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ABSTRACT 
In the human-machine collaboration context, understanding the 
reason behind each human decision is critical for interpreting 
the performance of the human-machine team. Via an 
experimental study of a system with varied levels of accuracy, 
we describe how human trust interplays with system 
performance, human perception and decisions. It is revealed that 
humans are able to perceive the performance of automatic 
systems and themselves, and adjust their trust levels according 
to the accuracy of systems. The 70% system accuracy suggests to 
be a threshold between increasing and decreasing human trust 
and system usage. We have also shown that trust can be derived 
from a series of users’ decisions rather than from a single one, 
and relates to the perceptions of users. A general framework 
depicting how trust and perception affect human decision 
making is proposed, which can be used as future guidelines for 
human-machine collaboration design. 

CCS CONCEPTS 
• Human-centered computing → User studies • Human-centered 
computing → User interface design 

KEYWORDS 
Trust, perception, Decision making, Dynamic process, Machine 
performance 

1 Introduction 
Trust has been considered a critical factor affecting the decision, 
performance, experience and overall capability of humans when 
they interact with machines. According to Lee and Moray [1], 
the predictability of a system plays a fundamental role in a 
human’s trust formation. However, due to the sophisticated 
technologies and increased levels of automation provided by 
machines today, humans are no longer able to know every 
technical detail or working mechanism of their machine 
teammate, and hence determining the system performance based 
on full system understanding becomes increasingly difficult. As a 
consequence, in many situations humans actually base their trust 
on limited perceptions of the machine partner, and make 
decisions accordingly [2].  

Perception can be considered as the processed outcome of 
different sensory information, which is critical for human 
decision making. However, due to various reasons, the human 
mind is not always able to perceive the status and performance 
of a system accurately: a perception bias may occur which may 
ultimately compromise the quality of human decision making 
[3]. One of the most well-known forms of perception bias is the 
attribution bias as examined by Woods et al., in which people 
tend to neglect their own faults but attribute them to others, 
especially machines [4]. This has led to some typical 
collaboration issues in a human-machine team, such as 
algorithm aversion [5], when humans are much less tolerant to 
mistakes made by machines than by themselves. However, very 
little is known about the cause of the perception bias, or the 
methods to accurately quantify and mitigate it. 

The limited, sometimes incorrect perception of the machine 
performance can lead to improper trust in the machine. The 
study of Lee and Moray [6] suggested that in many human-
machine teams, for example, in the scenario of supervising an 
automatic system, human is the final decision maker, which 
grants them the right to reject suggestion of the system partner 
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or totally abandon the automation. In Muir’s works [7,8] it was 
explained that humans would override the machine if they had a 
higher confidence in themselves than their trust in the machine. 
However this is arguable as confidence is another subjective 
mental construct that can be even more difficult to measure, or 
to compare with trust. Actually so far there has been very 
limited knowledge of the quantitative relationship between 
perception, trust and decision. 

The primary aim of this paper is to investigate the three key 
elements of human-machine teamwork: trust, perception and 
deception. Specifically, via manipulating the performance of a 
simple decision support system, we seek answers to three 
questions with the findings as follows: 

(i) When do people trust a machine teammate, and what 
is the dynamics of trust? We have found that users’ 
trust, although initially different, approximates the 
system accuracy after a series of interactions. 
Furthermore, incremental trust is observed during the 
interactions with systems of over 70% accuracy, but 
decreased trust is observed for systems with lower 
accuracies. 

(ii) How do users perceive the performance of the 
automatic systems and themselves in the human-
machine collaboration context? Overall users are well 
able to perceive and estimate the system performance 
and discriminate their relative accuracies within 
limited trials. For the less accurate systems, users 
demonstrate a better estimation on their own 
performance than the system performance.  

(iii) What is the implication of perception on user’s trust, 
and further on decision making? Their mutual 
dependency is proposed as our understanding of 
decision making process, and we have also shown that 
trust can be inferred from a series of decisions rather 
than one or several single decisions. 

