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ABSTRACT

Digitised histopathology image analysis has drawn researchers’

attention over recent years. However, stain variation due to

several factors can be a significant hurdle for the diagnosis

process. Stain normalisation can be used as an effective

method to address this issue but most existing methods re-

quire careful selection of a reference image. In this work,

we propose a texture enhanced pix2pix generative adversar-

ial network (TESGAN), which takes higher contrast hema-

toxylin components as input and includes a novel loss func-

tion to guide the generator to produce higher quality images

without the need for reference images. We implement our

method as a pre-processing approach for an isocitrate dehy-

drogenase (IDH) mutation status classification task. Evalu-

ated on The Cancer Genome Atlas (TCGA) glioma cohorts,

the proposed model achieves Area Under Curve (AUC) of

0.967, which substantially outperforms the current state-of-

the-art.

Index Terms— Stain normalisation, Conditional Genera-

tive Adversarial Networks, Content loss, IDH classification.

1. INTRODUCTION

Cell appearances and structures in tissue slides provide valu-

able information for diagnosing and studying diseases. To

make tissue structures more recognisable, a proper staining

process is required. The most widely used stain process in

histopathology is the Hematoxylin and Eosin (H&E) stain [1]

with which the hematoxylin stains cell nuclei blue-purple and

eosion stains cell cytoplasm pink.

Traditional stain normalisation methods can be divided

into two categories: global colour normalisation and stain

separation. Global colour normalisation aims to match the

colour distribution of the source domain to that of the target

domain, based on histograms [2] or statistics of colour chan-

nels [3]. Stain separation based methods normalise images

by mathematical frameworks using decomposed stain vectors

from a reference image. For example, separate stain vectors

have been identified by mapping RGB images to the optical

density space using singular value decomposition [4, 5]. In

Fig. 1: Left to right: original colour image, grayscale image

and hematoxylin component of the image.

addition, a relevance vector machine is used to classify each

pixel to a stain component [6], but its supervised learning

fashion increases the computation complexity.

Recent stain normalisation methods are increasingly us-

ing deep learning models. For instance, sparse auto-encoders

are employed to decompose stain components into sepa-

rate feature spaces and build tissue specific correspondence

between input images and a single reference image [8]. How-

ever, the normalisation results depend heavily on the refer-

ence image’s quality. Generative adversarial network (GAN)

based methods using CycleGAN and pix2pix [7] have thus

been proposed, which do not need a reference image and

achieve excellent results. CycleGAN is used to formulate

stain normalisation as an unsupervised image-to-image trans-

lation task, such as StainGAN [9] and cCGAN [10]. However,

if the dissimilarity between two domains is large, especially

when the tissue appearance can be vastly different in regions,

CycleGAN-based methods can produce less accurate results.

Pix2pix-based methods generally produce better results

than CycleGAN-based methods as they use paired images

as input and are trained in a supervised fashion. The STST

method [11] is based on pix2pix and treats stain normalisation

as an image repainting problem. Target domain images and

their converted grayscale images are used as paired images to

train a pix2pix GAN in which the generator learns the colour

pattern of the target domain and repaints the input grayscale

image with a similar colour style. However, grayscale con-

version may cause irreversible loss of stain information in the

input images, leading to low contrast images and poor perfor-

mance in pathology detection and classification.

2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI)
April 13-16, 2021, Nice, France

978-1-6654-1246-9/21/$31.00 ©2021 IEEE 1949

2
0
2
1
 I

E
E

E
 1

8
th

 I
n
te

rn
at

io
n
al

 S
y
m

p
o
si

u
m

 o
n
 B

io
m

ed
ic

al
 I

m
ag

in
g
 (

IS
B

I)
 | 

9
7
8
-1

-6
6
5
4
-1

2
4
6
-9

/2
0
/$

3
1
.0

0
 ©

2
0
2
1
 I

E
E

E
 | 

D
O

I:
 1

0
.1

1
0
9
/I

S
B

I4
8
2
1
1
.2

0
2
1
.9

4
3
3
8
6
0

Authorized licensed use limited to: Macquarie University. Downloaded on June 01,2021 at 22:05:03 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2: Overall TESGAN model structure. Similar to [7], U-Net generator transforms hematoxylin components to images with

target domain colour pattern. PatchGAN [7] discriminator judges the input image pairs as real or fake. Feature vectors produced

by a pre-trained VGG19 network are used to derive the content loss.

In this paper, we propose a texture enhanced pix2pix-

based method (TESGAN) to generate high quality stain nor-

malised images without the need to select reference images.

