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Abstract: Automatic severity assessment and progression prediction can facilitate admission, triage,
and referral of COVID-19 patients. This study aims to explore the potential use of lung lesion
features in the management of COVID-19, based on the assumption that lesion features may carry
important diagnostic and prognostic information for quantifying infection severity and forecasting
disease progression. A novel LesionEncoder framework is proposed to detect lesions in chest CT
scans and to encode lesion features for automatic severity assessment and progression prediction.
The LesionEncoder framework consists of a U-Net module for detecting lesions and extracting
features from individual CT slices, and a recurrent neural network (RNN) module for learning the
relationship between feature vectors and collectively classifying the sequence of feature vectors.
Chest CT scans of two cohorts of COVID-19 patients from two hospitals in China were used for
training and testing the proposed framework. When applied to assessing severity, this framework
outperformed baseline methods achieving a sensitivity of 0.818, specificity of 0.952, accuracy of 0.940,
and AUC of 0.903. It also outperformed the other tested methods in disease progression prediction
with a sensitivity of 0.667, specificity of 0.838, accuracy of 0.829, and AUC of 0.736. The LesionEncoder
framework demonstrates a strong potential for clinical application in current COVID-19 management,
particularly in automatic severity assessment of COVID-19 patients. This framework also has a
potential for other lesion-focused medical image analyses.

Keywords: chest CT; COVID-19; severity assessment; progression prediction; U-Net; RNN

1. Introduction

The rapid escalation in the number of COVID-19 infections exceeded the capacity
of healthcare systems to respond in many nations, and consequently reduced patient
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outcomes [1]. In such circumstances, it is of paramount importance to develop efficient
diagnostic and prognostic models for COVID-19, so that the patients’ care can be optimized.

Chest CT scans have been found to provide important diagnostic and prognostic
information for COVID-19 [2–7]. Although there is still debate on the use of chest CT
in screening and diagnosing COVID-19 cases [8], a surge of computational methods for
chest CT have been developed to support medical decision making during the current
pandemic [9–15]. Study population, model performance, and reporting quality vary
substantially between studies. An in-depth comparison of these studies can be found in a
recent systematic review [16].

In addition to diagnostic and screening models, several prediction models have been
proposed based on an assessment of lung lesions. There are three typical classes of lesions
that can be detected in COVID-19 chest CT scans: ground glass opacity (GGO), consolida-
tion, and pleural effusion [3,4]. Imaging features of the lesions including shape, location,
extent and distribution of involvement of each abnormality have been found to have good
predictive power for mortality [17] or hospital stay [18]. These features, however, are
mostly derived from the delineated lesions, and so depend heavily on lesion segmentation.
Manual delineation of lesions often takes one to five hours, which substantially undermines
clinical applicability of these methods.

Automatic lung lesion segmentation for COVID-19 has been actively investigated
in recent studies [19,20]. A VB-Net model based on a neural network was proposed to
segment the infection regions in CT scans [19]. This model, when trained using CT scans
of 249 COVID-19 patients, achieved a Dice score of 0.92 between automatic and manual
segmentations, and successfully reduced the delineation time to less than 4 min. In another
recent study [20], a lesion segmentation model based on the 3D-Dense U-Net architecture
was proposed and trained on CT scans of a combination of 160 COVID-19, 172 viral
pneumonia, and 296 interstitial lung disease patients. Although the lesion masks were
not compared voxel-to-voxel, the volumetric measures of lesions, such as percentage of
opacity and consolidation, showed a high correlation (0.97–0.98) between automatic and
manual segmentations.

Previous studies [19,20] have suggested that lesion features might be a useful biomarker
for COVID-19 patient severity assessment, but the effectiveness of lesion features is yet
to be verified. Lesion features may have additional applications in the management of
COVID-19, which need to be investigated further. In this study, we aim to test the effective-
ness of using lesion features in COVID-19 patients for disease severity assessment, and to
explore the potential use of lesion features in predicting disease progression.

