension 𝑐; we set an edge 𝑒𝑚𝑛 connecting 𝑧𝑚0 and 𝑧𝑛0, where 1 ≤ 𝑚, 𝑛 ≤
×ℎ, if they are spatial neighbours. Once the graph is constructed, we

rocess it using two consecutive GAT layers where node features are
pdated by:

𝐳𝑚𝑙 =𝛼𝑚,𝑚Θ𝐳𝑚𝑙−1 +
∑

𝑛∈ (𝑚)
𝛼𝑚,𝑛Θ𝐳𝑛𝑙−1 (3)

𝑚,𝑛 =
exp

(

LeakyReLU
(

𝐚⊤[Θ𝐳𝑚𝑙−1 ∥ Θ𝐳𝑛𝑙−1]
))

∑

𝑢∈ (𝑚)∪{𝑚} exp
(

LeakyReLU
(

𝐚⊤[Θ𝐳𝑚𝑙−1 ∥ Θ𝐳𝑢𝑙−1]
)) (4)

Here 𝑙 denotes the index of the 𝑙th GAT layer,  (𝑚) indicates a set of
nodes that are spatial neighbours to 𝑧𝑚 and 𝛼𝑚,𝑛 is the attention weight
indicating the importance for feature 𝑧𝑛 to feature 𝑧𝑚; 𝛩 is a linear
transformation; and 𝐚 is a single-layer feedforward neural network.
GAT helps to capture feature-dependent relationships between 𝑧1, 𝑧2,

, 𝑧𝑤×ℎ, therefore enhancing intra-class interactions and weakening
nter-class interactions.

Compared to the standard two-stage SCL, we replace the pooling
nd fully-connected layers with GAT layers. Specifically, in the first
AT layer, we condense the feature dimensions from 𝑐 to 𝑐hidden.
ubsequently, we employ global average pooling (GAP) to derive the
ggregated feature 𝑓𝑖 for input 𝑥𝑖. Lastly, following the final GAT layer,
e perform another dimension reduction from 𝑐hidden to 𝑛class, where

class corresponds to the number of classes. This yields the ultimate
utput 𝑔𝑖.

daptive unified loss. In order to perform feature and classifier learning
ointly in an end-to-end framework, the cross-entropy loss function
Eq. (2)) is modified as:

𝐶𝐸
𝑖 = − log

exp(𝑔𝑖 ⋅𝑤𝑦𝑖 )
∑

𝑘∈𝐾 exp(𝑔𝑖 ⋅𝑤𝑦𝑘 )
, (5)

here 𝑔𝑖 denotes the output produced by the final ConvGNN layer
nd 𝑤𝑦𝑘 denotes the corresponding label 𝑦𝑘 in one-hot format. Sub-
equently, Eqs. (1) and (5) are combined to obtain the unified loss
unction (𝑢𝑛𝑖):

𝑢𝑛𝑖
𝑖 = − log

𝛼 ⋅
∑

𝑓𝑝∈𝑃 exp(𝑓𝑖 ⋅ 𝑓𝑝)∕𝜏 + exp(𝑔𝑖 ⋅𝑤𝑦𝑖 )∕𝜏
∑

𝑓𝑗∈𝐵 exp(𝑓𝑖 ⋅ 𝑓𝑗 )∕𝜏 +
∑

𝑘∈𝐾 exp(𝑔𝑖 ⋅𝑤𝑦𝑘 )∕𝜏
, (6)

where 𝛼 is an adapter parameter that controls the focus of the model
between feature and classifier learning and 𝜏 is the temperature param-
eter.
6

Table 1
Dataset information used in this study.

Name MaxIns MinIns Class count Type

CAM16 57,942 6,866 2 Breast tumour
APTOS2019 1,805 193 5 Retina
ISIC2018 6,705 115 7 Skin Lesion
OCTMNIST 46,026 7,754 4 Retina

In AdUni (Cong et al., 2022a), 𝛼 decreases smoothly throughout the
raining, which slowly transits model training from feature learning at
he early stages of training to classifier learning at the later stages.
owever, such a smooth transition inevitably leads to insufficient
lassifier learning. Thus, to effectively capture the benefits of both the
earning stages and maintain a balance between them, we are inspired
y Zhou, Cui, Wei, and Chen (2020) and propose an adaptive approach
hat reduces 𝛼 more sharply. In particular, we use the function below
o get 𝛼𝑡 linked to the current training epoch:

𝑡 = 𝛼𝑚𝑖𝑛 + (𝛼𝑡−1 − 𝛼𝑚𝑖𝑛) × 𝛿(𝑡) (7)

(𝑡) =
1 + 𝑐𝑜𝑠( 𝑡

𝑡𝑑𝑒𝑐𝑎𝑦
𝜋)

2
(8)

Here, 𝛼𝑚𝑖𝑛 is the minimum value of 𝛼, 𝑡 is the current epoch number, 𝛿(𝑡)
is a cosine updating function that moderates the decrease of 𝛼 and 𝑡𝑑𝑒𝑐𝑎𝑦
controls the smoothness of 𝛿(𝑡). Compared to the transition function
in AdUni, Eq. (7) adaptively reduces 𝛼 more sharply which may cause
more efficient classifier learning. We provide more detailed discussions
in the ablation section.

