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A B S T R A C T   

Background: Natural Language Processing (NLP) applications have developed over the past years in various fields including its application to clinical free text for 
named entity recognition and relation extraction. However, there has been rapid developments the last few years that there’s currently no overview of it. Moreover, it 
is unclear how these models and tools have been translated into clinical practice. We aim to synthesize and review these developments. 
Methods: We reviewed literature from 2010 to date, searching PubMed, Scopus, the Association of Computational Linguistics (ACL), and Association of Computer 
Machinery (ACM) libraries for studies of NLP systems performing general-purpose (i.e., not disease- or treatment-specific) information extraction and relation 
extraction tasks in unstructured clinical text (e.g., discharge summaries). 
Results: We included in the review 94 studies with 30 studies published in the last three years. Machine learning methods were used in 68 studies, rule-based in 5 
studies, and both in 22 studies. 63 studies focused on Named Entity Recognition, 13 on Relation Extraction and 18 performed both. The most frequently extracted 
entities were “problem”, “test” and “treatment”. 72 studies used public datasets and 22 studies used proprietary datasets alone. Only 14 studies defined clearly a 
clinical or information task to be addressed by the system and just three studies reported its use outside the experimental setting. Only 7 studies shared a pre-trained 
model and only 8 an available software tool. 
Discussion: Machine learning-based methods have dominated the NLP field on information extraction tasks. More recently, Transformer-based language models are 
taking the lead and showing the strongest performance. However, these developments are mostly based on a few datasets and generic annotations, with very few real- 
world use cases. This may raise questions about the generalizability of findings, translation into practice and highlights the need for robust clinical evaluation.   

1. Introduction 

With the advent of the information age, clinical documentation has 
moved from paper records into a digital format, commonly known as 
electronic health records (EHRs) [1]. Nowadays, EHRs have taken a cen
tral role in modern medicine and clinicians spend considerable time 
dealing with them [2], including an ever-increasing number of admin
istrative tasks, contributing to the clinician’s burnout [3] and using an 
increasing part of clinician’s time [2]. 

Over the recent years, we have seen a proliferation of Artificial In
telligence (AI) applications in a range of fields, including medicine [4], 
in areas such as image classification in radiology [5] or dermatology [6]. 
Owing to novel AI techniques, natural language processing (NLP) has 
also experienced an increased interest in processing clinical free text. 
Among the most promising NLP tasks in clinical medicine [7], Infor
mation Extraction (IE) and its subcomponents of Named Entity Recog
nition (NER) and Relation Extraction (RE) are critical elements for 

developing learning systems and unleashing the potential of AI. 
Although no single definition of NER exists [8], NER could be defined as 
a sub-task of IE consisting of extracting lexical units referring to a real-world 
entity in the specific domain of medicine. Hence, RE is defined as the 
extraction of semantic relations between two or more named entities. Fig. 1 
shows an example of NER extraction using the Stanford Stanza’s system 
[9]. In this system, an example discharge letter is processed, and clinical 
entities are highlighted as “PROBLEM” (any form of symptom, sign, or 
disease) and “TREATMENT” (for any drug or therapy). 

Among others, potential NER tasks in medicine include extraction of 
symptoms, signs, diseases, and treatments. Medically relevant RE in
cludes medication-indication relations, drug-drug interactions, 
symptom-diagnose relations, and more. Harnessing NER and RE and 
building intelligent systems on top of them could allow reducing the 
time spent manually coding diagnoses, creating intelligent retrieval 
systems, or building data-intensive prediction models, all contributing 
to higher standards of care and potentially decreasing EHR associated 
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burnout. One of the most challenging tasks is to extract and establish 
clinical relations among the different terms of clinical semiology (e.g., 
symptoms and signs with diseases and syndromes). Establishing these 
relations into a coherent “ontology” has been one of the major tasks for 
which NLP approaches have been considered and researched extensively 
in the past [10]. 

Specific challenges limiting the development and application of NLP 
in the health domain include the need for both clinical datasets [11] and 
high-quality annotations to develop NLP models. To address these, a few 
activities, such as releasing public deidentified datasets such as MIMIC 
[12] or creating specific clinical NLP challenges such as i2b2 / n2c2 [13] 
have been introduced. While they produced a wealth of algorithmic 
techniques [13-15], it remains unclear how these solutions can be 
implemented in the healthcare context and there is a gap between the 
experimental development and its real-world implementation in the 
clinical practice [16]. 

Previous reviews have examined clinical applications of NLP [17,18] 
but are currently outdated in respect of the recent developments in the 
field, especially as they do not include Transformer-based models, that 
dramatically transfigured the NLP landscape, with models like BIOBERT 
[19] particularly relevant here (which was explicitly excluded in Wu 
et al.[18]). Moreover, previous reviews [17,18] provide a good general 
overview of all clinical NLP tasks but do not detail specifically how NER 
and RE tasks were conceptualized nor provide a comparison between 
systems, their performance and availability so it can guide its applica
tion by current NLP practitioners. 

In this work, we aim to review NLP methods that extract clinical 
entities and/or their relations from unstructured clinical text and 
appraise their implementation potential. 

2. Methods 

2.1. Protocol and registration 

The protocol of this systematic review has been registered in 
PROSPERO (International Prospective Register of Systematic Reviews) 
under the identifier CRD4202017803. We followed the PRISMA state
ment [20] for reporting and structuring this review. 

2.2. Eligibility criteria 

We included studies using any computational methods to extract 
diagnoses, treatments, and clinical semiology entities, defined as any 
form of free-text information related to the pathophysiological mani
festations of diseases including symptoms and signs of disease. We 
included studies describing computational methods that perform either 
NER or RE. Only the studies that reported the above methods and per
formed these tasks in a multi-entity manner, meaning that they are 
designed to extract all clinical entities in a given text and not tailored to 
a specific disease or clinical task (e.g., smoking information, diabetes 
medication, cardiovascular semiology, etc.) were included. Studies that 
only extracted a specific type of clinical information (e.g., only medi
cations, not in conjunction with symptoms or diagnoses) were excluded. 

We also excluded the studies that did not either conduct any develop
ment and model validation (e.g., to test performance) or report their 
deployment and related accuracy in clinical free-text. We defined clinical 
free-text as an unstructured, written clinical textual documentation 
produced during the care, management or follow-up of a patient. Ex
amples of clinical free-texts include: discharge summaries, progress 
notes and referral letters. Studies where all the data came exclusively 
from biomedical literature, online forums, or social media, were 
excluded. We also excluded studies focusing solely on pathology or 
radiology reports as these diagnostic reports use a highly and structured 
language, where findings relate to imaging descriptions, either radi
ology or microscopy, and utilize a more constrained language than free- 
text clinical notes. Lastly, we excluded studies focusing on extracting 
temporal relations exclusively, rather than semantic relations, as this is 
usually considered a separate NLP task. 