Automatic severity assessment and progression prediction will substantially facilitate
admission, triage, and referral of patients. The first goal of this study is to develop a method
for assessing severity of COVID-19 patients based on their baseline chest CT scans. Four
severity types: mild, ordinary, severe, and critical, can be defined based on a core outcome
set (COS) encapsulating clinical symptoms, physical and chemical detection, viral nuclei
aid detection, disease process, etc. [21]. Supportive treatments, such as supplementary
oxygen and mechanical ventilation, are usually required for severe and critical cases [22].
We represent the assessment severity task as a binary classification problem (i.e., to classify
a patient as a mild/ordinary case (mild class) or a severe/critical case (severe class)).

The second goal of this study is to predict disease progression for the mild/ordinary
cases based on their baseline CT scans. In other words, we aim to predict which of
the mild/ordinary severity patients are likely to progress to the severe/critical category
(converter class) in the short term (within seven days), and which patients would remain
stable or recover (non-converter class), based on the assumption that lesion features may
carry important prognostic information for forecasting disease progression. We again
consider the task as a binary classification problem (i.e., to classify the non-converter
cases and converter cases). Figure 1a presents an example of a COVID-19 case with
mild symptoms. In less than seven days, the patient’s symptoms rapidly worsened and
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progressed to severe. Figure 1b is an example of a non-converter case whose symptoms
progressed slowly and remained mild seven days after the baseline CT scan.

Figure 1. Examples of converter and non-converter cases. (a) A mild case progressed to severe within
seven days; (b) a mild case did not progress to severe within seven days.

To achieve the above two goals, a novel LesionEncoder framework is proposed to
detect lesions in CT scans and encode lesion features for automatic severity assessment
and progression prediction. The LesionEncoder framework consists of two modules: (1) A
U-Net module which detects lesions and extracts features from CT slices, and (2) a recurrent
neural network (RNN) module for learning the relationship between feature vectors and
classifying the sequence of feature vectors as a whole.

We applied the LesionEncoder framework for both severity assessment and progres-
sion prediction. With access to data of two COVID-19 confirmed patient cohorts from
two hospitals, we trained our proposed model with CT scans of a cohort of patients from
one hospital and tested it on an independent cohort from the other hospital. The models
built on the LesionEncoder framework outperformed the baseline models that used lesion
volumetric features and general imaging features, demonstrating a high potential for clini-
cal applications in the current COVID-19 management, particularly in automatic severity
assessment of COVID-19 patients. This framework may also have a strong potential in sim-
ilar lesion-focused analyses, such as neuroimaging based diagnosis of brain tumors [23,24]
and neurological disorders [25,26], CT-based lung nodule classification [27], and retinal
imaging based ophthalmic disease detection [28].



Information 2021, 12, 471 4 of 14

2. Datasets

A total of 346 COVID patients confirmed by reverse transcription polymerase chain
reaction (RT-PCR) were retrospectively selected from two local hospitals in the Hubei
Province, China, namely Huang Shi Central Hospital (HSCH) and Xiang Yang Central
Hospital (XYCH). Severity types of all patients at baseline and follow-up (in seven days)
were assessed and confirmed by clinicians according to the COS for COVID-19 [21]. More
details of the demographics and baseline characteristics of patients can be found in our
previous study [29]. This analysis was approved by the Institutional Review Board of both
hospitals, and written informed consent was obtained from all the participants.

Tables 1 and 2 illustrate, respectively, the demographics of patients for the develop-
ment of a severity assessment model (Task 1—mild vs. severe) and a progression prediction
model (Task 2—converter vs. non-converter). For both tasks, CT scans of the HSCH cohort
were used for training the models, and CT scans of the XYCH cohort were used as an
independent dataset to test the trained models. Patients may have either a lung-window
scan, a mediastinal-window scan, or both in their baseline CT examination. All scans were
included in the analysis. The total number of CT scans for Task 1 was 639, and that for
Task 2 was 601. An internal validation set (20% of the training samples) was split from the
training set and used to evaluate the model’s performance during training.

Table 1. Demographics of the patients in Task 1 dataset.