Inspired by [12], we use the hematoxylin component of the

H&E stained images as the generator input since the contrast

between nuclei and cytoplasm in hematoxylin components is

higher than in grayscale images (Fig. 1). Moreover, we de-

fine a custom loss function which regulates the generated im-

ages to preserve both high-level and low-level features of the

input images. We then apply our method to Isocitrate De-

hydrogenase (IDH) classification in histopathology images.

IDH is an important diagnostic, prognostic and therapeutic

biomarker for glioma [13]. Our contributions include: 1)

using a template-free method based on the pix2pix frame-

work for generating texture-enhanced stain normalised im-

ages; 2) using the hematoxylin component as the model inputs

to demonstrate its effectiveness in histopathology image anal-

ysis; and, 3) combining content loss and L1 loss to enforce

the correct colour pattern and enhance the contrast in the pro-

duced images. Experiments were conducted on 921 glioma

cases collected from the public TCGA dataset. Our results

show promising performance improvement over the baseline

[14] and state-of-the-art stain normalisation methods.

2. METHODS

We formulate the stain normalisation problem as re-painting

of the hematoxylin component with the colour pattern of im-

ages from the target domain. The proposed method is illus-

trated in Fig. 2. The base structure of TESGAN is similar to

pix2pix. We introduce an additional feature extractor compo-

nent using a pre-trained VGG19 model to derive the content

loss. A trained generator is used to produce stain normalised

images. We then train a ResNet50 classifier for the task of

IDH classification using the normalised images.

2.1. Stain Normalisation

Our TESGAN framework is designed based on the pix2pix ar-

chitecture, which takes paired images (x, y) to train the gener-

ator, with x as the input, y as the target output and G(x, z) as

the generated image (z is the noise vector). To train the gener-

ator network, both adversarial loss and L1 loss are used. The

adversarial loss encourages the generator to produce images

that fool the discriminator and the L1 loss forces the generator

to produce images that are close to the target image y.

In our approach, we do not have a reference or target im-

age to normalise an input image. However, to utilise the su-

pervised learning capability of pix2pix, we use the colour im-

age from the target domain as the target y and the correspond-

ing hematoxylin component h of the target image as the input

x to train the network. In this way, our approach is essentially

to repaint the hematoxylin component with the colour pattern

of the target domain. Specifically, U-Net is used as the gener-

ator, which takes the hematoxylin component h of the target

domain RGB images y as input and produces stain normalised

images G(h, z). PatchGAN [7] is used as the discriminator,

which takes the paired input of h and stained images, and

classifies whether the given stained images are real or fake.

Furthermore, unlike the objective function in pix2pix, we

add a content loss to enhance texture features in the generator

output. The overall loss function is defined as follows:

LTESGAN (G,D) = Eh,y[log(D(h, y))]+

Eh[log(1−D(h,G(h, z))] + LContent L1.
(1)

The first part of the loss function is a similar adversarial loss
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(a) Source (b) Macenko (c) Reinhard (d) StainGAN (e) STST

(f) Target (g) Content+L1 (h) Content (i) L1

Fig. 3: Comparison of stain normalised results.

to most GANs and the second part is a LContent L1 loss that

combines L1 loss and content loss. L1 loss encourages the

produced image to be less blurry with richer low-level fea-

tures, such as texture and colour. Content loss helps preserve

high-level features, such as structural information [15]. The

formula for LContent L1 is as follows:

Lcontent L1(G) = λL1L1(G) + λcontentLContent(G), (2)

L1(G) = Eh,y,z[||y −G(h, z)||], (3)

Lcontent(G) =

n∑

j

ωj
1

CjHjWj
||φj(h)− φj(G(h, z))||.

(4)

To calculate the content loss, a feature extractor is added to

the model to extract feature vectors from G(h, z) and h. We

use a pre-trained VGG19 network as a feature extractor. Here

we use the feature map φj produced from the convolution

layer j before each max pooling layer; Cj , Hj ,Wj corre-

spond to the number of channels, height and width of φj ,

while ωj is the weight factor of φj .

2.2. Hematoxylin Component Extraction

Classifiers usually produce better results with images that

have enhanced texture features. As can be observed from

Fig. 1, the hematoxylin component of the image enhances

the texture features with a better contrast compared to RGB

and grayscale images. Thus, we extract the hematoxylin

component by estimating the optical density of each RGB

channel [16]. With the help of the proposed loss function,

the content information of the input hematoxylin component

is preserved, which enables us to produce texture-enhanced

images.

