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A B S T R A C T   

The enigma of post-traumatic stress disorder (PTSD) is embedded in a complex array of physiological responses 
to stressful situations that result in disruptions in arousal and cognitions that characterise the psychological 
disorder. Deciphering these physiological patterns is complex, which has seen the use of machine learning (ML) 
grow in popularity. However, it is unclear to what extent ML has been used with physiological data, specifically, 
the electroencephalogram (EEG) and electrocardiogram (ECG) to further understand the physiological responses 
associated with PTSD. To better understand the use of EEG and ECG biomarkers, with and without ML, a scoping 
review was undertaken. A total of 124 papers based on adult samples were identified comprising 19 ML studies 
involving EEG and ECG. A further 21 studies using EEG data, and 84 studies employing ECG meeting all other 
criteria but not employing ML were included for comparison. Identified studies indicate classical ML method-
ologies currently dominate EEG and ECG biomarkers research, with derived biomarkers holding clinically 
relevant diagnostic implications for PTSD. Discussion of the emerging trends, algorithms used and their success is 
provided, along with areas for future research.   

1. Introduction 

Post-traumatic stress disorder (PTSD) is a multi-causal and multi- 
modal disorder (Galatzer-levy and Bryant, 2013; Schauer and Elbert, 
2010) that has complex effects upon the central (Butt et al., 2019) and 
autonomic (Ge et al., 2020) nervous systems. Use of the electroen-
cephalogram (EEG) and electrocardiograph (ECG) has helped to high-
light potential biomarkers (Lobo et al., 2015; Pyne et al., 2016; Thome 
et al., 2017; Tursich et al., 2015) for PTSD such as increased alpha fre-
quency in the right parietal lobe (Metzger et al., 2004; Wahbeh and 
Oken, 2013) and low heart-rate variability (Jin et al., 2018; Kim et al., 
2018). Biomarker identification is important to the conceptualisation of 
mental health conditions and is a critical element in personalised psy-
chiatry, allowing individualised treatment (Arns et al., 2022). Genera-
tion of both the EEG and ECG involves complex non-linear phenomena 
(Goldberger, 1991; Lehrer and Eddie, 2013; Yang and Tsai, 2013) that 
are difficult to characterise (Arns et al., 2009; McCraty and Tomasino, 
2009) using conventional analytic techniques (Kim et al., 2020). Ma-
chine learning (ML) is a useful tool for detecting patterns in complex 
datasets and using these features to build predictive models for specific 

health conditions (Bzdok and Meyer-Lindenberg, 2018; Khondoker 
et al., 2016). The application of ML methodologies to identify bio-
markers in complex psychophysiological data and to use these bio-
markers to classify psychological disorders has had mixed success (Cho 
et al., 2019; Ramos-lima et al., 2020). However, using ML biomarker 
analysis to make reliable treatment decisions is promising; with exam-
ples including antidepressant response in major depression disorder (Wu 
et al., 2020) and transcranial magnetic stimulation prediction in PTSD 
(Zandvakili et al., 2020). 

A recent review by Ramos-Lima et al. (2020) provides a good over-
view of applications of ML for PTSD (Ramos-lima et al., 2020). However, 
the articles they identified tended to use psychometrics and de-
mographics as training data (e.g., Augsburger and Elbert, 2017; Conrad 
et al., 2017; He et al., 2017; Gradus et al., 2017; Leightley et al., 2019; 
Rosellini et al., 2018), with only eight neuroimaging biomarker studies 
identified (Cisler et al., 2015; C. Jin et al., 2017; Li et al., 2016; Nich-
olson et al., 2018; Posner et al., 2009; Wang et al., 2016; Yuan et al., 
2018; Zandvakili et al., 2020), none of which used resting-state ECG or 
EEG data. A focus on EEG and ECG data is important for the charac-
terization of mental health conditions as these modalities have the 
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highest temporal accuracy and consequentially are thought to better 
capture moment-to-moment processes characterising thought (Jain and 
Ramakrishnan, 2020; Meyer, 2015). Additionally, in excluding engi-
neering journals that typically published ML research and only search-
ing for limited types of ML algorithm terms they may have missed some 
important studies. This limitation is noteworthy given rapid de-
velopments in the ML arena (Dhall et al., 2019; Du et al., 2020; Vargas 
et al., 2017). Moreover, the more restrictive approach associated with a 
systematic review methodology may have excluded recently developed 
techniques and analysis trends. To address these issues, a scoping review 
of ML in PTSD is required. Given the limited number of biomarker 
studies identified in Ramos-Lima and colleagues’ review (Ramos-lima 
et al., 2020), the current scoping review focuses on ML analysis of 
resting-state EEG and ECG in PTSD research, as prior research indicates 
both central and autonomic changes may differentiate individuals 
diagnosed with the disorder (Thome et al., 2017; Toll et al., 2020; 
Wahbeh and Oken, 2013). 

The objective of this scoping review is to identify research gaps in 
current PTSD ML research conducted using resting-state EEG and ECG 
metrics. To assist in identifying research gaps in PTSD literature using 
ML, studies meeting all criteria except for using ML were also included. 
The inclusion of such statistically based research enabled a comparative 
evaluation of the ML literature to be undertaken. Additionally, there is 
no definitive definition of ML, with some analyses, such as regression 
considered ML by the European Union (European Commission, 2021), 
while some researchers consider regression as a statistical method 
(Sadeghi et al., 2020a, 2020b). Inclusion of these statistical studies ac-
commodates this definitional uncertainty and provides a more 
comprehensive representation of current research. Two specific ques-
tions were addressed; 1) which EEG and ECG metrics have been used in 
conjunction with which ML approaches and to what success? 2) are 
there any specific ML methodologies and features emerging from this 
research that should inform future research? A scoping review is the 
most appropriate review methodology to answer the ML questions 
(Munn et al., 2018) as evidence in this area is still emerging and needs to 
be identified, key concepts and terms are diverse and unclearly defined, 
varying ML methodologies and input data have been used, and it is not 
clear where current gaps in the literature stand and what key factors 
have already emerged. 

2. Methods 

The preferred reporting items for systematic reviews and meta- 
analyses (PRISMA) extension for scoping reviews (Arksey and O’Mal-
ley, 2005), was adopted in conjunction with additional scoping review 
recommendations (Munn et al., 2018; Pham et al., 2014) and recom-
mended reported items from Ramos-lima et al. (2020) framework. 
Additional ML-specific reporting items were captured by drawing upon 
Roy et al. (2019) systematic review of deep learning methodologies. 
Duplicate articles were removed using reference management software. 
Screening assessment was based on title and abstract, without blinding 
the author and journal. For instances where an abstract was not avail-
able, the full article was included for later assessment. Conflicts and 
uncertainties were discussed and resolved between authors through the 
scoping review process. Articles that met all other criteria besides the 
use of ML were retained and tabulated separately from the main review. 

The initial search was conducted on 28 August 2020 in seven elec-
tronic databases: Medline/PubMed, SciVerse Scopus/Elsevier, Current 
Contents Connect/Web of Science, Cochrane Library, Embase, Institute 
of Electrical and Electronic Engineers (IEEE) Xplore and Google Scholar. 
Search dates restricted articles to publication between 1960 and the date 
of the initial search. To ensure any recent research was included, a 
follow-up search for articles published between 2020 and 14 January 
2022 was conducted. All search results identified were reviewed. The 
titles of eligible articles were subjected to additional searches and were 
entered into Google Scholar, connectedpapers.com and PubMed 

PubReMiner to explore related articles and articles citing the eligible 
paper, with all results assessed using the identification and screening 
step criteria used initially. For all articles identified for screening, a 
“snowball” technique was used, searching reference lists of the identi-
fied and any subsequent newly identified articles for further applicable 
references. The reference lists of review articles and articles from other 
sources identified through snowballing or additional search processes 
were also screened for relevant articles. Supplementary material and in- 
article keyword searches were conducted for instances of missing in-
formation. When these approaches failed to answer relevant questions, 
corresponding authors were contacted to provide clarification. 

2.1. Search terms 

Building upon the search terms used by Ramos-lima et al. (2020) 
three searches linked by common terms for PTSD and ML, with a varying 
third term relating to EEG, ECG or HEP metrics were conducted. The 
specific combination of terms used is summarised below. 

(PTSD, OR Stress Disorder, OR Post Traumatic, OR Neuroses, Post-
traumatic, OR Posttraumatic Neuroses, OR Posttraumatic Stress Disor-
der, OR Post-Traumatic Stress Disorder, OR Post Traumatic Stress 
Disorder, OR Stress Disorder, Post-Traumatic) AND (Machine learning, 
OR AI, OR Artificial Intelligence, OR ML, OR Deep learning, OR super-
vised machine learning, OR Semi-supervised Learning, OR Semi super-
vised Learning, OR Unsupervised Machine Learning, OR Algorithm, OR 
Support Vector Machine) AND (Electroencephalography, OR EEG, OR 
Electroencephalogram, OR Electroencephalograms, OR electroenceph-
alograph, OR Brain waves, OR Electroencephalographic OR Quantita-
tive Electroencephalograph, OR Electroencephalographic, OR 
Quantitative Electroencephalogram, OR QEEG) AND (Electrocardiog-
raphy, OR ECG, OR EKG, OR Electrocardiogram, OR Electrocardio-
grams, OR Electrocardiograph, OR heart rate variability, OR HRV, OR 
Heart Variability OR Heart Period Variability OR Instantaneous Heart 
Rate OR RR interval OR RR Variability OR RR interval variability OR IBI 
OR Inter Beat Interval) AND (Heartbeat Evoked Potential, OR Heartbeat- 
Evoked Potential, OR Heart beat evoked potential, OR Neural responses 
to heartbeats, OR Heartbeat-evoked brain potential, OR Heartbeat 
evoked brain potential, OR Heartbeat related Potential). 

2.2. Inclusion criteria 

Primary eligibility criteria included publication in the English lan-
guage. The target population were adults (over 18 years of age), who are 
experiencing PTSD and had been diagnosed with PTSD according to the 
Diagnostic and Statistical Manual of Mental Health Disorders (DSM) 
criteria from the fourth and fifth editions (American Psychiatric Asso-
ciation, 2000, 2013). Resting-state EEG research using empirical metrics 
such as frequency, power/amplitude, asymmetry, coherence and eval-
uative frameworks such as vigilance state (Arns et al., 2011) or endo-
phenotype classification (Johnstone et al., 2005) were included. ECG 
resting-state metrics such as average heart rate, time, frequency and 
non-linear HRV metrics (Shaffer and Ginsberg, 2017) and evaluative 
terms such as vagal tone, sympathovagal balance (Porges, 1995, 2009) 
and autonomic regulation (Beauchaine and Thayer, 2015; Thayer and 
Lane, 2000) were included. The combined ECG-EEG metric heartbeat 
evoked potential (HEP), which is also called an evoked response was 
also included (Gentsch et al., 2019; Park et al., 2018). 

2.3. Exclusion criteria 

Developmental/paediatric trauma studies were excluded as the 
physiological underpinnings of the disorder are thought to differ based 
on the developmental stage impacted by trauma exposure (Teicher et al., 
2014; Teicher et al., 2016). Additional exclusion criteria comprised 
studies that included a) epileptiform activity, b) participants with ac-
quired health conditions such as traumatic brain injury, stroke, 
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myocardial infarct, myocarditis or similar conditions; c) non-human 
studies; and d) research identifying medication side effects were 
excluded. Task-dependent EEG and ECG metrics such as auditory 
oddball ERP studies (Shim et al., 2019) or emotional word or face 
reactivity and recovery metrics (Iffland et al., 2020) were excluded. 

3. Results 

The search identified 26,146 articles which were reduced to 24,462 
articles after the removal of duplicates. Screening for publications in the 
English language and review of title and abstract against inclusion and 
exclusion criteria narrowed the focus to 656 articles selected for further 
screening. No articles were included for further screening because of a 
missing abstract. The PRISMA flowchart detailing the search process is 
presented in Fig. 1 and the final sample included 124 papers. The 
breakdown of these papers included 19 ML studies involving EEG and 
ECG and 21 EEG studies and 84 ECG studies that met all other criteria 
besides the use of ML. 

3.1. Data items 

Across the identified ML studies, missing information was most 
apparent for outcome measures, with positive and negative predictive 
values being the most underreported (Dean et al., 2020; Galatzer-levy 
et al., 2014; Galatzer-Levy et al., 2017; Grisanzio et al., 2018; Karstoft 
et al., 2015; Kim et al., 2020; Kleim et al., 2007; McDonald et al., 2019; 
Morris et al., 2020; Park et al., 2021; Sadeghi et al., 2020a, 2020b; 
Schultebraucks et al., 2020, 2021; Shim et al., 2021; Toll et al., 2020). 
Reporting of sensitivity and specificity values was also poor in ML 
studies (Cakmak et al., 2021; Galatzer-levy et al., 2014; Grisanzio et al., 
2018; Karstoft et al., 2015; McDonald et al., 2019; Morris et al., 2020; 
Sadeghi et al., 2020a, 2020b; Schultebraucks et al., 2021). Sadeghi et al. 
(2020a, 2020b) did not report any outcome metrics at all. Missing data 
and performance metrics can serve as a proxy for the reliability of ML 
predictions. Studies that provide this information may achieve better 
performance and may be of higher quality. 

All the ML studies relied upon unblinded outcome measures such as 
clinical interviews, self-reports or medical records. Most studies 
adequately described the demographics, trauma exposure and screening 
methodologies but these details were incomplete in three publications 
(Reinertsen et al., 2017; Sadeghi et al., 2020a, 2020b; Shim et al., 2021). 
Comparison to healthy control samples were documented in eight 
publications (Dean et al., 2020; Grisanzio et al., 2018; Kim et al., 2020; 
Park et al., 2021; Reinertsen et al., 2017; Shim et al., 2021; Toll et al., 
2020; Zhang et al., 2021). Alternative control samples included com-
parisons with other psychiatric disorders (Park et al., 2021; Zhang et al., 
2021) and sub-clinical PTSD (Toll et al., 2020) and comparison to a 
treatment group (Schultebraucks et al., 2021). Publications without 
controls longitudinally tracked patients to build models predictive of 
PTSD status from baseline biomarkers and psychometrics (Cakmak 
et al., 2021; Galatzer-levy et al., 2014; Galatzer-Levy et al., 2017; Kar-
stoft et al., 2015; Kleim et al., 2007; McDonald et al., 2019; Morris et al., 
2020; Papini et al., 2018; Sadeghi et al., 2020a, 2020b; Schultebraucks 
et al., 2020). A minority of the identified ML studies reported diverse 
and representative samples in terms of gender, age, ethnicity and sample 
size (Cakmak et al., 2021; Dean et al., 2020; Galatzer-levy et al., 2014; 
Grisanzio et al., 2018; Karstoft et al., 2015; Sadeghi et al., 2020a, 2020b; 
Shim et al., 2021; Zhang et al., 2021). In the remainder of the studies, 
there was some attempt to mitigate any sample imbalances with 
consideration and methodological accommodation of confounding var-
iables, see Table 1 for more details. In three studies details of feature 
selection and class imbalance minimisation methods were not provided 
(Dean et al., 2020; Karstoft et al., 2015; Sadeghi et al., 2020a, 2020b). 
Inclusion of diverse participants and trauma presentations, with equal 
sampling or use of adequate covariates, improves the generalisability 
and robustness of results. 