Category HSCH—Training Set XYCH—Test Set Total

Mild 7 1 8
Ordinary 212 104 316

Severe 7 6 13
Critical 4 5 9

Total patients 230 116 346

Total CT scans 433 206 639

Age (mean ± SD) 49.00 ± 14.4 47.5 ± 17.2 48.5 ± 15.4
Gender (female/male) 120/110 57/59 177/169

Table 2. Demographics of the patients in Task 2 dataset.

Category HSCH—Training Set XYCH—Test Set Total

Non-converter 201 99 300
Converter 18 6 24

Total patients 219 105 324

Total CT scans 412 189 601

Age (mean ± SD) 48.4 ± 14.0 46.1 ± 16.6 47.7 ± 14.9
Gender (female/male) 113/106 55/50 168/156

Note that there is a highly imbalanced distribution of samples in the datasets (i.e., 324
(93.6%) patients in mild class for Task 1, and 300 (92.6%) patients in non-converter class for
Task 2). A weighting strategy was used to address the imbalanced distribution in datasets,
and the details are presented in Section 3.3.

3. Methods

Figure 2 gives an overview of the LesionEncoder framework, which consists of two
modules: (1) A lesion encoder module for lesion detection and feature encoding, and (2) a
RNN module for sequence classification. The lesion encoder module extracts features from
individual CT slices; therefore, a CT scan with multiple CT slices can be represented as
a sequence of feature vectors. The sequence classification module takes the sequence of
feature vectors as input and then classifies the entire sequence collectively.
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Figure 2. An overview of the proposed LesionEncoder framework.

3.1. Image Pre-Processing

All CT scans were pre-processed with intensity normalization, contrast limited adap-
tive histogram equalization, and gamma adjustment, using the same pre-processing
pipeline as in our previous study [30]. We further performed lung segmentation on
the CT slices using an established model—R231CovidWeb [31]. This model (The bi-
nary executable software for the lung segmentation model is available online (https:
//github.com/JoHof/lungmask (accessed on 11 February 2021))) was trained on a large
and diverse dataset of non-COVID-19 CT scans and further fine-tuned with an additional
COVID-19 dataset [32]. The CT slices with less than 3 mm2 lung tissue were removed from
our datasets, since they bear little or no information of the lung.

3.2. Lesion Encoder

The U-Net architecture [33] is adopted for the lesion encoder module. It consists of
an encoder and a decoder, where the encoder captures the lesion features and the decoder
maps lesion features back to the original image space. In other words, the encoder is
responsible for extracting features from the input images (i.e., CT slices), whereas the
decoder generates the segmentation maps (i.e., lesion masks). Figure 3 illustrates the
encoder-decoder architecture of the lesion encoder module.

https://github.com/JoHof/lungmask
https://github.com/JoHof/lungmask
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Figure 3. The U-Net architecture for lesion detection and feature encoding.

We used the EfficientNetB7 model [34] as the backbone to build the lesion encoder
module, as it represents the state-of-the-art in object detection while being 8.4 times smaller
and 6.1 times faster on inference than the best existing models in the ImageNet Chal-
lenge [35]. The ImageNet pre-trained weights were used to initialize the EfficientNetB7
model. There are 7 blocks in the EfficientNetB7 model, as shown in Figure 3. The skip
connections were built between the expand activation layers in Blocks 2, 3, 4, and 6 and
their corresponding up-sampling layers in our model. The output of the bottom layer is
the final output feature vector representing the lesion features of the input slice.

A publicly available dataset was used to train the EfficientNetB7 U-Net, which con-
sisted of 100 axial CT slices from 60 COVID-19 patients [32]. All the CT slices were anno-
tated by an experienced radiologist with 3 different lesion classes, including GGO, consoli-
dation, and pleural effusion. Since this dataset is very small, we applied different augmenta-
tions, including horizontal flip, affine transforms, perspective transforms, contrast manipu-
lation, image blurring and sharpening, Gaussian noise, and random crops, to the dataset us-
ing the Albumentations library [36]. The model (The Tensorflow implementation of the Ef-
ficientNetB7 U-Net is available online (https://github.com/qubvel/segmentation_models
(accessed on 11 February 2021))) was trained using Adam optimizer [37] with a learning
rate of 0.0001 and 300 epochs.