We have not limited our review to certain types of studies, including 
either clinical trials or synthetic experiments. Both publications of 
journals and conference proceedings are included as they are standard 
research outlets in the Computer Science field. However, secondary 
research such as opinion pieces or methodological surveys of the target 
technologies were excluded. 

2.3. Information sources and search 

The search was conducted on 15th June 2022 in PubMed, Scopus, the 
Association for Computer Machinery (ACM) Digital Library, and the 
Association for Computational Linguistics (ACL) library. It was 
restricted to articles published since 2010 in the English language. We 
did not search in pre-print repositories, however, after screening refer
ences of the included studies, additional highly relevant pre-print 
studies (cited more than 500 times in included peer-reviewed publica
tions and not published subsequently as a peer reviewed publication) 
were included. The complete search strategy is available in Appendix 1. 

2.4. Study selection 

Three authors (DFN, KI, HR-A) performed the study selection and 
screening process. After initial calibration, with a 10% sample screened 
in duplicate, each reviewer screened the studies independently. Dis
agreements were resolved through discussion and with the help of a 
third reviewer (SB). The screening and study selection process was 
conducted using the RAYYAN platform [21]. 

2.5. Data extraction 

We piloted data extraction with 10% of the selected studies extracted 
in duplicate by reviewers (DFN, DR, KI). After the initial calibration, 
these reviewers performed the complete data extraction independently. 
Disagreements were resolved through discussion and with the help of a 
third reviewer (DFN, DR, or KI). 

Fig. 1. Example of multi-entity Clinical NER using Stanza [9].  
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2.6. Data items, summary measures and synthesis of results 

For each study, we extracted the following information: year of 
publication, NLP task(s) addressed (NER and/or RE), methods used 
(rule-based or machine learning (ML)), dataset(s) used, clinical entities 
of interest extracted, whether the study was part of a challenge, accuracy 
metrics(s) and additional performance metrics, and extraction of spe
cific semantic properties: assertion (presence or absence of entities) and 
intensity (e.g., degree of severity for pain). We also extracted whether 
the system has been deployed in a real-world setting (defined as the 
system being used in piloting, trialing or routinely in any clinical setting) 
and the clinical or information task(s) to be addressed by the NLP sys
tem, as defined by the authors. There is currently no appropriate tool to 
measure the risk of bias in NLP clinical studies; however, we extracted 
from each study the description of the methods (either using algorithmic 
formulas, pseudocode, or a description of system architecture), whether 
the source code was provided, and whether the trained model or a 
software package was made available. When a study presented several 
systems and compared their performance for a given task, we extracted 
the accuracy metrics from the system that was proposed in the paper 
and/or achieved the highest score overall. For example, if a BERT model 
was developed and compared to a previous BiLSTM model, BERT’s 
performance was extracted and reported. Additionally, for papers that 
proposed more than one method, we also extracted all the additional 
methods reported in the studies. 

For each study, we compiled the reported accuracy metrics for the 
best performing NER or RE method. We calculated descriptive statistics 
for categorical variables and performed a descriptive analysis of the 
accuracy measurements and other variables collected (frequencies). Due 
to the nature of this review, and the high variety of methods, entities, 
and datasets; we did not perform a meta-analysis or use regression 
models across studies. 

3. Results 

Our search yielded 4,180 results. After removing duplicates, titles 
and abstracts of 3,613 articles were screened. 186 articles were selected 
for full-text screening and after a reference search of the included 
studies, given its contribution to the field (over 500 citations in Google 
Scholar) one additional study by Alsentzer et al.[22] published in a pre- 
print server was included. In total, 94 articles were included in this re
view. Fig. 2 (PRISMA Flow-chart) provides detailed information on the 
inclusion and exclusion of studies. Considering the publication year, 15 
studies (16%) were published in 2019 and additional 15 studies (16%) 
in 2020, 10 studies (11%) in 2021 followed by 8 studies (9%) in 2011 
and 2018, 3 to 6 studies in 2011–2017, and only 2 studies in 2010. In the 
current year, 2022, 5 studies were published, bearing in mind that the 
search only included the first half of the year (see Fig. 3). 

Fig. 2. PRISMA Flow-chart.  
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3.1. NLP methodology 

Regarding NLP methodologies used, 68 (72%) of the included studies 
used ML methods compared to 22 studies (24%) combining ML and rule- 
based methods and 5 studies (5%) using rule-based methods alone. 
Considering the IE tasks explored, 63 studies (67%) focused on NER, 13 
studies (14%) on RE and 18 studies (19%) performed both NER and RE 
(see Table 1). 

Considering the specific methods used to perform these tasks, we 
found a wide variety of ML and rule-based approaches. Across all the 
studies, 154 ML methods, pipelines, and algorithm implementations 
were reported in total. In 42 studies (45%) only one method was re
ported, whereas 35 studies (37%) reported two methods, and 14 studies 
(15%) reported more than two. The most frequent method was Condi
tional Random Fields (CRF) [23] which was used alone or in combina
tion with other methods in 28 studies (30%) and Long Short-Term 
Memory (LSTM) [24] and Bidirectional Long Short-Term Memory (Bi- 
LSTM) [25] which were also used in 27 studies (29%), Bidirectional 
Encoder Representations from Transformers (BERT) [26] in 20 studies 
(21%), and Support Vector Machines (SVM) [27] were used in 16 studies 
(17%). The rest used different neural network (NN) architectures or did 
not specify the deployed model, referring generally to NNs, recurrent 
NNs, convolutional NNs, or deep NNs. Other specific NLP models 
included other word embeddings methods in 10 studies (11%), ELMO 
[28] architecture in 2 studies, global vectors (GloVe) [29] in two studies, 
and bag-of-words in another one. Studies not using ML methods 
included rule-based approaches in 19 studies (20%) and dictionaries 
and/or ontologies in 9 studies (10%). Table 2 describes the most com
mon methods deployed in these studies. 

3.2. Datasets and challenges 

72 studies (77%) relied exclusively on public datasets, whereas 22 
studies (23%) used proprietary datasets (e.g., hospital EHRs). 73 studies 
(78%) used the i2b2 challenge datasets and/or annotations, and among 

those, 55 studies (59%) used specifically the i2b2 2010 challenge 
dataset [15]. 13 studies (14%) used the MIMIC-II or MIMIC-III datasets 
[12], 10 studies (11%) used the SHARE/CLEF challenge [30] datasets 
and 8 studies (9%) used data from the SemEval challenges [31]. Lastly 4 
studies (4%) used the MADE 1.0 challenge [32] dataset and 4 other used 
MedNLI (which is a subset of the MIMIC dataset) [33] (see Fig. 4). 
Considering the challenges, 45 studies (48%) directly responded to a 
computational challenge and additional 17 studies (18%) addressed 
parts of those challenges or used them for benchmarking purposes. The 
remaining 32 studies (34%) did not respond to challenges, although 
some of them still used the datasets or annotations released by them. 