Electrophysiological recording parameters influence qualitative and 
quantitative aspects of the data being collected, which can alter signal 
quality and interpretability. Provision of these details is also critical for 
future research to replicate findings. Studies focusing on heart rate 
(Table 2) frequently lacked details concerning collection parameters 
such as the number of channels, placements, posture, recording 

Fig. 1. PRISMA flow diagram 
Note. Records from other sources were identified during full-text screening or eligibility levels. 
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Table 1 
ML EEG and ECG study population characteristics.  

Publication Sample Size Age Gender 
Balance 

Trauma exposure Trauma severity 
assessment 

Dissociative 
symptoms 

Potential confounds 
and use of covariates. 

Cakmak et al. 
(2021). 

N = 1618 35 ± 13. PTSD =
30.7 ± 9.2. 

Total = 1618, 
Female = 1037 
(61.4 %). 
PTSD = 565, 
Female = 409 
(25.3 %). 

MVA, physical assault, 
sexual assault, fall, or 
mass casualty incidents 

PCL-5, PDI, MCEPS & 
PSQIA-PanicSleep 

No Sample from hospital 
admissions, significant 
gender and age 
differences between 
groups. 

Dean et al. 
(2020). 

N = 281 Training data 
PTSD = 32.8 ±
7.4, HC = 32.6 
± 8.0. Cohort 3 
Validation data 
PTSD = 36.6 ±
8.9, HC = 33.0 
± 8.2. 

100 % male Combat exposed 
veterans 

SCID-IV & CAPS No Multiple diagnoses, 
substance (alcohol, 
tobacco) and 
medication use. 

Galatzer-levy 
et al. (2014) 

N = 957 36.29 ± 6.31 Male = 491 
(51.1 %). 

MVA 84.1 %, terrorist 
attack 9.4 %, work 
accidents 4.4 % and 
other 2.2 %. 

PSS-I, ASDS, K6, CGI, 
PTCI & unvalidated 
coping efficiency 
screening instrument 

No Sample from hospital 
admissions, rural 
participants excluded, 
language fluency. 

Galatzer-Levy 
et al. (2017) 

N = 152 31.2 ± 10.9 59.12 % Male MVA 125, terror attack 
19, work accidents 11 

SCID-IV, CAPS-V, GAF, 
IES-R, BDI, PDEQ & 
THQ 

Yes Prior childhood trauma 
in 19.4 % of PTSD and 
30.6 % of no-PTSD 
groups. Traumatic 
events experienced by 
38.7 % of PTSD and 
15.3 % of no-PTSD 
groups. 

Grisanzio et al. 
(2018). 

N = 420 (PTSD 47, 
MDD 100, PD 53, 
HC 220) 

39.8 ± 14.1 Female = 256 
(61 %) 

MVA 50 %, Assault 50 
%. 

MINI, HAM–D, CAPS, 
SCID-IV and CIDI, 
DASS-21 & 
IntegNeuro, BRRI 

No Comorbid MDD (14 %), 
GAD (9 %). No 
stratification by age or 
gender, or symptom- 
defined sub-groups. 
Average age post- 
exposure 65 ± 64 
months 

Karstoft et al. 
(2015) 

N = 957 36.29 ± 6.31 Male = 491 
(51 %) 

MVA 84.1 %, terrorist 
attack 9.4 %, work 
accidents 4.4 % and 
other 2.2 %. 

PSS-I, ASDS, K6, CGI, 
PTCI & unvalidated 
coping efficiency 
screening instrument 

No Sample from hospital 
admissions. Excluded 
rural participants & 
non-fluent. 

Kim et al. 
(2020). 

N = 81 (PTSD 42, 
HC 39) 

PTSD 40.12 ±
11.07, HC 41.15 
± 12.31 

PTSD, Male =
5, Females =
37. HC, Male 
= 8, Female =
31. 

– SCID-5, CAPS, PCL-5 No Education level and 
medication effects. 

Kleim et al. 
(2007). 

N = 222, reducing 
to 205 at follow- 
up. 

35 ± 11.5 68 % Male Assault survivors SCID-IV, ASDS, Family 
history, CSS, PLT, SDQ, 
PCI-Cognitive 
predictors, PCI- 
Negative Thoughts 
about the Self 
subscales, AMQ, MDS, 
& RIQ. 

Yes PTSD group reported 
less drug and alcohol 
consumption than the 
non-PTSD group. 

McDonald et al. 
(2019). 

N = 100 47.3 ± 11.0 100 % Male combat veterans Clinical diagnosis with 
symptoms in the last 
30 days 

No Differences in battery 
life, device use and 
sensitivity and 
tolerance of PTSD 
triggers. Missing data 
due to exercise. 

Morris et al. 
(2020). 

N = 58 PTSD 25.0 ± 2, 
No PTSD 23.7 ±
3.4 

100 % Female Interpersonal violence SCID-5, CTQ, PTCI & 
PDEQ 

Yes Time since traumatic 
event(s), contraceptive 
use and prior risk 
factors 

Park et al. 
(2021). 

N = 141 (PTSD 52, 
HC 95) 

PTSD 42.72 ±
13.0, 
HC 25.72 ± 4.55 

PTSD = 52, 
Female = 38 
(73.1 %). 
HC = 95, Male 
= 60 (63.2 %) 

– MINI, DSM-4 or DSM-5 
criteria 

No Sample from hospital 
admissions, significant 
gender and age 
differences between 
groups. Symptom 
stability over 8 weeks 

Papini et al. 
(2018). 

N = 505, reducing 
to 271 at follow- 
up. PTSD at 3 
months n = 110. 

Total 46.73 ±
17.35, 
PTSD 38.69 ±
13.66 

Male = 173 
(64 %). 
PTSD at 
follow-up 
male = 56 (67 
%) 

Fall = 76, MVA = 88, 
TBI 68, penetrating 
wound 31, orthopedic 
injury 149 

PC-PTSD-IV, Yes/No 
responses to symptoms 
(Hanley & Brasel, 
2013). PHQ-8, 
Veterans RAND 12- 
item Health Survey, 

Numbing and 
detachment 

Traumatic brain injury. 
Demographic, 
socioeconomic and 
other confounds 
addressed. 

(continued on next page) 
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duration, sample rate and artifacting techniques (Dean et al., 2020; 
Galatzer-Levy et al., 2017; Galatzer-levy et al., 2014; Karstoft et al., 
2015; Kleim et al., 2007; Papini et al., 2018; Sadeghi et al., 2020a, 
2020b; Schultebraucks et al., 2020, 2021). In contrast, only two EEG 
studies (Table 3) did not report details of epochs used (Toll et al., 2020; 
Zhang et al., 2021). Details of physiological data recording including 
electrode numbers and placement, sampling rates and window charac-
teristics, length of recording, recording conditions, signal filtering and 
artifacting practices were provided in every paper. Linked mastoids was 
the most common reference used for data analysis (Park et al., 2021; 
Shim et al., 2021; Zhang et al., 2021), with other references such as 
common (Kim et al., 2020) and regional averages (Grisanzio et al., 
2018), nose (Toll et al., 2020) and linked-ear (Park et al., 2021) or all 
being used once. Analytic techniques, such as asymmetry (Grisanzio 
et al., 2018), source localisation (Kim et al., 2020; Toll et al., 2020), 
frequency ratios (Kim et al., 2020), cross-spectral matrices (Park et al., 
2021), component analysis (Kim et al., 2020) and functional 

connectivity metrics such as coherence/phase locking value (Park et al., 
2021; Shim et al., 2021; Toll et al., 2020), power-envelope connectivity 
(Toll et al., 2020; Zhang et al., 2021) and network strength, clustering 
coefficient and path length (Shim et al., 2021) were used. To understand 
data characteristics and ML input metrics, see Table 2 for ECG data and 
Table 3 for EEG data. 

3.2. ML methodologies 

All studies included used ML for the classification of PTSD status, 
supervised approaches were used nearly three times more frequently 
than unsupervised approaches. Testing was conducted with independent 
data sets in four studies (Dean et al., 2020; Grisanzio et al., 2018; 
Schultebraucks et al., 2020; Zhang et al., 2021), 70:30, 80:20 or 90:10 
training to testing data splits were used by seven studies (Galatzer-levy 
et al., 2014; Karstoft et al., 2015; Kim et al., 2020; McDonald et al., 
2019; Papini et al., 2018; Reinertsen et al., 2017; Schultebraucks et al., 

Table 1 (continued ) 

Publication Sample Size Age Gender 
Balance 

Trauma exposure Trauma severity 
assessment 

Dissociative 
symptoms 

Potential confounds 
and use of covariates. 

SPS, CDRS, AUDIT- 
Consumption & Pain 
scales. 

Reinertsen et al. 
(2017). 

N = 50 (PTSD 24, 
HC 26) 

– 100 % Male Combat exposure SCID No Artifacting & cycle 
length dependence. 

Sadeghi et al. 
(2020a, 
2020b). 

N = 99 – – Combat veterans – – movement artifacts 

Schultebraucks 
et al. (2020). 

N = 377 (training), 
N = 221 (testing) 

Training 36.05 
± 12.87, 
Testing 36.69 ±
13.46 

47.1 % female 
(training), 
37.1 % female 
(testing) 

Gunshot 17, MVA 265, 
fall 14, sexual assault 
23, non-sexual assault 
26, other 32 (training). 
Gunshot 2, MVA 125, 
fall 41, sexual assault 0, 
non-sexual assault 16, 
other 36 (testing). 

ISRC, PDEQ, PCL-5, 
Modified PTSD 
Symptom Scale 
(mPSS). 

Yes Only included 
participants with blood 
samples. 

Schultebraucks 
et al. (2021). 

N = 417, reducing 
to 273 at 
completion. 

46.09 ± 15.88 62.8 % male Road traffic accidents 
(62.4 %), falls (16.1 %), 
work-related accidents 
(12.0 %) and physical 
assault (4.2 %). 

CAPS-5 & IES-R No Excluded rural & non- 
fluent participants. 
Differences in age, 
gender & education. 

Shim et al. 
(2021). 

N = 138 (PTSD 77, 
HC 58) 

PTSD 40.92 ±
11.93, 
HC 39.98 ±
11.63 

PTSD = 77, 
Female 49 
(63.6 %). 
HC =58, 
Female 28 
(48.3 %) 

– DSM-4, IES-R, BDI, BAI No Sample derived from 
hospital admissions. 

Toll et al. 
(2020). 

N = 210 30.4 ± 9.0 Male = 16 (44 
%) 

Combat exposed 
veterans 

CAPS 5 diagnosed and 
sub-threshold PTSD 

No Collection site & 
psychometrics used as 
separate predictors. 

Zhang et al. 
(2021). 

N = 201 (PTSD 
106, trauma-Exp 
HC 95). 
Independent data 
N = 314 (PTSD 72, 
MDD 63, No Med 
228, Med 179). 

PTSD samples 
44.1 ±
13.1–47.2 ±
13.9 

82.4 % - 84.1 
% of PTSD 
were male 

combat veterans CAPS 4 & 5, PCL-4 & 
-5, BDI, DASS-21, 
WHOQOL, QIDS-SR, 
HAM–D, SHAPS, 
WASI & MASQ. 

Yes Medication use. 
Different amplifiers, 
channel count and 
montages. 

Note. ASDS = Acute Stress Disorder Scale, AUDIT = Alcohol Use Disorder Identification Test, AMQ = Assault Memory Questionnaire, BAI = Beck Anxiety Inventory, 
BDI = Beck Depression Inventory, BRRI = Brief risk-resilience index, CAPS = Clinician Administered PTSD Scale, CTQ = Childhood Trauma Questionnaire, CGI =
Clinical Global Impression, CAPS-V = Clinician-Administered PTSD Scale for DSM-IV, CIDI = composite international diagnostic interview, CDRS = Connor Davidson 
Resilience Scale, CSS = Crisis Support Scale, DASS-21 = Depression, Anxiety, Stress Scale - 21 item version, ED = Emergency Department, GAD = General Anxiety 
Disorder, GAF = Global Assessment of Functioning, Exp = exposed, HAM-D = Hamilton rating scale - depression, GAF = Global Assessment of Functioning, HC =
healthy controls, ISRC = Immediate stress reaction checklist, IES-R = Impact of Events Scale-Revised, K6 = Kessler-6, MDD = Major Depressive Disorder, MDS =
Mental Defeat Scale, MCEPS = Michigan Critical Events Perception Scale, MDD = Major Depression Disorder, MINI = Mini-international neuropsychiatric interview, 
MASQ = Mood and Anxiety Symptom Questionnaire, Med = Medication, MVA = Motor Vehicle Accident, PCL-5 = PTSD Checklist for DSM-V, PD = Panic Disorder, 
PDI = Peritraumatic Distress Inventory, PHQ-8 = Patient Health Questionnaire-8, PLT = Perceived life threat, PDEQ = Peritraumatic Dissociative Experience 
Questionnaire, PSQIA = Pittsburgh Sleep Quality Index Addendum, PC-PTSD-IV = Primary Care Posttraumatic Stress Disorder Screen for DSM-IV, PTCI = Post-
traumatic Cognitions Inventory, PSS-I = PTSD Symptom Scale Interviewer, RIQ = Response to Intrusions Questionnaire, RR intervals = reflect the time between each 
heartbeat, SCID-IV/V = Structured Clinical Interview for DSM 4 = IV/V, SHAPS = Snaith-Hamilton Pleasure Scale, SPS = Social Provisions Scale, SDQ = State 
Dissociation Questionnaire, QIDS-SR = Quick Inventory of Depressive Symptomatology-Self Report, TBI = Traumatic Brain Injury, THQ = Trauma History Ques-
tionnaire, WASI = Wechsler Abbreviates Scale of Intelligence, WHOQOL = World Health Organisation Quality of Life, − = unknown information. 
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2021). The remainder of the studies used cross-fold methods (Cakmak 
et al., 2021; Park et al., 2021; Shim et al., 2021; Toll et al., 2020), 
bootstrap resampling (Kleim et al., 2007), split-half reliabilities (Gal-
atzer-Levy et al., 2017), or optimism correction (Morris et al., 2020) 
methods, with no details available for one study (Sadeghi et al., 2020a, 
2020b). Hyperparameter selection methods were not available for two 
studies (Karstoft et al., 2015; Sadeghi et al., 2020a, 2020b). Features 
based on current PTSD conceptualisations and research were pre- 

selected by researchers in eight studies (Galatzer-levy et al., 2014; 
Galatzer-Levy et al., 2017; Grisanzio et al., 2018; Karstoft et al., 2015; 
Kleim et al., 2007; Sadeghi et al., 2020a, 2020b; Toll et al., 2020; Zhang 
et al., 2021), with ML based feature identification used in the majority of 
studies (Cakmak et al., 2021; Dean et al., 2020; Kim et al., 2020; 
McDonald et al., 2019; Morris et al., 2020; Papini et al., 2018; Park et al., 
2021; Reinertsen et al., 2017; Schultebraucks et al., 2020, 2021; Shim 
et al., 2021). Although, in studies using pre-selected features and those 

Table 2 
ML-ECG data characteristics.  