Training pipeline. Given an input image 𝑥𝑖, we first generate two differ-
ent views following the standard SCL setting. Both views are concate-
nated and fed to the encoder network to obtain a feature representation
of 𝑥𝑖. Then, the obtained feature goes through two consecutive Con-
vGNN layers, where the output of the first ConvGNN layer is used as the
aggregated feature 𝑓𝑖 and the output of the final ConvGNN layer is used
as the final output 𝑔𝑖. Both 𝑓𝑖 and 𝑔𝑖 are fed into 𝑢𝑛𝑖 for regularisation.

As can be seen, 𝑢𝑛𝑖 eliminates the disjoint learning process, en-
abling the simultaneous learning of features and classifiers within a
single loss function. This approach is particularly advantageous in the
context of medical datasets, which often exhibit limited intra-class vari-
ance. Simply increasing the batch size and incorporating an additional
memory queue may not yield the optimal solution for enhancing feature
quality. Instead, 𝑢𝑛𝑖 introduces task-specific learning signals to the
feature learning process through classifier training. This approach has
the potential to obtain more discriminative features without the need
for excessively large batch sizes.

4. Experiments

4.1. Dataset details

We trained and evaluated our proposed method on three medi-
cal datasets with different image modalities, including CAMELYON16
(histopathology), ISIC2018 (skin lesion), APTOS2019 (retinal disease),
and OCTMNIST (retinal disease). More information about each dataset
is provided in Table 1 where we show the maximum and minimum
number of instances within a class (MaxIns and MinIns).

CAMELYON16 (Bejnordi et al., 2017) is used for breast histopathol-
ogy classification. In line with previous studies (Li & Ping, 2018; Shen
& Ke, 2020), our approach involves partitioning Whole Slide Imaging
(WSI) slides into patches and conducting patch-level classification. The
objective is to accurately classify the patches as either normal or tu-
mour, contributing to the overall classification of breast histopathology.
It contains 399 WSI slides and each is provided with corresponding
detailed pixel annotations. This allows us to perform patch-level classi-

fication. Specifically, we first apply the Otsu algorithm (Otsu, 1979)
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to filter out the background regions of each slide and then densely
extract patches of size 256 × 256 pixels at 5× magnification level.
We label the patches containing cancer metastasis as positive (tumour)
and other patches as negative (normal). This produces 64,828 patches,
where 89.3% (57,942) are negative, and 10.7% (6866) are positive.

ISIC2018 (Codella et al., 2019) is a skin cancer dataset. It contains
10,015 skin session images of size 450 × 600 pixels which are cate-
gorised into 7 disease states, including 6705 melanocytic nevus (‘nv’,
67%), 1113 melanoma (‘mel’, 11%), 1099 benign keratosis (‘bkl’, 11%),
514 basal cell carcinoma (‘bcc’, 5%), 327 actinic keratosis (‘akiec’, 3%),
142 vascular lesion (‘vasc’, 1%) and 115 dermatofibroma (‘df’, 1%).

APTOS2019 (APTOS, 2019) refers to diabetic retinopathy (DR)
which is a leading cause of adult blindness. The APTOS2019 dataset
contains 3662 images with varying image sizes, which are categorised
into 5 classes based on the severity of diabetic retinopathy: 1805 (‘0’,
49%) no DR, 999 (‘1’, 27%) moderate, 370 (‘2’, 10%) mild, 295 (‘3’,
8%) proliferative, and 193 (‘4’, 5%) severe DR.

OCTMNIST (Yang et al., 2021) contains 109,309 optical coherence
tomography (OCT) images for retinal diseases. There are 4 classes
in the dataset, including 37,455 choroidal neovascularisation (‘0’,
34.3%), 11,598 diabetic macular edema (‘1’, 10.6%), 8866 drusen (‘2’,
8.1%), 11,598 normal (‘3’, 47.0%). The officially provided images are
greyscale and of size 28 × 28 pixels.

4.2. Experimental setup

For CAMELYON16, ISIC2018, and APTOS2019, we conduct 5-fold
cross-validation and report the mean and standard deviation of the
measurements, indicating that for each fold, we randomly select 80%
of the samples for training and 20% for testing. In line with previous
baseline methods (Cong et al., 2022a; Marrakchi et al., 2021), we
resized images to 384 × 384 and applied random affine transformation,
horizontal and vertical flip, and colour jittering for data augmentation.
For OCTMNIST, following previous works (Chen et al., 2021; Yang
et al., 2021), we used the images from the official train and validation
set for training, and the images from the test-set are used for evaluation.
Additionally, we resized the images to 32 × 32 and applied random
horizontal flip for data augmentation. Moreover, we used ResNet18 (He
et al., 2016) and GAT (Veličković et al., 2017) as the default encoder
network and ConvGNN aggregator as they have shown promising per-
formances in previous studies (Cong et al., 2022a). The model was
trained for 400 epochs with a batch size 192 on 4 Nvidia V100 GPUs.
The weight parameters were updated using the stochastic gradient
descent method (SGD) (Ruder, 2016) with a learning rate of 0.1. The
temperature parameter 𝜏 (Eqs. (1) and (6)) was set to 0.1 and the initial
and minimum values of 𝛼 were set to 1.0 and 0.1, respectively. We
tried different values of 𝑡𝑑𝑒𝑐𝑎𝑦 (Fig. 10), and the best-performing value
of 1000 was set.