The rest of the paper is organized as follows: existing 
literatures related to the relationship between perception and 
decisions are introduced in the next section, followed by the 
description of our experimental design, procedure and 
introduction of the data we have collected in the methodology 
section. In the result section, our findings are illustrated, 
showing the patterns of users trust, perception and performance 
over time and their mutual relations. We explained our findings 
and discussed their implications for future human-system 
interaction design in the discussion section before concluding 
the paper. 

2 Related Work 
The concept of trust roots back to the relationship between 
humans, and reflects the subjective willingness to collaborate 
with others. In the human-machine joint team scenario, trust has 
been considered as an attitude that an agent will help to achieve 
an individual’s goal in a situation characterized by uncertainty 
and vulnerability as defined by Lee & Moray [6]. Existing 

research has revealed different findings regarding trust that is 
consistent with our intuitions: users tend to use machine that 
they trust but abandon those that they do not trust [9,10], 
different users have different trust propensity to the same 
machine [11,12] , system failures negatively affect trust but good 
performance of system helps to improve trust [13,14], and 
appropriate trust is beneficial to human-machine collaboration 
[8,9]. 

Basically, the work of Bernard [15] and Zuboff  [16] provides 
theoretical foundations for the composition of trust, which 
proposes that human-machine trust is built on four dimensions, 
including natural laws, performance, transparency and design 
purpose. Natural laws provide the context under which the 
trusting relationship is possible, and regulates the basic 
behaviors of humans and machines. For example, fuel or 
electricity are necessary power for a machine to function 
properly. Performance indicates whether a machine will behave 
as expected, and how well it is capable of conducting a task. 
Transparency refers to human’s understanding of the technical 
process that the machine partner is undergoing, or 
interpretations of the performance of the machine. The last 
dimension, design purpose, reflects the designer’s intention for 
the function of a machine. Most research on trust have been 
conducted on the performance and transparency dimensions, as 
they directly relate to the overall human-machine team 
performance [17–19]. 

System performance is often manipulated via the occurrence 
of failures, which have always been key issues in the research of 
trust dynamics and affect the way people make decisions. Lee & 
Moray have used a simulated pasteurization system to induce 
consecutive system failures [1], and proposed that trust in a 
machine is associated with overall human-machine joint 
performance, system’s fault and user’s prior trust. Moray et al. 
further revealed that reliability of automated fault diagnosis, 
mode of fault management (manual vs. automated), and fault 
dynamics strongly affect subjective trust in the system, and 
operator self-confidence [10]. Sauer et al. investigated the effects 
of automation failures in training on trust and found that 
automation bias (a tendency to follow the recommendation of 
the automation) is high when users are trained on a miss-prone 
automation, which may ultimately lead to more user errors [20]. 
O’Donnovan et al. also proposed to elicit trust from system 
recommendation errors [21]. Many more work investigating the 
implications of system failures on trust can be found in the 
review of Muir [7,8], although very few of them provide 
quantitative interpretations on the relationship between trust 
and system performance. Some recent research has shown the 
implications of system failures on the dynamics of trust in a 
quantitative way [22,23], which paved the way towards further 
refined human-machine trust examination. 

Along with the study of system failures and human trust, 
many attempts have been made in trust measurement, amongst 
which surveys and behavior-based methods are most popular 
[24]. The surveys are normally conducted before and after an 
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experiment, asking the participants to rate their subjective trust 
in a given system [25,26]. They are helpful in determining the 
cause of trust and the overall subjective attitude towards the 
system. However, the survey-based methods often fail to capture 
the dynamics of trust, as people may not trust a machine exactly 
at the same level all through a thirty-minute experiment. In 
comparison, behavior-based trust measurement methods are 
usually based on the decisions of users in several final trials as 
conducted by Lee & Moray [8]. If a human makes decisions 
consistent with the system’s suggestions, it is considered that the 
machine is trusted, otherwise it is not. Evaluating trust based on 
behaviors in this way may not be accurate, due to the fact that 
trust cannot be assumed to be binary, and there can be many 
intermediate levels between trust and distrust [27]. Furthermore, 
the mapping between decision consistent with a machine and 
trust in a machine is questionable: human may make decisions 
opposite to their actual trust, in the case that the cost of 
incorrect decision is low as revealed in the study of Sutherland et 
al. [28]. 