Publication ECG measures HRV metric Channels Site Posture Time Sampling Artifacting Missing Data Access 

Cakmak et al., 
2021 

NN-Average, 
IQR-RR, 
Kurtosis-RR, 
Skewness-RR, 
Acceleration, 
Deceleration 

SDNN, RMSSD, 
pNN50, LF, HF, 
Total power, LF/ 
HF, Sample & 
Approx’ Entropy 

1 wrist Ambulatory 30s/ 
48 h 

30 Hz RR > 20 % Δ & 
RR outside set 
range removed 

– No 

Dean et al., 
2020 

Average heart 
rate 

– – – – – – – – Yes 

Galatzer-Levy 
et al., 2017 

Average heart 
rate 

– – – – – – – Removal if ≥30 % 
missing, 100-boot-
strap replicated in 
≥ 30 % 

No 

Galatzer-Levy 
et al., 2014 

Average heart 
rate 

– – – – – – – Imputation with 
non-parametric 
nearest neighbour 

No 

Karstoft et al., 
2015 

Average heart 
rate 

– – – – – – – Imputation with 
non-parametric 
nearest neighbour 

No 

Kleim et al., 
2007 

Average heart 
rate 

– – Wrist Seated 3 min – – Bootstrap 
resampling, with 
1000 resamples. 

No 

McDonald et al., 
2019 

Average heart 
rate. 

FFT and FFT 
coefficients, FFT 
aggregated skew, 
energy ratio, 
Change quantiles, 
Aggregated linear 
trend. 

1 wrist Ambulatory 
over 3 to 7 
days. 

1 min/ 
14.58 
± 15 h 

10 Hz Windowing, 
window 
labelling, 
training/testing 
data 

Kalman filter 
imputation. 
Excluded 
corruptions & 
windows >5 
consecutive 
missing 

No 

Morris et al., 
2020 

Average heart 
rate 

– 2 Chest Ambulatory 20 min 1000 Hz – Winsorization, 
maximum- 
likelihood 
estimation, RF 
proximity 
imputation 

No 

Papini et al., 
2018 

Average heart 
rate 

– – – – – – – Gradient-boosted 
decision trees 

No 

Reinertsen 
et al., 2017 

Phase-rectified 
signal averaging 
(quantifies 
acceleration/ 
deceleration) 

ULF, VLF, LF, HF 
and total power, 
IQR, NNN, MNN, 
PNN, PNN50, 
RMSSD, SDNN, 
(RR: mean, 
median, mode, 
standard 
deviation in 
radians). 

1 chest Holter 24-h, 
restricted to 
light walking 
around 
campus. 

5 or 
10 
min/ 
24 h 

512 Hz 0.33 < RR > 1.5 
+ RR ± 20 % Δ 
or overall 
average. RR re- 
sampled at 3.413 
Hz. Parzen 
window, boxcar 
sampling. FFT. 

Individuals with 
insufficient ECG 
data were removed 
from analyses. 
Linear spline 
interpolation for 
missing values. 

No 

Sadeghi et al., 
2020a, 2020b 

Non-linear 
measures 

– – wrist Bike riding 300 s – – – No 

Schultebraucks 
et al., 2020 

Average heart 
rate 

– – – – – – – > 45 % values 
missing excluded. 
Bootstrap 
aggregation 
(bagged) tree 
imputation 

Yes 

Schultebraucks 
et al., 2021 

Average heart 
rate 

– – – – – – – Bagged imputation 
during 5 times 3- 
fold cross- 
validation. 

No 

Note. - = Unknown, Δ = change, ECG = Electrocardiogram, HF is High Frequency, Hz = Hertz, FFT = Fast Fourier Transformation, IQR = inter-quartile-range, LF =
Low Frequency, LF/HF = the ratio of low frequency to high-frequency activity, MNN = mean of N-to-N intervals, NN = Normal to Normal heartbeat interval, NNN =
Normal N-to-N interval a measure of heart periodicity, PNN = Percentage of N-to-N intervals, PNN50 = percentage of N-to-N intervals that differ from each other by 
>50 ms, RMSSD = Root Mean Square of Successive Differences between normal heartbeats, RR = QRS complex to QRS complex, SDNN = Standard Deviation between 
Normal N-to-N differences, ULF = Ultra Low Frequency & VLF = Very Low Frequency. 
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using ML to identify features, ML methodologies were used to reduce the 
number of features to those most predictive of PTSD status. Raw data 
was never used, with all ML studies pre-processing data to extract fea-
tures before ML-based identification of those relevant to PTSD diagnosis. 
Support Vector Machines (SVM) were the most commonly employed 
approach appearing in eight studies (Cakmak et al., 2021; Dean et al., 
2020; Galatzer-levy et al., 2014; Karstoft et al., 2015; Kim et al., 2020; 
McDonald et al., 2019; Park et al., 2021; Shim et al., 2021). Other 
commonly employed algorithms included Random Forrest (RF) (Dean 
et al., 2020; Kim et al., 2020; McDonald et al., 2019), regression 
methods (Cakmak et al., 2021; Dean et al., 2020; Galatzer-levy et al., 
2014; Kim et al., 2020; Kleim et al., 2007; Park et al., 2021; Reinertsen 
et al., 2017), clustering algorithms (Grisanzio et al., 2018; Zhang et al., 
2021) and latent growth mixture modelling (LGMM) (Galatzer-levy 
et al., 2014, 2017; Schultebraucks et al., 2020, 2021). Deep learning 
methods, such as neural networks (NN) were only used in one study 
(McDonald et al., 2019), while an uncommon approach relying upon a 
Riemannian geometry-based classifier was used in another (Kim et al., 
2020). The performance of ML methodologies is not directly comparable 
given different assessment parameters, outputs and analysis techniques 
that make each solution unique. The use of ML is generally advanta-
geous to identify relationships between complex psychophysiological 
data, without diminishing statistical power from multiple comparisons, 
which is a limitation of classical statistical methodologies. However, a 
disadvantage of some ML approaches, such as NN, is reduced interop-
erability of predictive associations between variables and PTSD status. 
The more restricted analyses used in statistical research may give greater 
certainty to ML findings and the identified associations. Full details of all 
ML approaches, identified biomarkers and their success in predicting 
PTSD are provided in Table 4 to inform future research. 

3.3. ML EEG & ECG biomarkers 

The main biomarker associated with PTSD via ML (see Table 4) was 
elevated average heart rate, which was included in 10 studies (Dean 
et al., 2020; Galatzer-Levy et al., 2017; Galatzer-levy et al., 2014; Kleim 
et al., 2007; McDonald et al., 2019; Morris et al., 2020; Papini et al., 
2018; Sadeghi et al., 2020a, 2020b; Schultebraucks et al., 2020, 2021), 
with one study finding no association between HR and PTSD (Karstoft 
et al., 2015). RR-derived or HRV metrics were associated with PTSD in 
three studies (Cakmak et al., 2021; McDonald et al., 2019; Reinertsen 
et al., 2017). EEG studies employing ML largely utilised patterns asso-
ciated with beta activity (Galatzer-levy et al., 2014; Grisanzio et al., 
2018; Park et al., 2021; Zhang et al., 2021). Various functional con-
nectivity changes associated with beta (Kim et al., 2020; Park et al., 
2021; Shim et al., 2021; Zhang et al., 2021) and theta activity (Kim et al., 
2020; Shim et al., 2021; Toll et al., 2020) were also common. No ML 
studies examined EEG and heart-derived metrics in conjunction and no 
studies examining HEPs in PTSD were identified, see Table 4 for full 
details of ML PTSD biomarkers. 

3.4. Statistical EEG and ECG studies 

There were 21 EEG and 84 ECG studies that met all criteria but did 
not utilise ML methodologies, despite using statistical analysis tech-
niques such as regression, which is sometimes considered a form of ML 
(Dhall et al., 2019; European Commission, 2021; Maulud and Abdula-
zeez, 2020). The main analysis techniques used in this research were 
analysis of variance (ANOVA), covariance (ANCOVA) and various forms 
of regression analysis. In the EEG studies, the main features associated 
with PTSD were asymmetries (Cowdin et al., 2014; Gordon et al., 2010; 
Jokić-Begić and Begić, 2003; Kemp et al., 2010; Metzger et al., 2004; 

Table 3 
ML-EEG data characteristics.  

Publication EEG measures Channels Reference Time Epochs Sampling Artifacting Methods Missing Data Access 

Grisanzio 
et al., 
(2018). 

Averaged regional spectral 
power in alpha, beta, alpha/ 
beta ratios and frontal 
asymmetries 

32 Regional 
averages: 
posterior, 
frontal, etc. 

2 EO, 
2 EC 

28 × 4 s 
(2 
mins). 

500 Hz 3 EOG channels. Activity 3 SD 
from channel mean power 
values were mean-replaced. 
Log transformed alpha power 
F3-F4 to norm asymmetry. 

Individuals with 
incomplete 
symptom data 
were excluded 

No 

Kim et al. 
(2020) 

4-8 Hz, 8-10 Hz, 10-12 Hz, 8- 
12 Hz, 12-18 Hz, 12-22 Hz. 
18-30 Hz, 12-30 Hz, 30-50 
Hz, θ/α/β1/β2/γ/θ + α/α +
β1/β1 + β2/β2 + γ/θ + α +
β1/α + β1 + β2/β1 + β2 +
γ/θ + α + β1 + β2/α + β1 +
β2 + γ/θ, θ + α + β1 + β2 + γ 

62 Common 
Average 

3 EC 30 × 2 s 
(> ±

75uV). 

1000 Hz 0.1-100 Hz bandpass filter. 
Impedances under 5 kΩ, Eye 
movement artifacts removed, 
(CURRY 7, Semlitsch et al., 
1986). 3rd order IIR bandpass 
filter, with forward-backward 
0 phase filtering 1-50 Hz 
pandpass. Theta/alpha ratio 
over 1 resulted in epoch 
exclusion due to drowsiness. 

None No 

Park et al. 
(2021) 

Power spectral density and 
functional connectivity 
(coherence) in delta, θ, α, β1, 
β2 & γ 

64 down 
to 19 

Mastoids & 
Linked ear 

5 
mins 
EC 

60 × 2 s 
clean 
epochs 

500 Hz - 
1000 Hz 
down to 
128 Hz 

Bandpass filter between 0.5 
Hz − 40 Hz, 

– No 

Shim et al. 
(2021) 

Frequency band, Phase 
Locking Value and network 
strength, clustering 
coefficient and path length 

64 Mastoids 5 EO 4.096 s 1000 Hz Bandpass filter between 1 and 
55 Hz, voltage threshold 
±100 uV, eye movements and 
muscle removed with ICA 

– No 

Toll et al. 
(2020). 

Theta-connectivity. Theta 
4–7, alpha 8–12, beta 13–30, 
gamma 31–50 Hz. 74 ROI 
paired connectivity metrics 

64 FCz 3 EO, 
3 EC 

– 500 Hz High, low pass = 0, 1000 Hz. 
Connectivity metrics 
exceeding median ± 3 times 
the IQR were excluded. 

Non-responses or 
timed-out 
responses in 
behavioral data 
were excluded. 

No 

Zhang et al., 
2021 

Eyes open weighted Beta 
band and source-space 
power envelope-based 
functional connectivity 

64 down 
to 26 

Mastoids 3 EO, 
3 EC 

– 5000 Hz 
down to 
250 Hz 

Notch & 0.01 Hz high-pass & 
voltage filters, correlation 
thresholding, >20 % bad 
channels discarded, 
interpolation, ICA rejection. 

multiple 
imputations via 
Bayesian 
regression 

No 

Note. F3-F4 refers to the 10–20 EEG placement system, α = alpha activity, β1 and β2 = beta activity, γ = gamma activity. θ = theta activity, − = unknown information, 
EC = eyes closed, EO = eyes open, EOG = electrooculogram, Hz = Hertz, ICA = Independent Component Analysis, IIR = Infinite Impulse Response, ROI = Region of 
Interest, SD = Standard Deviation, uV = microvolts. 
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Table 4 
Machine learning outcome.  

Publication Features Clinical 
Significance 

Test Data Algorithms Accuracy Specificity Sensitivity PPV NPV 

Cakmak et al. 
(2021). 

RR-IQR Autonomic 
dysregulation is 
associated with 
PTSD. 

5-Fold cross- 
validation 

SVM, LogR, 
Multilayer 
perception 

AUC = 0.56 
± 0.05 Log.R 
& SVM 

– – 0.55 ±
0.02 

0.53 
± 0.06 

Dean et al. 
(2020). 

Average heart rate Elevated 
autonomic arousal 

2 independent 
data sets 

SVM, SVM with 
recursive feature 
elimination, RF, 
LR, Tree-based 
boosting, Lasso 

AUC = 0.81 0.77 0.85 – – 

Galatzer-levy 
et al. (2014) 

Average heart rate Elevated 
autonomic arousal 

90 % training, 
10 % testing, 
with 10 × 10 
cross- 
validation 

LGMM, Linear/ 
polynomial SVM, 
RF, AdaBoost, 
Kernel Ridge/ 
Bayesian-Binary 
Regression 

AUC = 0.71 – – – – 

Galatzer-Levy 
et al. (2017) 

Average heart rate Elevated 
autonomic arousal 

Split-half, 5 ×
10 fold cross- 
validation 

Nested LGMM 
algorithms, 
Linear SVM with 
recursive feature 
elimination 

AUC = 0.93 0.75 0.70 – – 

Grisanzio et al. 
(2018). 

Averaged frontal power 
values in resting Beta. 
Beta power in an 
emotion task. 