The lesion encoder module was applied to process individual slices in a CT scan. For
each CT slice, a high-dimensional feature vector (d = 2560) was derived. Independent
component analysis (ICA) was performed on the training samples to reduce dimensionality
(d = 64). The ICA model was then applied to the test samples, so that they have the same
feature dimension as the training samples. The output of the lesion encoder is a sequence
of feature vectors, which are then classified using a sequence classifier, as explained in the
next section.

https://github.com/qubvel/segmentation_models
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3.3. Sequence Classification

A RNN model was built for sequence classification. Its input is a sequence of feature
vectors generated by the lesion encoder. The structure of the RNN model is illustrated in
Table 3—two bidirectional long short-term memory (LSTM) layers, followed by a dense
layer with a dropout rate of 0.5, and an output dense layer. For comparison purposes,
another pooling model was created (Table 3)—using max pooling and average pooling to
combine the slice-based feature vectors, as inspired by a previous study [9]. The difference
between these two models is that the RNN model captures the relationship between feature
vectors in a sequence, whereas the pooling model ignores such relationships.

Table 3. The architectures of the RNN model and the pooling model.

RNN Model Pooling Model

BiLSTM (64, return-sequences) Global_Max_Pooling Global_Average_Pooling

BiLSTM (32) Concatenation

Dense (64, ReLu, dropout = 0.5) Dense (64, ReLu, dropout = 0.5)

Dense (1, Sigmoid) Dense (1, Sigmoid)

Adam optimizer [37] with a learning rate of 0.001 was used for training the models
in 100 epochs. A validation set (20%) was split from the training set for monitoring the
training process. Every 20 epochs, the validation set was reselected from the training set,
so that the model will be internally validated by all training samples during training. To
address the imbalanced distribution in the datasets, we assigned different weights to the
two classes (mild/non-converter class: 0.2, severe/converter class: 1.8) when training the
models. In addition, if a patient has multiple CT scans, the scan with a higher probability
of a positive prediction overrules the others when applying the models for inference.

3.4. Performance Evaluation

We tested the LesionEncoder framework with two configurations: (1) Using the
pooling model as the classifier (LE_Pooling) and (2) using the RNN model as the classifier
(LE_RNN). These methods were compared to 3 baseline methods. The first baseline
method (BS_Volumetric) was inspired by a previous study [20], which was based on a
Logistic Regression model using 4 lesion volumetric features as input: GGO percentage,
consolidation percentage, pleural effusion percentage, and total lesion percentage. The
second (BS_Pooling) and third (BS_RNN) baseline methods were based on the same
classification models as in LE_Pooling and LE_RNN; however, the features were extracted
from an EfficientNetB7 model without a lesion encoder module. The purpose of the second
and third baseline models was to estimate the contribution of the lesion encoder. Following
previous studies [38,39], sensitivity, specificity, accuracy, and area under curve (AUC) were
used to evaluate the methods’ performance. Receiver operating characteristic (ROC) curves
were also compared between methods.

3.5. Development Environment

All the neural network models, including the EfficientNetB7 U-Net, the Pooling model
and the RNN model, were implemented in Python (v3.6.9) and Tensorflow (v2.0.0). The
models were trained using a Fujitsu server with Intel Xeon Gold 5218 GPU, 128 G memory,
and NVidia V100 32 G GPU. The same server was used for image pre-processing, feature
extraction, and classification.

4. Results
4.1. Lung and Lesion Segmentation

The lung masks generated using the R231CovidWeb model [31] and the lesion masks
generated by the lesion encoder module were visually inspected by an experienced image
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analyst (S.L.). Overall, the lung segmentation results were visually reliable with few severe
and critical cases having infection areas missed out in their lung masks. The lesion encoder
achieved a Dice of 0.92 on the COVID-19 CT segmentation dataset [32]. Figure 4 presents
four examples of the lung and lesion segmentation results (reconstructed using 3D Slicer
(v4.6.2) [40]) of the COVID-19 patients, one for each severity class. It shows that higher
severity of COVID-19 is reflected in CT scans as increasing number and volume of lesions.