For evaluation, we measured the accuracy and macro F1-score over
all classes and the per-class accuracy and F1-score, where the macro
F1-score is calculated using the averaged precision and recall across
all classes. Moreover, inspired by Du and Wu (2023), we also reported
the value of geometric mean (G-Mean) which is more sensitive to the
lowest recall among all classes. Specifically, the G-Mean of 𝑛 classes
is calculated by 𝑛

√

𝑥1 ⋯ 𝑥𝑛, where 𝑥𝑖 is the accuracy of class 𝑖. Addi-
ionally, we conducted a Wilcoxon rank sum test at a significance level
f 1% to assess whether AdUniGraph achieves statistically significant
mprovement over the compared approaches. Specifically, we recorded
he averaged probability of the correct label for each test sample of 5
uns and our null hypothesis was that the computed probability using
ur proposed method was less than or equal to that of the other baseline
pproaches.
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Table 2
Classification accuracy, geometric mean (G-Mean), macro F1-score and p-value on the
test set of CAMELYON16.

Method CAMELYON16

Acc G-Mean Macro F1 p–value

CE(Murphy, 2012) 0.919±1.10𝑒−03 0.917±5.68𝑒−03 0.863±5.27𝑒−03 2.4𝑒−7
Focal Loss(Lin et al., 2017) 0.920±1.21𝑒−03 0.918±3.37𝑒−03 0.863±5.27𝑒−03 2.6𝑒−7
BALMS(Ren et al., 2020) 0.932±3.61𝑒−03 0.932±2.90𝑒−03 0.898±1.47𝑒−03 1.7𝑒−4
LDAM(Cao et al., 2019) 0.943±1.26𝑒−03 0.941±1.20𝑒−03 0.912±1.27𝑒−03 2.3𝑒−4
LADE(Hong et al., 2021) 0.951±1.31𝑒−03 0.951±1.30𝑒−03 0.926±1.22𝑒−03 2.1𝑒−4
Decouple(Kang et al., 2019) 0.960±1.34𝑒−03 0.958±1.51𝑒−03 0.938±1.21𝑒−03 4.2𝑒−4
PaCo(Cui et al., 2021) 0.970±1.20𝑒−03 0.969±1.21𝑒−03 0.940±1.21𝑒−03 1.2𝑒−3
TSC(Li, Cao et al., 2022) 0.968±1.19𝑒−03 0.964±1.51𝑒−03 0.936±1.19𝑒−03 2.8𝑒−4
Bal-Mxp(Galdran et al., 2021) 0.952±1.75𝑒−03 0.952±1.13𝑒−03 0.932±1.20−03 4.2𝑒−7
ProCo(Yang et al., 2022) 0.983±1.21𝑒−03 0.982±1.21𝑒−03 0.964±1.28𝑒−03 2.1𝑒−3
CICL(Marrakchi et al., 2021) 0.968±2.71𝑒−03 0.967±2.70𝑒−03 0.942±1.27𝑒−03 1.3𝑒−4
DeepGAT(Cong et al., 2022a) 0.948±1.58𝑒−03 0.947±2.27𝑒−03 0.942±2.33𝑒−03 5.4𝑒−6
AdUni(Cong et al., 2022a) 0.972±4.21𝑒−03 0.971±3.41𝑒−03 0.943±2.01𝑒−03 8.0𝑒−3
AdUniGraph𝑤𝑜𝐶𝑜𝑛𝑣𝐺𝑁𝑁 0.975±3.36𝑒−03 0.975±3.24𝑒−03 0.950±1.21𝑒−03 1.0𝑒−3
AdUniGraph (Ours) 𝟎.𝟗𝟗𝟐±1.74𝑒−03 𝟎.𝟗𝟗𝟐±2.63𝑒−03 𝟎.𝟗𝟔𝟓±1.10𝑒−03 –

Table 3
Classification accuracy, geometric mean (G-Mean), macro F1-score and p-value on the
test set of ISIC2018.

Method ISIC2018

Acc G-Mean Macro F1 p-value

CE(Murphy, 2012) 0.841±5.37𝑒−03 0.692±1.21𝑒−03 0.701±1.21𝑒−03 3.3𝑒−5
Focal Loss(Lin et al., 2017) 0.848±5.05𝑒−03 0.681±1.64𝑒−03 0.722±2.20𝑒−03 3.8𝑒−5
BALMS(Ren et al., 2020) 0.862±2.28𝑒−03 0.740±1.69𝑒−03 0.756±1.94𝑒−03 1.2𝑒−7
LDAM(Cao et al., 2019) 0.851±2.28𝑒−03 0.702±3.24𝑒−04 0.728±1.94𝑒−03 2.5𝑒−7
LADE(Hong et al., 2021) 0.856±1.28𝑒−03 0.721±1.28𝑒−04 0.732±2.07𝑒−03 3.8𝑒−8
Decouple(Kang et al., 2019) 0.861±2.32𝑒−04 0.710±2.55𝑒−03 0.738±4.01𝑒−03 1.9𝑒−6
PaCo(Cui et al., 2021) 0.864±2.33𝑒−03 0.742±4.33𝑒−03 0.768±4.49𝑒−03 4.9𝑒−7
TSC(Li, Cao et al., 2022) 0.867±3.75𝑒−03 0.748±3.29𝑒−03 0.771±1.20𝑒−03 2.4𝑒−7
Bal-Mxp(Galdran et al., 2021) 0.852±4.63𝑒−03 0.728±2.33𝑒−03 0.751±4.33𝑒−03 3.2𝑒−4
ProCo(Yang et al., 2022) 0.883±3.76𝑒−03 0.766±2.32𝑒−03 0.764±2.33𝑒−03 5.4𝑒−7
CICL(Marrakchi et al., 2021) 0.866±7.39𝑒−03 0.739±3.30𝑒−03 0.760±9.71𝑒−03 2.7𝑒−5
DeepGAT(Cong et al., 2022a) 0.858±2.28𝑒−03 0.732±3.08𝑒−03 0.758±1.28𝑒−03 1.9𝑒−4
AdUni(Cong et al., 2022a) 0.878±4.36𝑒−03 0.784±3.34𝑒−03 0.805±1.18𝑒−03 6.9𝑒−3
AdUniGraph𝑤𝑜𝐶𝑜𝑛𝑣𝐺𝑁𝑁 0.880±1.58𝑒−03 0.786±3.08𝑒−03 0.806±2.33𝑒−03 1.2𝑒−3
AdUniGraph (Ours) 𝟎.𝟖𝟖𝟑±2.01𝑒−03 0.796±3.08𝑒−03 𝟎.𝟖𝟎𝟖±8.01𝑒−04 –

