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ABSTRACT
Recent advances in digital imaging have fuelled interest in
using multiplex immunofluorescence (mIF) images to study
multiple biomarkers and their interactions within a single tis-
sue of the tumour microenvironment. However, the mIF data
remain less accessible due to the need for specialised equip-
ment and costly reagents, which increases the technical com-
plexity, expense and time required. Additionally, issues like
misalignment and artefacts can result in unusable or incom-
plete data, highlighting the need for effective stain imputa-
tion methods. The current state-of-the-art (SOTA) stain impu-
tation method relies on supervised generative deep-learning
models with a fixed panel of biomarkers, which often fail
when some of the required biomarkers are absent. To address
this limitation, we propose a novel stain imputation method
for mIF (SIMIF), which integrates the Wasserstein Genera-
tive Adversarial Network (GAN) with a random channel-wise
masking (RCWM) training strategy. This method effectively
enhances robustness in handling various input biomarkers,
leading to a more stable optimisation process and improved
synthetic image quality. Evaluated on a dataset of 33,265
image patches extracted from 36 mIF whole-slide images,
SIMIF demonstrates clear superiority over the current SOTA,
achieving marked improvements in imputation performance
for both CD8 and PD-L1 biomarkers.

Index Terms— multiplex/multispectral immunofluores-
cence image, generative AI, stain imputation, WGAN

1. INTRODUCTION

Multiplex immunofluorescence (mIF) imaging has emerged
as a powerful tool for visualising and analysing the interac-

Fig. 1: The proposed SIMIF Method, integrating a generative
adversarial network (GAN) model with a random channel-
wise masking (RCWM) strategy for model training.

tions of various biomarkers within the tumour microenviron-
ment at the cellular level. These images provide rich, multi-
dimensional data that simultaneously capture the expression
patterns of multiple biomarkers, offering critical insights into
complex biological processes such as immune responses in
cancer. However, despite their utility, mIF imaging is less
accessible due to the need for specialised equipment and the
extensive number of biomarkers required for comprehensive
analysis. To address this limitation, stain imputation has be-
come a crucial area of research, employing computational
models to impute new or missing biomarkers from available
biomarkers in mIF images. This approach maximises the util-
ity of available tissue samples while minimising the need for
repeated staining and the use of costly reagents.

Recent advances in medical image generation have pri-
marily focused on radiology [1, 2], while studies in stain
imputation in histopathology images, such as immunohisto-
chemistry or mIF images, are limited. Recently, Shaban et
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al. [3] introduced the MAXIM model specifically for mIF
images, using a conditional Generative Adversarial Network
(cGAN) [4] to generate the KI67 biomarker from other stains.
While effective for stain imputation, MAXIM only supports
a fixed panel of biomarkers, i.e., specific inputs for specific
output. This approach sacrifices flexibility and is impractical,
as it requires separate models for different combinations of
input and output biomarkers.

The need for a robust and flexible method for stain im-
putation in mIF images remains unmet. To address this,
our study introduces a framework, Stain Imputation in mIF
images (SIMIF), that uses a Conditional Wasserstein GAN-
gradient penalty (cWGAN-GP) [5] and incorporates a random
channel-wise masking (RCWM) strategy for model training,
as illustrated in Fig.1. This allows the model to learn the joint
distribution of various combinations of input biomarkers, fa-
cilitating the imputation of varying input biomarkers. Specif-
ically, the two components in SIMIF address the restricted
applicability of previous work [3] by enhancing stability in
the training process, and flexibility during inference.

We have a dataset of mIF whole-slide images (WSIs)
with 6 markers/channels and an autofluorescence (AF) chan-
nel. Given the clinical significance of CD8 and PD-L1 in
predicting patients’ response to immunotherapy, we show the
effectiveness of SIMIF in imputing these biomarkers from
combinations of other available biomarkers. The results show
SIMIF offers greater flexibility in handling input biomark-
ers and superior image quality, compared to the baseline
MAXIM, particularly when fewer biomarkers are available.

2. MATERIALS AND METHODS

2.1. Dataset

Our dataset consists of 36 mIF WSIs obtained from the
Melanoma Institute Australia [6, 7], each acquired from a
melanoma patient at an advanced stage. The images are pre-
sented with 7 channels corresponding to 6 biomarkers (CD68,
SOX10, CD16, CD8, PD-L1, DAPI) and an additional aut-
ofluorescence (AF) channel, and have a resolution exceeding
20, 000× 10, 000 pixels, scanned at 0.5 µm/pixel.