Perception is another factor that relates closely to trust and 
decision, and a perceptual-motor system in human mind is 
suggested that affects the cognition and subsequent behaviors 
[29]. It is also demonstrated that perceptions contribute to the 
history-based trust, and the former play an important mediating 
role between human and machine [14]. Further evidence can be 
found on user trust and reliance and perception of automated 
decision aids, where perceived reliability is often lower than 
actual system reliability, and false alarms significantly reduce 
user trust in the automation [30]. In contrast, Cosmides & Tooby 
argue that humans can be good intuitive statisticians that are 
capable of making reliable judgements under uncertainty [31].  

As a consequence, this work will revisit the question on how 
trust develops dynamically, and examine the capability of users 
to perceive differences in system performance. Due to the 
disadvantages of existing trust measurement methods, this 
examination also aims to identify new reliable means to measure 
trust. Furthermore, very few studies have disclosed the dynamics 
of trust, decision and perception, while in this study we aim to 
fill the gap. 

3 Methodology 
We consider the decision making process by human to be an 
essential part of human-machine interaction. To keep the 
potential of generalizing our investigation results to real-life 
systems, we adopted binary decision making tasks in our 
experiment, and postulate that any complex decision process can 
be decomposed into a series of atomic binary decisions. 
Furthermore, the simplified binary decision making protocol we 
implement is essentially similar to the micro-worlds discussed by 
Lee and See [32], which makes it convenient to map trust levels 
to decisions without the interference of other factors. 

3.1 Scenario 

This experiment simulated a quality control task in a drinking 
glass making factory. The users were asked to determine the 
condition of glasses, a binary choice between good or faulty. To 
make this decision, they only received the assessment from a 
simulated decision support system we call Automatic Quality 
Monitor (AQM), which alerted the user to potentially faulty 
glasses. However, the AQM did not always function properly 
and occasionally exhibited false positives (suggesting examining 
a good glass) and false negatives (suggesting passing a faulty 
glass). Hence, the trust the user placed into the AQM might 
fluctuate depending on the performance of the AQM, allowing 
us to explore the dynamics of trust. 

3.2 Tasks 
The experiment took place in a laboratory setting through a 
simple graphical user interface and was arranged in blocks of 
trials. Each individual trial started with the AQM providing its 
recommendation about a glass: a red warning light bulb was off 
for a good glass, or illuminated for a faulty glass (Figure 1), 
however the glass image on the top right of the interface was not 
shown. The user then needed to click a Pass button, if 
considered the glass was good, or to click Examine if considered 
the glass might be faulty. It is important to note that this 
decision is entirely up to the user who may comply with the 
AQM’s recommendation or override it. 

After the decisions were made, the users were shown the 
actual condition of the glass, providing them with direct 
feedback on whether their decision was correct, as illustrated in 
Figure 1, where the user correctly decided to examine a glass 
that proved to be faulty. 

 

Figure 1: Interface for the experiment: the user is asked 
to make the decision between Examine and Pass, 
estimate the accuracy of AQM and their own, and rate 
the trust level in each trial. Note that the elements in 
the interface are shown stepwise to the users in the 
experiment. 
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In order to increase motivation and attention we gamified the 
interaction by introducing a fictitious $100 reward for each 
correct decision (examining faulty glass, or passing good glass) 
and $100 fine for each incorrect decision. The total earnings 
were updated and displayed after each decision. The users were 
aware that these rewards are only to help them track their score, 
without any actual remuneration offered. 

After each trial the users were asked to input both the 
accuracy of the AQM and their own based on their subjective 
perceptions, using sliders ranging from 0% to 100% as shown in 
the bottom part of Figure 1. The users were informed that the 
accuracies refer to the ratio of correct decisions or AQM 
recommendations for all the prior trials within in a block. The 
users were also requested to indicate their level of trust in the 
AQM using a 7-point Likert scale ranging from 1: distrust, to 7: 
trust. In the instructions issued at the outset of the experiment 
we explained that a rating of 4 meant neutral, or no disposition 
in either direction. 