5. Results & discussion

5.1. Comparison to the state-of-the-art methods

We compare our AdUniGraph with previous state-of-the-art (SOTA)
class-imbalanced approaches, including those proposed for medical
image datasets (CICL (Marrakchi et al., 2021), DeepGAT (Cong et al.,
2022), AdUni (Cong et al., 2022a), Bal-Mxp (Galdran et al., 2021)
and ProCo (Yang et al., 2022)), and those proposed for general image
datasets (Focal Loss (Lin et al., 2017), BALMS (Ren et al., 2020),
LDAM (Cao, Wei, Gaidon, Arechiga, & Ma, 2019), LADE (Hong et al.,
2021), Decouple (Kang et al., 2019), PaCo (Cui et al., 2021) and
TSC (Li, Cao et al., 2022)). Since AdUniGraph is a single-model-based
approach, we did not choose to compare it with multi-expert-based
methods for fairness. On the other hand, the compared methods are
chosen based on their significant impacts on class-imbalanced learning.
We aim to cover a wide spectrum of methods for comprehensive
comparison. This includes re-sampling approaches (Bal-Mxp), loss re-
weighting approaches (Focal Loss, BALMS, LDAM, LADE), and con-
trastive learning-based approaches (CICL, DeepGAT, AdUni, ProCo,
PaCo, and TSC). We have included more contrastive learning-based
methods in our comparison due to their close relevance to our work.
The reported results are re-implemented using the same backbone
network (ResNet18).

The results of CAMELYON16 are shown in Table 2, the results
of ISIC2018 are shown in Table 3, the results of APTOS2019 are
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Table 4
Classification accuracy, geometric mean (G-Mean), macro F1-score and p-value on the
test set of APTOS2019.

Method APTOS2019

Acc G-Mean Macro F1 p-value

CE(Murphy, 2012) 0.813±6.09𝑒−03 0.541±2.33𝑒−03 0.603±7.81𝑒−03 2.8𝑒−6
Focal Loss(Lin et al., 2017) 0.820±8.90𝑒−04 0.636±1.69𝑒−03 0.635±2.80𝑒−03 1.5𝑒−6
BALMS(Ren et al., 2020) 0.826±3.46𝑒−03 0.629±2.10𝑒−03 0.649±3.19𝑒−03 2.2𝑒−4
LDAM(Cao et al., 2019) 0.815±2.05𝑒−03 0.641±1.66𝑒−03 0.636±3.46𝑒−03 1.6𝑒−5
LADE(Hong et al., 2021) 0.825±2.32𝑒−03 0.636±3.24𝑒−03 0.642±2.31𝑒−03 1.4𝑒−5
Decouple(Kang et al., 2019) 0.822±2.83𝑒−03 0.619±2.82𝑒−03 0.661±3.31𝑒−03 5.1𝑒−7
PaCo(Cui et al., 2021) 0.825±2.00𝑒−03 0.631±4.33𝑒−03 0.680±3.31𝑒−03 4.4𝑒−6
TSC(Li, Cao et al., 2022) 0.836±1.29𝑒−03 0.642±4.33𝑒−03 0.694±3.45𝑒−03 2.2𝑒−3
Bal-Mxp(Galdran et al., 2021) 0.821±1.37𝑒−03 0.622±2.61𝑒−03 0.692±2.33𝑒−03 1.9𝑒−3
ProCo(Yang et al., 2022) 0.826±1.30𝑒−03 0.633±1.30𝑒−03 0.674±2.33𝑒−03 4.4𝑒−7
CICL(Marrakchi et al., 2021) 0.828±2.05𝑒−03 0.636±2.05𝑒−03 0.676±1.24𝑒−03 4.7𝑒−8
DeepGAT(Cong et al., 2022) 0.821±2.68𝑒−03 0.618±2.55𝑒−03 0.640±2.32𝑒−03 4.9𝑒−4
AdUni(Cong et al., 2022a) 0.839±4.92𝑒−03 0.653±2.82𝑒−03 0.695±5.51𝑒−03 7.1𝑒−4
AdUniGraph𝑤𝑜𝐶𝑜𝑛𝑣𝐺𝑁𝑁 0.843±1.58𝑒−03 0.654±1.92𝑒−03 0.699±2.33𝑒−03 1.7𝑒−3
AdUniGraph (Ours) 𝟎.𝟖𝟒𝟓±4.21𝑒−03 0.661±2.49𝑒−03 𝟎.𝟕𝟎𝟖±2.21𝑒−03 –

Table 5
Classification accuracy, geometric mean (G-Mean), macro F1-score and p-value on the
test set of OCTMNIST.