3.3. Method description, source code, model, and software availability 

Among the included studies, 32 (34%) provided the formal mathe
matical basis for their models, 48 studies (51%) included the pseudo
code or a model architecture diagram, and 14 studies (15%) shared the 
source code utilized for model development. Only 7 studies (7%) sup
plied the trained models, and 8 studies (9%) provided a software solu
tion available for download (see Table 3). Appendix 2 provides links to 
source materials, when these were made available by the authors. 

3.4. Clinical named entities 

Considering the entities being extracted, “treatments”, “medica
tions” or “drugs” were the most common extracted type of clinical entity 
present in 66 studies (70%). 48 studies (51%) extracted the triad of 
entities (“problem”, “test”, “treatment”), as annotated in the i2b2 2010 
challenge [15]. In the remaining works, the following entities were 
extracted: disorders or diagnoses (24 studies), symptoms and signs (14 
studies), adverse drug effects or side effects (13 studies), indication or 
reason (10 studies), procedures (8 studies, drug-related entities (e.g., 
dosage, frequency, duration) (6 studies), body location or anatomical 
site (5 studies), laboratory tests (4 studies) and International Classifi
cation of Diseases (ICD) codes (3 studies). Other extracted entities 

Fig. 3. Number of articles and methods included by the year of publication.  
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Table 1 
Methods, NLP tasks, and named entities extracted.  

Author Year NLP 
Method(s) 

NLP 
task 

Problem Test Treatment – 
Medication – 
Drug 

Symptoms Indication – 
Reason 

Disorder- 
Disease- 
Diagnose 

Relations Adverse drug 
events – side 
effects 

Procedure Body 
Part 

Other 

Abadeer[34] 2020 ML NER X X X         
Alsentzer[22] 2019 ML NER X X X         
Bejan[35] 2014 ML RE   X  X       
Ben Abacha[36] 2011 Rule- 

based +
ML 

NER X X X         

Bhatia[37] 2019 ML NER X X X         
Chalapathy[38] 2016 ML NER X X X         
Chatzimina[39] 2014 ML NER      X      
Chen[40] 2015 ML NER X X X         
Chodey[41] 2016 ML NER      X      
D’ Souza[42] 2014 ML +

Rule-based 
RE X X X    X     

D’Avolio[43] 2011 ML NER X X X         
Dai[44] 2020 ML NER X X X         
de Bruijn[15] 2011 ML +

Rule- 
based* 

NER 
+ RE 

X X X         

Dirkson[45] 2021 ML NER   X     X    
Divita[46] 2017 ML +

Rule-based 
NER    X        

Divita[47] 2014 ML NER X   X        
Dligach[48] 2013 ML RE   X X  X   X X  
Doan[49] 2010 ML NER   X         
Doğan[50] 2011 ML NER 

+ RE 
X X X    X     

Ghiasvand[51] 2014 Rule- 
based +
ML 

NER      X      

Gligic[52] 2020 ML NER 
+ RE   

X  X      Drug-related values 

Hao[53] 2020 Rule- 
based +
ML 

NER 
+ RE 

X X X        temporal relation to past 
medical history 

Hussain[54] 2020 Rule-based NER      X      
Jagannatha[32] 2019 ML NER 

+ RE   
X X  X X     

Jagannatha[55] 2016 ML NER   X  X   X    
JianG[56] 2011 ML NER X X X         
Jiang[57] 2012 ML NER X X X         
Jiang[58] 2019 ML NER X X X         
Jonnalagadda[59] 2012 Rule- 

based +
ML 

NER X X X         

Ju[60] 2020 ML NER   X     X    
Kang[61] 2012 ML +

Rule-based 
NER X X X         

Keretna[62] 2015 ML NER X X X         
Kim[63] 2019 ML +

Rule-based 
NER      X     cancer classification 

Kim[64] 2015 ML +
Rule-based 

NER X X X   X   X   

(continued on next page) 
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Table 1 (continued ) 

Author Year NLP 
Method(s) 

NLP 
task 

Problem Test Treatment – 
Medication – 
Drug 

Symptoms Indication – 
Reason 

Disorder- 
Disease- 
Diagnose 

Relations Adverse drug 
events – side 
effects 

Procedure Body 
Part 

Other 

KraLjevic[65] 2021 Rule- 
based +
ML 

NER   x x  X   x  Mental or behavioural 
dysfunction 

Leaman[66] 2015 ML NER      X      
Lee[67] 2019 ML NER X X X X  X   X  lab test 
Li F 1 [68] 2018 ML NER 

+ RE   
X  X   X   SSLIF (any symptom sign or 

disease, not ADE) 
Li F 2 [19] 2019 ML NER   X  X   X    
Li L [69] 2020 ML NER X X X         
Li Z[70] 2019 ML NER 

+ RE 
X X X    X    Relations previously 

described in other papers 
TRNAP… etc 

Lin[71] 2017 ML NER           ICD-10) 
Liu[72] 2016 ML NER X X X        occurrence 
Luo[73] 2017 ML RE X X X      X   
Manimaran[74] 2018 ML +

Rule-based 
NER X X X      X   

Minard[75] 2011 ML RE X X X    X     
Narayanan[76] 2020 ML NER        X    
Nath[77] 2021 Rule- 

based +
ML 

NER X X X         

Nguyen[78] 2018 ML NER           dx. codes 
Patrick[79] 2011 ML +

Rule-based 
NER 
+ RE 

X X X        drug and dose 

Peng[80] 2020 ML NER 
+ RE 

X X X X  X X     

Pradhan[81] 2015 Rule- 
based +
ML 

NER      X      

Qin[82] 2018 ML NER X X X         
Raj[83] 2017 ML RE X X X    X     
Ramanan[84] 2016 Rule-based NER    X  X    X lab test, sex, age, outcome 
Rea[85] 2012 Rule-based NER   X   X     glucose 
Rink[86] 2011 ML RE       X     
Sahu[87] 2016 ML RE       X     
Shi[88] 2019 ML NER 

+ RE      
X X   X  

Si [89] 2019 ML NER X X X         
Steinkamp[90] 2020 ML NER    X        
Suster[91] 2018 ML +

Rule-based 
RE       X     

Tang[92] 2013 ML NER X X X        Frequency, duration 
Tao[93] 2019 Rule- 

based +
ML 

NER 
+ RE   

X   X X X    

Tao[94] 2018 ML NER 
+ RE            

Tarcar[95] 2020 ML NER   X X  X     Dosage 
Trivedi[96] 2020 Rule-based NER  X  X  X   X  Family History, Situations 

affecting health 

(continued on next page) 
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Table 1 (continued ) 

Author Year NLP 
Method(s) 

