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tasks, human behavior, and reasoning 
is hindering the full power of 
interaction customization. Modeling 
humans can help bring these elements 
together.

In recent decades, HCI and AI 
have developed a range of tools and 
methodologies for modeling humans 
and personalizing interaction [1], 
but these often remain bounded 
by the information needed by the 
application itself. For example, movie 
recommenders generally focus on 
behavioral signals, such as past movie 
selections by the user or other users 
of the same platform, sometimes 
looking at related factors like social 

The time has come to accurately 
and unobtrusively model humans! 
Modeling humans—whether in 
terms of their skills, emotions, or 
attitudes—can help us deliver tailored 
services, interaction, and information. 
Let’s teach math by associating each 
formula with other concepts and 
formulas the student already knows. 
Let’s recommend movies based on 
the emotions that past movies elicited 
in an individual. Let’s produce data 
visualizations in line with what has 
previously resonated with a user. 
Why are these objectives so obviously 
needed, yet so elusive? A key reason 
is that a lack of integration between 

T
Insights

 → Physiological and behavioral 
signals such as galvanic skin 
response or simple finger 
gestures on a mobile phone can 
help model humans.

 → A generic framework linking 
stimuli to models using machine 
learning promises objective and 
reliable measurements.

 → Two practical case studies 
illustrate the framework’s 
potential for detecting 
psychological traits and early 
diagnosis of Parkinson’s disease.
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highly interactive activities—as 
long as the triggers are causally 
linked to the derived model. Domain 
expertise is required for this 
step. For example, when teaching 
mathematics, such a trigger could be 
a series of mathematical exercises of 
increasing difficulty. The modalities 
of the stimuli and tasks are crucial, 
as they are likely to trigger different 
physiological signals. For example, 
as our work discussed below shows, 
signals elicited by a video clip would 
be stronger than those elicited by an 
image.

The physiological signals are 
captured by a sensing technology. 
Guided by the main goal of objective 
human modeling, we prioritize 
technologies that can capture 
difficult-to-control signals. Indeed, 
some physiological or behavioral 
signals, like breathing rate or eye 
gaze, can be consciously controlled; 
others, like blinking, blood pressure, 
or heart rate, are difficult to control; 
while many other signals, like skin 
conductance or electric brain activity, 
cannot be controlled at all. The level 
of control that humans exhibit over 
the signal drives the objectivity of 
the captured data and the reliability 
of the derived models. Another 
consideration is the practicality and 
ease of use of the sensors, which 
ideally should not impede normal 
behavior and interactions, and 
should mitigate artifacts related to 
movement, temperature, lighting, 
and more.

While it may be appealing to 
bring in many sensors, they help only 
once useful features are extracted; 
otherwise they are simply flooding 
the systems with irrelevant data. Raw 
sensor data, like skin-conductance 
values, electric brain signals, or heart-
rate data needs to be preprocessed, 
and its statistical characteristics 
extracted, during data processing. 
While this varies according to 
the deployed sensor, three typical 
preprocessing steps are: filtering 
(data cleansing, noise reduction, 
and artifact removal), segmentation 
(partitioning into time intervals), 
and normalization (with respect to a 
baseline signal). These are followed 
by feature extraction, which again 
depends on the sensor and the stimuli. 
For example, analyzing the shape of 
spikes in electrodermal activity may 

media likes or movie reviews. Human 
modeling, however, rarely ventures 
into gauging thoughts, emotions, or 
attitudes, at best resorting to clunky 
pop-ups such as “Would you prefer 
option A or B?”

Another common drawback of 
many human modeling tools is that 
they can be manipulated, making 
their reliability questionable. For 
example, it is easy to pose as a horror-
movie lover in a system, or similarly to 
spread such fake information on social 
media. In fact, unbalanced training 
data will result in strong biases 
even without any manipulations [2]. 
Models that capitalize on direct input 
are even easier to trick, as the human 
user may have a good idea about the 
desired answers, allowing them to 
steer the system in the right direction. 
These risks intensify in high-stakes 
scenarios, such as performance 
evaluation or job recruitment. Here, 
humans may be willing to paint a 
fictitious picture of certain behavior, 
overstate their skills and knowledge, 
or simply provide inaccurate 
information, which may hinder the 
modeling and affect its outcomes.

A solution is at hand; it is 
all a question of piecing things 
together. In order to make human 
modeling more objective and 
reliable, let’s turn to the shelves of 
physiologists, neuroscientists, and 
sensing engineers. A multitude of 

physiological and behavioral signals 
generated by the human (consider 
heartbeat, brain activity, skin 
conductance, blood pressure, and eye 
movements) can hardly be consciously 
controlled and can potentially disclose 
precious and reliable information 
about the human experience, if 
properly harnessed. While this raises 
significant technical challenges, 
requiring a combination of sensing, 
signal processing, and machine-
learning skillsets, it also has a 
tremendous potential to pave the way 
for next-generation human-modeling 
methods.