3.3 Block Assignment 

The trials were randomly presented, providing a time-based 
history of interaction with a given AQM, and allowing us to 
explore how trust builds up or degrades over time based on the 
AQM’s performance. The users interacted with a number of 
AQMs, for 30 trials with each AQM, and were told that a 
different AQM was used for each block; indeed, each AQM’s 
accuracy was manipulated by varying the average rate of false 
positives and false negatives for every ten trials. For example, for 
the 80% AQM, two random machine errors occur between the 
trial 1 and trial 10, between trial 11 and trial 20, and between 
trial 21 and trial 30 respectively. This arrangement is made to 
serve two purposes: firstly, the occurrences of system failures do 
not cluster together; secondly, we can have three check points, 
i.e. trials 10, 20 and 30, where we can conduct quick checks on 
how much the perceived system accuracy deviates from the 
actual system performance. The experiment session involves 
seven randomized blocks of 30 trials each, and one 100% AQM 
block of ten trials prior to the seven randomized blocks to serve 
training purpose as shown in Table 1. 

We admit that in most realistic scenarios, people rarely 
interact with systems with accuracies as low as 30% or 40%. 
However, for those systems dealing with uncertainty, for 
example, some prototype systems or instable systems, their 
performance are hardly predictable and may be low. The low 
performance can also be encountered when a normal system 
malfunctions in a given period of time, and hence people may 
need to deal with such systems from time to time, and that is the 
reason we intentionally involve low accuracy systems in the 
research. 

3.4 Participant 
Thirty participants including four females took part in this 45 
minute experiment as users of the AQMs. 23 of them were 
university students and the rest were IT professionals. No 
specific background or preparations were required to complete 
the experiment. Recruitment and participation were conducted 
in accordance with a University-approved ethics plan for this 
study. Snacks were offered for taking part in the experiment, and 
a gift voucher of $50 was offered in a draw after the experiment 
as a means of acknowledgement. 

3.5 Data Collection and Processing 
For each trial we collected: 

• AQM’s suggestion (light on or off); 

• User’s binary decision (pass or examine); 

• Actual glass condition (good or faulty); 

• Perceived system performance (0% to 100%); 

• Estimated self-performance (0% to 100%); 

• Subjective trust rating. 

• We derive the following variables for each trial: 

• Normalized subjective trust rating: For each user, all the inputs 
across all blocks are used to normalize the ratings in the [0, 1] 
range. More specifically, for all the trust ratings of a user, the 
normalized trust value Ti after trial i is calculated as 

     (1) 

where Tio is the originally provided trust rating of the user for a 
trial, Tmax and Tmin are the maximum and minimum trust ratings 
respectively given by the same user across all seven AQMs. 

• Reliance rate: the proportion of decisions consistent with the 
system suggestions over a set number of consecutive trials, in 
the [0, 1] range. 

4 Results 
The results shown below comprise the decision behaviors and 
subjective ratings of all the users. To demonstrate the dynamic 

min

max min

io
i

T TT
T T

-
=

-

AQM Accuracy False Neg. + False Pos. 
100% (Training) 0% 

90% 10% 
80% 20% 
70% 30% 
60% 40% 
50% 50% 
40% 60% 
30% 70% 

Table 1. AQM accuracies in the experiment with 
respective false positives and false negatives. 
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changes of trust, perception and decisions, the results will be 
presented along the 30 trial timeline wherever possible. 

4.1 Trust Dynamics 
The normalized trust of all the AQMs averaged across all the 
users is plotted in Figure 2. At the beginning, i.e. the trust rating 
after the first trial, the order of user’s trust in the AQMs is 
randomized for all the AQMs according to an ANOVA 
examination (F(6, 174)=1.28, p>0.05), indicating that the users do 
not differentiate their trust significantly after a single trial, due 
to limited experience with the systems. Although visually, trust 
in the 90% AQM is higher than the rest, a comparison with the 
80% AQM after the first trial does not show a significant 
difference (t= 1.54, p>0.05).  

