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ABSTRACT

Medical image segmentation is an important task in modern
analysis of medical images. Current methods tend to extract
either local features with convolutions or global features with
Transformers. However, few of them are able to effectively
fuse global and local features to facilitate segmentation. In
this work, we propose a novel hybrid network that involves
three main branches: the Multi-Layer Perception (MLP)
branch, the Convolutional Neural Network (CNN) branch,
and a Fusion branch. The MLP and CNN branches aim to
learn global and local features, respectively. To fuse these,
the fusion branch introduces a novel hierarchical fusion that
performs multi-layered fusions that generate high-level repre-
sentations to enhance segmentation. Our evaluation with two
datasets shows strong performance of the proposed method
compared to state-of-the-art baselines.

Index Terms— Medical image segmentation, MLP,
CNN, hierarchical fusion

This work is partially supported by National Natural Science Foun-
dation of China (No. 62072160, 62227807, and 62272044), Science and
Technology Research Project of Henan (No. 232102211024), China, the Teli
Young Fellow Program from the Beijing Institute of Technology, China
and the Grants-in-Aid for Scientific Research (No. 20H00569) from the
Ministry of Education, Culture, Sports, Science and Technology (MEXT),
Japan. BCorresponding authors: Hao Xiong (hao.xiong@mq.edu.au),
Hualei Shen (shenhualei@htu.edu.cn).

1. INTRODUCTION

Medical image segmentation semantically segments images
and is crucial in clinical analysis and decision making. The
existing works can be broadly classified as: CNN-based,
Transformer-based, and MLP-based methods.

CNN-based models. UNet is the most widely used CNN
network for medical image segmentation [1]. Inspired by
UNet, many variants have been proposed to further enhance
segmentation performance [2, 3, 4, 5]. Rather than captur-
ing long-range dependencies, these CNN-based methods only
extract local features due to the limited receptive field of con-
volutions. However, long-range dependencies also introduce
vital information into segmentation.

Transformer-based models. Vision Transformer has
been an emerging topic in computer vision [6, 7]. For
medical image segmentation, typical Transformers such as
Medical Transformer [8], attention gated networks [9], and
attention UNet [10] have been proposed. The superiority of
these methods can be attributed to their strong capability in
global information extraction. However, the attention mech-
anisms in Transformers involve complex computations, and
consequently require demanding computational resources.

MLP-based models. Recently, MLP-based approaches
[11, 12, 13] have been recognised as efficient alternatives to
Transformers. They exploit MLPs to learn channel-wise fea-
tures capturing global information. Besides, the linear MLP
operation is simple and can substantially reduce the computa-
tional complexity. Accordingly, MLP-based methods, includ-
ing UNeXt [14], PHNet [15] and USMLP [16], have been ex-
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Fig. 1: The proposed network consists of a decoder and a hybrid encoder, including a Fusion branch, an MLP branch, and
a CNN branch. The MLP branch and CNN branch capture the global and local features, respectively. The fusion branch,
containing hierarchical fusion blocks, fuses the global and local features extracted by the MLP and CNN branches.

ploited in medical image segmentation. These methods incor-
porate MLPs into the CNN architecture. The resultant mixed
structure of MLP and CNN facilitates the learning of both lo-
cal and global features.

To mitigate the aforementioned issues, we propose a novel
hybrid network containing three separate branches – the MLP
branch, CNN branch, and Fusion branch – for medical image
segmentation. The MLP and CNN branches work in paral-
lel, aiming to capture global and local features, respectively.
In the fusion branch, we introduce a novel hierarchical fu-
sion block to fuse the extracted global and local features for
segmentation. In the hierarchical fusion block, its first layer
initially fuses the features from MLP and CNN branches, for
which it then exploits channel attention and spatial attention
to identify higher-level global information and local details,
and feeds these into the subsequent layers. In each layer, we
repeatedly fuse the identified higher-level features from the
previous layer, and then apply channel attention and spatial
attention. As the number of fusion layers increases, the fea-
ture representation becomes more and more high-level. At
last, high-level features generated by the last layer are con-
catenated with low-level features from the first layer to yield
robust segmentation.