Among these biomarkers, CD8 and PD-L1 are more di-
rectly linked to immune regulation and cancer therapy, mak-
ing them critical for predicting a patient’s immune response
in the context of immunotherapy [8]. However, detecting
CD8 and PD-L1 biomarkers poses technical challenges due
to their uneven distribution and low expression levels, neces-
sitating the use of high-resolution, advanced imaging systems
for accurate detection and quantification [9]. By using other
biomarkers to generate CD8 and PD-L1, the need for com-
plex staining procedures may be alleviated. Accordingly, this
study aims to apply SIMIF in imputing PD-L1 and CD8.

2.2. Pre-processing

The images are normalised to ensure consistent intensity lev-
els. To eliminate large background areas, masks are generated
using adaptive threshold with Otsu’s method [10]. To address
the challenge posed by low expression levels of PD-L1 and
CD8 biomarkers and minimise empty patches, we combine
the PD-L1 and CD8 masks for tissue segmentation.

The segmented tissue regions are divided into 224 × 224
pixel patches, ensuring a cleaner dataset for model training.
To maintain consistency, we extracted 900 to 2,500 patches
from each WSI, depending on the number produced by each.
To improve training efficiency, we applied a 50% sampling
rate, resulting in a final dataset of 33,265 patches.

2.3. Conditional WGAN-GP

A Generative Adversarial Network (GAN) learns the distri-
bution of training data through the joint optimisation of two
networks: the Generator, which aims to create realistic data,
and the Discriminator, which attempts to distinguish between
real and generated data. The two networks are trained alter-
nately, focusing on maximising the probability of classifying
real images as real and generated samples as synthetic/fake.
However, training GAN can be challenging and is prone to
several common failure modes, such as vanishing gradients,
mode collapse, and unstable training [11].

To address these problems, Wasserstein GAN (WGAN)
[12] was proposed which uses a new loss function based
on Wasserstein distance instead of the Jensen-Shanon Di-
vergence which is the standard objective function of GAN.
This new loss function provides smoother and more infor-
mative gradients, addressing mode collapse and vanishing
gradient problems. However, the computation of Wasser-
stein distance requires a k-Lipschitz constraint, which is a
strict constraint. WGAN-GP [5], a variant of WGAN, em-
ploys gradient-penalty to enforce the Lipschitz constraint,
resulting in more stable training and enhancing the quality
of the generated synthetic images, producing more realistic
outputs [13, 11]. The cWGAN-GP further integrates a con-
ditioning mechanism that enables the model to generate data
with greater control and precision, ensuring that the outputs
correspond to specific categories or attributes [4].

The SIMIF model leverages cWGAN-GP and utilises the
input biomarkers as conditional information to guide the gen-
eration of target biomarkers. The objective function (discrim-
inator loss LD) for our model is shown as follows:

min
G

max
D

V (D,G) =Ex∼Pr(x)[D(x|c)]− Ex̂∼Pg(x̂)[D(x̂|c)]

+ λEx̃∼Px̃

[
(∥∇x̃D(x̃|c)∥2 − 1)2

]
(1)

where x ∼ Pr(x) represents real samples, while x̂ ∼ Pg(x̂)
refers to generated samples. D(x|c) and D(x̂|c) are the dis-
criminator’s scores for real and generated data conditioned on
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c. The discriminator maximises the score difference between
real and generated images, while the generator minimises it,
making generated data indistinguishable by minimising the
loss LG = −Ex̂∼Pg(x̂)[D(x̂|c)]. The parameter λ regulates
the gradient penalty for improved training stability.

We employed U-Net [14] as the generator, since its
encoder-decoder architecture with skip connections captures
multi-scale spatial features, preserving both high-level con-
text and low-level details, critical for accurate stain imputa-
tion. The discriminator is a convolutional neural network,
following the Pix2Pix design [15].

2.4. Random Channel-Wise Masking (RCWM)

To enable the model to impute target biomarker images with
flexible input biomarkers, we propose an RCWM strategy.
This approach allows the model to effectively learn the joint
distribution of multiple input biomarkers and impute target
stains, even when minimal biomarkers are available (e.g.,
DAPI and AF). Given the importance of CD8 and PD-L1,
they are used as target biomarkers for imputation. DAPI and
AF serve as basic input biomarkers, while we experiment with
including other biomarkers in various input combinations.