Method OCTMNIST

Acc G-Mean Macro F1 p-value

CE(Murphy, 2012) 0.754±3.20𝑒−03 0.742±2.50𝑒−03 0.724±5.67𝑒−03 1.6𝑒−7
Focal Loss(Lin et al., 2017) 0.752±2.00𝑒−03 0.728±4.33𝑒−03 0.712±3.19𝑒−03 2.2𝑒−6
BALMS(Ren et al., 2020) 0.784±1.27𝑒−03 0.772±2.33𝑒−03 0.764±3.27𝑒−03 3.2𝑒−4
LDAM(Cao et al., 2019) 0.791±3.82𝑒−03 0.785±5.80𝑒−03 0.772±3.84𝑒−03 1.7𝑒−4
LADE(Hong et al., 2021) 0.796±1.58𝑒−03 0.793±3.19𝑒−03 0.780±2.33𝑒−03 3.8𝑒−6
Decouple(Kang et al., 2019) 0.828±1.20𝑒−03 0.816±1.22𝑒−03 0.814±2.21𝑒−03 1.9𝑒−6
PaCo(Cui et al., 2021) 0.848±1.33𝑒−03 0.835±4.35𝑒−03 0.832±1.33𝑒−03 1.2𝑒−4
TSC(Li, Cao et al., 2022) 0.843±1.19𝑒−03 0.828±1.20𝑒−03 0.832±1.21𝑒−03 1.5𝑒−4
Bal-Mxp(Galdran et al., 2021) 0.783±1.38𝑒−03 0.774±2.64𝑒−03 0.769±2.32𝑒−03 3.7𝑒−5
ProCo(Yang et al., 2022) 0.856±1.33𝑒−03 0.843±3.63𝑒−03 0.846±1.37𝑒−03 1.4𝑒−4
CICL(Marrakchi et al., 2021) 0.843±1.37𝑒−03 0.832±4.33𝑒−03 0.835±1.24𝑒−03 5.4𝑒−4
DeepGAT(Cong et al., 2022) 0.775±3.20𝑒−03 0.762±2.54𝑒−03 0.749±4.33𝑒−03 3.7𝑒−6
AdUni(Cong et al., 2022a) 0.862±1.20𝑒−03 0.862±1.20𝑒−03 0.861±2.02𝑒−03 2.4𝑒−3
AdUniGraph𝑤𝑜𝐶𝑜𝑛𝑣𝐺𝑁𝑁 0.863±4.33𝑒−03 0.864±4.33𝑒−03 0.863±3.13𝑒−03 2.1𝑒−3
AdUniGraph (Ours) 𝟎.𝟖𝟕𝟑±1.27𝑒−03 𝟎.𝟖𝟔𝟖±4.33𝑒−03 𝟎.𝟖𝟕𝟐±1.27𝑒−03 –

Fig. 4. Accuracy for each class on the test set on (a) CAMELYON16, (b) ISIC2018, (c)
APTOS2019, and (d) OCTMNIST using different class-imbalanced studies.

shown in Table 4 and the results of OCTMNIST are shown in Ta-
ble 5. As can be seen, our proposed method achieves state-of-the-art
performance on all four datasets with an overall accuracy of 99.2%,
88.3%, 84.5%, 87.3% on CAMELYON16, ISIC2018, APTOS2019 and
OCTMNIST, respectively. Meanwhile, it has the best macro-F1 score
on four datasets, with 96.5%, 80.8%, 70.3% and 87.2%, respectively.
In general, contrastive learning-based approaches demonstrate better
performance than re-sampling or loss re-weighting approaches. This
illustrates the usefulness of CL in increasing the robustness of features
8

against class imbalance. Furthermore, our proposed method also has
Fig. 5. F1-score for each class on the test set on (a) CAMELYON16, (b) ISIC2018, (c)
APTOS2019, and (d) OCTMNIST using different class-imbalanced studies.

the best G-Mean over other comparing baselines. For example, its G-
Mean values on CAMELYON16, ISIC2018, APTOS2019, and OCTMNIST
are approximately 99.2%, 79.6%, 66.1%, 86.8%, respectively. On aver-
age, these scores are approximately 1.5% higher than those achieved by
the previous SOTA method, AdUni. Since G-Mean is more sensitive to
small values, the improvement in G-Mean indicates that our proposed
method successfully improves the lowest recall across all categories.
To further illustrate this statement, we show the accuracy and F1-
score on every individual class for all four datasets in Figs. 4 and 5.
The results clearly demonstrate that AdUniGraph not only exhibits the
highest overall performance but also yields improvements in accuracies
and F1-scores across all classes when compared to other methods.