NLP 
task 

Problem Test Treatment – 
Medication – 
Drug 

Symptoms Indication – 
Reason 

Disorder- 
Disease- 
Diagnose 

Relations Adverse drug 
events – side 
effects 

Procedure Body 
Part 

Other 

Wang[97] 2015 Rule- 
based +
ML 

NER      X      

Wang[98] 2018 ML NER 
+ RE           

fractures, smoking, drug- 
drug interaction 

Wei[99] 2020 ML NER 
+ RE   

X  X   X   Drug-related values 

Wu[100] 2017 ML NER X X X         
Wu[101] 2018 ML +

Rule-based 
NER X X X         

Wu[102] 2015 ML NER X X X         
Xie[103] 2019 ML NER           ICD-9 
Xu J[104] 2019 ML RE     X X    X lab test, drug-related values 
Xu Y[105] 2012 ML +

Rule-based 
NER 
+ RE 

X X X    X     

Yang X 1[106] 2019 ML NER 
+ RE   

X X X  X X    

Yang X 2 [107] 2020 ML NER 
+ RE   

X    X X    

Yang X 3[108] 2020 ML NER X X X     X    
Yehia[109] 2019 Rule-based NER 

+ RE   
X X  X   X  demographics, vital signs, 

examination, lab test, RX 
Zheng[110] 2017 Rule- 

based +
ML 

NER   X   X      

Zhu[111] 2013 ML RE X X X    X     
Roy[112] 2021 ML RE       X     
Michalopoulos 

[113] 
2021 Rule 

based +
ML 

NER X X X         

Khetan[114] 2022 ML RE       X    Causal Relations 
Phan[115] 2022 ML NER X X X         
Khandelwal[116] 2022 ML NER      X      
Narayanan & 

Mannam[117] 
2022 ML NER X X X  X   X    

Mulyar[118] 2021 ML NER X X X  X   X    
Li & Zhou[119] 2021 ML NER X X X         
Zhang[9] 2021 ML NER X X X         
Tang & Yu[120] 2021 ML NER X X X         
Moqurrab[121] 2021 ML NER X X X         
Dave[122] 2022 ML NER    X      X Pain Symptoms 
TOTAL ML:66 ML + Rule-based: 23 

Rule-based: 5 
NER:63 RE: 13 NER + RE:18 

48 48 66 14 10 24 18 13 8 5 – 

*De Bruijn et al. reported multiple methods (both ML and rule-base. 
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Table 2 
Methods deployed in the included studies.  

Author Dictionary / 
Ontology 

Rule- 
based 

Neural Network (not 
specified) 

LSTM- 
BILSTM 

CRF SVM Word embeddings (any 
type) 

BERT / 
TRANSFORMERS 

Other 

Abadeer[34]        X  
Alsentzer[22]        X ClinicalBERT* 
Bejan[35]  X        
Ben Abacha[36]  X   X X    
Bhatia[37]   X X      
Chalapathy[38]     X     
Chatzimina[39]     X    PCFG-LA Probabilistic Context-Free Grammar with 

Latent Categories 
Chen[40]     X     
Chodey[41]     X     
D’ Souza[42]      X    
D’Avolio[43]     X     
Dai[44]    X    X  
de Bruijn[15]         List of different methods and approaches described. 
Dirkson[45]        X BERT (based on Distilbert) 2 implementations 

FuzzyBIO and BIOHD 
Divita[46] X         
Divita[47]  X        
Dligach[48]      X    
Doan[49]      X    
Doğan[50]     X X    
Ghiasvand[51]  X   X     
Gligic[52]    X     seq2seq 
Hao[53] X       X BERT pre-trained in MIMIC III plus UMLS Knowledge 

Base 
Hussain[54]  X        
Jagannatha[32]    X X     
Jagannatha[55]    X X X   Random Forest 
JianG[56]  X        
Jiang[57]   X X   X  ELMO, Flair 
Jiang[58] X         
Jonnalagadda[59] X    X     
Ju[60]   X       
Kang[61] X         
Keretna[62]   X  X    Naive Bayes, ME, Random Tree, C4.5 Ada boost, 

Random Forest 
Kim[63]  X   X X    
Kim[64]         Ensemble Methods 
KraLjevic[65]  X     X X Word2vec and BERT 
Leaman[66]     X     
Lee[67]     X     
Li F 1 [68]   X     X  
Li F 2 [19]    X X    BILSTM-CRF and BILSTM ATTENTION 
Li L [69]   X X X    Character level CNN-BLSTM-CRF 
Li Z[70]   X X     Attention layer, tensor-based representation layer 
Lin[71]   X    X   
Liu[72]    X X     
Luo[73]   X X      
Manimaran[74]  X        
Minard[75]      X    
Narayanan[76]   X     X ELMO and BERT 
Nath[77]       X X Ontology-based (UMLS) and lexical vector 

augmentation 
Nguyen[78]  X        

(continued on next page) 
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Table 2 (continued ) 

Author Dictionary / 
Ontology 

Rule- 
based 

Neural Network (not 
specified) 

LSTM- 
BILSTM 

CRF SVM Word embeddings (any 
type) 

BERT / 
TRANSFORMERS 

Other 

Patrick[79]  X   X X    
Peng[80]        X  
Pradhan[81] X X   X X   TF-IDF 
Qin[82]    X     bag-of-words 
Raj[83]   X       
Ramanan[84]  X        
Rea[85]  X        
Rink[86]         RDM (relation discovery model) based on LDA 
Sahu[87]   X       
Shi[88]    X X     
Si [89]    X X   X  
Steinkamp[90]   X     X GRUS, Transformer (BERT) 
Suster[91]   X    X   
Tang[92]     X X    
Tao[93]     X     
Tao[94]  X  X     ELMO-LSTM-CRF-HB 
Tarcar[95]   X X      
Trivedi[96] X X        
Wang[97]       X  Glove 
Wang[98] X X    X    
Wei[99]    X X X    
Wu[100]   X  X     
Wu[101]   X    X   
Wu[102]    X   X   
Xie[103]   X    X  Attention Layer 
Xu J[104]    X X     
Xu Y[105]         Ensemble methods 
Yang X 1[106]   X X  X    
Yang X 2 [107]    X  X   Random forests and gradient boosting 
Yang X 3[108]    X    X BERT; ROBERTA, ALBERT, ELECTRA - RoBERTA 

MIMIC 
Yehia[109]  X        
Zheng[110] X X       Hidden Markov Model 
Zhu[111]      X   Markov Model, Logistic Regression, K-nearest 

neighbour 
Roy[112]        X  
Michalopoulos[113]       X   
Khetan[114]        X  
Phan[115]        X  
Khandelwal[116]    X    X Glove 
Narayanan & Mannam 

[117]    
X    X  

Mulyar[118]        X  
Li & Zhou[119]    X     GPT2, SegGANm, CTRL, CharRNN 
Zhang[9]    X      
Tang & Yu[120]   X     X  
Moqurrab[121]   X X      
Dave[122]     X    CLAMP Tool[123] 
TOTAL 9 19 21 27 28 16 10 20   
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included: demographics, history, vital signs, examination, fractures, 
smoking, sex, age, outcome, referral origin, encounters, cancer classifi
cation, department, and occurrence (see Table 1). 