As the users continue working with the AQMs, after trial 5 all 
the trust levels are well separated and align with the accuracies 
of the respective AQMs. Furthermore, it is found that from trial 5 
onwards, the users have demonstrated different trust for the 
AQM (using ANOVA with repeated measures for the trust levels 
of individual users after trial 5, F(6, 174)=20.88, p<0.05). The 
trend of trust level separation continues towards the end of the 
trials, however examined with a t-test between trial 25 and trial 

30, there are no more significant trust changes (t= 0.18, p>0.05), 
suggesting that trust levels have become stable. 

4.2 User Decision Affected by Trust 
The implications of users’ trust on their decisions are 
investigated via examining the responses of all the users at 
different trust levels. We calculate the reliance rate Rr of users as 
the proportion of consistent decisions with the system over a set 
number of consecutive trials: 

𝑅" =
$%

$%&$'
   (2) 

where Nc is the number of user decisions consistent with what 
the AQM light indicates, and Nd is the number of decisions made 
different from the suggestion of the AQM. As shown in Table 2, 
based on the trust score for individual trials, when the users 
highly trust the AQM systems where the trust levels are 6 and 7, 
they rely on the system for decisions and there is no significant 
reliance difference between the early and late sections. In 
contrast, at trust levels 1 to 4, significant trust difference 
between the sections have been identified via repeated measures 
ANOVA examination (F(5, 3)=19.9, p<0.05), indicating that if 

 

Figure 2: The mean trust of all users for all the AQMs. 

 

Figure 3: Trust affects the trend and variance of users’ 
reliance rate (Rr). The error bars in the plot represent 
standard deviations. 

 

Trust level Trial [1,5] Trial [6,10] Trial [11,15] Trial [16,20] Trial [21,25] Trial [26,30] 

7 0.973 0.951 0.972 0.99 0.985 0.983 
6 0.957 0.913 0.932 0.927 0.91 0.927 
5 0.912 0.896 0.866 0.824 0.819 0.827 
4 0.905 0.765 0.745 0.742 0.679 0.717 
3 0.817 0.682 0.669 0.613 0.713 0.523 
2 0.766 0.624 0.53 0.597 0.503 0.509 
1 0.797 0.6 0.527 0.535 0.508 0.465 

Table 2: Reliance rate (Rr) at different trust levels. The trust levels are the original ratings of the users. The 30-trial block 
is segmented into 6 sections, each composing 5 trials in each column. 
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users do not trust the system so much, they will decrease their 
usage of the systems. 

Examining the individual columns of Table 2, a steady trend 
can be observed that the reliance rate decreases with trust 
ratings. An ANOVA test shows the significant difference 
between trust levels in terms of reliance rate (F(6, 5)=53.8, 
p<0.05), which suggests that when users rate low trust, they rely 
less on the suggestions of the system. 

The relation between trust and reliance rate is further 
depicted in Figure 3. The error bars indicates the variance at 
each trust level, and the trust of all users is normalized to the 
[0,1] range. It should be noted that the data from all the users are 
plotted in this figure, however for individual users a similar 
trend is observed as well. The reliance rate demonstrates a clear 
rising trend with trust, suggesting that users rely more on 
systems when they trust them which is consistent with existing 
understanding. On the other hand, the decreasing variance of 
reliance rates reveals another interesting finding: at low trust 
levels, although the overall reliance rate are low, users 
demonstrate high variance in reliance rates. This suggests that 
users rely on the system in different ways, sometimes even if 
they do not trust the system, they may try decisions consistent 
with its recommendation. In comparison, as trust level increase, 
the rate of reliance also converge, implying that users tend to 
follow the system suggestions when they believe the system to 
be highly reliable. 