Figure 4. Examples of the patients in different severity groups: (a–d). The upper row presents the axial CT slices with the
lung (red) and lesion (green: GGO; yellow: consolidation; brown: pleural effusion) boundaries overlaid on the CT slices.
The lower row illustrates the 3D models of the lung and lesions.

4.2. Severity Assessment

Five different methods were compared in the automatic severity assessment of COVID-19
patients, including three baseline methods and two proposed methods, as described in
Section 3.4. Table 4 illustrates the performance metrics of different methods on the sever-
ity assessment task, and Figure 5a shows the ROC curves of these methods. The three
methods using lesion features (BS_Volumetric, LE_Pooling, and LE_RNN) consistently
outperformed the models that did not use lesion features by a marked difference in sensi-
tivity (>9.1%), specificity (>15.3%), accuracy (>14.7%), and AUC (>15.1%). In particular,
BS_Volumetric achieved the highest AUC of 0.931, indicating that the lesion volumetric
features were highly effective in distinguishing between severe and mild cases.

Table 4. Performance of different methods in baseline severity assessment. Bold font indicates best
result in each performance metric achieved by the methods.

Method Sensitivity Specificity Accuracy AUC

BS_Volumetric 0.818 0.933 0.922 0.931

BS_Pooling 0.727 0.752 0.750 0.732
BS_RNN 0.727 0.771 0.767 0.749

LE_Pooling 0.818 0.924 0.914 0.900
LE_RNN 0.818 0.952 0.940 0.903

The proposed LE_RNN method achieved higher specificity (0.952) than the BS_Volumetric
method (0.933), showing that the features captured by the lesion encoder might be useful
in reducing the false positive rate compared with the volumetric features. When com-
paring the pooling models and RNN models, we found that the RNN models performed
slightly better than the pooling models; and the impact of the sequence classifier on the
classification performance was much lower than that of the lesion features.
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Figure 5. ROC curves of different models in (a,b) .

4.3. Progression Prediction

The results of different methods in the prediction of disease progression task are
presented in Table 5 and Figure 5b presents the ROC curves of these methods. The
BS_Volumetric method performed poorly (sensitivity = 0.5, specificity = 0.465, accu-
racy = 0.467, AUC = 0.51), indicating that lesion volumetric features were not predictive
of COVID-19 disease progression. This finding was not surprising, since the converter
and non-converter cases both showed mild symptoms at baseline and presented a small
quantity of lesions in the lungs. The BS_Pooling and BS_RNN methods achieved slightly
better performance than BS_Volumetric, although they did not use any lesion features.

Table 5. Performance of different methods in prediction of disease progression. Bold font indicates
best result in each performance metric achieved by the methods.

Method Sensitivity Specificity Accuracy AUC

BS_Volumetric 0.500 0.465 0.467 0.510

BS_Pooling 0.667 0.535 0.543 0.569
BS_RNN 0.667 0.535 0.543 0.662

LE_Pooling 0.667 0.737 0.733 0.724
LE_RNN 0.667 0.838 0.829 0.736

The LE_Pooling and LE_RNN methods outperformed the baseline methods with
a substantial increase of 20–30% in specificity. LE_RNN was the best method in all the
evaluation metrics (sensitivity = 0.667, specificity = 0.838, accuracy = 0.829, AUC = 0.736).
The results indicate that the lesion features extracted by the lesion encoder may bear useful
diagnostic information for predicting disease progression. However, it is still challenging
to predict disease progression using the lesion features, and the low sensitivity (0.667) may
restrict clinical applicability of the proposed methods.