Unlike previous SOTA methods with contrastive learning (PaCo (Cui
et al., 2021)), TSC (Li, Cao et al., 2022), ProCo (Yang et al., 2022) and
(CICL (Marrakchi et al., 2021)), both AdUni (Cong et al., 2022a) and
AdUniGraph require only a single-stage of training, eliminate the need
for a memory queue, and obtain better performance. This underscores
the benefits of introducing learning signals from classifier training into
the feature learning process, as opposed to relying solely on incorporat-
ing an external memory queue. Moreover, compared with our previous
work AdUni (Cong et al., 2022a), using the new transition function for
𝛼 (Eq. (7)) helps enhance the overall performance and adopting the
graph convolutional-based aggregator from our previous work (Cong
et al., 2022) further improves the model performance, which shows
the importance of using a better feature aggregator in class imbalance
classification. Additionally, the obtained p-values are smaller than 0.01,
which indicates that AdUniGraph has statistically significantly better
performance than the compared methods.

5.2. Ablation studies & discussions

We perform ablation studies to examine the effectiveness of employ-
ing single-stage contrastive learning, using the new transition function
for 𝛼 and using the graph convolution-based aggregator. The compared

ethods are as follows: (1) baseline method, which is the standard
CNN trained in a single stage with a cross-entropy loss; (2) two-stage
CL, which is the standard contrastive learning that uses supervised
contrastive loss function for feature learning and cross-entropy for
classifier learning; (3) two-stage CL and ConvGNN, which is stan-
dard contrastive learning with supervised contrastive loss function
for feature learning and cross-entropy for classifier learning, and use
ConvGNN as feature aggregator (Cong et al., 2022); (4) unified CL,

hich replaces supervised contrastive loss function and cross-entropy
ith unified loss function (𝑢𝑛𝑖) and uses a smooth transition function

or 𝛼 (Cong et al., 2022a); (5) unified CL with sharp 𝛼, which uses
he same structure and loss as unified CL, but with a sharp transi-
ion function (Eq. (7)) for 𝛼; and, (6) unified CL with sharp 𝛼 and

ConvGNN (AdUniGraph), which integrates both the sharp transition
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Fig. 6. Classification accuracy comparison with different training methods and model
structures on CAMELYON16, ISIC2018, APTOS2019 and OCTMNIST datasets.

Fig. 7. F1-score comparison with different training methods and model structures on
CAMELYON16, ISIC2018, APTOS2019 and OCTMNIST datasets.

function for 𝛼 and the ConvGNN-based feature aggregator. We note
that the model architecture, learning scheduler, optimiser, and other
initial hyperparameter settings were the same for all the experiments.
Additionally, we analyse the impact of several crucial components, such
as using diverse values of 𝑡𝑑𝑒𝑐𝑎𝑦, using different encoder backbones,
and employing various convolutional graph neural networks for feature
aggregation.

Ablation on all components. We perform a comprehensive ablation
study on our proposed method, and the results are illustrated in
Figs. 6 and 7. AdUniGraph, which includes unified CL, sharp transition
function for 𝛼, and ConvGNN-based feature aggregator, achieves the
best performance in the ablation study. In contrast, the Baseline method
exhibits biased learning due to the imbalanced dataset, resulting in
the poorest performance. Significant performance improvements can
be observed by adopting either the conventional two-stage supervised
contrastive learning (two-stage CL) or unified single-stage supervised
contrastive learning (Unified CL). This observation aligns with the
findings of Liu et al. (2021), suggesting that self-supervised learning
generates more robust features in the presence of class imbalance. Fur-
thermore, Unified CL notably demonstrates better performance than the
conventional two-stage CL, highlighting the effectiveness of unifying
feature and classifier learning.

We also report the classification performances on different datasets
with different training parameters in Fig. 8, including learning rate,
9

Fig. 8. Classification scores on different datasets with different training parameters.

batch size, number of epochs, and the value of 𝜏. We notice that a larger
learning rate is preferable for most datasets except for OCTMNIST
where the best performance is obtained when the learning rate equals
0.01. However, increasing it to 0.1 only brings a marginal drop in
classification accuracy. Consequently, we decided to use a learning
rate of 0.01 for all four datasets. Moreover, larger batch sizes tend to
improve performance, but they also demand more training resources.
As a compromise, we settled on a batch size of 192. Furthermore, we
found that longer training periods do not necessarily lead to better
outcomes. For example, employing 500 epochs for training resulted in
worse performance across the four datasets. Consequently, we chose to
train for 400 epochs. Finally, we show the performance change versus
the temperature parameter 𝜏 for (Eqs. (1) and (6)). Smaller 𝜏 values
led to decreased performance, likely because they overly penalise the
most similar negative samples while underemphasising other negative
samples. Consequently, we determined that 𝜏 = 0.1 yields the best
performance.

We compare the change of the adapter parameter 𝛼 during in
AdUni (Cong et al., 2022a) and AdUniGraph, as visualised in Fig. 10.
In AdUni, we notice a consistent and gradual decrease in 𝛼 throughout
training. This suggests that 𝛼 remains relatively high for most of the
training process, indicating a high contribution of feature learning to
the overall learning. While this approach works well for AdUni, we
propose that it might lead to insufficient learning of the classifier,
which is crucial for capturing task-specific information. To address this
concern, we introduce a modification to the way 𝛼 changes during
training. This change, shown in the right part of Fig. 10, leads to a
more rapid decrease in 𝛼. As a result, more training time is dedicated
to refining the classifier. The results we present in Figs. 6 and 7
demonstrate the positive effects of this modification.