A HUMAN-MODELING 
FRAMEWORK
Based on our recent work on the 
detection of personality traits 
[3], as well as another work on the 
prediction of Parkinson’s disease [4] 
(both published at CHI 2019), we 
present here a framework for such 
physiological and behavioral signal-
based human modeling (Figure 1).

The main idea behind the 
framework is that consciously 
uncontrollable signals can be treated 
as objective predictors for the model. 
To offer a reliable and measurable 
input, such signals need to come in 
response to a standardized stimulus 
or task triggering them. A range of 
triggers can be used—from passive 
exposure to multimedia content to 

B
The level of control that humans  
exhibit over the signal drives the 
objectivity of the captured data and  
the reliability of the derived models.

Figure 1. Human-modeling framework.
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reflect cognitive responses to a short 
math question but may be less useful 
when aggregated over the duration of 
a feature-length movie.

Finally, the processed data can 
be used to build the human models 
using machine learning. The model 
consists in a set of parameters 
trained from labeled data—features 
extracted from physiological signals 
of humans with already established 
models—which serve as ground 
truth examples (marked by the 
dashed arrow in Figure 1). These 
labels are collected using traditional 
methods such as questionnaires or 
observations, and hence are prone to 
noise and manipulation. However, 
system developers can control quality 
through incentives (payment for 
truthful responses) or disincentives 
(no benefit from cheating). A range 
of machine-learning algorithms 
are readily available to train the 
human-modeling component of the 
framework. Once trained, it can be 
deployed to predict the model values 
for new subjects, whose features are 
also extracted from their physiological 
signals. When too many features 
are extracted, machine learning is 
at risk of overfitting, but this can be 
mitigated using feature-selection 
methods.

TWO RECENT  
HUMAN-MODELING  
CASE STUDIES
We predicted human personality traits 
using affective stimuli and eye-tracking 
data [3]. Personality is considered to 
be a set of stable characteristics that 
affect human behavior, cognition, 
and emotions. Personality detection 
is a nontrivial task, typically 
requiring humans to fill out lengthy 
questionnaires rooted in personality 
and psychometric theories. Since the 
questionnaire data is self-reported, 
the models are often noisy and 
manipulation-prone.

We showed our participants 
50 images and seven videos, all 
validated to evoke emotional 
responses. We focused on eye signals 
captured using commercial-grade 
eye-tracking glasses—eye blinks, 
saccades, fixations, and pupil-size 
measurements. Ten features were 
extracted, ranging from simple ones 
like saccade rate per second, to more 
complex geometric ones intended to 

W

reflect ocular muscle activity, such as 
average of the peak angular velocity 
of each saccade. We extracted a total 
of 170 features from the images and 
videos. Since the data collection 
involved only 21 participants, we 
applied correlation-based feature 
selection to select a predictive set of 
fewer than 10 features. These were 
fed into machine-learning classifiers 
trained to predict 16 personality 
traits across three established 
personality models: Dark Triad, 
BIS/BAS, and HEXACO [5]. The 
ground truth data was obtained 
by administering the personality 
questionnaires associated with these 
models, and grouping the participants 
into low, medium, and high classes for 
each trait.

The overall predictive accuracy 
of the best-performing classifier, 
across all the personality traits and 
participants, was close to 0.86, with 
six traits being predicted with an 
accuracy greater than 0.90. This is 
much higher than the benchmark 
random-guess probability of 0.33 in 
the three-class classification task. In 
particular, we noted that the tactics, 
views, and morality traits achieved 
over 0.90 accuracy; all belong to the 
Machiavellianism component of the 
Dark Triad, which is associated with 
affective rather than cognitive traits 
[6]. We attributed this to the fact 
that our stimuli were affect-based. 
Considering the image and video 
stimuli, we unsurprisingly found 
that the videos resulted in more 
accurate predictions than the images. 
Similarly, we examined the predictive 
power of features for various traits 
and found the most predictive 
feature-trait combination was the 
number of blinks and psychopathy, 
which aligns with prior work showing 
that people with psychopathic traits 
tended to display unusual blink 
responses [7].

Practically speaking, such a system 
could dramatically reduce the time 
required to administer questionnaires 
and provide near real-time objective 
personality modeling. Accuracy 
rates of 0.86 may not yet allow the 
detection of mental pathologies but 
could prove useful in longitudinal 
psychological assessments. The 
low entry cost of sensors and data-
analysis packages suggests that 
such a method could practically 

supplement traditional personality 
questionnaires.

Predictions of Parkinson’s 
disease (PD) from mobile phone 
gesture analysis were achieved 
using a similar approach [4]. PD 
is a neurodegenerative disorder 
that affects the motor system and 
is diagnosed using neurological 
examinations, computer tomography 
scans, and magnetic resonance 
imaging. It is important to highlight 
that PD symptoms often show 
up—and, thus, PD is diagnosed—at 
relatively late stages, when significant 
and irreversible brain damage has 
already occurred, emphasizing the 
importance of early detection.