5. Discussion

Clinical value in the management of COVID-19. The rapid spread of COVID-19 has
put a strain on healthcare systems, necessitating efficient and automatic diagnosis and
prognosis to facilitate the admission, triage, and referral of COVID-19 patients. Chest
CT plays a key role in COVID-19 management by providing important diagnostic and
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prognostic information of patients. Several computational models have been developed
to support automatic screening and diagnosis of COVID-19 [9–15]. There are also a few
studies [19,20] using CT to quantify infection severity with a focus on development of
lesion segmentation models. A few measures based on the lesion volumes have been
proposed to quantify infection severity [19]; however, the intricate patterns of the lesion
shape, texture, location, extent, and distribution were less investigated.

To capture the complex features in the lesions, we proposed a novel LesionEncoder
framework. Two specific applications of this framework (i.e., assessment of severity and
prediction of disease progression for COVID-19 patients) were explored in this study. To the
best of our knowledge, this work represents the first attempt to predict COVID-19 patient
disease progression using chest CT scans. Models built on this framework are able to take
CT scans as input, detect, and extract features from the lesions, and quantify the severity
or predict progression in a fully automated manner. The analysis of a high-resolution CT
scan of 512 × 12 × 430 voxels takes less than 1 min, which is substantially faster than
radiologists’ reading time. This can also save the burden of manual delineation of the
lesions. The quantitative measures based on the features are of high clinical relevance, and
can be used to support medical decision making or to track changes in patients.

We should note that this framework is not designed to analyze the COVID-19 suspects
who are not confirmed by RT-PCR, or the covert/asymptomatic cases that are not docu-
mented [41–43]. The community-acquired pneumonia cases, such as viral pneumonia and
interstitial lung disease patients, were also not considered in this study. As pointed out
in a systematic review [44], normal controls and diseased controls will be needed for the
development of screening or diagnostic models, thus the selection bias in the cohort may
lead to a risk of overestimated performance. Since our model focuses on the confirmed and
hospitalized COVID-19 cases; therefore, will not be exposed to such risk.

Models based on lesion features outperformed the baseline models without lesion
features in both severity assessment and progression prediction. An interesting finding in
severity assessment is that the lesion volumetric features are highly effective in distinguish-
ing the severe cases from the mild cases. The features extracted by the lesion encoder did
not improve the sensitivity of detecting the severe cases, but only reduced false positive
predictions. This finding indicates that lesion volumetric features, such as GGO percentage
and consolidation percentage, are prominent biomarkers in identifying the severe cases.
The lesion encoder makes marginal contribution to severity assessment. In contrast, in
progression prediction the models with the lesion encoder performed much better than
those with volumetric features, indicating that the intricate pattern captured by the lesion
encoder provide useful prognostic information for identifying the COVID-19 patients at
higher risk of converting to the severe type. The LesionEncoder framework demonstrates
a clinical applicability in COVID-19 management, particularly in the automatic severity
assessment of COVID-19 patients (sensitivity = 0.818, specificity = 0.952, AUC = 0.931).
However, it is still challenging to predict disease progression using lesion features, and the
low sensitivity (0.667) may restrict clinical applicability of the proposed methods.

Technical contributions of the LesionEncoder framework. The technical contributions
of this work are two-fold. Most importantly, this framework extends the use of lesion
features beyond conventional lesion segmentation and volumetric analysis. There is
a wealth of information in the lesions including shape, texture, location, extent, and
distribution of involvement of the abnormality, that can be extracted by the lesion encoder.
We demonstrated two novel applications of the lesion features in severity assessment and
progression prediction. However, they also have a strong potential in a wide range of
other clinical and research applications, such as supporting clinical decision making and
providing insights of the pathological mechanism.