Frontal beta 
power is 
particularly 
associated with 
anhedonia 

2 independent 
data sets 

F = 3.84, K- 
means++

Adjusted rand 
index 0.79, 
Seeded K-means 
0.8. 

– – – – – 

Karstoft et al. 
(2015) 

Average heart rate No association 
between HR & 
PTSD. 

90 % training, 
10 % testing, 
with 10 × 10 
cross- 
validation. 

SVM AUC = 0.75 – – – – 

Kim et al. 
(2020). 

Full EEG-band source 
covariance. 

Abnormal activity 
in most frequency 
bands linked to 
symptoms. 

70 % training, 
30 % testing. 

Riemannian 
geometry-based 
classifier. SVM & 
RF, LDA 

73.09 % ±
2.08 %, AUC 
= 0.797 ±
0.0141 

77.14 ±
2.30 

68.72 ±
3.78 

– – 

Kleim et al. 
(2007). 

Average heart rate 71.80 
± 12.35 (PTSD), 67.10 
± 10.8 (no PTSD). 

Elevated 
autonomic arousal 

Bootstrap 
resampling 

Multivariate LR χ2 = 47.37, p 
= .000 

0.96 0.57 – – 

McDonald et al. 
(2019). 

Average heart rate. FFT 
coefficient 0, 1st 
coefficient of FFT, 
coefficient 19, the 19th 
coefficient of the FFT, 
FFT 26, the 26th 
coefficient of the FFT, 
FFT 28, FFT aggregated 
skew, energy ratio. 
Change quantiles. 
Aggregated linear trend. 

Elevated 
autonomic arousal 
related to 
triggering events 

70 % training, 
30 % testing. 

DT, SVM, RF, NN 
and CNN. 

SVM AUC, 
0.67, RF AUC, 
0.66, CNN 
AUC, 0.63, 
DT AUC, 
0.61, NN AUC 
0.60. 

– – – – 

Morris et al. 
(2020). 

Average heart rate Elevated 
autonomic arousal 

Optimism 
correction 

Gradient boosting 
machine 

AUC = 0.96 – – – – 

Papini et al. 
(2018). 

Average heart rate 95.82 
± 20.59 (PTSD 3- 
months), 86.14 ± 15.85 
(No PTSD 3-months). 

Elevated 
autonomic arousal 

10-fold cross- 
validation, 
repeated 5 
times 

Ensemble ML, 
gradient boosted 
DT 

AUC = 0.85 0.83 0.69 0.65 0.86 

Park et al. 
(2021). 

Beta functional 
connectivity 

Fragmented 
cortical processing 
& difficulties 
connecting 
thoughts 

10-fold cross- 
validation, 

SVM, RF, 
Penalized LR with 
Elastic Net 
Penalty 

AUC = 95.38 
± 4.09 % 

92 ±
10.32 % 

95.88 ±
7.1 % 

– – 

Reinertsen et al. 
(2017). 

24 h SDrr, IQRrr, LF, 
SDNN. 
5 min quiescent AC, DC, 
LF, SDNN 

Lower vagal tone 
and deep sleep in 
PTSD. Low LF 
power in quiescent 
sleep may indicate 
baroreceptor 
insensitivity and 
disordered 
breathing 

70 % training, 
30 % testing. 

L1L2 LR model. AUC: 24Hrs 
= 0.67, 
Random 
(RDM) = 0.7, 
Quiescent 
(QST) = 0.86. 
Accuracy: 
24Hr = 0.73, 
RDM = 0.73, 
QST = 0.80 

24Hr =
0.94, RDM 
= 1, QST 
= 0.94 

24Hr =
0.57, RDM 
= 0.43, 
QST = 0.71 

24Hr =
0.92, 
RDM =
1.0, 
QST =
0.94 

24Hr 
=

0.69, 
RDM 
=

0.67, 
QST =
0.79 

Sadeghi et al. 
(2020a, 
2020b). 

Non-stationarity in heart 
rate (Average HR and 

Alterations in 
autonomic arousal 

– Autoregressive 
Integrated 

– – – – – 

(continued on next page) 
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Meyer et al., 2016; Rabe et al., 2006a, Rabe et al., 2006b; Shankman 
et al., 2008; Veltmeyer et al., 2006; Wahbeh and Oken, 2013), theta 
power (Chae et al., 2004; Cowdin et al., 2014; Imperatori et al., 2014; 
Todder et al., 2012; Veltmeyer et al., 2006), alpha power (Jokić-Begić 
and Begić, 2003; Kemp et al., 2010; Veltmeyer et al., 2006; Wahbeh and 
Oken, 2013), alterations in sleep-related activity (Cohen et al., 2013; 
Cowdin et al., 2014; Habukawa et al., 2007; Richards et al., 2013), beta 
power (Chae et al., 2004; Cohen et al., 2013; Jokić-Begić and Begić, 
2003; Veltmeyer et al., 2006), entropy metrics (Begic et al., 2001; Chae 
et al., 2004; Lee et al., 2014), gamma power (Cohen et al., 2013; Ehlers 
et al., 2006), total power (Falconer et al., 2008) and coherence 
(Imperatori et al., 2014). Although, three of 11 asymmetry studies did 
not reach significance (Gordon et al., 2010; Meyer et al., 2016; Rabe 
et al., 2006a), nor did the only study looking at total power (Falconer 
et al., 2008). In the ECG studies, elevated average heart rate was asso-
ciated with PTSD in 28 studies, uncorrelated in 19 studies and nega-
tively correlated in seven studies. Low HRV was associated with PTSD in 
18 studies, with six studies utilising this pattern during nocturnal re-
cordings. Five studies showed PTSD symptom levels to be correlated 
with both elevated heart rate and low HRV. For one study, the full de-
tails could not be obtained of associations between autonomic function 
and PTSD (Bryant et al., 2008). The details of the associations of all other 
studies are presented in Tables 5 and 6 to give a more complete repre-
sentation of current research and greater context to ML studies. 

This scoping review explored the use of EEG and ECG biomarkers as 
predictors of PTSD with a focus on ML methods. A total of 19 studies 
were identified that met all criteria, six of which focused on EEG metrics, 
with the remaining 13 focusing on ECG metrics. An additional 21 EEG 
and 84 ECG studies were identified that met all criteria excluding the use 
of ML methodologies. Notably, no study was identified that explicitly 

examined PTSD via Heartbeat evoked potentials. 

4. Discussion 

One of the key objectives was to identify the types of ML algorithms 
used in predicting PTSD from biomarkers. The most common ML 
methods adopted were supervised approaches such as SVM (Cakmak 
et al., 2021; Dean et al., 2020; Galatzer-levy et al., 2014; Karstoft et al., 
2015; McDonald et al., 2019; Shim et al., 2021; Zhang et al., 2021) and 
regression (Cakmak et al., 2021; Galatzer-levy et al., 2014; Kleim et al., 
2007; Reinertsen et al., 2017; Zhang et al., 2021). Unsupervised ap-
proaches such as latent growth mixture modelling (Galatzer-levy et al., 
2014, 2017; Schultebraucks et al., 2020, 2021), clustering algorithms 
(Grisanzio et al., 2018; Zhang et al., 2021) and neural networks 
(McDonald et al., 2019) were less common. Of note, Kim et al., 2020 
employed an exotic solution involving a Riemannian geometry-based 
classifier based on fisher geodesic distance to the mean that might 
have some advantages in analysing non-linear EEG properties. Overall, 
supervised approaches were more commonly used than unsupervised 
methodologies; although there did not appear to be any performance 
advantage for either. The identification of 19 studies meeting inclusion 
criteria indicates a growing interest in this field. Consequentially, the 
current dominance of older ML methodologies and the absence of newer 
approaches, such as generative adversarial networks and deep neural 
networks (Dhall et al., 2019; Zhu et al., 2019) might be short-lived. Use 
of newer approaches is of critical importance because deep neural net-
works and related algorithms often outperform classical methodologies 
in a range of contexts, including neuroimaging (Zhu et al., 2019) and 
may be better suited to handling complex non-linear data due to their 
ability to detect and flexibly manipulate latent data structures and 

Table 4 (continued ) 

Publication Features Clinical 
Significance 

Test Data Algorithms Accuracy Specificity Sensitivity PPV NPV 

HR variance is time- 
dependent) 

Moving Average 
(ARIMA) 

Schultebraucks 
et al. (2020). 

Average heart rate 84.51 
± 17.69 (training), 
80.91 ± 15.80 (testing) 

Elevated 
autonomic 
arousal. 

2 Independent 
samples. 

Ensemble ML, 
utilising 3–4 
LGMM 
algorithms 

AUC = 0.84, 
AUC = 0.83 in 
testing data. 

0.86 – 27 of 
164 
(0.164) 

– 

Schultebraucks 
et al. (2021). 

Average heart rate 82.37 
± 17.24 (resilient), 
74.06 ± 2.25 (recovery), 
91.88 ± (delayed onset), 
74.29 ± 13.46 (non- 
remitting) 

Alterations in 
autonomic arousal 

80 % training, 
20 % testing 

Unconditional 
LGMM 

AUC = 0.83 0.83 1 – – 

Shim et al. 
(2021). 

Source theta and low- 
beta phase-locking 
values, nodal strength 
and clustering 
coefficients in theta and 
low-beta 

Abnormal limbic- 
cortical 
interactions 

leave-one-out 
cross- 
validation 

SVM 70.37 %, 
AUC = 0.85 

67.24 % 72.73 % – – 

Toll et al. 
(2020). 

74 brain region 
connections were 
significantly reduced in 
PTSD. 
Underconnectivity of 
the orbital and anterior 
middle frontal gyri were 
most prominent 

Cognitive network 
disruptions 
(dorsal/ventral 
attention, 
frontoparietal 
control). 

leave-one-out 
cross- 
validation 

Linear mixed- 
effects 

AUC = 0.898. 84.90 80.02 – – 

Zhang et al., 
2021 

Beta functional 
connectivity 

Fragmented 
cortical processing 
& difficulties 
connecting 
thoughts 

4 independent 
data sets 

Sparse clustering 
algorithm 

91.9 % PTSD, 
80.1 % 
healthy 
control 

– 89.20 % 92.8 % 
type 1. 
89.2 % 
type 2 

7.2 % 
type 1, 
10.8 % 
type 2. 

Note. - = Unknown, AC = alternating current, AUC = Area Under the Curve, CNN = convolutional neural networks, DC = Direct current, DT = decision tree, ER =
Emergency Room, FFT = Fast Fourier Transformation, HR = Heart rate, IQR = inter-quartile-range, LF = Low frequency, LGMM = Latent Growth Mixture Modelling, 
LDA = Linear discriminant analysis, LR = linear regression, NN = neural network, NPV = negative predictive value, PPV = positive predictive value, PTSD = Post 
Traumatic Stress Disorder, RF = random forest, SDNN = Standard deviation of norm-to-norm intervals, SDrr = Standard deviation of R-R intervals & SVM = support 
vector machines. 
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Table 5 
Statistical EEG studies.  

Authors Statistics Performance Measures Implication 

Begic et al., 
2001 

ANOVA p < .05 Psychometrics and EEG including reduced non-linear 
dimensional complexity in PTSD patients (Fp1, F8, 
C4, P4, T3, T4, T5, T6 and O1). 

Theta activity may relate to changes in hippocampal 
volume and beta may relate to hyperexcitability, 
prolonged wakefulness and attention disturbances. 

Chae et al., 
2004 

ANOVA F = 24.6, d.f. = 1, 
P < .001 

Lower dimensional complexity at Fp1, F8, C4, P4, T3, 
T4, T5, T6 & O1 

Disturbed information processing 

Cowdin et al., 
2014 

Mixed ANOVA, Fisher’s 
exact test, t-Test 

F(1,28) = 4.90; p 
= .035 

Psychometrics and EEG data including increased right 
hemisphere prefrontal theta power in REM sleep in 
trauma-resilient but not individuals diagnosed with 
PTSD 

Right prefrontal theta power during REM sleep may be 
adaptive for memory integration 

Ehlers et al., 
2006 

ANOVA F = 8.7, P < .004 Psychometrics and EEG spectral power including 
elevated gamma (20 Hz - 40 Hz at frontal locations) in 
PTSD. 

Elevated arousal levels and alterations in cortical 
processing. 

Falconer et al., 
2008 

ANOVA & ANCOVA p > .05 Psychometrics and EEG power. No association between resting-state EEG power and 
PTSD 

Imperatori 
et al., 2014 

T-Level thresholds p < .05 Psychometrics and EEG including increased theta 
power (sLORETA bilateral BA7, BA4, BA5, BA40 & 
BA6) and increased phase lagged synchronisation (Pz- 
P4). 

PTSD is associated with alterations in emotional- 
memory processing. 

Lee et al., 2014 t-Test & Pearson 
correlation 

p < .0006 Psychometrics and EEG metrics including reduced 
Dnodal centrality in beta activity (FCz) and gamma 
(AF4, FC1, FC2, FC4, C1) and Enodal centrality in 
beta (FC4, C1) and gamma (FC6, C1). Dnodal beta and 
gamma activity was correlated with depressive 
symptoms and increased arousal respectively. Enodal 
beta and gamma activity was correlated with re- 
experiencing symptoms, increased arousal and 
severity and frequency of PTSD symptoms. 

PTSD symptoms are associated with alterations in 
functional connectivity. 

Metzger et al., 
2004 

Pearson correlations 
and hierarchical linear 
regression 

R2 = 0.25, F(3, 
38) = 4.31, p =
.01 

Psychometrics and EEG metrics including increased 
right parietal power asymmetry 

PTSD arousal and depression symptoms are associated 
with right parietal power asymmetry. 

Meyer et al., 
2016 

ANOVA F(2, 51) = 10.91, 
p < .001, ƞp

2 =

0.30 

Psychometrics and EEG metrics including no 
correlation of resting frontal asymmetry to PTSD 
symptoms 

No association between resting frontal asymmetry and 
PTSD 

Rabe et al., 
2006a 

MANOVA & One-Way 
ANOVA 

F(1, 79) = 7.39, p 
< .01, ƞ2 = 0.086 

Psychometrics and EEG metrics including increased 
right frontal resting frontal power asymmetry, but no 
association with PTSD 

No association between increased resting right frontal 
asymmetry and PTSD 

Rabe et al., 
2006b 

Pearson product- 
moment correlations 

r = 0.34, p < .001 Psychometrics and EEG metrics including increased 
left frontal resting frontal power asymmetry 
associated with post-traumatic growth 

Post-traumatic growth is associated with greater left 
frontal asymmetry. 

Shankman 
et al., 2008 

ANOVA F(1, 72) = 5.86, p 
< .05 

Psychometrics and EEG metrics including theta/beta 
ratio-right hemispheric asymmetry in PTSD. No 
association between PTSD and frontal alpha 
asymmetry. 

