
Using a J2EE Cluster for Parallel Computation of
Join Queries in Distributed Databases

Yosi Ben-Asher, Shlomo Berkovsky, Ariel Tammam
Comp. Sci. Dep. Haifa University, Haifa, Israel

Edi Shmueli
I.B.M. Research Center, Haifa, Israel

Abstract— In here we consider the problem of parallel
execution of Join operation by a J2EE cluster. J2EE clusters
are intended for coarse-grain distributed processing of multiple
queries/business transactions over the Web. Thus, the possiblity
of using a J2EE cluster for fine-grain parallel computations
(parallel Joins in our case) is intriguing and of practical interest.
We have developed a new variant of the SFR algorithm for
parallel computation of Cartesian Product in Join operations and
proved its optimality in terms of communication/execution-time
tradeoffs via a simple lower bound. Our experimental results
show that despite the fact that J2EE is considered to be a
platform that uses a complex interfaces and software entities,
such as various types of Java beans, J2EE clusters can be
efficiently used to execute Join operation in parallel.

Keywords: Parallel Algorithms, Cluster Computing, J2EE,
Distributed Databases

I. INTRODUCTION

Server-side Java technologies have grown up dramatically
over the past years. Various Java-based Web application
servers have emerged as a convenient mean for numerous
financial, E-Commerce and business applications. Commercial
products supporting these technologies are developed by IBM
(WebSphere [1]), BEA (WebLogic [2] [3]), SUN (Sun One
[4]), Oracle (Oracle application server [5]) and other.

These products support high level programming architecture
called J2EE (Java2 Enterprise Edition) developed by SUN.
J2EE [6] simplifies enterprise applications development and
maintenance by basing them on standardized, modular com-
ponents, by providing a complete set of services to those com-
ponents, and by handling many details of application behavior
automatically, without complex programming. In particular,
J2EE is designed to support distributed Web applications
allowing a set of multiple clients to perform concurrent queries
to a remote database over the Web.

In this work we show that the J2EE architecture can be
used not only to easily implement a concurrent set of queries
but also to improve parallel processing of a single query.
In particular we show that the parallel computation of Join
[7] query (one of heaviest types of queries) can obtain high
speedups over a J2EE architecture. We remark that due to the
complexity of J2EE (supports many high-level features and
standards) it is not clear in advance that J2EE can be also
used to efficiently parallelize processing of queries.

The implemented algorithm has some novel concepts in
respect to previous works on parallel algorithms for executing
Join operation (pipeline of messages, binary filtering trees
and random distribution of new rows). The optimality of this

algorithm is proved via a simple lower bound. Thus, beside
the proof of concept for parallel Joins over J2EE clusters, this
work also contributes to the theoretical knowledge regarding
the parallel algorithms for the Join operation.

A J2EE application can be viewed as a collection of
independent components (Java Beans [8]), communicating
each other using various types of messages. Each bean can
be accessed remotely over the Web by any other component
that has a “handle” to that bean. There are several types of
beans (figure 1), each implementing a different functionality
in the J2EE application. The application can be viewed as a
distributed multi-tiered structure. We will shortly describe the
principal tiers:

� Client-tier: contains the application clients, initiating
queries using applets or HTML pages, through the Web
browser of the client’s machine.

� Web-tier: contains Servlets [8] or JSP pages [8] that
receive the clients requests (as HTTP or XML), parse
them and activate the appropriate methods of the Business
tier components. Later, the components of the Web tier
also deliver the result of the client’s query back to the
client. The Web tier components are activated by the Web
server on the machine that hosts the J2EE components
(figure 1).

� Business-tier: contains the implementation of the logic of
the query. It is based on a distributed asset of components
that can communicate each other via messages and Mes-
sage Driven Beans (MDB [8]), or directly by activating
remote methods. These components are managed and
executed by special servers called Application servers.

� Database-tier: contains components that can access to
the set of databases which act as a persistent storage of
the application data. The components (Entity Beans [8])
allow the J2EE application to perform database queries
via a set of DB servers (figure 1).