We further highlight the usefulness of adopting the proposed Con-
vGNN aggregator. As shown in Figs. 6 and 7, further performance
improvement is observed using the proposed ConvGNN aggregator. To
further illustrate its usefulness, we visualise the feature space using
TSNE in Fig. 11 and the Grad-CAM (Selvaraju et al., 2017) in Fig. 9 of
AdUniGraph with and without the ConvGNN aggregator. It is observed
that using the ConvGNN provides more compact intra-class feature
clustering and enlarges the distance between inter-class clusters. In ad-
dition, we notice that replacing the standard pooling-based aggregator
with ConvGNN aggregator helps the model to focus on more important
regions, thus increasing the classification performance.

Influence of different 𝑡𝑑𝑒𝑐𝑎𝑦. Note that, except for the hyper-
arameters for training (e.g., learning rate, number of epochs, and
atch size), our work only introduces one extra parameter 𝛼. More
pecifically, as shown in Eq. (8), the value of 𝛼 purely depends on 𝑡𝑑𝑒𝑐𝑎𝑦.
hus, in this section we explored the impact of different values of 𝑡𝑑𝑒𝑐𝑎𝑦

n Fig. 10. It is observed that increasing the value of 𝑡𝑑𝑒𝑐𝑎𝑦 leads to a
smoother transition 𝛼, effectively assigning a higher importance to the

feature learning stage. However, excessively emphasising the feature
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Table 6
Experiment results using various values of 𝑡𝑑𝑒𝑐𝑎𝑦 on different datasets.

𝑡𝑑𝑒𝑐𝑎𝑦 CAMELYON16 ISIC2018 APTOS2019 OCTMNIST

Acc F1 Acc F1 Acc F1 Acc F1

400 0.988±5.26𝑒−03 0.957±3.95𝑒−03 0.873±2.64𝑒−03 0.793±3.69𝑒−03 0.838±4.74𝑒−03 0.691±1.63𝑒−03 0.856±1.28𝑒−03 0.858±2.64𝑒−03
600 0.990±1.75𝑒−03 0.958±1.89𝑒−03 0.879±3.03𝑒−03 0.795±1.02𝑒−03 0.840±8.01𝑒−04 0.701±1.17𝑒−03 0.858±4.33𝑒−03 0.859±1.63𝑒−03
800 0.992±3.03𝑒−03 0.961±1.54𝑒−03 0.883±2.28𝑒−03 0.802±1.21𝑒−03 0.841±2.33𝑒−03 0.704±2.69𝑒−03 0.864±4.33𝑒−03 0.861±4.33𝑒−03
1000 0.992±1.74𝑒−03 𝟎.𝟗𝟔𝟓±1.10𝑒−03 𝟎.𝟖𝟖𝟑±2.01𝑒−03 𝟎.𝟖𝟎𝟖±8.01𝑒−04 𝟎.𝟖𝟒𝟓±4.21𝑒−03 𝟎.𝟕𝟎𝟖±2.21𝑒−03 𝟎.𝟖𝟕𝟑±1.27𝑒−03 𝟎.𝟖𝟕𝟐±1.27𝑒−03
1200 𝟎.𝟗𝟗𝟒±3.03𝑒−03 0.964±2.20𝑒−03 0.881±3.78𝑒−03 0.799±2.37𝑒−03 0.843±6.34𝑒−03 0.700±1.06𝑒−03 0.873±4.33𝑒−03 0.871±1.27𝑒−03
Table 7
Experiment results using various types of convolutional neural networks as encoders on four datasets.

Encoder type CAMELYON16 ISIC2018 APTOS2019 OCTMNIST

Acc F1 Acc F1 Acc F1 Acc F1

ResNet18 𝟎.𝟗𝟗𝟐±1.74𝑒−03 𝟎.𝟗𝟔𝟓±1.10𝑒−03 𝟎.𝟖𝟖𝟑±2.01𝑒−03 𝟎.𝟖𝟎𝟖±8.01𝑒−04 𝟎.𝟖𝟒𝟓±4.21𝑒−03 𝟎.𝟕𝟎𝟖±2.21𝑒−03 𝟎.𝟖𝟕𝟑±1.27𝑒−03 𝟎.𝟖𝟕𝟐±1.27𝑒−03
ResNet50 0.986±2.32𝑒−03 0.958±6.52𝑒−03 0.887±2.28𝑒−03 0.790±1.21𝑒−03 0.837±2.68𝑒−03 0.682±2.21𝑒−03 0.870±4.33𝑒−03 0.871±2.32𝑒−03
DenseNet121 0.981±2.37𝑒−03 0.960±2.25𝑒−03 0.869±1.96𝑒−03 0.758±2.51𝑒−03 0.828±1.35𝑒−03 0.679±4.25𝑒−03 0.865±2.24𝑒−03 0.858±2.21𝑒−03
DenseNet161 0.975±3.13𝑒−03 0.948±4.25𝑒−03 0.862±1.26𝑒−03 0.752±2.57𝑒−03 0.827±7.24𝑒−03 0.676±3.54𝑒−03 0.862±4.33𝑒−03 0.858±2.21𝑒−03
Table 8
Experiment results using various types of convolutional graph neural networks as feature aggregators on four datasets.