To predict the PD diagnosis, the 
authors used commercial-grade 
smartphones and common mobile 
gestures: flick, drag, handwriting, 
pinch, and tapping. Since PD affects 
humans’ fine-motor skills [8], the 
authors hypothesized that this 
will manifest in finger movements 
captured by the smartphone’s sensors. 
The participants were tasked with 
performing 60 flick, 60 pinch, and 
30 drag gestures, writing and typing 
for 10 minutes, and performing 
the alternative finger-tapping test 
currently used to diagnose PD. The 
touch signal captured by the screen 
sensors was processed and 46 features 
extracted, which were grouped into 
touch, trajectory, temporal, and 
inertia groups. The study involved 102 
participants: about a third diagnosed 
with PD and the rest healthy. Hence, 
the human modeling was essentially a 
PD diagnosis prediction represented 
by a two-class classification.

The accuracy of the predictions 
was measured using the area under 
the receiver-operating characteristic 
curve (AUC) that ranges from 0 to 
1. First, the authors studied the 
performance of the four groups 
of features. Although trajectory 
and inertia features achieved 
AUC close to 0.9, combining all 
the groups improved the AUC to 
0.95. Considering the mobile-input 
gestures, drags and pinches achieved 
an AUC of 0.92. Further adding flicks 
and handwriting boosted the AUC to 
0.95, while eventually adding typing 
increased the AUC to as high as 0.97. 
Overall, for the best-performing 
combination of gestures and features, 
both true positive and true negative 
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rates—that is, the ratio of correct 
predictions for PD-diagnosed and 
healthy subjects—were around 0.9. To 
position this with respect to existing 
clinical methods, the currently 
deployed alternative finger-tapping 
test achieves AUC of approximately 
0.83 [9].

Practically speaking, this 
case study showcased another 
implementation of the proposed 
framework in a promising medical 
application of human modeling, 
using a simple smartphone. By 
joining cross-disciplinary skillsets, 
the authors demonstrated that a 
challenging medical condition can 
be predicted with accuracy levels 
surpassing the current clinical 
methods. Research is yet to study 
whether neurological conditions 
can be detected with electro- and 
magneto-encephalogram (EEG and 
MEG, respectively) sensors, directly 
capturing brain activity.

WHERE TO NEXT?
With recent advances on the 
sensing, signal/data processing, 
and machine-learning fronts, the 
exercise of accurate and reliable 
human modeling seems to be within 
reach. The modeling framework we 
proposed seeks to provide structure 
and confidence to teams aiming to 
boost user experience by introducing 
human modeling and personalization 
in their applications. The discussed 
case studies are promising; in the near 
future, we may be able to:

• Predict mental/cognitive 
disorders. With a plethora of new 
body and activity-tracking devices, 
mental or cognitive disorders could 
be assessed on a high-frequency 
basis by the proposed framework, 
instead of requiring a visit to a 
practitioner’s clinic. Conditions 
such as anxiety and depression in the 
mental space, or even reading and 
learning disorders like dyslexia, are 
often hard to establish objectively 
but could potentially be screened 
using our framework and the right 
combination of stimuli, sensors, 
data processing, and machine 
learning. Affective stimuli were 
shown to be accurate in the first 
case study discussed here; hence, 
suitable cognitive triggers could 
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also be developed to target specific 
disorders, which can potentially be 
captured by common sensors such 
as a camera/microphone or motion 
trackers. Stimulus-based processing 
also safeguards against misuse of 
the system, as the evaluation takes 
place in an agreed time and place. 
Such screening technologies would 
be invaluable for effective cognitive-
behavioral therapies.

• Detect susceptibility to cybersecurity 
attacks. The human factor plays a 
major role in cybersecurity, and with 
the existing security software in 
place, many cyber incidents are now 
associated with human error. For 
example, making a hasty decision 
on an incoming email, potentially a 
phishing attack, can have disastrous 
consequences for the targeted 
individual and their organization 
alike. Hence, it is critical to 
understand who is susceptible to what 
type of cybersecurity risks, to be able 
to educate and protect these people. 
Deploying our framework in order to 
examine the brain signals or mouse 
movements of a person faced with 
simulated cybersecurity threats could 
allow the modeling of their cognitive 
processes. Once such a model is 
derived, it will be possible to detect 
human hesitation or subconscious 
behavior when faced with potential 
cyber threats, and bring this to their 
attention for conscious examination. 
Combining the model with adaptive 
training could further reduce 
vulnerability and upgrade human 
users into an active defence against 
cyberattacks.

We believe the HCI community 
and available technology now 
provide the required support for 
novel next-generation methods for 
human modeling and personalized 
interactions. The use cases we 
presented highlight how important 
real-life problems have been 
addressed with promising results, 
and can be abstracted in a reasonably 
simple framework. There are many 
more challenging problems out there 
offering high-reward and real-life 
impact. Hence, we are calling for 
action and take this opportunity 
to encourage researchers and 
practitioners to look into these 
problems!
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