4.3 User Performance and Perception 
Performance refers to the proportion of correct decisions 
amongst all the decisions made on one AQM. We have asked 
users to estimate their performance based on their estimation on 
all prior trials. In the meanwhile via comparing the decisions of 
users with the outcome of glasses, we are able to calculate their 
actual performance. 

 

Figure 4 shows both the actual performance of the users and 
the perceived performance of their own. Interestingly, in the 
initial several trials users are not able to precisely estimate their 
performance, although it is easier compared with situations 
when more trials have been done. It should be noted that if a 
user is good at memorizing the previous trials, he/she should be 
able to increase the accuracy of performance estimation as 
she/he approaches the end of the 30 trials. An interesting finding 
from Figure 4 is that at the end of the trials, for the more 
accurate AQMs (90%, 80% and 70%), users’ estimated accuracies 
are significantly higher than their actual performance; however 
they are still capable of discriminating the order of these AQMs. 
Table 3 shows the difference between the perceived and realistic 
performance of users and whether it is statistically significant 
(using repeated measures ANOVA), from which we can see that 
for the less accurate AQMs, users estimated their performance 
better than when they were working with the more accurate 
AQMs. 

4.4  Perception of System Performance 
If the users estimate their own performance differently from 
their real performance, how about their perceptions on the 
AQMs? Figure 5 provides the answer and depicts the dynamics 
of AQM perceptions. The results suggest that the users are 
capable of perceiving the system performance with high 

 

Figure 4: Perceived vs actual subjective performance, 
where ‘A’ denotes actual performance and ‘P’ denotes 
perceived performance of the user. 

 

AQM  90% 80% 70% 60% 50% 40% 30% 

F 13.86 21.22 7.99 0.13 4.42 0.003 0.06 

p <0.01 <0.01 <0.01 0.73 0.04 0.95 0.80 

Table 3: Differences between actual and perceived user 
accuracies at trial 30 with repeated measures ANOVA: 
users are better capable of estimating their own 
performance when working with less accurate AQMs. 

 

Figure 5: User perceptions of the AQM accuracies. 

465



Do I Trust My Machine Teammate?  
An Investigation from Perception to Decision 

IUI 2019, March, 2019, Marina del Rey, California, USA 

 

 

accuracy. At the fifth trial, the perceived system accuracies for 
different AQMs already differ significantly based on repeated 
measures ANOVA (F(6, 174)=27.69, p<0.05). A paired t-test 
between trial 25 and trial 30 (t=0.46, p>0.05) indicates that 
towards the end of the 30 trials, there are no more significant 
perception changes for all AQMs, implying that the perceived 
system accuracies have stabilized. These findings imply that the 
users are able to adjust their perceptions and reach accurate 
estimations towards the end of the trials, especially for the most 
accurate AQMs (90%, 80% and 70%). For the other less accurate 
AQMs especially the 50%, 40% and 30% ones, perception bias of 
over 10% can be observed towards the end of the trials, but the 
order of accuracy is still correctly perceived. 

 

4.5  System Perception and User Decisions 
Due to the similarity between perceived system accuracy and 
users’ trust in the AQMs, we would like to see how the system 
perceptions affect user decisions. Table 4 illustrates all the user’s 
decisions at different levels of perceived AQM accuracy. It 
suggests that the higher a system’s performance is perceived, the 
more decisions consistent with the system are made. However, 
noting the reliance rate at the top of the table, even if the 
perceived system accuracy is extremely low, the user may still 
take a chance to follow the system’s suggestions now and then, 
although overall a decreasing trend is suggested when the 
perceived system accuracy is below 70%. 

For all the users, the relationship between their perceived 
AQM accuracies and the rate of reliance is illustrated in Figure 6. 
A linear regression is calculated to predict the reliance rate based 
on the perceived accuracy. A significant regression equation is 
found (F(1,99)=187.42, p<0.05) with an r2 of 0.654. The predicted 
trend of reliance rate Rr with perceived accuracy is 

Rr = 0.47 × Pa + 0.521     (3) 

where Pa is the perceived accuracy range from 0% to 100%. This 

finding implies that as the perceived accuracy increases, users 
rely more on the recommendations of the AQMs. It should be 
noted that for the majority of the cases the reliance rate is above 
the chance level of 0.5, even when the perceived accuracy of the 
systems is very low, which is consistent with our finding shown 
in Figure 3. Intuitively, the regression coefficient 0.47 indicates 
that the reliance increase is about two times slower than the 
system perception increase.  