PTSD is not associated with frontal alpha asymmetry 
but is associated with right elevated frontal theta/beta 
suggesting different other processes than approach/ 
avoidance are involved 

Todder et al., 
2012. 

Paired t-Test p < .05 Psychometrics and EEG metrics including reduced 
low theta power in the right temporal lobe and lower 
high theta power over the right and left frontal lobes 

PTSD is associated with emotion processing and 
regulation deficits 

Veltmeyer 
et al., 2006. 

ANOVA F(1, 167) > 1.28, 
P < .05 

Psychometrics and EEG metrics including lower theta, 
alpha 1 power, beta power and theta/beta ratios in 
PTSD. Hemispheric decreases in alpha 2 power and 
theta/beta ratio in PTSD and increased theta/alpha 
ratio at frontal/posterior locations in PTSD. 

PTSD is associated with alterations in brain activity, 
with global and regional 

Wahbeh and 
Oken, 2013. 

ANOVA, ANCOVA F(1, 84) > 4.1, p 
< .05 

Psychometrics and EEG metrics including greater 
global alpha peak in PTSD. PTSD was associated with 
greater left and right frontal asymmetry and frontal 
and posterior asymmetries. 

PTSD is associated with increased arousal levels and 
asymmetries in brain activity. 

Gordon et al., 
2010 

ANOVA p > .05 Psychometrics and EEG frontal asymmetry No association between resting-state EEG frontal 
asymmetry and PTSD 

Habukawa 
et al., 2007 

Mann-Whitney U Test p < .05 Psychometrics and EEG metrics including increased 
REM interruption, increased wake time after sleep 
onset, reduced sleep efficiency and slow-wave sleep. 

PTSD is associated with impaired memory integration 
during REM sleep and elevated nocturnal arousal 
levels. 

Jokić-Begić 
and Begić, 
2003 

ANOVA p < .06 Psychometrics and EEG metrics including suppressed 
alpha 1 power over frontal, central and occipital 
regions (F3, F7, C3, C4, T3, T4, T5, T6, O1, O2) 
especially in the left hemisphere and increased beta 1 
power at frontal and central locations (Fp1, Fp2, F3, 
F7, F8, T3, T4) with a slight left hemispheric 
asymmetry. 

PTSD is associated with alterations in arousal and 
emotional-memory processing. 

Kemp et al., 
2010. 

ANOVA & Tukey’s 
pair-wise comparisons 

r = − 0.62, p = .02 Psychometrics and EEG metrics including increased 
right-lateralised frontal alpha power 

PTSD is associated with symptom severity and may be 
related to withdrawal behaviours 

Cohen et al., 
2013 

Independent t-Tests, 
Cohen’s d and 
Spearman’s 
correlations 

p > .05, d > 0.37 Psychometrics and EEG metrics including reduced 
REM beta and sigma power and increased non-REM 
gamma power. 

PTSD patients have altered information processing 
during REM sleep. 

Richards et al., 
2013 

ANOVA F(3, 821) = 6.79, 
P = .011 

Psychometrics and EEG metrics including reduced 
delta power during non-REM sleep, especially in 
males with PTSD 

PTSD is associated with impairments in homeostatic 
sleep processes 
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associations (Emmert-Streib et al., 2020). Whether the use of complex 
algorithms such as Riemannian geometry-based classification (Kim 
et al., 2020) and neural networks may more reliably decipher complex 
physiological patterns than older ML methodologies is an open question 
for future research. 

A further aim of the current review was to determine the accuracy of 
biomarker-based ML prediction of PTSD. Despite differences in meth-
odology, population characteristics and other aspects of study design 
that prevent direct comparisons from being made, good performance 
was seen in most cases, with a surprising degree of commonality in 
utilised biomarkers. The best-performing EEG study achieved an AUC of 
95.38 ± 4.09 % employing a combination of SVM, RF, and penalized 
linear regression algorithms that found beta coherence as being pre-
dictive of PTSD (Park et al., 2021). A similar finding was reported based 
on four independent, larger and more representative datasets, which 
were examined with sparse clustering algorithms achieving a 91.9 % 
accurate prediction of PTSD status from beta power-envelope connec-
tivity (Zhang et al., 2021). The utilisation of two beta connectivity 
metrics and the validation of one with independent data sets, suggests 
such metrics might have some generalisability but further research is 
required here. Within the ECG studies, Morris et al. (2020) found that 
elevated average heart rate and gradient boosting machines, with 
multilevel hierarchical linear models, had an accuracy of 96 % in pre-
dicting PTSD. Although, some caution may be required as these re-
searchers did not use separate training/testing data and relied upon a 
small female-only sample (Morris et al., 2020). The combination of 
nested LGMM algorithms and average heart rate had the second-best 
performance (AUC = 93 %) of the ECG studies (Galatzer-Levy et al., 
2017). Again, the absence of testing and training data (use of split-half 
and 5 × 10-fold cross-validation) and a male-only Israeli military 
cohort, may suggest the Galatzer-Levy et al. (2017) study also lacks 
generalisability. Of the remaining ECG studies that used training and 
testing data, the best performance (AUC = 0.84) was derived from an 
ensemble of LGMM algorithms and average heart rate (Schultebraucks 
et al., 2020). These results show promise for the use of EEG and ECG 
metrics for the prediction of PTSD status, but highlight the need for large 
and representative samples to optimise bias-variance trade-offs (Belkin 
et al., 2019; Sharma et al., 2014). As noted, by Ramos-Lima et al. (2020), 
unrepresentative trauma sample populations are a persistent issue 
across ML research into PTSD, which perpetuates misconceptions of the 
construct. 

Understanding what biomarkers had been associated with PTSD was 
a further objective for this review. In EEG research using ML and sta-
tistical methods, PTSD diagnosis was most frequently predicted by local 
average power and various connectivity metrics. Notably, beta power 
irregularities were found in four ML studies (Grisanzio et al., 2018; Park 
et al., 2021; Shim et al., 2021; Zhang et al., 2021) and five statistical 
studies (Chae et al., 2004; Cohen et al., 2013; Jokić-Begić and Begić, 
2003; Shankman et al., 2008; Veltmeyer et al., 2006). Similarly, theta 
power abnormalities were documented in two ML studies (Shim et al., 
2021; Toll et al., 2020) and six statistical studies (Chae et al., 2004; 
Cowdin et al., 2014; Imperatori et al., 2014; Shankman et al., 2008; 
Todder et al., 2012; Veltmeyer et al., 2006). EEG connectivity metrics 
appeared to be more commonly associated with PTSD via ML methods 
(Kim et al., 2020; Park et al., 2021; Shim et al., 2021; Toll et al., 2020; 
Zhang et al., 2021) than statistical methods, where there was only one 
applicable study (Imperatori et al., 2014). A disparity between ML and 
statistical studies is present regarding EEG asymmetry, which was the 
most common biomarker associated with PTSD in statistical research but 
was not relevant in ML studies. Although, four of the 11 statistical EEG 
asymmetry studies found no associations with PTSD (Gordon et al., 
2010; Meyer et al., 2016; Rabe et al., 2006a; Shankman et al., 2008). 

Reviews into frontal asymmetry and PTSD indicate the relationship 
between them is inconsistent or state-dependent (Lobo et al., 2015; 
Meyer et al., 2015), with the measure often impacted by artefactual is-
sues (Allen et al., 2018) and generally of questionable prognostic value 
(Olbrich and Arns, 2013; Meyer et al., 2015). These issues could 
potentially explain why only one ML study using resting-state asym-
metry was identified (Grisanzio et al., 2018), with ML studies using task- 
based asymmetry metrics being rejected based on the exclusion criteria 
used, or not including asymmetry metrics at all. From these results, it 
appears that power and connectivity metrics have been most successful 
in predicting PTSD with ML methods. As beta is typically considered a 
cortical rhythm (Chang et al., 2011) and theta a septohippocampal 
rhythm (McNaughton and Gray, 2000) despite some cortical theta 
generators (Cantero et al., 2003), these findings are consistent with 
research showing local cortical and subcortical and network-level dis-
ruptions in PTSD (Terpou et al., 2018, 2019). Focusing on theta, PTSD- 
related impacts on the hippocampus (Henigsberg et al., 2019) have been 
linked with contextual orientation difficulties and impaired goal-conflict 
resolution leading to anxiety and defensive behaviours (McNaughton, 
2017; McNaughton and Gray, 2000; Sainsbury et al., 1987). Increased 
theta is also associated with attention (Cassaday, 2014) and working 
memory difficulties (Klimesch, 1999, 2012; Kleim et al., 2007), low 
cognitive control and anxiety (Cavanagh and Shackman, 2015) and 
neuroticism and avoidance (Neo and Mcnaughton, 2011). In healthy 
individuals, memory, attention and contextual orientation are associ-
ated with limbic theta and thalamocortical alpha rhythms (Klimesch, 
1999, 2012; Klimesch et al., 2007), which act as carrier waves through 
cross-frequency coupling (Canolty and Knight, 2012; Sarnthein et al., 
2005) to transmit information to frontal reward evaluation networks 
(Schultz, 2000). These networks, in conjunction with other large-scale 
brain networks (McTeague et al., 2017; Menon, 2011), use past expe-
rience (Aru et al., 2016; Roux and Uhlhaas, 2014) to underpin sensory 
processing, self-referential processing and planning (Menon, 2011), 
which give rise to prediction-confirmations, novelty-detection or 
prediction-errors encoded in beta 1, beta 2 and gamma activity 
respectively (Hajihosseini et al., 2012; Ruiz et al., 2011). Thus the beta 
power irregularities in ML and statistical studies might reflect persistent 
network issues underpinning a wide array of sensory, self-referential and 
cognitive issues observed in individuals with PTSD due to underlying 
issues in hippocampal functioning. Although, it is odd that alpha ab-
normalities were mainly observed in statistical studies (Jokić-Begić and 
Begić, 2003; Kemp et al., 2010; Veltmeyer et al., 2006; Wahbeh and 
Oken, 2013) given their importance in networks (Klimesch, 1999, 2012; 
Klimesch et al., 2007) and relevant PTSD related fMRI findings (Kim 
et al., 2006; Nicholson et al., 2018). Importantly, during sleep, impaired 
hippocampal functioning has been linked to nightmares (McNaughton 
and Gray, 2000), which may be a factor in spindling excessive beta 
endophenotype associated with sleep maintenance and impulse control 
issues (Arns et al., 2015; Johnstone et al., 2005; Krepel et al., 2021). This 
may suggest that impaired hippocampal functioning could impact 
emotional memory integration in networks during sleep (Nishida et al., 
2009). This may perpetuate forms of abnormal beta connectivity within 
these networks and consequentially the poor contextual orientation, 
goal-conflict resolution, alterations in mood and defensive behaviours 
seen in PTSD. These theta and beta irregularities, in combination with 
changes in various connectivity metrics (Kim et al., 2020; Park et al., 
2021; Shim et al., 2021; Toll et al., 2020; Zhang et al., 2021) and the 
numerous studies linking elevated heart rate and low HRV suggest 
nervous systems impacted by PTSD have disruptions in arousal and 
associated networks issues that limit behavioral flexibility (Porges, 
2009; Thome et al., 2017). These findings provide a promising basis for 
EEG and ECG biomarkers to be used diagnostically and as symptom 

Note: ANCOVA = Analysis of Covariance, ANOVA = Analysis of variance, BA = Brodmann Area, Dnodal = Connection strength, Enodal = Communication efficiency, 
EEG = Electroencephalogram, Hz = Hertz, MANOVA = Multivariate Analysis of Variance, PTSD = Post Traumatic Stress Disorder, REM = Rapid Eye Movement & 
sLORETA = standardised Low-Resolution Electric Tomography Software. 
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Table 6 
Statistical ECG studies.  

Authors Statistics Performance measures implication 

Agorastos 
et al., 2013 

ANCOVA Average HR, F = 8.488, p = .017 Psychometric and ECG recording including average 
heart rate (64.1 ± 4.2 PTSD, 56.8 ± 6.8 No-PTSD), 
nocturnal HR (61.3.1 ± 6.5 PTSD, 51.8 ± 7.5 No- 
PTSD), NN24h (942.4 ± 59.0 PTSD, 1076.7 ± 131.9 
No-PTSD), and LF/HF ratio at night (1.73 ± 0.97 
PTSD, 0.76 ± 0.35 No-PTSD). 

Elevated arousal and 
nocturnal autonomic 
dysregulation are 
associated with PTSD 

Alarcon et al., 
2011 

t-test p = .58 Psychometric and hospital medical records 
including average heart rate (PTSD 93 ± 18 bpm, 
No PTSD 93 ± 19 bpm). 

Elevated arousal is 
associated with PTSD 

Arditi- 
Babchuk 
et al., 2009 

Correlation r(40) = 0.33, p < .05 Psychometrics and electrocardiogram records 
including heart rate. 

Elevated arousal is 
associated with PTSD 

Blanchard 
et al., 2002 

Chi Square, correlation χ2 = 8.08, p < .01 Psychometric and hospital medical records 
including average heart rate (PTSD <87.7 ± 20.9 
bpm, No PTSD >86.3 ± 18.2 bpm). 

Elevated arousal is 
negatively associated with 
PTSD 

Blechert et al., 
2007 

MANOVA F = 4.95, p = .01 Psychometric and electrocardiogram records 
including heart interval (PTSD 762 ms ± 92.5 ms. 
No PTSD 868 ms ± 125 ms) and RSA (PTSD 5.36 
nu ±0.88 nu. No PTSD 6.16 nu ±4.84 nu). 

Elevated arousal is 
associated with PTSD 

Bryant et al., 
2011 

Hierarchical logistic regression p = .001, Sensitivity = 0.59, Specificity 
= 0.80 

Psychometric and hospital medical records 
including average heart rate (PTSD >96 bpm, No 
PTSD <96 bpm). 

Elevated arousal is 
positively associated with 
PTSD 

Bryant et al., 
2008 

– p < .01 Psychometric and hospital medical records 
including average heart rate (PTSD >90.16 ±
18.66, No PTSD <84.84 ± 17.41) at 3 months 
follow up HR > 96 more likely to have PTSD. 

Elevated arousal is 
associated with PTSD 

Bryant et al., 
2003 

One-way ANOVA and Pearson 
Correlation Coefficients 

Sensitivity (74 %) specificity (91 %) Psychometric and hospital medical records 
including average heart rate (82.9 ± 13.2 PTSD, 
76.3 ± 9.8 No-PTSD). 

Elevated arousal is 
associated with PTSD 

Bryant et al., 
2000 

Forward stepwise multiple 
regression 

β = 0.2, Sensitivity 88 %, specificity 85 % Psychometric and hospital medical records 
including average heart rate (HR > 90 bpm). 