GNN type CAMELYON16 ISIC2018 APTOS2019 OCTMNIST

Acc F1 Acc F1 Acc F1 Acc F1

GCNConv 0.973±3.37𝑒−03 0.945±4.49𝑒−03 0.872±2.06𝑒−03 0.773±2.46−03 0.812±1.37𝑒−03 0.664±2.28−03 0.858±1.37𝑒−03 0.856±4.33−03
ResConv 0.981±2.28𝑒−03 0.952±2.37𝑒−03 0.880±1.55𝑒−03 0.786±1.81−03 0.826±1.28𝑒−03 0.678±2.01−03 0.864±2.62𝑒−03 0.863±1.28−03
GATConv 0.992±1.74𝑒−03 0.965±1.10𝑒−03 0.883±2.01𝑒−03 0.808±8.01𝑒−04 0.845±4.21𝑒−03 0.708±2.21𝑒−03 𝟎.𝟖𝟕𝟑±1.27𝑒−03 0.872±1.27𝑒−03
GATv2Conv 𝟎.𝟗𝟗𝟑±2.64𝑒−03 𝟎.𝟗𝟕𝟎±1.08𝑒−03 0.887±2.20𝑒−03 𝟎.𝟖𝟏𝟐±2.01𝑒−03 𝟎.𝟖𝟒𝟖±4.92𝑒−03 𝟎.𝟕𝟏𝟎±1.20𝑒−03 0.873±4.33𝑒−03 𝟎.𝟖𝟕𝟑±2.24−03
Fig. 9. The grad-CAM visualisation with (w) and without (wo) using the proposed
ConvGNN aggregator on (a) CAMELYON16, (b) ISIC2018, (c) APTOS2019 and (d)
OCTMNIST datasets.

learning stage (i.e., enlarging 𝑡𝑑𝑒𝑐𝑎𝑦) could lead to insufficient task-
specific classifier learning, and excessively emphasising the classifier
learning stage (i.e., reducing 𝑡𝑑𝑒𝑐𝑎𝑦) could lead to insufficient feature
learning. According to the results shown in Fig. 10 and Table 6, since
the overall best performance can be achieved with 𝑡𝑑𝑒𝑐𝑎𝑦 = 1000, we
use this value as the default value of 𝑡𝑑𝑒𝑐𝑎𝑦.

Influence of different encoder backbones. We explored the per-
formance of various CNNs as encoder networks in our framework. As
shown in Table 7, our framework is architecture agnostic, delivering
commendable performance across different encoder networks. How-
ever, it is intriguing to note that employing deeper neural networks
10
Fig. 10. Plots of 𝛼 in AdUni (Top) and AdUniGraph (Bottom) with different values of
𝑡𝑑𝑒𝑐𝑎𝑦. The 𝑋-axis denotes the epoch number.

leads to a decline in performance, which could be due to the fact
that medical datasets typically are of low scales and lack intricate
visual features, potentially resulting in overfitting when using deeper
networks.

Influence of different GCN aggregator. We conducted experi-
ments utilising various types of convolutional graph neural networks as
feature aggregators. Accordingly, we tried the graph convolutional op-
erator (GCNConv) (Kipf & Welling, 2016), the residual gated graph con-
volutional (ResConv) operator (Bresson & Laurent, 2017), the graph at-
tention operator (GATConv) (Veličković et al., 2017) and
GATv2Conv (Brody, Alon, & Yahav, 2021). The results are shown in
Table 8. Our framework works well with different choices of con-
volutional graph neural networks as feature aggregators, and more
advanced convolutional graph neural networks steadily improve per-
formance.

Limitation and Future works. While AdUniGraph effectively ad-
dresses class imbalance issues in medical image datasets, it does not
take into account the valuable prior knowledge inherent in these medi-
cal datasets. For instance, factors such as complex shape orientation and
H&E staining often play a crucial role in distinguishing tumour regions
in histopathology images. Similarly, factors like blurriness and lighting
conditions significantly impact retinal image classification (Qayyum,
Sultani, Shamshad, Tufail, & Qadir, 2022).



Expert Systems With Applications 251 (2024) 123783C. Cong et al.
Fig. 11. We show the feature visualisation with (w) and without (wo) using the
proposed ConvGNN aggregator on (a) CAMELYON16, (b) ISIC2018, (c) APTOS2019
and (d) OCTMNIST datasets.

Taking inspiration from recent work by Zhang, Ruan, Li, and Zhang
(2023), Zhang, Zhao et al. (2022), which incorporates the physics
laws governing muscle forces and joint kinematics into deep learning
model training through a customised loss function, our future research
will consider extracting meaningful stain colour features or performing
atmospheric light estimation. We plan to integrate these features explic-
itly into the training process by designing advanced loss functions, with
the ultimate goal of further improving the performance of AdUniGraph.

6. Conclusion

This paper addresses the challenge of imbalanced data distribution
in medical image classification. Our objective is to develop an effective
solution and to achieve this, we propose a novel end-to-end super-
vised contrastive training framework. Unlike traditional approaches
that handle feature learning and classifier learning separately, our
framework combines both stages by employing an adaptively unified
11
loss function. Additionally, we introduce a novel feature aggregator
based on convolutional graph neural networks, which replaces the
conventional pooling layers and further enhances performance. Exper-
imental studies conducted on CAMELYON16, ISIC2018, APTOS2019
and OCTMNIST datasets demonstrate that our proposed AdUniGraph
framework achieves substantial performance improvements across all
classes.
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