3.5. Relation extraction 

Among the 31 studies that performed RE tasks, the most common 
conceptualization followed the patterns presented in the 2010 i2b2 
challenge [10]. This consisted of exploring relations between medical 
problems with treatments, tests, and relations between two medical 
problems. Other studies extracted different relational structures such as 
the 2009 i2b2 [124] and the 2018 n2c2 [13] challenges, which focused 
on medication relations. Shi et al.[88] extracted attributes related to 
disorders: negation, body, severity, change, assertion (uncertain, con
ditional), subject, and generic. Wang et al.[98] focused on drug-drug 
interaction and Yang et al.[106] identified the relations between 
medication that induced an adverse drug event. In contrast, Yehia et al. 
[109] used a rule-based method to extract the “is-a” relations between 
entity names and values, as well as entity values, attribute names and 
attribute values. Bejan et al.[35] extracted the relations such as “A di
agnoses B”, “A causes B”, “A is a location of B”, “A is a B”, “A treats B” and 
“A prevents B”. Dligach et al.[48] focused on extracting clinical entities 
and their relations to severity modifiers and body site. Tao et al. [93] 
extracted relations between prescriptions, and reasons for prescription; 
relations between positive diagnosis, the diagnosis being ruled out and 
concerns related to a given diagnostic, and drug-disease relations. 
Lastly, Xu et al.[104] extracted the semantic relations established in the 
SemEval 2015 [125] challenge, conceptualized as “disorder attributes” 
including the normalized disorder name, negation, subject, uncertainty, 
course, severity, conditional, generic mention, and body location. 

3.6. Assertion and intensity 

Assertion evaluation was described only in 16 studies (17%) 
[15,37,42,50,54,56,64,65,81,82,88,96,104,105,124,126], whereas in 78 
(83%) this information was not available, and in 4 studies (4%) it was not 
sufficiently clear. The intensity of symptoms or severity of disease was 
reported in 11 studies (12%) [19,32,48,55,57,77,84,88,96,104,127] and 
it was mentioned in further 7 studies (7%); however, for the latter, it was 
unclear how it was measured. The remaining 76 studies (80%) did not 
report or measure intensity. 

3.7. Evaluation metrics and benchmarking 

Among the evaluation metrics reported, 48 studies (51%) reported 
Precision, Recall, and F1-Scores, whereas 88 studies (94%) reported 
only the F1 Scores. The remaining studies reported a combination of the 
above metrics and the Area Under the Curve (AUC). Three studies re
ported F1 scores and AUC. Two studies did not report precision but re
ported recall and F1. Three studies reported unaggregated metrics: true 
positives, true negatives, false positives, and false negatives [64,66,74]. 
Only one study did not report any accuracy metric [85]. The reported 
results, however, referred to different tasks and evaluation metrics. 
Thus, we neither summarize these results nor perform a meta-analysis. 

Among the studies that used i2b2 2010 dataset (either for model 
development or benchmarking), 39 reported performances using the 
original test set. The highest reported F1 score (93.25%) was obtained 
by Moqurrab et al. [121] using a combination of CNN, Bi-LSTM, and CRF 
with non-complex embedding, followed by Si et al. [89] (F1 = 90.25%) 
using a Transformer model (BERT) [26]. With regards to the i2b2 2010 
relation extraction task, the best F1 score (91.8%) was obtained by Roy 
et al. [112] using a BERT-based model. Table 4 contains all the studies 
reporting these benchmarks (average scores across the multiple 

Fig. 4. Datasets used in the included studies.  
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Table 3 
Availability of source materials across studies:  

Author Mathematical formula Pseudocode or system architecture provided Source-code provided Software available Trained Model available 

Abadeer[34]     X 
Alsentzer[22]   X  X 
Bejan[35]  X    
Ben Abacha[36]    X  
Bhatia[37] X X    
Chalapathy[38] X  X  X 
Chatzimina[39]  X    
Chen[40]      
Chodey[41]      
D’ Souza[42] X X X   
D’Avolio[43]    X  
Dai[44] X X    
de Bruijn[15]      
Dirkson[45]   X   
Divita[46]      
Divita[47]    X  
Dligach[48]  X  X  
Doan[49]      
Doğan[50]      
Ghiasvand[51]  X    
Gligic[52]      
Hao[53]  X   X 
Hussain[54]      
Jagannatha[32]      
Jagannatha[55] X     
JianG[56]      
Jiang & Denny[57]      
Jiang[58] X X    
Jonnalagadda X     
Ju[60]  X    
Kang[61]      
Keretna[62]      
Kim[63]      
Kim[64]  X    
KraLjevic[65]  X X X  
Leaman[66] X     
Lee[67] X X    
Li F 1 [68] X X  X  
Li F 2 [19]  X    
Li L [69] X X    
Li Z[70] X X    
Lin[71]  X    
Liu[72] X X    
Luo[73] X     
Manimaran[74]  X    
Minard[75]      
Narayanan[76]  X X  X 
Nath[77] X     
Nguyen[78]      
Patrick[79]      
Peng[80] X X    
Pradhan[81]   X   
Qin[82] X X X   
Raj[83]      
Ramanan[84]      

(continued on next page) 
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Table 3 (continued ) 

Author Mathematical formula Pseudocode or system architecture provided Source-code provided Software available Trained Model available 

Rea[85] X X    
Rink[86] X     
Sahu[87] X X    
Shi[88]      
Si [89]   X   
Steinkamp[90]   X   
Suster[91] X     
Tang[92]      
Tao[93]      
Tao[94]  X    
Tarcar[95]      
Trivedi[96] X     
Wang[97] X     
Wang[98]  X    
Wei[99]      
Wu[100] X     
Wu[101]  X    
Wu[102] X X    
Xie[103]      
Xu J[104] X X    
Xu Y[105] X X    
Yang X 1[106]  X    
Yang X 2 [107]   X  X 
Yang X 3[108]  X    
Yehia[109] X X    
Zheng[110]  X    
Zhu[111] X     
Roy[112]  X    
Michalopoulos[113] X X X  X 
Khetan[114] X X    
Phan[115]  X    
Khandelwal[116]  X    
Narayanan & Mannam[117] X X    
Mulyar[118]  X    
Li & Zhou[119]  X X   
Zhang[9]  X  X  
Tang & Yu[120] X X    
Moqurrab[121]  X    
Dave[122]  X  X  
TOTAL 32 48 14 8 7  
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subtasks). Over the years, we observed a modest improvement trend 
towards in the NER scores on i2b2/VA 2010 challenge and a steadier 
improvement in RE, compared to the initial best scores reported by De 
Bruijn et al.[15] in 2011 (Table 4 and Fig. 5). It is important to note that 
the exact performance is hard to compare due to the potential differ
ences in the pre-processing steps, specific portions of the test data used, 
and other methodological discrepancies.”. 