5 Discussion 
The results of this study provide evidence on several important 
findings regarding perception, trust and human decision, and 
reveal their mutual relationship when users interact with 
machines as a collaborative team member. We have shown that 
users are capable of estimating the system accuracies reasonably 
well and gradually adapting their trust levels to the system 

System Accuracy 
Perception (%) Trial [1,5] Trial [6,10] Trial [11,15] Trial [16,20] Trial [21,25] Trial [26,30] 

0-10 0.729 0.658 0.536 0.603 0.524 0.453 
11-20 0.712 0.604 0.608 0.623 0.512 0.477 
21-30 0.815 0.591 0.483 0.603 0.521 0.544 
31-40 0.744 0.723 0.621 0.531 0.677 0.522 
41-50 0.944 0.734 0.673 0.701 0.586 0.560 
51-60 0.895 0.890 0.785 0.754 0.729 0.753 
61-70 0.861 0.768 0.867 0.771 0.750 0.773 
71-80 0.926 0.925 0.933 0.788 0.860 0.788 
81-90 0.959 0.938 0.911 0.953 0.898 0.940 
91-100 0.975 0.925 0.955 0.959 0.990 0.984 

Table 4: Reliance rate (Rr) at different system perception levels. The perception levels are segmented into 10 intervals 
respectively, e.g. 11-20 means the perception rating interval between 11 and 20. The 30-trial block is segmented into 6 
sections, each composing 5 trials in each column. 

 

Figure 6: Reliance rate (Rr) increases with perceived 
system accuracy for all users. The linear regression 
result is shown in red. 
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performance within 30 trials. The positive relationship between 
trust and user perception suggests the tight link between the two 
mental constructs. This finding implies that if a user perceives 
the performance of a system, their trust in the system will be 
affected accordingly; furthermore, the increased trust may result 
in more decisions consistent with the recommendation of a 
decision support system. 

Examining the way trust and system perception evolve, it is 
found that after five trials, both trust and user perception are 
well separated, indicating that the users are capable of 
discriminating the performances of the systems very quickly and 
trust them accordingly, although the accuracy of perception can 
be incrementally improved later as more interaction occur and 
more experience gained. After 25 trials, both the trust level and 
the perceived system performance reached a stable level, and we 
can infer that no significant change of them will happen if the 
user continue interacting with the systems. 

These findings reveal two important aspects of interactive 
system design, especially for the decision support systems like 
the AQM used in our experiment. Firstly, the users are capable of 
comparing system performances after a limited number of trials. 
In that sense, we can hypothesize that for a system to function 
properly, special attention should be paid when the user just 
starts to use it, as the outcome of these trials will significantly 
affect the future trend of user trust change. For a system as 
simple as the AQM, the first five trials are of prior importance to 
shape user’s trust. Secondly, as it takes longer for users to 
perceive the actual performance of the system, sufficient 
interaction should be allowed if the designer wants to know how 
people usually use the system. Approximately 25 iterations of 
interaction have occurred before the user’s trust and perception 
become stable, however we can imagine that if working with a 
more complicated system, more interaction time with repeated 
interactions will be required before reaching a reasonable 
understanding of users’ trust feeling about it. 

It can be observed in Table 2 and Figure 3 that even if at the 
same trust level, the users may not always make the same 
decisions. This finding has shed light to the way trust is 
measured using behaviors, while it can be misleading if the 
outcome of a single decision or several limited decisions are 
considered as indicators of trust even after a long period of 
interaction. In our view, behavior-based methods can be 
improved via using the reliance rate as shown in Figure 3, which 
increases with the increment of trust. Another optional choice 
for trust measurement is the variance of decisions, however this 
measurement may not be reliable enough alone especially when 
trust levels are low, and it is possible to combine the reliance 
rate and decision variance for better measurement of trust. 