A J2EE application should serve a dynamic set of Web
clients obtaining reasonable response times. Consequently,
J2EE components (including the DB servers) can be par-
titioned between a set of machines constructing a given
cluster. Most of the modern Application Servers and the
DB servers support multi-transaction mode of execution [9].
Thus transactions updating the same data in the databases
are executed atomically. In addition, in case of an error in
one of the components, the set of databases is automatically
rolled back to a persistent state before the last transaction

Proceedings of the ISPDC/HeteroPar’04

0-7695-2210-6/04 $20.00 © 2004 IEEE

CL CL CL

msg
bean

msg
bean

msg
bean

pages
JSP

DB DB DB

� � �� � � �� � � �� �

� �� �

� � �	 	

� �� �

� � �� � � �� �

servletservlet

entity
bean bean

entity
bean
entity

bean

bean

bean

bean
enterprise enterprise

enterprise

enterprise

WebSphere)
(WebLogic,

Application
servers

WEB servers
(Tomcat,
Apache)

DB server
(MySQL)

CLUSTER

Fig. 1. The J2EE architecture.

started. Thus, it is possible to comprehend J2EE as a novel
convenient environment and programming methodology for
the implementation of distributed applications over a cluster.

It is a natural question if J2EE clusters can be used not only
to process multiple queries but also to speedup the execution
of a single query. This motivation is supported by the fact that
large J2EE clusters can be easily built using common PCs
and regular communication medias. Thus it is not unlikely to
foresee a growing use of large J2EE clusters in academia and
industry.

For such a large cluster, we may also require real parallel
processing of a single query. Basically, current servers do sup-
port concurrent execution of multiple queries over a cluster, but
fail to support parallel execution of a single query. To achieve
a parallelization, the query should be parsed, recompiled, and
be later executed in parallel over a number of computation
resources. We remark that parallel computations of this kind
are not supported yet neither by J2EE, nor by the leading
servers’ manufacturers.

II. THE PARALLEL JOIN ALGORITHMS

In here we describe the parallel Join algorithm used by
the proposed cluster and prove its optimality via a simple
lower bound. Join operation computes a Cartesian Product
of two database tables

�
and � returning only the tuples� � � � � � � � � � � � �

that satisfy a given condition. For instance,
if the tables

�
and � contain the lists of students in the

university, we would like to find a pairs of students, where� ! � � � � � � � � ! "
. We focus on

the parallel execution of the Cartesian Product part of Join
query, assuming that no preceding optimization stages such
as sorting or filtering can be operated to reduce the amount
of tuples that are generated by the product (see [10] for a
discussion about such possibilities).

Let # be the number of rows in each table (
� $ �) and % the

number of machines in the cluster. We assume that the two
tables

�
and � are partitioned between some & � % machines

in any arbitrary way. Thus, if all of the combinations are to

be created, then the best possible parallel computation time
is ' () . A naive solution will be to partition

�
between the %

machines and replicate � in each machine, in total % times.
In this way each machine will compute a different part of the
product (' () in each machine). This solution, though optimal in
the number of combination each machine computes, requires
minimal of # communication steps, as � will broadcast to
every machine. The problem we consider is to find a parallel
algorithm that minimizes both the communication and the
computation requirements. In J2EE clusters, due to the fact
that components communicate through Message Driven Beans,
the communication minimization is particularly important.

Now we will briefly review the related works. The original
Fragment and Replicate (FR) algorithm [11] for distributed
computation of Join operation is one of the earliest algorithms
using parallelization in a distributed systems. FR algorithm
fragments one of the tables between the % machines and
replicates the other table across the rest of the machines.
This results in a relatively high communication costs. The
Symmetric Fragment and Replicate (SFR) algorithm proposed
in [12] reduces the communication costs by fragmenting both
the tables to * % equal parts and replicating each fragment
across * % machines. This significantly decreases the amount
of data communicated, and does not change the amount
of computation in each machine. SFR [12] also proves the
communication minimality, however, it is proved under initial
assumptions which are not necessarily true.