3.8. Clinical task description 

Considering the clinical or information task description, 33 studies 
(35%) did not describe any specific task or problem to be solved, 27 
studies (29%) only described the potential use case that the system could 
be addressing, 20 studies (21%) provided motivational examples based 

on prior literature, and only 14 studies (15%) addressed one clinical or 
information task to solve. Lastly, 4 studies (4%) provided both hypo
thetical and literature examples. Specific tasks (either defined, potential 
or following on prior literature) included: adverse event detection and 
pharmacovigilance (21 studies), increasing clinician and patient un
derstanding and helping patient management (21 studies), decision 
support (17 studies), drug efficacy and repurposing drug research (8 
studies), coding and automating EHR tasks (15 studies), quality 
improvement (11 studies), public health and epidemiology research (6 
studies), genotype and phenotype research (7 studies) and cohort 
identification and trial recruitment (3 studies) See Table 5. 

3.9. Use in real-world settings 

Only 3 studies (5%) showed any evidence of deployment in a real- 
world setting. Rea et al.[85] specify that the platform was deployed to 
“(1) receive source EHR data in several formats, (2) generate structured data 
from EHR narrative text, and (3) normalize the EHR data using common 
detailed clinical models […], which were (4) accessed by a phenotyping 
service using normalized data specifications”. Divita et al.[46] mention an 
initial deployment for evaluation purposes, as “the model was folded 
into the NLP tool, scaled-up and run on a larger set of 964,105 records 
randomly chosen from the larger OEF/OEF cohort”. Lastly, Kraljevic 
et al. [65] reported the development of MedCAT, a Multi-domain clin
ical annotation and extraction tool that was further validated in three 
London hospitals. 

4. Discussion 

In this review, we explored current literature on NLP systems that 
perform multi-entity NER and RE. We observed that most recent de
velopments in this area leverage a limited number of datasets, with a 
scarce external validation (either on additional data or deployed in the 
real world). Most research is restricted to a limited number of annota
tions, shared tasks, and datasets. While about a quarter of the reviewed 
papers used proprietary datasets, these are not publicly available to the 
broader community, such that their value is limited. This may lead to 
generalization issues and the performance may be affected when applied 
in a different setting, dataset, or in the real world. Unfortunately, 
application in the clinical settings was almost non-existent as ready-to- 
use tools outside the experimental setting are scarce. Most of the 
studies focusing on the IE tasks used ML models and were mostly trained 
using a few datasets released for specific shared tasks (contests, chal
lenges, competitions, etc) and often reported insufficiently the tools or 
methods utilized or lacked sufficient validation. 

Although previous reviews have explored various aspects of NLP 
applications in medicine [17,18,128,129], in this review, we focused 
specifically on the combination of the NER and RE tasks and multi-entity 
systems and clinical semiology extraction. In contrast to previous re
views, our work produces a much-needed update, reflecting the prolif
eration of transfer learning and Transformer-based models that occurred 
in the last few years. Transformers have come to dominate the field 
taking the lead in several clinical benchmarks. Moreover, our review 
contains important findings for NLP researchers and ML practitioners. 
We highlight the current state of the art performance in concept 
extraction and relation extraction, and also identify the studies 
providing either code or pre-trained models ready for implementation. A 
strength of this review is in shedding light both on the ways these tools 
were developed from a technical point of view and exploring their po
tential for clinical implementation. As there is no validated tool to 
appraise the quality of the developed NLP models from an evidence- 
based medicine point of view, our approach may pave the way for 
establishing the criteria for this. 

Table 4 
I2b2-2010 concept extraction and relation classification benchmarks:   

Concept Extraction (NER)   
Author Year Precision Recall F1 Score 

Abadeer[34] 2020 82 84 83 
Nath[77] 2021   87 
Yang X 2 [107] 2020   89.94 
Divita[47] 2014 42.2 71.7 53.1 
Lee[67] 2019   72.58 
Ben Abacha[36] 2011 72.18 83.78 77.55 
Chen[40] 2015   80 
Patrick[79] 2011 84.88 78.92 81.79 
Kang[61] 2012 83.3 81.2 82.2 
Jiang[57] 2012 85.28 79.93 82.52 
Wu[102] 2015 85.1 80.6 82.8 
D’Avolio[43] 2011   83 
Jonnalagadda[59] 2012 85.6 82 83.7 
Chalapathy[38] 2016 84.36 83.41 83.88 
Li L [69] 2020 83.83 85.41 84.61 
Xu Y[105] 2012 86.53 83.19 84.82 
de Bruijn*[15] 2011 86.88 83.64 85.23 
Qin[82] 2018 84.24 86.53 85.37 
Bhatia[37] 2019 85.4 85.8 85.5 
JianG[56] 2011 88.28 82.98 85.55 
Liu[72] 2016   85.81 
Tang[92] 2013   85.82 
Wu[100] 2017 85.33 86.56 85.94 
Kim[63] 2019 88.6 83.5 86 
Wu[101] 2018 87.37 85.09 86.21 
Doğan[50] 2011 87.8 86.1 87 
Jiang[58] 2019 88.03 86.91 87.44 
Dai[44] 2020   87.8 
Alsentzer[22] 2019 86 88 87.8 
Hao[53] 2020   89.7 
Si [89] 2019   90.25 
Michalopoulos[113] 2021   87.7 
Phan[115] 2022 86.92 88.55 87.73 
Narayanan & Mannam[117] 2022   88.18 
Mulyar[118] 2021   89.5 
Li & Zhou[119] 2021   85.1 
Tang & Yu[120] 2021   89.25 
Zhang[9] 2021   88.13 
Moqurrab[121] 2021 94 94 93.57  

Relation Extraction   
Author Year Precision Recall F1 Score 
Xu Y[105] 2012 64 55.47 59.43 
Raj[83] 2017 67.91 61.98 64.38 
Doğan[50] 2011 64.6 74.6 69.2 
D’ Souza[42] 2014 66.7 72.9 69.6 
Minard[75] 2011 62.8 80.3 70.5 
Sahu[87] 2016 76.34 67.35 71.16 
Patrick[79] 2011 73.07 67.51 72.63 
Zhu[111] 2013 77.3 69.3 73.1 
de Bruijn*[15] 2011 77.38 69.32 73.13 
Peng[80] 2020   76 
Li Z[70] 2019   74.3 
Roy[112] 2021   91.8 