Another interesting finding is that the users perceive the 
performances of the interaction system and themselves 
differently. Comparing Figure 4 with Figure 5, apparently users 
have better overall estimations on the system performance than 
themselves. Furthermore, when working with the three 
relatively high performance AQMs, the users have significantly 

overestimated their own performance but their perceptions on 
the system performance are reasonably good. When working 
with the low accuracy systems, users’ self-estimations do not 
differ much from their actual performance, but their estimations 
on the system performance are less accurate. Revisiting the 
question of whether humans are good intuitive statisticians, our 
result is consistent with Cosmides & Tooby [31] that humans are 
good at perceiving uncertainties and make judgement 
accordingly, however to be more accurate, it should be further 
addressed that the capability of human to perceive uncertainties 
is related to the object being estimated. 

Based on the dynamics of trust and user perception of the 
system, it can be observed that the 70% accuracy is the threshold 
between the increase and decrease of trust and system 
perception. We can also see that based on the self-estimation of 
performances, the users overestimated their performance when 
the system accuracy is no lower than 70%, suggesting that users’ 
self-confidence is higher when working with such systems. 
Existing research has shown that a user’s self-confidence 
generally enhances motivation [33] and relates to the tendency 
to make improvements when interaction with systems [34]. As a 
consequence, it can be inferred that 70% accuracy is a threshold 
that automatic system designers should consider, above which 
users are able to grow trust and achieve good system perceptions 
with better self-confidence. 

Although we endeavor to provide quantitative examinations 
for all the findings, there are three limitations that should be 
highlighted and discussed. Firstly, the AQM system we designed 
is a typical form of the simplest decision support systems, in 
which the recommendation accuracy is the only factor 
considered. The users demonstrated an overall reliance rate over 
50% for all the AQMs, which implies that for such systems with 
binary decisions, overall more than half of the decisions are 
made consistent with the system’s recommendation, although 
for the least trustworthy systems the final reliance rate dropped 
below 50% as shown in the last row of Table 2. However, many 
realistic systems are much more complicated, and the trust and 
perception of them can be much difficult to characterize in a 
quantitative way. As a consequence, it will be necessary to 
examine every single factor involved in other systems, e.g. 
system transparency, complexity and modality of interaction, 
before generalize the current findings to them. Secondly, the 
findings in this study is mainly correlational, which may limit 
the causal conclusions that can be drawn from this study. 
Finally, in the examinations we do not consider the implications 
of prior trials or the effect of consecutive positive or negative 
system performance, although this has been addressed in 
another study [23]. Combining the findings from both 
investigations will produce a full picture of how users perceive 
and trust a decision-support system. 

The present study, being quantitative, revealed a number of 
findings that should be considered in interaction system design 
and analytics. Furthermore, there are a few directions of interest 
to be examined in the coming research. Currently all the AQMs 
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are featured with a fixed accuracy, however for many realistic 
systems their performance may not be stable. We are interested 
in how users perceive, trust and interact with a system of 
dynamic performance, and in which way the dynamics of the 
system is able to affect the users’ attention and perception. 
Generalization is another issue to examine – whether our 
findings can be used to interpret the interaction patterns with 
other types of design support systems will be examined. 

6 Conclusion 
In this study, we investigated user trust, perception and 
decisions in the human-machine interaction context and 
revealed how they interplay with each other. Overall the results 
indicate that users are capable of perceiving the performance of 
themselves and systems, adjusting their trust and decision 
schemes accordingly. We also propose that trust can be 
measured via repeated user decisions instead of isolated ones, 
and can be inferred from the subjective perceptions of the 
machine performance. Finally, our examinations uncover that 
70% is the system accuracy threshold that determines whether 
users will trust and use the system with high self-confidence. So, 
back to the key question: “Do I trust my machine teammate?” 
The answer lies in how the machine is designed, perceived and 
interacted, and can be detected via the user decisions and 
perceptions as revealed in this study. 
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