Elevated arousal is 
negatively associated with 
PTSD 

Bryant et al., 
2013 

Hierarchical linear regression p = .95 Psychometric and hospital medical records 
including average heart rate (PTSD 10 bpm > no 
PTSD). 

No correlation between HR 
and PTSD. 

Buckley et al., 
2004a 

Hierarchical linear modelling P > .10 Psychometric and hospital medical records 
including average heart rate (94.1 ± 17.9 PTSD, 
94.0 ± 17.0 No-PTSD). 

No correlation between HR 
and PTSD. 

Buckley et al., 
2004b 

Hierarchical linear modelling t Ratio 30.73, p < .001 Psychometric and hospital medical records 
including average heart rate (PTSD 6.63 bpm < No- 
PTSD). 

Elevated arousal is 
associated with PTSD 

Carson et al., 
2007 

One way ANOVA F(2, 87) = 3.98, p < .05 Psychometric and ECG recording including average 
heart rate (75.0 ± 11.7 PTSD, 78.6 ± 9.2 Past 
PTSD, 73.8 ± 11.2 No-PTSD). 

Elevated arousal is 
associated with PTSD 

Carson et al., 
2000 

Discriminant function and two- 
factor ANCOVA 

HR F(1,35) = 6.3, p = .02. Discriminant 
function classification 76 % sensitivity, 
81 % specificity, p = .001 

Psychometric and ECG recording including LF/HF 
(5.68 ± 5.88 PTSD, 2.50 ± 1.86 No-PTSD). 

Elevated arousal is 
associated with PTSD 

Chang et al., 
2013 

t-Test, Mann-Whitney U p < .05 Psychometric and electrocardiogram records 
including heart interval (PTSD 848.16 ms ±
124.95 ms. No PTSD 893.48 ms ± 144.34 ms, Past 
PTSD 853.47 ms ± 130.48 ms), LF (PTSD 5.34 ±
1.17, No PTSD 5.9 ± 1.07, Past PTSD 6.09 ± 0.92), 
HF (PTSD 5.07 ± 1.13, No PTSD 5.75 ± 1.1, Past 
PTSD 5.9 ± 0.92) and LF/HF (PTSD 0.26 ± 0.72, 
No PTSD 0.15 ± 0.81, Past PTSD 0.19 ± 0.64). 

Low HRV is associated 
with PTSD 

Cohen et al., 
2000 

ANCOVA p < .05 Psychometric and electrocardiogram records 
including Average HR (PTSD 82.4 ± 1.7 s. No PTSD 
62.0 ± 3.25 s), HRV (PTSD 0.0732 ± 0.016 nu. No 
PTSD 0.95 ± 0.04 nu), LF% (PTSD 89.4 ± 1.1 nu. 
No PTSD 48.6 ± 1.1 nu), HF% (PTSD 10.6 ± 1.1 
nu. No PTSD 51.4 ± 1.1 nu) and LF/HF (PTSD 
10.025 ± 1.5 nu. No PTSD 0.95 ± 0.044 nu). 

Elevated arousal & 
autonomic dysregulation is 
associated with PTSD 

Cohen et al., 
1997 

Linear regression and one-way 
ANCOVA 

F = 7.0, p - = 0.019 Psychometric and ECG recording including average 
heart rate (71.32 ± 3.53 PTSD, 61.9 ± 2.14 No- 
PTSD). 

Elevated arousal is 
associated with PTSD 

Cohen et al., 
1998 

ANCOVA F = 52.16, p = .0000 Psychometric and electrocardiogram records 
including average heart rate (PTSD 71.32 ± 2.14 
bpm. No PTSD 61.9 ± 3.5 bpm) and HRV (0.12 ±
0.02 nu PTSD, 0.18 ± 0.04 nu No-PTSD). 

Elevated arousal is 
negatively associated with 
PTSD 

Coronas et al., 
2011 

Multivariate logistic regression 
models 

Sensitivity (62.5 %) specificity (75.0 %) Psychometric and hospital medical records 
including average heart rate (PTSD >84 bpm). 

Elevated arousal is 
associated with PTSD 

Cremeans- 
Smith et al., 
2012 

Pearson product-moment 
correlations and t-Tests 

r = 0.245, p < .05 Psychometric and hospital medical records 
including average heart rate (PTSD >79.752 ±
11.848 bpm). 

Elevated arousal is 
associated with PTS 

(continued on next page) 
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Table 6 (continued ) 

Authors Statistics Performance measures implication 

symptoms (intrusive 
thoughts) 

Delahanty 
et al., 2003 

One-way ANOVAs and Pearson 
product correlations 

p < .05 Psychometric and hospital medical records 
including average heart rate (95.36 ± 16.25 bpm). 

No correlation between HR 
and PTSD. 

Dennis et al., 
2014 

t-tests & latent variable 
modelling 

t(223), p < .05 Psychometric and ECG recording including 
standard deviation of norm-to-norm intervals 
(135.40 ± 41.97 PTSD, 150.10 ± 49.51 No-PTSD), 
triangular index (37.10 ± 12.95 PTSD, 41.26 ±
13.17 No-PTSD), log high frequency (5.72 ± 1.12 
PTSD, 6.22 ± 1.31 No-PTSD) and log low 
frequency (6.76 ± 0.85 PTSD, 7.11 ± 0.91 No- 
PTSD). 

Elevated arousal and 
autonomic dysregulation 
are associated with PTSD 

Dennis et al., 
2014 

Multilevel modelling, Pearson 
correlations, 

t(1257) = 2.76, p = .006 Psychometrics and electrocardiogram, including 
average heart rate (87.24 ± 11.78 bpm PTSD, 
82.93 ± 12.56 bpm No PTSD). 

Elevated arousal is 
associated with PTSD 

Ehring et al., 
2008 

Two-tailed ANOVAs, Pearson 
product-moment correlation 
coefficients 

r = − 0.15 to − 0.22, p > .5 Psychometric and hospital medical records 
including average heart rate (74.97 ± 11.16 bpm). 

No correlation between HR 
and PTSD. 

Elsesser et al., 
2004 

ANOVA F(2, 75) = 3.2, p < .05 Psychometric and electrocardiogram records 
including average heart rate (PTSD 65.41 bpm ±
8.89 bpm. No PTSD 71.6 bpm ± 8.86 bpm). 

Elevated arousal is 
negatively associated with 
PTSD 

Forneris et al., 
2004 

X2 & ANOVA p = .03 Psychometric and hospital medical records 
including average heart rate (PTSD = 83.9 ± 12.6 
bpm, No PTSD = 77.5 ± 11.2 bpm). 

Elevated arousal is 
positively associated with 
PTSD 

Gandubert 
et al., 2016 

Logistic and multivariate 
regression 

p > .05 Psychometric and electrocardiograph recordings to 
access median heart rate (76 [67–80] bpm) 

No correlation between HR 
and PTSD. 

Ginsberg 
et al., 2010 

Mann-Whitney U test p < .05 Psychometrics and photoplethysmography, 
including total power (813 ms2/Hz PTSD, 1142 
ms2/Hz No PTSD). 

Low HRV is associated 
with PTSD 

Ginsberg 
et al., 2008 

Correlation, factor analysis and 
hierarchical linear regression 

r = − 0.14382 Psychometrics and electrocardiogram, including 
average HRV (10.6 PTSD). 

Low HRV is associated 
with PTSD 

Gould et al., 
2011 

Multivariate logistic regression 
models 

R2
adj = 0.55 Psychometric and hospital medical records 

including average heart rate (74.97 ± 11.16 bpm). 
Elevated arousal is 
associated with PTSD 

Green et al., 
2016 

Multilevel modelling and 
correlations 

PTSD & LF amplitude r = − 0.25, p < .05 Psychometric and ECG recording including LF 
(PTSD 35.12 ± 15.13 nu) and HF (PTSD 22.33 ±
15.13 nu). 

Low HRV is associated 
with PTSD 

Griffin, 2008 Repeated measures ANOVA p > .05 Psychometric and electrocardiogram records 
including average heart rate (PTSD 69.5 ± 11.2 
bpm. No PTSD 72.7 ± 8.4). 

No correlation between HR 
and PTSD. 

Hamanaka 
et al., 2006 

Multiple logistic analysis p = .085 Psychometric and hospital medical records 
including average heart rate (HR =84.67 ± 14.92) 

No correlation between HR 
and PTSD. 

Hauschildt 
et al., 2011 

MANCOVA F(2, 67) = 0.91, p > .4 Psychometric and electrocardiograph recordings to 
access average heart rate (PTSD 69.92 ± 14.15 
bpm, No PTSD 66.85 ± 9.01 bpm, No trauma 65.50 
± 9.59 bpm) and heart rate variability (RMSSD & 
HF-HRV lower in PTSD than no PTSD or trauma). 

No correlation between 
average HR and PTSD, but 
low HRV values associated 
with PTSD. 

Hinton et al., 
2004 

Pearson correlation r = 0.4, p < .05 Psychometrics and electrocardiogram, including 
average heart rate (Approximately 78 bpm PTSD, 
& 70 bpm No PTSD). 

Elevated arousal is 
associated with PTSD 

Hopper et al., 
2006 

ANCOVA p = .76 Psychometric and ECG recording including average 
heart rate (71.5 ± 11.27 PTSD), LF HRV (6.68 ±
1.01 ln(ms)2) and RSA (7.0 ± 1.5 ln(ms)2 PTSD). 

No correlation between HR 
and PTSD. 

Jovanovic 
et al., 2009 

Mixed ANOVA F(1,76) = 11.2, p = .001 Psychometric and hospital medical records 
including average heart rate (≥ 95 PTSD, ≤95 No- 
PTSD). 

Elevated arousal & low 
HRV in PTSD 

Keary et al., 
2009 

Independent samples t-test p > .05 Psychometric and ECG recording including average 
heart rate (116.6 ± 20.3 PTSD, 106.4 ± 11.7 No- 
PTSD). 

No correlation between HR 
and PTSD. 

Kinzie et al., 
1998 

one way ANOVA F = 2.2, p < .075 Psychometric and photoplethysmography records 
including average heart rate (PTSD 83.2 ± 17.42 
bpm & 80.0 ± 16.23 bpm. No PTSD 76.5 ± 9.36 
bpm & 70.3 ± 10.56 bpm). 

Elevated arousal is 
associated with PTSD 

Kleim et al., 
2007 

Multivariate logistic regression 
models 

R2 = 4.90 Psychometric and hospital medical records 
including average heart rate (PTSD >71.80 ±
12.35 bpm, No PTSD <67.10 ± 10.80 bpm). 

Elevated arousal is 
associated with PTSD 

Kobayashi 
et al., 2014 

Hierarchical linear regression R2 = 0.2 Psychometric and electrocardiograph recordings to 
access heart rate variability (PTSD associated with 
lower HF during sleep) 

Low HRV in sleep is 
associated with PTSD 

Kraemer et al., 
2008 

Sequential multiple regression R2 = 0.126 Psychometric and hospital medical records 
including average heart rate (88.3 ± 20.4 PTSD, 
81.7 ± 16.7 No-PTSD). 

Elevated arousal is 
associated with PTSD 

Kuhn et al., 
2006 

Spearman correlation r = 0.31, p < .5 HR & SDQ. 
r = 0.27, p < .01 HR & PDI. 

Psychometric and hospital medical records 
including average heart rate (85.9 ± 16.4 bpm). 

Elevated arousal is 
associated with PTSD 

Lee et al., 
2018 

MANCOVA & Binary logistic 
regression 

PTSD & HRV metrics F(2, 44) = 3.90, p =
.028. LF/HF ratio and PTSD metrics r =
0.34, p = .015. 

Psychometrics and electrocardiogram, including 
LF, HF and LF/HF ratio (LF/HF ratio, PTSD 0.12 ±
0.88, No PTSD -0.16 ± 0.91 No PTSD). 

Low HRV is associated 
with PTSD 
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Table 6 (continued ) 

Authors Statistics Performance measures implication 

Liddell et al., 
2016 

ANOVA & Bivariate Correlation HRV t(72) = − 2.07, p = .021, d = 0.19. 
HR t(72) = − 0.91, p = .37, d = 0.5 

Psychometric and ECG recording including HR 
(PTSD 75.18 ± 12.68 bpm, No PTSD 77.84 ±
11.47 bpm) and RMSSD (PTSD 1.46 ± 0.26 nu, No 
PTSD 1.58 ± 0.22 nu). 

Low HRV is associated 
with PTSD 

Litz et al., 
2000 

Repeated measures ANOVA p < .05 Psychometric and electrocardiogram records 
including average heart rate (PTSD 68.9 ± 10.1 
bpm. No PTSD 67.6 ± 15.1). 

No correlation between HR 
and PTSD. 

MacGregor 
et al., 2009 

Logistic regression p = .51 Psychometric and hospital medical records 
including average heart rate (PTSD >83.4 ± 12.8 
bpm, No PTSD <89.5 ± 12.5 bpm). 

Elevated arousal is 
associated with PTSD 

Matsuoka 
et al., 2008 

Multivariate logistic regression OR, 1.6; 95 % CI, 1.2–2.2; p < .01 Psychometric and hospital medical records 
including average heart rate (84.4 ± 17.7 bpm). 

Elevated arousal is 
associated with PTSD 

Matsuoka 
et al., 2009 

None descriptives only. None, descriptives only Psychometric and hospital medical records 
including average heart rate (HR = 84.9 ± 16.5) 

Elevated arousal is 
associated with PTSD 

Mellman 
et al., 2004 

Repeated ANOVA Higher LF/HF ratio in REM F(1, 17) =
10.67, p < .01 

Psychometric and ECG recording including average 
heart rate (66.6 ± 9.2 PTSD, 61.2 ± 7.7 No-PTSD) 
and RSA (0.25 ± 0.8 PTSD, 0.21 ± 1.0 No-PTSD). 

Nocturnal autonomic 
dysregulation and elevated 
arousal are associated with 
PTSD 

Meyer et al., 
2016 

Kruskal-Wallis one-way ANOVA 
& Pairwise Mann-Whitney U 
tests 

p < .05 Psychometric and electrocardiogram records 
including RMSSD (PTSD 48.6 ms ± 23.5 ms. No 
PTSD 84.11 ms ± 41.7 ms), SDNN (PTSD 48.9 ±
20.0, No PTSD 74.27 ± 30.5), NN50 (PTSD 73.3 ±
58.2, No PTSD 120.1 ± 70.5), total power (PTSD 
2338.38 ± 1925, No PTSD 5745 ± 4333) and HF 
power (PTSD 896 ± 796, No PTSD 2509 ±
29,903). 