A number of recent works refer to the issue of distributed
query processing optimizations on the Web. For instance, [13]
presents a distributed query processing using asynchronous
messaging. In this approach a query computation path is
shortened when a part of it is satisfied by a specific machine.
Another kind of computation is described in [14]. There the
query is sent to the sites, processed locally, and finally the
results are sent back for a recombination.

Many of the works in distributed processing of database
queries (see [15], [16] and [17]) address the issue of how
to optimally compute a complex query distributing the sub-
queries between the different machines of the cluster. For
distributed databases two-step optimization is generally used.
In the first stage, at the compile time, a plan, specifying the
Join order, methods and access path is executed. In the second
stage, just before the actual execution, the machines to perform
the operation are selected. In here we focus only on the issues
of parallel execution of the Cartesian Product part of the Join
operation.

As observed in previous works, there is a trade-off between
the communication and the efficiency of a parallel Join algo-
rithm, as the whole Cartesian Product can be computed in one
machine without any communication overhead.

We turn now to the proof of the optimality of the SFR
algorithm. Though we basically used the SFR algorithm, we
have to prove its optimality. The reason is that in [12] the
proof for optimality is based on the assumption that the sub-
part of the Cartesian Product that is executed by some machine
is “rectangular” (i.e., the number of columns in each row is

Proceedings of the ISPDC/HeteroPar’04

0-7695-2210-6/04 $20.00 © 2004 IEEE

p1

p1

p1

p1

p1 p4 p2

p3p4

p2

p2

p2

p2 p3

p3

p3

p3 p4

p4

p4

p4

p1p1

p1 p1

p3 p3

p3 p3

p4

p4

p4

p2p2

p2 p2 p1

p3

p2 p3 p2

p1p4 p3

p1p2

p4 p4

Possibly Better Alg.SFR Algorithm

B1

B2

B3

B4

B1 B1

B2

B3

B4

B2

B3

B4

A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4

 FR Algorithm

Fig. 2. Three possible partitions of a Cartesian Product computation on �
machines.

equal). Since we consider only two-way Join, in our case the
problem can be formulated as follows:

Definition 2.1: Let the Cartesian Product of two tables,
�

and � , each of size � , be represented by an � � � mesh
(

�
), where each unit represents a different combination of

rows in the product. We are interested to find a partition of�
to rectangles, such that each rectangle is colored by one

of � colors. The problem is to find an optimal partition that
minimizes both the overall circumference of each color and
the overall area of the rectangles of each color.

The intuition behind the above definition is that each
rectangle colored by � � represents a sub-part of the product
that will be computed by the machine � � in the cluster. The
circumference of this rectangle models the communication
needed to transmit the relevant part of

�
and � to the machine

� � .
Figure 2 depicts the differences between the FR, SFR and

another alternative solution. The FR algorithm (figure 2 left)
copies � to each machine, thus the communication overhead,
circumference of the rectangle allocated to � � , is � � . The
SFR algorithm (figure 2 middle) improves this factor and the
circumference of the rectangle allocated to � � is � . However,
theoretically other non-rectangular partitions are also possible
and we need to prove that any other partition, different from
that of the SFR, will increase the total circumference of each

� � . For example, the circumference in the partition of some
alternative algorithms (figure 2 right) is � � for any � � .