2. METHOD

Fig. 1 illustrates the proposed network with a hybrid encoder
and decoder. The hybrid encoder has three branches including
a Fusion branch, an MLP branch, and a CNN branch. We will
introduce them in following sub-sections.

2.1. Hybrid Encoder

Let I ∈ RH×W×C denote an input medical image, with
height, width, and channel of H , W , and C, respectively.
The image I is first fed into both the MLP branch and the
CNN branch.

MLP Branch: The MLP branch captures global infor-
mation and includes five MLP blocks. Each MLP block is
equipped with a convolutional (Conv) layer, a layer normali-
sation (LN), an axial shifted MLP layer [12], and a dropout.
For Conv, we set its kernel size to 3 × 3, stride to 2, and
padding to 1. For the axial shifted MLP, we exploit the shift
step of 5 to shift the feature maps along the width and height
axis. The dropout rate is set to 0.1. Each MLP block reduces
the feature resolution by 2.

CNN Branch: The CNN branch aims to extract local fea-
tures and it also contains five CNN blocks, for which each
block is equipped with a convolutional (Conv) layer, a batch
normalisation (BN) layer, a max pooling operator and a ReLU
activation function. For Conv, we set its kernel to 3×3, stride
to 1, and padding to 1. After each CNN block, the feature
resolution is reduced by 2.

Fusion Branch: The fusion branch also has five hierar-
chical fusion blocks. The ith block aims to fuse the features
produced by its corresponding ith MLP block and ith CNN
block. Fig. 1 illustrates the proposed hierarchical fusion block
with L layers. For block i, we obtain the fused feature f ij of
the jth layer via:

f ij =

{
Conv(W ij

1 Xi
M ⊙W ij

2 Xi
C), j = 1

Conv(W ij
1 X̂ij

M ⊙W ij
2 X̂ij

C ), j > 1,
(1)

where W ij
1 , W ij

2 are parameters of the convolutional layer,
and Conv(·) and ⊙ represent convolution and the Hadamard
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product, respectively. The first layer (j = 1) fuses the global
feature Xi

M and local feature Xi
C extracted by the ith MLP

and CNN blocks. We then perform hierarchical fusion in sub-
sequent layers (j > 1). In each layer, we concurrently apply
channel attention [17] and spatial attention [18] to identify the
global feature X̂ij

M and local feature X̂ij
C from the fused fea-

ture produced by the previous layer, and then perform fusion
(as per Eq. 1) to X̂ij

M and X̂ij
C .

The spatial attention is defined as:

X̂ij
C = σ(BN(Conv(CP (f ij−1))))⊙ f ij−1, (2)

where σ is the sigmoid function, CP (·) is the cross chan-
nel pooling operator, and BN represents batch normalisation.
Besides, the channel attention is:

X̂ij
M = σ(Conv(ReLU(Conv(MP (f ij−1)))))⊙ f ij−1,

(3)

where MP (·) refers to the mean pooling operator, and
ReLU(·) is the ReLU operator.

After L layered fusion and attention operations, we obtain
the high-level representations of global information X̂iL

M and
local information X̂iL

C . Combined with the fused feature f i1

of the first layer, we obtain the final fused feature Xi
F

Xi
F = Res([f i1, X̂iL

M , X̂iL
C ]), (4)

where Res(·) and [·] are the residual block and concatenation
operators, respectively.

2.2. Decoder

As shown in Fig. 1, the decoder of our network primarily con-
catenates features from the encoder and performs upsampling
to generate the segmentation map. We utilise attention-gated
skip-connection [9] to connect the encoder and decoder.