Low HRV is associated 
with PTSD 

Minassian 
et al., 2014 

Multinominial logistic 
regression and ordinal 
regression 

χ2 = 77.7, p < .01. χ2 = 65.5, p < .01 Psychometrics and electrocardiogram, including 
average heart rate (67.1 ± 10.2 bpm), SDNN (64.1 
± 26.9 ms), RMSSD (58.9 ± 34.5 ms), VLF (2380.2 
± 2470.9 ms2/Hz) LF (5144.1 ± 5467.4 ms2/Hz), 
HF (4153.8 ± 5074.4 ms2/Hz) and LFnorm, 
HFnorm, and LF/HF ratio. 

Elevated arousal is 
associated with PTSD 

Minassian 
et al., 2015 

Multivariate logistic regression OR, 1.57; 95 % CI, 1.04–2.37; P = .03 Psychometrics and photoplethysmography, 
including LF/HF ratio (PTSD <1.47 > No PTSD). 

Low HRV is associated 
with PTSD 

Mitani et al., 
2006 

t-test p = .001 Psychometrics and electrocardiogram, including 
LF/HF (4.25 ± 1.85 PTSD, 1.70 ± 0.56 No PTSD) 
and HF/total power (0.21 ± 0.07 PTSD, 0.39 ±
0.008 No PTSD). 

Low HRV is associated 
with PTSD 

Moon et al., 
2013 

Multivariate ANOVA F < 0.05 Psychometric and electrocardiogram records 
including SDNN (PTSD 31.21 ms ± 1.96 ms. No 
PTSD 38.57 ms ± 2.22 ms), RMSSD (PTSD 22.36 
± 2.09, No PTSD 30.27 ± 2.35), LF (PTSD 7178.86 
± 39.65, No PTSD 335.48 ± 44.70), HF (PTSD 
157.56 ± 31.99, No PTSD 332.83 ± 36.07) and 
total power (PTSD 737.71 ± 105.03, No PTSD 
1174.69 ± 118.41). 

Low HRV is associated 
with PTSD 

Nishi et al., 
2013 

Multivariate and univariate 
logistic regression model 

Univariate OR (95 % CI) = 0.91 (0.78, 
1.05), Multivariate OR (95 % CI) = 0.87 
(0.70, 1.09) 

Psychometric and hospital medical records 
including average heart rate (84.1 ± 16.8 bpm). 

No correlation between HR 
and PTSD. 

Norte et al., 
2013 

Mann-Whitney U test p = .02 Psychometrics and electrocardiogram, including 
average heart rate and HRV. 

Elevated arousal & 
autonomic dysregulation is 
associated with PTSD 

O’Donnell 
et al., 2007 

Logistic regression F = 0.76 Psychometric and hospital medical records 
including average heart rate (83.5 ± 12.82 PTSD, 
88.55 ± 17.94 No-PTSD, 90.22 ± 11.93 
Subsyndromal PTSD). 

Elevated arousal is 
negatively associated with 
PTSD 

Orr et al., 
2003 

Mixed model t t = 1.7, p = .09 Psychometrics and electrocardiogram, including 
average heart rate (77.5 ± 15.8 bpm PTSD,73.6 ±
11.3 bpm No PTSD). 

Elevated arousal is 
associated with PTSD 

Orr et al., 
2000 

t-test t(31) = 3.3, p = .002 Psychometrics and electrocardiogram, including 
average heart rate (77.9 ± 12.9 bpm PTSD, 66.2 ±
7.3 bpm No PTSD). 

Elevated arousal is 
associated with PTSD 

Park et al., 
2017 

t-test and ANCOVA p < .01 Psychometrics and electrocardiogram, including 
average heart rate (70.5 ± 1.2 PTSD, 65.4 ± 1.2 No 
PTSD) SDNN (21.9 ± 1.4 PTSD, 28.6 ± 1.3 No 
PTSD) RMSSD (15.6 ± 1.6 PTSD, 23.1 ± 1.5 No 
PTSD) and log HF (3.7 ± 0.1 PTSD, 4.3 ± 0.1 No 
PTSD). 

Elevated arousal & 
autonomic dysregulation is 
associated with PTSD 

Pitman et al., 
2001 

MANOVA p > .05 Psychometrics and electrocardiogram, including 
average heart rate (82.5 ± 6.9 PTSD, 71.1 ± 12.8 
No PTSD, 72.7 ± 7.0 Past PTSD). 

No correlation between HR 
and PTSD. 

Pole et al., 
2006 

Mixed ANOVA and MANOVAS p > .05 Psychometrics and electrocardiogram, including 
average heart rate (84.3 ± 21.0 Peritraumatic 
dissociation, 76.8 ± 13.8 Low PD). 

No correlation between HR 
and Peritraumatic 
dissociation. 

Price et al., 
2014 

Mixed effects modelling AUC = 0.68, sensitivity (0.91), 
specificity (0.57) 

Psychometric and hospital medical records 
including average heart rate (84.73 ± 19.20). 

No correlation between HR 
and PTSD. 
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Table 6 (continued ) 

Authors Statistics Performance measures implication 

Pyne et al., 
2016 

t-Test, chi-square and 
generalized linear mixed 
models 

p < .05 Psychometric and electrocardiogram records 
including log HF (PTSD 4.64 ± 1.23) and SDNN 
(PTSD 47.25 ms ± 21.29 ms). 

Low HRV is associated 
with PTSD 

Ray et al., 
2017 

Hierarchical regression R2 < 0.05 Psychometric and electrocardiogram records 
including log HF (PTSD 4.98 ± 1.27, No PTSD 
-4.76 ± 1.78) and SDNN (PTSD 29.75 ms ± 12.07 
ms, No PTSD 50.00 ms ± 16.00 ms), RMSSD (PTSD 
23.82 ms ± 14.11 ms, No PTSD 42.00 ms ± 15.00 
ms) and HF power (315.89 ± 509.96, No PTSD 
657.00 ± 777.00). 

Low HRV is associated 
with PTSD 

Rissling et al., 
2016 

Multilevel modelling, Pearson 
correlations, 

Resting t(10883) = 1.34, p = .180, d =
0.09. Nocturnal t(1083) = 2.20, p = .28, 
d = 0.12 

Psychometric and electrocardiogram records 
including resting LF power (PTSD 44.52 ± 17.00, 
No PTSD 37.81 ± 15.07). 

Nocturnal autonomic 
dysregulation is associated 
with PTSD 

Sahar et al., 
2001 

Mann-Whitney U test p > .05 Psychometric and electrocardiogram records 
including heart interval (PTSD 840.4 ms ± 173 ms. 
No PTSD 843.7 ms ± 161 ms). 

No correlation between HR 
interval and PTSD. 

Shah et al., 
2013 

Generalized estimating 
equations 

p < .01 Psychometric and electrocardiograph recordings to 
access heart rate variability (PTSD associated with 
lower HRV) 

Low HRV is associated 
with PTSD 

Shaikh al Arab 
et al., 2012 

Mann-Whitney U test, Fisher 
exact test, spearman coefficient 
correlations 

p < .05 Psychometric and electrocardiogram records 
including pNN50 (PTSD IQR 1.59 [0.68; 5.67] No 
PTSD IQR 9.95 [2.67; 42.52]) RMSSD (PTSD IQR 
17.7 [16.94; 27.35], No PTSD IQR 49.50 [22.72; 
93.46]), variability index (PTSD IQR 1.91 [1.49; 
2.61], No PTSD IQR 2.84[1.98; 7.04]) SDANN 
(PTSD IQR 75.92 [43.08; 88.64], No PTSD IQR 
93.57 [77.33; 112.43]), SDNN (PTSD IQR 86.14 
[67.99; 102.67], No PTSD IQR 118.32 [92.89; 
154.60]) and average HR (PTSD IQR 93.50 [77.70; 
97.70], No PTSD IQR 72.90 [66.33; 80.80]) 

Low HRV is associated 
with PTSD 

Shalev and 
Freedman, 
2005 

Hierarchical logistic regression χ2 = 6.63, df = 1, p = .01. OR = 1.29, 95 
% CI = 0.92–1.80 

Psychometric and hospital medical records 
including average heart rate (86.96–93.41 PTSD, 
81.87–94.90 No-PTSD). 

Elevated arousal is 
negatively associated with 
PTSD 

Slewa-Younan 
et al., 2012 

Linear regression p < .001 Psychometric and hospital medical records 
including average heart rate (PTSD 78.74 ± 2.19 
bpm, No PTSD 60.08 ± 2.25 bpm). 

Elevated arousal is 
associated with PTSD 

Song et al., 
2011 

Mann-Whitney U and regression R2 = 0.138, F = 4.695, p = .041 Psychometric and electrocardiogram records 
including LF/HF (PTSD 2.5 ± 1.9, No PTSD 1.5 ±
1.5). 

Low HRV is associated 
with PTSD 

Tan et al., 
2011 

t-Test p < .001 Psychometric and electrocardiogram records 
including SDNN (PTSD 48.10 ms ± 47.84 ms. No 
PTSD 138.70 ms ± 47.87 ms). 

Low HRV is associated 
with PTSD 

Thome et al., 
2017 

t-Test p < .05 Psychometric and pulse oximeter lnRMMSD (PTSD 
3.76 ± 0.09 ms, No PTSD 4.06 ± 0.11 ms), lnLF 
(PTSD 6.05 ± 0.20, No PTSD 6.91 ± 0.23) and 
lnHF (PTSD 6.35 ± 0.19, No PTSD 6.93 ± 0.25). 

Low HRV is associated 
with PTSD 

Tucker et al., 
2012 

Wilcoxon rank test and chi- 
square 

p < .05 Psychometric and electrocardiogram records 
including average HR (PTSD 80.82 bpm ± 13.60 
bpm, No PTSD 74.85 bpm ± 10.67), HF (PTSD 
40.14 nu ± 23.81 nu, No PTSD 50.67 nu ± 19.93 
nu) and LF/HF ratio (PTSD 2.83 ± 3.08, No PTSD 
1.35 ± 1.08). 

Low HRV is associated 
with PTSD 

van Liempt 
et al., 2013 

ANOVA, MANCOVA, F(2, 34) = 3.66, p = .036 PTSD HR in 
sleep 

Psychometric and ECG recording including average 
heart rate (64.66 ± 5.63 bpm PTSD, 58.01 ± 7.25 
bpm No-PTSD, 57.44 ± 6.04 bpm Trauma 
Control). 

Nocturnal autonomic 
dysregulation is associated 
with PTSD 

Veazey et al., 
2004 

ANOVA F(2,131) = 1.78, p = .173 Psychometric and electrocardiogram records 
including average HR (PTSD 77.0 bpm, No PTSD 
77.0 bpm, 70.0 bpm Trauma Control). 

No correlation between HR 
and PTSD. 

Vaiva et al., 
2003 

Wilcoxon rank test and Fisher 
exact test 

U = 85, p = .037 Psychometric and hospital medical records 
including average heart rate (≥79.4 ± 9.3 bpm 
PTSD). 

Elevated arousal is 
associated with PTSD 

Videlock 
et al., 2008 

Pearson product-moment 
correlations and ANOVA 

None, uses p values Psychometric and hospital medical records 
including average heart rate (86.9 ± 14.0 PTSD, 
83.4 ± 13.2 No-PTSD). 

No correlation between HR 
and PTSD. 

Wahbeh and 
Oken, 2013 

ANOVA F(2, 78) = 26.5, p < .000005 Psychometric and ECG recording including HF 
peak frequency (PTSD 0.21 ± 0.07 Hz, No PTSD 
0.23 ± 0.06 Hz). 

Elevated arousal is 
associated with PTSD 

Woodward 
et al., 2009 

Univariate ANOVA and Fisher’s 
least significant difference and 
simple and partial correlation 
and multiple regression 

F(3, 51) = 2.89, p < .05 PTSD HR in sleep 
> control, r(56) = 0.332, p < .05 with 
PSQI. F(3, 51) = 3.55, p < .05 PTSD RSA 
in sleep < control, r(56) = − 0.333, p <
.05 with PSQI. 

Psychometric and ECG recording including average 
heart rate (75.2 ± 7.9 PTSD, 67.7 ± 9.5 No-PTSD). 

Nocturnal autonomic 
dysregulation is associated 
with PTSD 

Wu and 
Cheung, 
2006 

Latent growth modelling p > .05 Psychometric and hospital medical records 
including average heart rate (HR = 97.1 ± 18.1) 

No correlation between HR 
and PTSD. 
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prognostics. However, it is important to note the methodological de-
cisions might have preferenced the utilisation of certain biomarkers. For 
instance, the eyes-open/closed assessment durations of under three 
(Grisanzio et al., 2018; Kim et al., 2020; Toll et al., 2020; Zhang et al., 
2021) or five minutes (Park et al., 2021; Shim et al., 2021) used in the 
EEG research may be insufficiently long to detect changes in vigilance 
(Arns et al., 2011; Jawinski et al., 2018) that might be associated with 
PTSD. Using 10-min EC assessments, distinct vigilance patterns have 
been detected for other disorders such as attention deficit hyperactivity 
disorder (Arns et al., 2015), mania (Hegerl et al., 2010) depression 
(Hegerl et al., 2012), obsessive-compulsive disorder (Dohrmann et al., 
2017) and borderline personality disorder (Hegerl et al., 2008). Given 
this wide array of disorders associated with distinct vigilance patterns, it 
is likely, that they may also exist in PTSD, although, this appears to have 
not been researched. 

A further consideration in ML biomarker detection is the use of 32 
(Grisanzio et al., 2018) or >62 EEG sensors (Kim et al., 2020; Park et al., 
2021; Shim et al., 2021; Zhang et al., 2021). Higher electrode densities 
are typically associated with increased connectivity measure accuracy 
(Allouch et al., 2022; Liu et al., 2018), which may increase the likelihood 
of connectivity metrics emerging as features. These high sensor counts 
may not be as applicable for clinics that typically employ 19 channels 
(Tatum et al., 2016) and would exclude comparison to most normative 
EEG databases used for qEEG assessment (Johnstone et al., 2005) 
including the Brain Resource International Database used by two studies 
identified in this review (Gordon et al., 2010; Veltmeyer et al., 2006). 
Consequentially, the method of data collection may have implications 
for the types of biomarkers detected and their predictive power. 
Considering differences between the methodologies and the variation in 
ML used in each study identified, the trends for power and various 
connectivity differences in resting-state EEG suggest continued attention 
to and standardisation (Miljevic et al., 2022; Pernet et al., 2020) of these 
metrics, with ample scope to continue testing all classes of ML for PTSD 
symptom. 