Theorem 2.1: The optimal partition of the structure definied
in 2.1 is obtained using the SFR algorithm by allocating a
square of �� � � �� � to each machine (assuming that � � is a
natural number).
Proof: Assume that there is a non-square partition 	 of the
mesh

�
such that each machine/color has a lower circumfer-

ence than in the SFR partition. Clearly, the total circumference
of 	 can only improve if we “glue” all the sub areas of each
color to one shape (true for any form of gluing). Thus after
gluing we have � shapes each with a smaller circumference
than
 � �� � . Since

�
is a mesh, the edges of each shape in

	 are straight lines (parallel to one of the axes of
�

). It is
now possible to improve the circumference of any shape of

final
1

2 3

Fig. 3. Smoothing a convex corner by peeling.

	 by “smoothing” corners. This process, depicted in figure 3,
evolves by selecting a “convex” corner, “peeling” a prominent
sub-part of this corner and filling it in another “concave” cor-
ner of the shape. Clearly, after the peeling, the circumference
of each shape gets smaller. This process is repeated until each
shape has no more concave corners. Finally, a shape whose
edges are straight lines, with no concave corners and minimal
circumference, must be a square. This contradicts the fact that

	 has a smaller circumference than the squares of the SFR
algorithm.

This proof can be easily extended to a higher dimensions
and be applied to an � -way Join. Note, that using the SFR
algorithm implies that each table will be partitioned to �� �
parts. Thus, out of the � machines of the cluster, we will use
only � � databases, letting each of these � � machines hold
one fragment of each table. We remark that the duplication
of each fragment to � � machines can be done in a pipeline
manner. Thus, a fragment containing �� � rows of a table, can
be duplicated to � � machines in � � � �� � steps, letting each
machine to resend the accepted data in a pipeline manner to
the next neighbor. In this respect working in a pipeline mode
is reasonable when using a cluster, since at any given time
there will be at most � messages in the cluster. Assuming
that the communication network can support � messages the
communication should not be a bottleneck in such a cluster.
The main obstacle for obtaining speedups can only be the
result of significant overheads involved with the three types of
servers used in the cluster (Web servers, Application servers
and DB servers).

III. IMPLEMENTATION DETAILS

In here we describe the J2EE implementation of the SFR
algorithm. It is clearly not sufficient to implement only the
SFR algorithm, as the Join operation is always part of a
query whose overall execution could potentially dominate the
possible speedups of parallel Joins. Thus, the J2EE server
supports the execution of relatively simple queries. The queries
have the following syntax

 � �
 �

where

 �

and

 �

are regular JQL [18] commands (Java inter-
face to execute SQL),

�
is a regular Java function implement-

ing a condition on the tuples (e.g.,

 � 	 � �
 � 	 �
 � � �) and� � � � � � � � � � � � � � � � � � �

are user-defined methods handling
respectively Update, Deletion and Insertion operations.

Proceedings of the ISPDC/HeteroPar’04

0-7695-2210-6/04 $20.00 © 2004 IEEE

Basically the server performs the following sequence of
actions: (1) Computes a Cartesian Product of two tables

� � � ;
(2) restricts the resulting combinations only to those satisfying
the function

�
; (3) Filters the combinations in the product

which will result in updates/deletions of the same rows in
�

or � ; (4) Updates the � databases by modifying, deleting or
inserting rows to

�
or � .

Figure 4 depicts the proposed bean configuration of the
server where � � � and two tables

� � � � �
are partitioned

between two databases. The figure shows the beans that are
relevant for the query

� � � � � � � � � � �� 	 � � � � 	

The above query can be explained as “Choose a pair of rows
from table

�
and � satisfying the restricion F. Then update

the field
�

of the row from table
�

and the field
�

of the row
from table � with the sum and the product (respectively) of
their values prior to the query execution”.

Now we will describe the basic stages of query execution
in our system:

1) A client activates a servlet in one of the cluster’s
machines chosen at random (this distributes equally the
requests between the machines).

2) The servlet invokes in parallel four � � �

 �
beans,

associated with
� �� � � �� � � �
 � � �
 (figure 4), to extract

�

rows from the table. This operation is done in quanta of�
rows to cover the overhead related to the accesses to

database.
3) The � � �

 �

beans create entity beans to select
the appropriate rows from

� �� � � �� � � �
 � � �
 tables in the
database.

4) The collections of database rows, returned by the entity
beans, are packed in messages and sent to the suitable
“product bean” of the mesh.