2.3. Loss Function

Finally, the loss function L of our network is defined as:

L = αL1(GT,XP )+βL2(GT,X5
F )+γL3(GT,X5

M ), (5)

where GT refers to the ground truth, XP is the predicted seg-
mentation map, and X5

F , X5
M are features produced by the

last Fusion and MLP blocks (5th block in branch). The terms
L1, L2 and L3 are:

L1 = BCEw(GT,XP ) + IoUw(GT,XP ), (6)

L2 = BCEw(GT,X5
F ) + IoUw(GT,X5

F ), (7)

L3 = BCEw(GT,X5
M ) + IoUw(GT,X5

M ). (8)

Here, BCEw(·) and IoUw(·) are weighted binary cross en-
tropy and weighted intersection over union functions [19], re-
spectively.

3. EXPERIMENTS AND RESULTS

3.1. Data

We used the Breast UltraSound Images (BUSI) [21] and
International Skin Imaging Collaboration (ISIC 2018) [22]
datasets in the evaluation. BUSI contains 780 images and
their ground-truth segmentation maps. All these are cat-
egorised as normal, benign, or malignant cases of breast
cancer. We utilise only benign and malignant images, in-
cluding 647 cases in total, as the benchmark set. ISIC2018
provides 2, 594 skin images and the corresponding lesion
segmentation maps.

3.2. Implementation Details and Evaluation Metrics

We trained our model on one NVIDIA A100 GPU using the
Adam optimiser with a momentum of 0.9, learning rate of
0.001, and batch size of 16. The maximum training epoch is
set to 1000. We performed 5-fold cross validation on each
dataset using an Intel® Xeon® CPU E5-2620.

We compare the computational complexity of the evalu-
ated methods using the number of parameters, floating point
operators (FLOPs), and average CPU inference time. To mea-
sure segmentation performance, we utilise the Dice similarity
coefficient (DSC) and mean intersection over union (mIoU):

DSC = 2
|X ∩ Y |
|X|+ |Y |

, IoU =
|X ∩ Y |
|X ∪ Y |

, (9)

where X denotes the predicted segmentation, Y is the ground
truth, and mIoU is the mean IoU across all the classes.

3.3. Results

We compare our method to several baselines, including CNN
based methods (U-Net [1], UNet++ [3], and ResUNet [2])
and transformer/MLP based methods (MedT [8], TransFuse
[20], and UNeXt [14]). As shown in Table 1, our method
outperforms the others on both datasets in terms of DSC and
mIoU. It is noteworthy that while our method is inferior to
UNeXt in terms of CPU inference time, this metric is not the
main focus of this work. With about 1s inference time, our
model has the potential to be deployed in a computational
resource-constrained environment.

Also, we observe that our method is slightly better than
the second best one for each dataset. For example, for BUSI
the DSC score of the second best TransFuse is 0.006 lower
than ours. However, its DSC score on the ISIC2018 dataset
drops substantially compared to our method. This indicates
that our performance is more stable as we consistently achieve
best results on both datasets.

In Fig. 2, we visually compare the segmentation maps
generated by our method and those generated by other meth-
ods. In general, our approach generates more accurate seg-
mentation maps compared to the ground truth.
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

Fig. 2: Segmentation examples of our method and other baselines on BUSI (top two rows) and ISIC2018 (bottom two rows):
(a) original image, (b) ground truth, (c) U-Net, (d) U-Net++, (e) ResUNet, (f) MedT, (g) TransFuse, (h) UNeXt, and (i) the
proposed method. The segmentation artefacts of the comparison methods are marked by red bounding boxes.

Table 1: Quantitative evaluation of the proposed method and state-of-the-art baselines on BUSI and ISIC2018.