*de Bruijn et al. reported best metric for the original i2b2/VA 2010 challenge. 
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4.1. Limitations 

The results of this review need to be interpreted considering some 
limitations. We have only analyzed systems developed in the English 
language, although only 10 publications in other languages were 
detected in our search (see Fig. 1). However, it is unlikely that we 
overlooked relevant literature, as the majority of tools detected were 
developed for English (e.g., MetaMap and cTAKES) as well as the pre- 
training of certain models such as Transformers and also the freely 
available datasets (such as i2b2/n2c2 or MIMIC) were all in the English 
language. Given this, we do not expect the works in other languages to 
invalidate our findings. While we did not calculate inter-observer 
agreement when extracting results, we minimize biases due to data 
extraction by performing a calibration with a 10% sub-sample and 
reconciling cases of discrepancy. Another potential limitation is that we 
analyzed systems that perform multi-entity information and relation 
extraction; that is systems that cover a broad range of clinical specialties, 
subjects and areas of medicine. Previous reviews [17,18] showed that 
single entity extraction may have dominated the space previously, 
especially considering older approaches such as regular expressions. It is 
possible then that most of the clinical applications of NLP are still 
limited to this single entity extraction, for instance for identification 
purposes. However, we believe that multi-entity systems, not linked to a 
particular condition or medical specialization, have a stronger potential 
for translation; thus, focusing on such systems. Another limitation is that 
given the current overwhelming progress of the NLP field, this system
atic review could not include the most recent developments and papers. 
However, our review has captured the emergence of the transformer era 
in NLP, which has been the dominant NLP technology even in the most 
recent versions of Generative Pretrained Transformers (e.g., GPT-4 

[130]). This review can also be useful as a departing point for future 
reviews, as we have shared our search strategy and several resources 
that may streamline the search task for future reviewers. 

4.2. Datasets 

Analyzing the sources of datasets used in many of the reviewed 
works, we noted a certain overlap among multiple datasets coming from 
the same source. For instance, the most widely used i2b2/VA 2010 
shared task dataset [15] has approximately a third of its content coming 
from the MIMIC dataset.[12]. Likewise Share/CLEF [30] and some of the 
SemEval shared tasks [31] can be traced back to MIMIC. Although we 
cannot verify if the same parts of the dataset were re-used, this may raise 
potential validation issues, as the same data might have been used for 
both training and evaluation purposes. Moreover, although the above- 
mentioned shared tasks used to some extent different clinical sources, 
the MIMIC dataset refers exclusively to the ICU setting, and does not 
include other clinical scenarios, such as regular medical wards or pri
mary care, potentially limiting the generalizability of the models 
developed with this dataset. 

4.3. Transformer-era and newer developments 

In this review, we noticed the strong uptake of pre-trained BERT- 
derived models, some of them tailored to the biomedical domain, such 
as those trained on medical literature, BLUEBERT [131] and Pub
MedBERT [132] and those specifically developed with clinical text, 
ClinicalBERT [22], and EHRBERT [19] that we analyzed in this review. 
However, few of these trained BERT models are openly available or 
ready to be used, due to various issues, mainly having used proprietary 

Fig. 5. F1 Scores by year for NER and RE in i2b2/VA 2010 dataset.  
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Table 5 
Clinical or information task description in included studies.    

Which task(s) were defined, described or cited? 
Author HOW WAS THE 

CLINICAL OR 
INFORMATION 
TASK DEFINED (IF 
AT ALL)? 

CLINICIAN / 
PATIENT 
UNDERSTAN- 
DING AND 
MANAGEMENT 

ADVERSE EVENTS 
DETECTION / 
PHARMACOVIGI- 
LANCE 

HEALTHCA- 
RE  

QUALITY 
IMPRO- 
VEMENT 

DECI- 
SION 
SU- 
PPORT 

DRUG 
EFFICACY / 
REPURPO- 
SING 
DRUGS 

COHORT 
IDENTIFICA- 
TION / TRIAL 
RECRUIT- 
MENT 

GENOTY- 
PE / 
PHENOTY- 
PE 

PUBLIC HEALTH 
/ 
EPIDEMIOLOGY 

CODING / 
AUTOMA- 
TING EHR 
TASKS 

OTHER 

Abadeer[34] Follows on prior work           
Alsentzer[22]            
Bejan[35] Follows on prior work X X X        
Ben Abacha 

[36]            
Bhatia[37] Potential use case and 

follows on prior work 
X X  X X      

Chalapathy 
[38] 

Potential use case X  X        

Chatzimina 
[39]            

Chen[40] Follows on prior work    X X X X    
Chodey[41]            
D’ Souza[42]            
D’Avolio[43] Follows on prior work   X  X  X   “EBM” 
Dai[44]            
de Bruijn[15]            
Dirkson[45] Defined explicitly  X         
Divita[46] Potential use case  X X   X X X   
Divita[47] Defined explicitly   X   X X    
Dligach[48] Follows on prior work         X “Discovering tumour 

body sites for template 
filling” 

Doan[49]            
Doğan[50] Potential use case  X   X      
Ghiasvand 

[51]            
Gligic[52] Follows on prior work  X X       “Studying disease” 
Hao[53] Potential use case         X  
Hussain[54] Defined explicitly         X save human experts 

time and burden 
Jagannatha 

[32] 
Defined explicitly  X        Drug safety and post- 

marketing pharmaco- 
surveillance. 

Jagannatha 
[55] 

Potential use case  X   X      

JianG[56]            
Jiang[57] Follows on prior work          “Body site 

identification for 
tumours” 

Jiang[58]            
Jonnalagadda 

[59] 
Potential use case X   X       

Ju[60] Follows on prior work X          
Kang[61] Follows on prior work  X  X     X  
Keretna[62] Follows on prior work  X  X       
Kim[63] Defined explicitly   X X     X  

(continued on next page) 
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Table 5 (continued )   

Which task(s) were defined, described or cited? 
Author HOW WAS THE 

CLINICAL OR 
INFORMATION 
TASK DEFINED (IF 
AT ALL)? 