In addition, the proposed LesionEncoder framework attempts to address a common
challenge in medical image analysis: how to reconcile local information and global in-
formation to improve medical image perception [45]. In this study, the slices from a CT
scan were used as input for classification, but not every slice in the scan carries the same
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diagnostic/prognostic information. That is, the ground truth label of the entire scan cannot
be propagated to label individual slices. For example, a CT slice with no lesion from a
severe case might appear more ‘normal’ compared to a slice with some lesions from a
mild case. Our proposed framework is a feasible approach to infer the holistic prediction
with a focus on the analysis of region of interest. The RNN module in the framework is
also a more sophisticated approach than the conventional feature fusion methods that use
average pooling or max pooling to combine the local features. There are many analyses of
the same nature, e.g., neuroradiologists may use features such as tumoral infiltration of
surrounding tissues in MRI for tumor grading [46]; ophthalmologists may focus on lesions,
such as hemorrhages and microaneurysms, hard exudates, and cotton-wool spots, when
grading diabetic retinopathy [47]; and pathologists are more likely fixate on regions of
highest diagnostic relevance when interpreting the biopsy whole slide images (WSI) [48].
The LesionEncoder framework may be generalizable to these lesion-focused medical
image analyses.

Limitations. A limitation of this study is that we only had access to a retrospective
cohort. Although it includes 639 CT scans of 346 patients, it is still a relatively small dataset
compared to other datasets for development of deep learning models. It also refuted the
idea of developing 3D deep learning models for scan-based classification. Since 3D models
are usually more complicated than 2D models and have substantially more parameters,
the small sample size will lead to undertrained models. In addition, there is a highly
imbalanced distribution in the datasets. Among the 346 samples for the development of
the severity assessment model, 324 (93.6%) patients were in the mild class. For the disease
progression model, there are 300 (92.6%) patients in the non-converter class. Although this
reflects the real distribution, it will be ideal to have more severe/converter class samples
for training. To address this imbalance distribution problem, we used a class weighting
strategy to give the positive class higher weight during training, and used a prediction
weighting strategy during inference to enhance the prediction of the positive class if that
patient has multiple scans. A larger sample size with more severe and converter cases in
the datasets would help train more accurate and robust models as well as produce reliable
performance estimates. Other techniques, such as synthetic minority oversampling [29],
spherical coordinates transformation [49], and generative adversarial network [50], will be
investigated in further study.

The lung masks generated using the R231CovidWeb model [31] and the lesion masks
generated by the lesion encoder module were visually inspected by an experienced image
analyst. The segmentation results were visually reliable, but the missed-out lung or lesion
regions in the segmentation masks were noted in a few severe and critical cases. Since there
were no lesion masks for our datasets, no quantitative analyses were performed to evaluate
the automatic segmentation results. Further improvements can be made if the ground
truth annotation of the lung and lesion can be provided to optimize the performance of the
current lung segmentation model and lesion encoder module on our datasets.

Furthermore, it is still challenging for LesionEncoder alone to predict disease pro-
gression using lesion features. However, combining the proposed method with other
biomarkers, such as short-time changes in neutrophil-to-lymphocyte ratio and urea-to-
creatinine ratio [51] might further help stratify patients’ severity.

There are a few recent studies that used explainable AI in chest CT segmentation
and classification of COVID-19 patients, such as these based on class activation map [52],
few-shot learning [53], and the shapely addictive explanations framework [29]. Another
potential future extension of this work is to use explainable AI frameworks to explain the
model’s logics and decision-making processes, thereby unlocking the black box of deep
learning and helping the end users to understand the models better.

6. Conclusions

In this study, a novel LesionEncoder framework was proposed to encode the enriched
lesion features in chest CT scans for automatic severity assessment and progression predic-
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tion of COVID-19 patients. Models built on this framework outperformed the evaluated
baseline models with a marked improvement. The lesion volumetric features were promi-
nent biomarkers in identifying severe/critical cases, but intricate features captured by
the lesion encoder were found effective in identifying the COVID-19 patients who have
higher risks of converting to the severe or critical type. Overall, the LesionEncoder frame-
work demonstrates a high clinical applicability in the current COVID-19 management,
particularly in automatic severity assessment of COVID-19 patients.

An important future direction of this framework lies in the combination of clinical
data and imaging data for better prediction performance, especially for the progression
prediction, since clinical data may provide essential indicators of the clinical risks of the
patients. Furthermore, the applications of the LesionEncoder framework to other types of
lesion-focused analyses will be further investigated.
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