5) Messages contain a fixed number (
�

) of rows. This
allows the pipeline mode of operation and covers the
overhead related to messages sending and receiving.

6) In the mesh each “product bean” (say,
� �� � � �
 � �

)
accumulates the incoming messages. During the accu-
mulation, each bean sends in a pipeline manner the
incoming messages to relevant its neighbors along the
column and the row, using Java Message Driven Beans
(not shown in figure 4).

7) In fact, initial filtering occurs already in a “product
bean”, as already at this stage it is possible to filter
updates, deletions and insertions to the same row.

8) The tuples, produced by the Cartesian Product
� �� �� �� � �

, are sent to a suitable filter bean using Message
Driven Beans.

9) The filter bean eliminates multiple updates, deletions and
insertions to the same rows of

� � � � �
and activates the

entity beans, responsible for updating the tables.
10) In each filter bean the filtering is done separately for

a relevant table. Thus, concurrent update, deletion and
insertion to the tables can be handled.

T a
0

T a
0 T

0
b /FX

filter

filterfilter

filter

T
0
b

T a
0

T
0
bT

0
b

T a
0

T
0
b

1
T a

T b
1

1
T a

T b
1

T a
0

T b
1

T
0
b

1
T a

T
0
b

T b
1

T a
0

1
T a

1
T a T b

1

T
0
b

T a
0 1

T a

update
select

next m

update
select

update update

/FX

/FX

/FX

select select

next −m next −m

next −m −

T a
1

Fig. 4. Bean confi guration for the � ’th column of the mesh.

11) New rows are inserted to one of the 	 � databases,
chosen at random. This increases the probability of
keeping the size of tables roughly equal after a number
of queries .

12) As well as the Select operation, the Update operation on
the database rows is also done in quanta of

�
rows.

Note, that pipeline mode of work is essential to get low exe-
cution times. For example, letting each process that computes
a sub-part of the Cartesian Product to select its data directly
from the suitable database will result in a sequential bottleneck
and will prevent us from getting the right execution times.
In addition, even though JMS supports broadcast, it is very
inefficient to use it, since broadcasting to/from one location
results in sequential execution times.

All the beans of the cluster are handled through one
container and are thus working in a multi-transaction mode.
No method can update some database table while a concurrent
invocation of this method accesses that table. As well, recall
that Insert/Delete/Update operations are executed in J2EE by
applying the Create()/Remove()/Set() methods of the corre-
sponding entity beans and the changes are rolled back in case
of failure. Thus, both the properties of query, atomicity and
failure resilience are achieved.

Allowing many clients to access the servlet simultaneously
yields possible concurrent activation of many queries. We
assume that the container will handle all these queries in multi-
transaction mode, so that they will not interfere each other.

IV. EXPERIMENTAL RESULTS

The above algorithm was implemented over a cluster of
� machines. The hardware configuration of the machines
was similar: PentiumIII-1800 CPU with 256MB of RAM
memory. BEA (Weblogic) [3] application server was used as
the underlying deployment infrastructure of the application.
One of the machines was chosen to act as an Admin server
which controlled the cluster, and the rest 7 machines were
used as slaves (“managed” in BEA terminology). The Admin
machine was also used to remove and add machines to the

Proceedings of the ISPDC/HeteroPar’04

0-7695-2210-6/04 $20.00 © 2004 IEEE

Fig. 5. Execution time over a cluster of � machines as a function of the table
size � .

cluster (i.e. to change the cluster size) and also to deploy the
application to the corresponding BEA application servers. The
Admin machine itself also ran a managed BEA instance, and
thus the full cluster size was composed of one Admin instance
and 9 managed instances spread on 8 different machines.