In ECG research, average heart rate was the most ubiquitous mea-
sure; successfully predicting PTSD in eight ML studies and failing in one 
(Karstoft et al., 2015) and being positively correlated in 28 statistical 
studies, negatively correlated in seven and uncorrelated in 19 (see 
Table 6). These discrepancies between elevated HR and PTSD, especially 
in the statistical studies may derive from differences in assessment, such 
as self-assessment versus clinician diagnosis for PTSD, the sequence of 
assessments, the timing of HR recordings after traumatic event/s, injury 
or event severity and differences in patient samples, such as age. 
Regardless of this variability, several meta-analyses have shown a cor-
relation between average HR and PTSD (Buckley and Kaloupek, 2001; 
Morris et al., 2016; Nagpal et al., 2013). HRV metrics being predictive of 
PTSD status in four ML studies (Cakmak et al., 2021; McDonald et al., 
2019; Reinertsen et al., 2017; Sadeghi et al., 2020a, 2020b) and asso-
ciated with PTSD in all but one (Hopper et al., 2006) of the 30 
statistically-based studies (see Table 6) is consistent with PTSD research. 
Indeed, in two large studies based on US marine samples assessed before 
and after combat, initially low HRV was a predictor of the subsequent 

development of PTSD (Minassian et al., 2014; Shah and Vaccarino, 
2015), which suggests individuals with reduced autonomic regulation 
are predisposed to develop PTSD. Unfortunately, due to large variations 
in recording duration in the identified ML studies, no conclusions about 
specific metrics can be garnered as values arising from different record 
lengths aren’t comparable due to their cycle-length-dependence (Task 
Force of the European Society of Cardiology the North American Society 
of Pacing Electrophysiology, 1996). Although, some interesting trends 
were identified in this pool of studies including, utilisation of predictive 
biomarkers during sleep (Mellman et al., 2004; Rissling et al., 2016; Van 
Liempt et al., 2013; Woodward et al., 2009), recording HRV values in the 
five minutes following the slowest heart-rate during sleep (Reinertsen 
et al., 2017) and using heart rate acceleration to predict PSTD and 
flashbacks (McDonald et al., 2019), which were more accurate than 
other HRV metrics in these studies. These findings suggest further ML 
approaches should explore the acceleration and deceleration changes in 
heart rate as events from which to extract potential biomarkers, such as 
the Fourier coefficients used by McDonald et al. (2019) and the HRV 
metrics used by Reinertsen et al. (2017). The large number of identified 
studies examining elevated HR via regression and the strong support for 
an association with PTSD supports the use of ML to further elucidate this 
relationship. 

The biomarkers successful in predicting PTSD status are revealing of 
underlying physiological processes occurring within the multi-modal 
PTSD classification. Consistent with wider research (Henigsberg et al., 
2019), biomarkers suggesting frontal lobe dysregulation were a key 
emerging trend in the ML EEG studies. Specifically, frontal beta power 
was linked to symptoms of anhedonia (Grisanzio et al., 2018), beta 
coherence/phase locking values (Shim et al., 2021) and beta power- 
envelope connectivity (Zhang et al., 2021) both predicted PTSD status, 
while divergent dorsal attention, visual attention, frontoparietal control 
and default mode network activity in beta separated PTSD subtypes 
(Zhang et al., 2021) and irregular theta connectivity between frontal 
regions and broader attention networks associated with PTSD, attention 
and working memory difficulties (Toll et al., 2020). Poor frontal lobe 
and control network function are indicative of failures in attention and 
arousal regulation that are critical for goal-directed behavior, or the 
ability to adaptively respond to a stressor (Thayer and Lane, 2000), 
which may contribute to the disorganised orientation in time and place 
seen in PTSD (Liberzon & Abelson, 2016). The broad EEG spectral dif-
ferences to controls used by Kim et al. (2020) to detect PTSD are 
compatible with the arousal regulation deficit argument, as brain ac-
tivity in controls typically follows a log-linear and hierarchical stratifi-
cation depending upon frequency (Buzsáki, 2009; Klimesch, 2014; 
Penttonen and Buzsáki, 2003). In contrast, the loss of this proportion-
ality is associated with dysregulated arousal (Arns et al., 2011; Canolty 
and Knight, 2012; Herrmann et al., 2016; Schwartz and Roth, 2008). 
Similarly, arousal regulation difficulties are suggested by divergent beta 
and theta power (Cavanagh and Shackman, 2015; Enoch et al., 2008; 
Johnstone et al., 2005; Niedermeyer, 1990; Pizzagalli, 2010), elevated 
HR and low HRV metrics (Porges, 2001; Shaffer et al., 2014; Shaffer and 
Ginsberg, 2017; Thayer and Lane, 2000, 2009) described in both the ML 

Table 6 (continued ) 

Authors Statistics Performance measures implication 

Zatzick et al., 
2005 

Mixed effects random- 
coefficient regression modelling 

F = 14.4, F = 3.8 for 6 months and 12 
months respectively 

Psychometric and hospital medical records 
including average heart rate (PTSD 90.16 ± 18.66 
bpm, No PTSD 84.84 ± 17.41). 

Elevated arousal is 
negatively associated with 
PTSD 

Note: - = Unknown, ANCOVA = Analysis of Covariance, ANOVA = Analysis of variance, bpm = beats per minute, ECG = Electrocardiogram, HF = High Frequency, 
HFnorm = Normalised High Frequency, IQR = Inter Quartile Range, LF = Low Frequency, LF/HF = Ratio of Low-Frequency to High-Frequency power, LFnorm =
Normalised Low Frequency, Ln = Natural Logarithm, MANOVA = Multivariate Analysis of Variance, ms = millisecond, NN = Normal to Normal (RR) intervals, NN50 
= Normal-to-Normal heartbeats that differ by >50 ms, nu = normal units, PNN50 = NN50 divided by the total number of NN intervals, PTSD = Post Traumatic Stress 
Disorder, PDI = Peritraumatic Distress Inventory, PSQI = Pittsburgh Sleep Quality Index, PTSD = Post Traumatic Stress Disorder, REM = Rapid Eye Movement., 
RMSSD = Root Mean Square of Successive Differences, RSA = Respiratory Sinus Arrhythmia, RR = the time between consecutive heartbeats, SDQ = State Dissociation 
Questionnaire & VLF = Very Low Frequency. 
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and statistically based research. As discussed earlier, abnormal theta and 
beta patterns have also been linked to sleep issues (Arns et al., 2013, 
2015; Monastra et al., 1999; Nishida et al., 2009), which is in keeping 
with the suggested trend for abnormal autonomic functioning in sleep 
(Mellman et al., 2004; Reinertsen et al., 2017; Rissling et al., 2016; Van 
Liempt et al., 2013; Woodward et al., 2009) and supports arousal dys-
regulation being a consistent feature of PTSD. The consistency of PTSD 
biomarkers between ML and statistically based research is suggestive 
that arousal regulation and alterations in arousal are defining features of 
PTSD that can be identified through both EEG and ECG biomarker 
analysis. 

The 19 ML studies identified all sought to solve classification prob-
lems pertaining to PTSD diagnosis and in two instances, ongoing 
symptom monitoring (McDonald et al., 2019; Sadeghi et al., 2020a, 
2020b). Either EEG or ECG biometrics were combined with psycho-
metrics derived through an un-blinded clinical interview and self- 
reporting scale. In most instances short (2–5 min) recordings were suf-
ficient to distinguish PTSD participants from controls, with varying 
degrees of success. Although, the trend for improved predictive power 
during sleep observed in some studies suggests longer recording periods 
could lead to the use of EEG vigilance-related markers (Jawinski et al., 
2018). There was very little commonality in data acquisition, artifacting 
or rationale for feature selection, with the relatively high commonality 
of biomarkers utilised speaking to their ubiquity. Participants were 
predominately male, who had largely experienced combat or motor- 
vehicle accidents and only a minority of samples were considered 
ethnically diverse and demographically representative populations 
(Cakmak et al., 2021; Dean et al., 2020; Galatzer-levy et al., 2014; 
Grisanzio et al., 2018; Karstoft et al., 2015; Papini et al., 2018; Shim 
et al., 2021; Zhang et al., 2021). Other studies were unrepresentative 
due to smaller samples (Kim et al., 2020; Morris et al., 2020), low 
ethnic/cultural diversity (Galatzer-Levy et al., 2017; Park et al., 2021; 
Schultebraucks et al., 2020, 2021; Zhang et al., 2021), low education 
levels (Toll et al., 2020) and individuals willing and able to participate a 
bike-riding program (McDonald et al., 2019; Sadeghi et al., 2020a, 
2020b). Dataset class imbalances, where variables have uneaven cases of 
targets to non-targets (Kumar et al., 2021), when present, were 
accounted for in all studies and confounds were explored for unique 
sample characteristics in each study. As noted, by Ramos-Lima et al. 
(2020), unrepresentative trauma sample populations are a persistent 
issue across ML research into PTSD, which perpetuates misconceptions 
of the construct. This is of particular importance as only six of the ML 
studies measured dissociative features (Galatzer-Levy et al., 2017; Kleim 
et al., 2007; Morris et al., 2020; Papini et al., 2018; Schultebraucks et al., 
2020; Zhang et al., 2021), which may have limited the detection of 
biomarkers associated with PTSD subtypes and perpetuated a miscon-
ception of PTSD as a uniform construct. 

In most studies, the biomarkers used to classify PTSD status and 
symptoms were linked to dysregulated arousal, which can also be linked 
to abnormal defensive responding (Porges, 1995; Williamson et al., 
2015). Given the increased appreciation for the embodiment of trauma 
(Harricharan et al., 2017; Terpou et al., 2019; Thome et al., 2017), it is 
logical that biomarkers for PTSD symptoms were often associated with 
frontal sites and cardiac periodicity, as the frontal lobe is considered to 
mediate autonomic regulation and neurovisceral integration via the 
central autonomic network (Smith et al., 2017; Thayer and Lane, 2000; 
Thome et al., 2017). Hence, the need to consider the embodied impact of 
PTSD and neurovisceral dysregulation is apparent from the studies 
identified in this review including the absence of research combining 
EEG and ECG metrics, such as HEP. Future research should also explore 
if arousal dysregulation in PTSD is associated with vigilance pattern 
differences that appear likely, but also appear not to have been 
researched. Returning to the two questions posed in the introduction, 
the majority of ML research into PTSD has used classical supervised and 
unsupervised algorithms, focusing on HR, EEG power and various con-
nectivity metrics that performed well. Although, the diversity of 

methodologies and samples prevents definitive associations between 
these biomarkers and PTSD symptoms from being drawn, leaving ample 
scope for future ML research into these associations. 

5. Limitations 

This review’s focus on electrophysiological biomarkers intentionally 
overlooks other potential PTSD biomarkers that appear in the identified 
research, such as cortisol (Galatzer-Levy et al., 2017). Variations in data 
collection methods, such as varying assessment times and sensor counts, 
smaller size and poor representativeness of samples, along with resam-
pling techniques rather than split or independent data sets for training 
and testing may limit the generalisability of these predictions and the 
further advancement in understanding the PTSD construct. Such varia-
tion could also impact the emergent biomarkers and their predictive 
power. This lack of standardisation, validation with independent data 
and replication highlights the need for shared data and analytic pipe-
lines. Broader adoption of the Research Domain Criteria (RDoC) 
framework (Cuthbert and Insel, 2013), open EEG databases (van Dijk 
et al., 2022) and area-specific guidelines, such as those proposed for 
HRV (Laborde et al., 2017), EEG (Pernet et al., 2020) and connectivity 
measure research (Miljevic et al., 2022) are recommended to begin 
addressing these issues. Emphasis was placed upon the diagnosis of 
PTSD in this review, largely leaving prognostic and status monitoring- 
related biomarkers unaddressed. This may be of particular importance 
given the transdiagnostic nature of some biomarkers, such as beta dys-
regulation, which is also seen in alcoholism and anxiety (Enoch et al., 
2008), impulse control issues (Krepel et al., 2021), developmental 
trauma and affective lability (Jin et al., 2018) and obsessive-compulsive 
disorder (Dohrmann et al., 2017). Such transdiagnostic markers could 
be considered endophenotypes (Johnstone et al., 2005), which have 
important prognostic implications for dysregulated beta activity 
(Swatzyna et al., 2014). Further work should seek to integrate such 
transdiagnostic associations and further elucidate the largely unex-
plained underlying causes and physiological mechanisms underpinning 
transdiagnostic endophenotype biomarkers, such as beta dysregulation. 

6. Conclusion 

This scoping review sought to understand which EEG and ECG 
metrics are associated with PTSD and have been used in conjunction 
with statistical and ML approaches and to what success. Were there any 
specific ML methodologies and features emerging from this research that 
should inform future research? From 24,462 potential references, 124 
studies were identified, with only 19 of these meeting all criteria, with 
the remaining 84 ECG and 21 EEG studies respectively using statistical 
methodologies. Of the ML studies, six used EEG and 13 ECG. There was a 
slight trend towards supervised over unsupervised learning methods, 
with SVM and regression approaches used more commonly. The pre-
dictive capabilities of ML with EEG and ECG data were high. Although, 
newer ML methodologies, such as deep learning algorithms were 
notably absent, with neural networks only employed in one study. The 
superiority of such newer algorithms to detect patterns in complex non- 
linear data (Emmert-Streib et al., 2020) including neuroimaging data 
(Zhu et al., 2019) is a promising area for future research. Despite 
methodological variation between studies there appeared to be some 
commonality in utilised biomarkers, with beta and theta power and 
various connectivity metrics appearing most predictive in the EEG 
research, while ECG research focused on elevated HR and low HRV 
values. No ML studies analysed EEG and ECG metrics concurrently and 
only one study sought to classify PTSD subtypes. Importantly, this 
scoping review builds upon the recent findings from Ramos-Lima et al.’s 
(2020) recent review by explicitly focusing on identifying studies using 
resting-state ECG and EEG data that were excluded from this previous 
review. The current findings highlight how statistical and ML research 
has been conducted using resting-state biomarkers to classify PTSD 
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status and symptoms and argues the need to explore transdiagnostic 
endophenotypes biomarkers (Johnstone et al., 2005), specifically, bio-
markers of neurovisceral integration (Thayer and Lane, 2000) and vig-
ilance state changes (Arns et al., 2011) to better understand the multi- 
modal nature of PTSD. Future research should consider using natural-
istic resting-state events such as sleep-sub-stage transitions (Roth, 1961) 
that have been associated with changes in HRV (Boudreau et al., 2013) 
and HEP amplitudes (Lechinger et al., 2015) that are considered to relate 
to autonomic disturbances in PTSD (Clancy et al., 2017). This builds 
upon the research identified in this review documenting the importance 
of heart rate changes to refine predictive biomarkers for PTSD while 
associating it with HEP potentials related to frontal lobe regulatory 
structures that are potential source structures to many of the EEG bio-
markers utilised in research highlighted by this review. 
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