CLINICIAN / 
PATIENT 
UNDERSTAN- 
DING AND 
MANAGEMENT 

ADVERSE EVENTS 
DETECTION / 
PHARMACOVIGI- 
LANCE 

HEALTHCA- 
RE  

QUALITY 
IMPRO- 
VEMENT 

DECI- 
SION 
SU- 
PPORT 

DRUG 
EFFICACY / 
REPURPO- 
SING 
DRUGS 

COHORT 
IDENTIFICA- 
TION / TRIAL 
RECRUIT- 
MENT 

GENOTY- 
PE / 
PHENOTY- 
PE 

PUBLIC HEALTH 
/ 
EPIDEMIOLOGY 

CODING / 
AUTOMA- 
TING EHR 
TASKS 

OTHER 

Kim[64] Potential use case and 
follows on prior work 

X X  X X      

KraLjevic[65] Potential use case         X There is a need for a 
platform to accurately 
extract information 
from freeform health 
text in a scalable 
manner that is agnostic 
to underlying health 
informatics 
architectures 

Leaman[66] Follows on prior work X X  X  X  X  “Clinical associations” 
Lee[67]            
Li F 1 [68] Defined explicitly  X         
Li F 2 [19] Potential use case X  X X     X  
Li L [69] Follows on prior work X   X      Knowledge graph 
Li Z[70]            
Lin[71] Potential use case        X   
Liu[72]            
Luo[73]            
Manimaran 

[74] 
Follows on prior work  X         

Minard[75] Potential use case          “Question Answering 
Systems” 

Narayanan 
[76] 

Defined explicitly  X  X       

Nath[77] Potential use case X   X     X  
Nguyen[78] Defined explicitly         X  
Patrick[79] Potential use case X          
Peng[80]            
Pradhan[81] Potential use case X          
Qin[82] Potential use case X          
Raj[83]            
Ramanan[84] Follows on prior work  X   X   X   
Rea[85] Defined explicitly       X    
Rink[86] Potential use case X        X  
Sahu[87] Potential use case     X     “Medical knowledge” 
Shi[88]            
Si [89]            
Steinkamp 

[90] 
Follows on prior work   X     X X Automatic EHR 

population 
Suster[91] Potential use case and 

follows on prior work         
X Automating healthcare 

systems and research 
Tang[92] Potential use case          Unspecified 
Tao[93] Potential use case   X        
Tao[94] Potential use case X   X     X  
Tarcar[95]            
Trivedi[96] Follows on prior work           
Wang[97]            

(continued on next page) 
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Table 5 (continued )   

Which task(s) were defined, described or cited? 
Author HOW WAS THE 

CLINICAL OR 
INFORMATION 
TASK DEFINED (IF 
AT ALL)? 

CLINICIAN / 
PATIENT 
UNDERSTAN- 
DING AND 
MANAGEMENT 

ADVERSE EVENTS 
DETECTION / 
PHARMACOVIGI- 
LANCE 

HEALTHCA- 
RE  

QUALITY 
IMPRO- 
VEMENT 

DECI- 
SION 
SU- 
PPORT 

DRUG 
EFFICACY / 
REPURPO- 
SING 
DRUGS 

COHORT 
IDENTIFICA- 
TION / TRIAL 
RECRUIT- 
MENT 

GENOTY- 
PE / 
PHENOTY- 
PE 

PUBLIC HEALTH 
/ 
EPIDEMIOLOGY 

CODING / 
AUTOMA- 
TING EHR 
TASKS 

OTHER 

Wang[98]            
Wei[99] Defined explicitly  X         
Wu[100]            
Wu[101]            
Wu[102] Potential use case          Clinical and 

translational research 
Xie[103] Defined explicitly         X  
Xu J[104] Potential use case    X       
Xu Y[105] Potential use case X          
Yang X 1 

[106]            
Yang X 2  

[107] 
Follows on prior work           

Yang X 3 
[108] 

Defined explicitly  X         

Yehia[109] Defined explicitly X          
Zheng[110]            
Zhu[111] Potential use case          Collect real-life, real- 

time, and large-sample- 
based knowledge from 
patients. 

TOTAL Defined explicitly ¼
13, potential use 
case ¼ 23, follows 
on prior work ¼ 17, 
undefined ¼ 29 

17 18 10 14 8 3 5 5 14   
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datasets for their development [19,133]. This restricts their use and 
further validation or implementation and raises questions regarding 
the utility of their findings, reproducibility of the work, or its imple
mentation potential. Although newer developments such as GPT-3 
[134] have been popular, they seem to fail when evaluated in medi
cal use cases [135]. Developers willing to implement or develop NLP 
clinical systems can reflect on the availability of these tools to avoid 
costly training and, thanks to novel transfer learning techniques and 
easy-to-use implementations [136]. 

4.4. Reproducibility and generalizability of clinical NER research 

One of the problems detected in this review is the lack of metrics and 
appraisal tools to assess NLP systems development and applicability in 
the clinical context. Although the use of benchmarks such as GLUE [137] 
points towards an improved ability to compare across methods and 
strengthen validation and generalizability, it is uncertain how this 
should be interpreted from a clinical standpoint, where a different set of 
standards governs the evidence required for health interventions. 
Additionally, newer, larger ML models have demonstrated a non- 
negligible risk of training data to leak from the trained models, either 
accidentally or using reverse engineering [138,139]. Developing models 
using debiased datasets may help avoid artifacts or establish spurious 
relations, to prevent algorithmic bias, a common issue in medical AI 
applications [140]. 

4.5. The importance of computational shared tasks 

Computational shared tasks, usually presented in form of contests, 
challenge or competitions, are a common methodology in the NLP field, 
with general recognition that shared tasks may lead to improvements in 
the state-of-the-art performance [141]. However, there is still a discus
sion about the ways to improve them [142,143]. When translating their 
findings into health practice, there is a potential tension between their 
usefulness as a means to advance the computational field and their fit to 
clinical reality, i.e., whether the generated knowledge can be transposed 
into clinical medicine. Considering this broad question, we highlight a 
clear need for interdisciplinary discourse and methods development, 
especially when those developments have the potential to affect some
thing as delicate as patient’s care. 

4.6. Clinical translation and clinician interaction 

Another issue that seems not to be sufficiently explored is the reasons 
for these models not being translated into clinical practice more 
frequently. Previous research has shown that clinicians are eager to use 
text automation [144] in practice. Yet there are several concerns around 
their use, including medico-legal issues, trust in system’s extraction and 
data processing capabilities, and their compatibility with the existing 
workflows [145]. Although not a key focus of this review, an important 
and unresolved problem from the user perspective pertains to the 
meaningful implementation of clinical NLP tasks. We identified several 
studies that explored this parameter [146-149]. If the interaction with 
NLP systems is not designed properly [7], clinicians may not use them, 
notwithstanding their strong technical performance, as shown by pre
vious cases in other fields [150]. 

5. Conclusion 

In our review, we demonstrated that the information extraction field 
of NLP applications in medicine has developed steadily over the last 10 
years. However, there remain several uncertainties surrounding its 
application to the clinical field, and so far, its translation into practice 
has been limited. More research is required to validate these systems in 
real-world scenarios and explore the ways clinicians can take advantage 
of these systems, to improve our future healthcare. 

Summary points:  

• Clinical information extraction tasks have developed steadily the last 
decade, with machine learning methods and recent transformer 
models gaining more power.  

• There are few datasets and few annotations rules that have been used 
openly in most of the papers included.  

• Very few studies provide trained models, datasets or ready to use 
tools. Even fewer report their use in clinical settings.  

• There is a strong need for research translation and further validation 
of these models and tools in practice. 
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