All the � databases holding different parts of each table
should have been distributed between the � machines, how-
ever, this was impossible, as BEA application server did not
allow to work with a distributed MySQL database. Technically,
MySQL server does not have a JDBC [8] driver supporting
distributed transactions (XA driver). Consequently, we were
forced to use different tables, located in a single database
to simulate the distribution of the databases and insert a
dimension of concurrency to the database operations. This
problem has clearly dominated the execution times. We actu-
ally believe that optimal speedups would have been obtained
if we could distribute the DB server. This is supported by the
observation that during the experiments the cartesian product
was completed long before the actual update to the DB has
completed.

The database contained two table of integers (each row
corresponds to one integer). The Join operation was used to
implement the following queries:

� Qdouble: doubles the range of numbers in the table.
� Qprime: marks each number as prime / non-prime by

checking if it is can be represented as a product of two
other numbers in the database.

� Qsum: checks whether each number can be represented
as a sum of two prime numbers.

A transaction began when submitting a query on the Web
page and ended when all data was written down back to the
database. To measure the transaction time, log4j [19] package
was used. It recorded the timestamps of different phases of
the computation from submitting the query to the completion
of all writes.

Two main parameters were modified during the experi-

Fig. 6. Execution time of � � � Cartesian Product as a function of the cluster
size � .

ments: cluster size (�) and tables size (� �

�
�

� � � � � �
� �).

We ran multiple tests and measured the execution time on
different table and cluster size. We started with a cluster of
size � and gradually increased its size to � machines. When the
cluster contained a single machine, all the beans were deployed
to the same machine. To enlarge the cluster to � machines,
we activated another managed BEA instance and relocated
approximately half of the beans to the recently connected
machine and so forth. When enlarging the cluster, we always
tried to deploy the application with equal as possible number
of beans on every participating machine. By doing this, we
attempted to equally distribute the computation operations
between the cluster machines .

Figure 5 summarizes the results of this set of experiments.
Note, that the best speedup, as expected, is achieved when
the cluster contains all � machines. The time of

�
� � �

�
� �

product computation with � machine was � �
�

� �
�

sec, while
with � machines it took only � �

�
� � � sec. The total speedup

in this case was over �
�

� . This is a very good result, taking
into account sequential access to the database and commu-
nication overheads. As the table size increases, the speedup
improves due to the fact that the relative part of the database
accesses, compared to the whole transaction computation time,
decreases. Note that there is no point in using well-known
benchmarks (e.g., TPC-H) as these do not include extensive
Cartesian Products.

The results in figure 6 demonstrates the effect of changing
the number of machines in the cluster for various values of � .
Note, that the improvement in the speedup is not linear as the
number of machine increases. We believe that this is also the
result of the sequential bottleneck in the database accesses.

V. CONCLUSIONS

In here we considered the problem of parallel computation
of Cartesian Product in Join query, executed over a cluster,
based on J2EE technology. The SFR parallel algorithm, imple-
mented in our experiments, showed that despite the considered

Proceedings of the ISPDC/HeteroPar’04

0-7695-2210-6/04 $20.00 © 2004 IEEE

complexity of J2EE, it still can be used in fine-grain parallel
computations. To reach satisfactory experimental results in
the current implementation, the following enhancements were
used:

� Usage of message pipelining as a crucial technique to
reduce communication delays and overlap database ac-
cesses with computations.

� Reduction of memory size usually needed by J2EE to
compute large-size products. This was achieved by re-
placing the use of entity beans with direct access to the
database using JDBC.

� Usage of probabilistic load balancing scheme enabling
us to ensure that the number of rows in each sub-table�

�
� � �

� � � � � � �

roughly remains equal.
� Usage of multi-transaction mode of execution to preserve

both the database consistency and recoverability (despite
the concurrent execution of multiple queries through the
Web).

� Optimization of message sending. J2EE overall commu-
nication performance is known to be quite low, so that
messages containing

� �
� rows of the DB tables where

used to hide the overhead associated with messages in
J2EE.

We believe that optimal speedup could have been obtained
if the underlying application server could support transactions
over a distributed set of databases. Also, faster execution times
could have been obtained had this algorithm been implemented
at a lower level (e.g., as a part of MySQL).