3. EXPERIMENTS AND RESULTS

3.1. Dataset and Implementation

In this study, the publicly available whole-slide image (WSI)

dataset from The Cancer Genome Atlas (TCGA) [17] Lower

Grade Glioma (LGG) and Glioblastoma Multiforme (GBM)

Table 1: Classification results with different stain normalisa-

tion methods.

Reinhard [3] Macenko [4] StainGAN [9] STST [11] TESGAN

R 0.825 0.800 0.826 0.865 0.885
PR 0.825 0.791 0.876 0.918 0.939
F1 0.815 0.838 0.878 0.891 0.911

AUC 0.912 0.914 0.917 0.918 0.967

cohorts, which consist of 921 glioma patients, is used to de-

velop and test the model. All the TCGA WSIs have been

labelled as either IDH wildtype or mutant based on immuno-

histochemistry and/or genetic sequencing. We randomly split

the dataset into training, validation and test sets in a 80:10:10

ratio. We further partition each slide into 1024 × 1024-pixel

patches at 10× magnification and remove the patches that

have less than 50% tissue content. A more detailed descrip-

tion of the dataset and patch selection can be found in [14]. In

total, there are 17,686 patch images in the training set, 2,233

in the validation set and 2,310 in the test set, respectively.

To train our method, we need to specify the source do-

main and target domain. Here, we assume that slides from

the same tissue source site (TSS) are uniform in staining. We

thus group our dataset into various TSS groups and select the

one with the largest number of images as our target domain

and the rest as the source domain. Under this setting, we have

3,424 images in the target domain.

Both the stain normalisation model and ResNet50 clas-

sifier are trained for 30 epochs with the ADAM optimiser.

The ResNet50 classifier is initialised with the ImageNet pre-

trained model. The initial learning rate is 0.0002, which is

reduced by half if the loss of validation set does not decrease

for 5 epochs. We set λL1 as 0.25, λcontent as 0.75 and ωj as

0.2. The models are developed in PyTorch and trained using

NVIDIA Tesla P100 GPUs.

3.2. Experimental Results

Classification performance is tested using the same classi-

fier architecture trained with images normalised by differ-

ent methods and results are shown in Table 1. The results

are evaluated based on recall (R), precision (PR), F1-score

(F1) and AUC. TESGAN outperforms all the benchmarked

baselines. Moreover, sample stain normalised images of our

method and other stain normalisation approaches are shown

in Figs. 3b–3e. The quality of images produced by traditional

methods, such as Macenko [4] and Reinhard [3], depends on

the choice of reference images. Our method requires no ref-

erence images and produces images with colour pattern vi-

sually closer to the target domain. It can also be seen that

STST [11] and TESGAN outperform StainGAN [9], possi-

bly due to the fact that pix2pix-based methods use paired in-

puts whereas CycleGAN-based methods use unpaired inputs;
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Table 2: Classification results with different loss functions.

Non-normalised L1 Content Content+L1

R 0.720 0.816 0.857 0.885
PR 0.892 0.918 0.889 0.939
F1 0.797 0.857 0.792 0.911

AUC 0.908 0.918 0.878 0.967

therefore CycleGAN results degrade if the two domains differ

substantially. In addition, compared with STST [11] which

uses grayscale images as generator input, the normalised im-

ages produced by TESGAN demonstrate better contrast and

higher colour similarity with the target images, hence indicat-

ing the advantages of using the hematoxylin component.

We further evaluate the classification results of stain nor-

malised data using the TESGAN model with different loss

functions. From Table 2, it can be seen that using stain nor-

malisation is effective and all metrics are superior to non-

normalised data. Figs. 3g–3i show that L1 loss alone helps

preserve the colour pattern of target images and content loss

alone helps increase the contrast but the colour feature is not

fully preserved. By combining these two losses, the produced

images not only preserve the colour pattern of the target im-

age but also show clearer tissue morphology.

The current state-of-the-art in IDH classification [14] has

an AUC of 0.938, which focuses on GAN-based data augmen-

tation. In our experiments, we used the same dataset as [14]

with the same patch samples and achieved an improved AUC

of 0.967 without excessive data augmentation. This further

demonstrates the advantage of our method and importance of

texture features for histopathology image analysis.

4. CONCLUSIONS

In this paper, we propose an unsupervised stain normalisation

model based on the pix2pix framework. The proposed TES-

GAN model takes the hematoxylin component of the image

as the paired input and repaints it to match the stain style in

the target domain. Our evaluation results show that our model

produces higher quality images that have high colour similar-

ity with the target domain. Our method is applied to IDH mu-

tation status classification and shows improved performance

over the prior art.
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