Inference Time BUSI ISIC2018
Methods Params (M)↓ FLOPs (G) ↓ CPU (s) ↓ DSC ↑ mIoU ↑ DSC ↑ mIoU ↑
U-Net [1] 31.04 55.84 4.519 0.7367±0.0237 0.6462±0.0232 0.7945±0.0188 0.7103±0.0218

UNet++ [3] 9.16 34.91 5.957 0.7417±0.0223 0.6008±0.0287 0.8883±0.0152 0.8036±0.0229

ResUNet [2] 13.04 80.98 6.509 0.6442±0.0323 0.5380±0.0340 0.8663±0.0061 0.7926±0.0088

MedT [8] 1.60 21.24 12.264 0.6724±0.0386 0.5685±0.0438 0.8487±0.0220 0.7674±0.0271

TransFuse [20] 26.17 8.65 1.609 0.7921±0.0166 0.7075±0.0213 0.8898±0.0044 0.8202±0.0056

UNeXt [14] 1.47 0.58 0.298 0.7605±0.0037 0.6250±0.0039 0.8932±0.0070 0.8111±0.0111

Ours 5.66 1.57 1.229 0.7980±0.0097 0.7132±0.0119 0.8983±0.0047 0.8316±0.0059

Table 2: Effectiveness of each branch for segmentation on
BUSI and ISIC2018.

BUSI ISIC2018
Architecture DSC ↑ mIoU ↑ DSC ↑ mIoU ↑

w/o MLP Branch 0.7562±0.0199 0.6650±0.0248 0.8915±0.0146 0.8225±0.0041

w/o CNN Branch 0.7895±0.0182 0.7040±0.0224 0.8968±0.0024 0.8304±0.0031

w/o Fusion Branch 0.7851±0.0125 0.6997±0.0146 0.8943±0.0032 0.8266±0.0039

Ours 0.7980±0.0097 0.7132±0.0119 0.8983±0.0047 0.8316±0.0059

3.4. Ablation Studies

We first evaluate the effectiveness of three individual branches.
Table 2 shows that removing either the MLP (w/o MLP
Branch) or CNN branch (w/o CNN Branch) decreases DSC
and mIoU on both datasets. That indicates that both global
and local information is important to ensure robust segmenta-
tion. Meanwhile, w/o Fusion Branch replaces the proposed
fusion branch by simply concatenating the global and local
features. We observe that such a concatenation decreases seg-
mentation accuracy, which further shows that our proposed
fusion branch attains a more efficient fusion.

We also evaluate how the number of layers in our hier-
archical fusion block affects the performance. As shown in
Table 3, our fusion module with 3 layers achieves the best re-
sults. It is also worth noting that adding more layers to the
fusion may introduce more parameters, degrading the infer-

Table 3: Sensitivity of the number of layers in the hierarchical
fusion block on BUSI and ISIC2018. The fusion block with
3 layers achieves the best performance.

Layer BUSI ISIC2018
Numbers DSC ↑ mIoU ↑ DSC ↑ mIoU ↑
1 Layer 0.7895±0.0143 0.7049±0.0133 0.8962±0.0038 0.8292±0.0042

2 Layers 0.7920±0.0170 0.7094±0.0185 0.8973±0.0023 0.8315±0.0030

3 Layers 0.7980±0.0097 0.7132±0.0119 0.8983±0.0047 0.8316±0.0059

4 Layers 0.7918±0.0146 0.7064±0.0171 0.8943±0.0034 0.8295±0.0044

5 Layers 0.7865±0.0291 0.7004±0.0321 0.8906±0.0033 0.8219±0.0039

ence speed. Hence, 3 layers can be regarded as the optimal
trade-off between accuracy and the number of parameters.

4. CONCLUSION

This paper proposed a hybrid network for medical image seg-
mentation. It contains an MLP branch and a CNN branch that
learn both global and local features from the input image. The
fusion branch with hierarchical fusion blocks is designed to
effectively produce high-level representations from features
extracted by the MLP and CNN branches, and then to fuse
them with low-level features to enhance segmentation. Ex-
perimental results on two public datasets show the superiority
of our method over several state-of-the-art baselines.
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