We found that J2EE significantly shortens software devel-
opment times, as it provides a wide variety of packages and
implemented components. However, it increases the execution
time due to the associated overhead of using the beans and
internal scheduling. Thus, there is no point in comparing the
execution time of the proposed J2EE cluster with a naive
sequential implementation, working directly over the database.
The proposed system can be useful in the context of J2EE
applications, where J2EE is used due to its ability to quickly
build distributed Web applications over databases. Clearly,
faster execution times can be obtained had this algorithm been
implemented at a lower level (e.g., as a part of MySQL).

REFERENCES

[1] IBM, WebSphere. http://www.ibm.com/software/info1/websphere.
[2] D. Jacobs, “Distributed computing with bea weblogic server,” in In

Proc. Conference on Innovative Data Systems Research, Asilomar, CA,,
2003. [Online]. Available: citeseer.nj.nec.com/jacobs03distributed.html

[3] BEA, WebLogic. http://www.bea.com/products/weblogic/server.
[4] Sun Microsystems, SUNTM Open Net Environmen.

http://www.sun.com/sunone.
[5] Oracle Application Server. http://www.oracle.com/appserver.
[6] Java2 Platform, Enterprise Edition. http://java.sun.com/j2ee.
[7] C. T. Yu and W. Meng, Principles of database query processing for

advanced applications. Morgan Kaufmann Publishers Inc., 1998.
[8] J2EE 1.4 Tutorial. http://java.sun.com/j2ee/1.4/docs/tutorial/doc.
[9] H. Garcia-Molina, D. Gawlick, J. Klein, K. Kleissner, and

K. Salem, “Coordinating multi-transaction activities,” Princeton, NJ,
Tech. Rep., Feb 1990. [Online]. Available: citeseer.nj.nec.com/garcia-
molina90coordinating.html

[10] B. Vance and D. Maier, “Rapid bushy join-order optimization with carte-
sian products,” in Proceedings of the 1996 ACM SIGMOD international
conference on Management of data. ACM Press, 1996, pp. 35–46.

[11] R. Epstein, M. Stonebraker, and E. Wong, “Distributed query processing
in a relational data base system,” in Proceedings of the 1978 ACM
SIGMOD international conference on management of data. ACM Press,
1978, pp. 169–180.

[12] J. W. Stamos and H. C. Young, “A symmetric fragment and replicate
algorithm for distributed joins,” IEEE Transactions on Paralle and
Distributed Systems, vol. 4, no. 12, pp. 1345–1354, 1993.

[13] S. Abiteboul and V. Vianu, “Regular path queries with constraints,” in
Proceedings of the sixteenth ACM SIGACT-SIGMOD-SIGART sympo-
sium on Principles of database systems. ACM Press, 1997, pp. 122–
133.

[14] D. Suciu, “Distributed query evaluation on semistructured data,”
Database Systems Journal, vol. 27, no. 1, pp. 1–62, 2002. [Online].
Available: citeseer.nj.nec.com/suciu97distributed.html

[15] G. Graefe, “Encapsulation of parallelism in the volcano query processing
system,” in Proceedings of the 1990 ACM SIGMOD international
conference on Management of data. ACM Press, 1990, pp. 102–111.

[16] J. Srivastava and G. Elsesser, “Optimizing multi-join queries in parallel
relational databases,” in PDIS, 1993, pp. 84–92. [Online]. Available:
citeseer.nj.nec.com/srivastava93optimizing.html

[17] J. Smith, A. Gounaris, P. Watson, N. W. Paton, A. Fernandes, and
R. Sakellariou, Distributed Query Processing on the Grid, 2003,
vol. 17, no. 4. [Online]. Available: citeseer.nj.nec.com/569959.html

[18] JQL Query Language. http://www.jbase.com.
[19] Log4j project. http://logging.apache.org/log4j/docs.

Proceedings of the ISPDC/HeteroPar’04

0-7695-2210-6/04 $20.00 © 2004 IEEE