The model is initially trained using all the available input
biomarker images. This initial training ensures that the model
can accurately impute the target biomarkers in the presence
of all available input biomarkers, and learn a complete view
of their relationships. Following that, random masking is ap-
plied to the input biomarkers based on an empirically prede-
fined probability of masking one or more biomarkers out dur-
ing training. Specifically, we initially set the probabilities for
randomly masking 0, 1, 2, and 3 channels to 70%, 20%, 10%,
and 0%, respectively. That means, for the CD68, SOX10 and
CD16 biomarkers, at each epoch, the probability of no mask-
ing (p0) is 70%, while the probability of masking one channel
(p1) is 10%, and so on. These probabilities are updated every
20 epochs during training to encourage the model to adapt
to varying input biomarkers and reduce dependency on any
specific biomarkers. The updates follow these steps: 1) p0
is decreased by 10%, while p1 and p2 are each increased by
5% every 20 epochs until p0 reaches its target; 2) p1 is then
reduced by 10%, while p2 and p3 are increased by 5% until
p1 reaches its target; and 3) p2 and p3 are finally adjusted in a
similar manner. The final target probabilities in this study are
set to 0%, 20%, 30%, and 50%.

Notably, the initial probability settings help the model
progressively adapt to missing input biomarkers, mitigating
early training challenges. In contrast, the target settings
ensure the model comprehensively understands different
biomarker combinations, preventing bias toward data with
fewer input biomarkers. Additionally, these values may re-
quire further hyperparameter tuning to optimise performance.

2.5. Implementation

To prevent data leakage, we split the dataset at the patient
level while ensuring that WSIs with varying numbers of
patches are evenly distributed across the dataset. Specifically,
we use stratified splitting to assign 20% of the data as a test
set (7 patients), 20% as a validation set (8 patients), and 60%
as a training set (21 patients). The input sets for both CD8
and PD-L1 are identical, containing 5 input markers (CD68,
SOX10, CD16, DAPI, and AF).

All models are trained for 550 epochs with a learning rate
of 1×10−5 for the discriminator and 1×10−4 for the genera-
tor, using the Adam optimiser and a batch size of 16 on Tesla
V100 GPUs. The learning scheduler, optimiser, and initial
hyperparameters are fixed across all experiments.

3. EXPERIMENTAL RESULTS

We conducted the following evaluations. Firstly, we used all
available biomarkers to compare the proposed SIMIF with
MAXIM, the current SOTA method for mIF stain imputa-
tion. Secondly, we compared the two models when they were
trained on five biomarkers but used only DAPI and AF for
imputation during inference. Thirdly, to evaluate the signifi-
cance of RCWM, we compared SIMIF and MAXIM with and
without RCWM in an ablation study. The imputed biomarker
images are evaluated using the Pearson Correlation Coeffi-
cient (Corr), Structural Similarity Index Measure (SSIM), and
Mean Absolute Error (MAE). For qualitative evaluation, we
visualised the imputed CD8 and/or PD-L1 biomarker images
derived from different methods in Fig. 2 and Fig. 3.

Fig. 2: Visualisation of real and imputed images for CD8
(top row) and PD-L1 (bottom row) by different methods:
(a) ground truth; (b) SIMIF; (c) SIMIF (w/o RCWM); (d)
MAXIM; and (e) MAXIM (w/ RCWM).

Our experimental results (Table 1) demonstrate that
when generating target biomarker images using all five in-
put biomarkers, SIMIF achieved comparable performance
to the MAXIM method, with a SSIM score of 0.687 and a
Corr value of 0.752 for CD8, and 0.613 and 0.754 for PD-L1.
However, when using only DAPI and AF as input, SIMIF sub-
stantially outperformed MAXIM, with an increase of 0.282
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Table 1: Performance comparison across different input biomarker combinations

Study Input Biomarkers Imputed CD8 Imputed PD-L1
DAPI AF CD16 CD68 Sox10 SSIM↑ Corr↑ MAE↓ SSIM↑ Corr↑ MAE↓

MAXIM ✓ ✓ ✓ ✓ ✓ 0.701±0.008 0.750±0.005 7.06 0.594±0.005 0.732±0.005 17.29
SIMIF (Ours) ✓ ✓ ✓ ✓ ✓ 0.687±0.006 0.752±0.008 7.38 0.613±0.005 0.754±0.005 18.70

MAXIM ✓ ✓ × × × 0.317±0.008 0.063±0.004 13.22 0.04±0.003 -0.03±0.003 38.59
SIMIF ✓✓✓ ✓✓✓ × × × 0.599±0.007 0.160±0.007 10.73 0.522±0.005 0.563±0.007 18.64

MAXIM w/ RCWM ✓ ✓ × × × 0.489±0.007 0.130±0.006 13.12 0.493±0.005 0.536±0.008 19.18
SIMIF w/o RCWM ✓ ✓ × × × 0.323±0.009 0.029±0.002 12.22 0.057±0.003 0.072±0.006 37.93

Table 2: Performance comparison between MAXIM and SIMIF on stain imputation using three input biomarker images

Study Input Biomarkers Imputed CD8 Imputed PD-L1
DAPI AF CD16 CD68 Sox10 SSIM↑ Corr↑ MAE↓ SSIM↑ Corr↑ MAE↓

MAXIM ✓ ✓ ✓ × × 0.473±0.008 0.441 ±0.010 10.31 0.324±0.007 0.479±0.008 26.45
SIMIF ✓✓✓ ✓✓✓ ✓✓✓ × × 0.644±0.010 0.485±0.007 9.36 0.540±0.005 0.590±0.007 18.48

MAXIM ✓ ✓ × ✓ × 0.553±0.008 0.125±0.008 11.45 0.080±0.004 0.047±0.005 37.16
SIMIF ✓ ✓ × ✓ × 0.580±0.007 0.152±0.007 10.72 0.532±0.005 0.582±0.007 18.14

MAXIM ✓ ✓ × × ✓ 0.395±0.009 0.047±0.005 11.87 0.486±0.006 0.527±0.008 21.81
SIMIF ✓ ✓ × × ✓ 0.591±0.008 0.236±0.009 10.51 0.526±0.005 0.541±0.008 19.21

in SSIM and 0.097 in Corr for CD8, and 0.518 in SSIM and
0.569 in Corr for PD-L1. SIMIF remains robust with DAPI
and AF, whereas MAXIM struggled with the same inputs,
resulting in much lower SSIM scores (0.317 for CD8 and
0.040 for PD-L1) and Corr values (below 0.1). The imputed
biomarker images, as shown in Fig. 2(d), are predominantly
noisy or empty. Removing RCWM from SIMIF led to a
marked decline in the quality of imputed images. In contrast,
incorporating RCWM into MAXIM substantially improved
its performance, with SSIM scores increasing by 0.172 and
0.453 for CD8 and PD-L1, respectively. However, MAXIM
with RCWM still remained inferior to SIMIF.These findings
demonstrate that the RCWM strategy effectively enhances
the model’s performance and robustness when only a limited
number of biomarkers are available. SIMIF also relaxes the
constraints of fixed input and output biomarkers without re-
quiring training separate models, addressing a key limitation
of current SOTA methods.

When comparing the imputation performance of PD-L1
and CD8, CD8 generally achieves a lower Corr value(below
0.2). All models struggled to generate accurate CD8 biomarker
images by using only DAPI and AF (Fig. 2 top row). This
difficulty arises as CD8 is located on the cell membrane [16],
while DAPI stains the nucleus [17], with no direct relation-
ship between them. Additionally, AF often provides weak
and noisy information, further complicating the task (Fig. 3
top row). To address this issue, we introduce an additional
biomarker image to help the model impute CD8. We found
that adding CD16 significantly improves our model’s per-
formance, resulting in a 0.325 increase in Corr, as shown in
Table 2 and Fig. 3 bottom row. However, adding an additional
biomarker only results in marginal improvement for PD-L1,
as DAPI and AF likely capture most of the PD-L1 regions.

Fig. 3: Visualisation of DAPI, AF and CD16 (top row) and
comparison between real and imputed CD8 with and without
the additional CD16 biomarker image (bottom row).

4. CONCLUSION

This work introduces SIMIF, a method for stain imputation
in multiplexed immunofluorescence images. Compared to
the current state-of-the-art, SIMIF effectively handles vary-
ing input biomarkers while maintaining high imputation per-
formance. Tested on a dataset of 33,265 mIF image patches,
SIMIF demonstrates robust performance in producing high-
quality PD-L1 images using only DAPI and autofluorescence
images as input. We also underscore the importance of in-
cluding CD16 for accurate CD8 imputation. Future work will
focus on extending the model to impute additional biomarkers
and further enhance the quality of imputed images.
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