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ABSTRACT

Objective: People are increasingly encouraged to self-manage their chronic conditions; however, many struggle

to practise it effectively. Most studies that investigate patient work (ie, tasks involved in self-management and

contexts influencing such tasks) rely on self-reports, which are subject to recall and other biases. Few studies

use wearable cameras and deep learning to capture and classify patient work activities automatically.

Materials and Methods: We propose a deep learning approach to classify activities of patient work collected

from wearable cameras, thereby studying self-management routines more effectively. Twenty-six people with

type 2 diabetes and comorbidities wore a wearable camera for a day, generating more than 400 h of video

across 12 daily activities. To classify these video images, a weighted ensemble network that combines Linear

Discriminant Analysis, Deep Convolutional Neural Networks, and Object Detection algorithms is developed.

Performance of our model is assessed using Top-1 and Top-5 metrics, compared against manual classification

conducted by 2 independent researchers.

Results: Across 12 daily activities, our model achieved on average the best Top-1 and Top-5 scores of 81.9 and

86.8, respectively. Our model also outperformed other non-ensemble techniques in terms of Top-1 and Top-5

scores for most activity classes, demonstrating the superiority of leveraging weighted ensemble techniques.

Conclusions: Deep learning can be used to automatically classify daily activities of patient work collected from wear-

able cameras with high levels of accuracy. Using wearable cameras and a deep learning approach can offer an alterna-

tive approach to investigate patient work, one not subjected to biases commonly associated with self-report methods.
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INTRODUCTION

Increasingly, people with chronic conditions are expected to take care

of their health outside of medical settings (ie, self-management). Self-

management refers to actions taken by people to recognize, treat and

manage their own health.1 It is widely promoted to empower patients,

improve health outcomes, and reduce constraints on the overstretched

health system. However, many individuals living with chronic condi-

tions struggle to practice self-management effectively.2–4
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A major challenge to investigating the barriers in self-

management is the difficulty in obtaining a detailed and unbiased

picture of the ‘work’ involved from an individual perspective (ie, pa-

tient work). Patient work, a concept derived from health ergonom-

ics, is a way to study self-management by breaking down the tasks,

contexts and the work involved. It describes the physical and cogni-

tive tasks conducted by the individual to manage one’s health, as

well as the holistic sum of contexts (physical, social, mental, and or-

ganizational) that influence the work conducted. While self-

management focuses on the strategies people employ, patient work

breaks down these strategies into day-to-day tasks and examines

how the effort and time involved, as well as the contextual and ergo-

nomic factors, affect the way self-management is practised and why

some tasks are carried out while others are neglected.5–9

However, past attempts to study patient work (or self-

management) rely primarily on self-reported data, which are subject

to problems commonly associated with self-report methods, such as

recall bias, data collected being unreliable or inconsistent, or using

data collection approaches that are hard to execute.10,11 Other

approaches, which rely on wearable sensors, tend to perform poorly

due to noise or can only identify simple activities (eg, walking) that

may not be useful to understand the full spectrum of health behav-

iors. Visual logging (eg, via wearable cameras) has been proposed as

an alternative approach to automatically capture the full spectrum

of self-management activities, without relying on self-report meth-

ods nor being restricted by the narrow focus of sensor-based

approaches.

Wearable cameras capture first person point-of-view recordings,

providing details on how real-time contextual factors influence

health behaviors, and offering a wider perspective on self-manage-

ment as opposed to the narrow focus using other wearable

approaches.12–14 Wearable cameras have been used for dietary as-

sessment,15 travel and sedentary behavior assessment,16,17 monitor-

ing behavior changes in dementia,18 and recognition of physical

activities.19

To our knowledge, we are the first to propose a wearable camera

to capture daily activities of people with their Type 2 diabetes and

comorbidities. However, current approaches still rely on manual

viewing and analysis of video footage captured by wearable camera,

which is a daunting task due to the large volume of data collected.

Thus, in this study, we report an original approach of using deep

learning to automatically classify activities of self-management col-

lected by wearable cameras.

METHODOLOGY

Patient work data, ethics, and privacy
The dataset was collected as a part of our previous study,5 which in-

vestigated patient work of people living with type 2 diabetes and

comorbidities (More details in Supplementary Appendix). Briefly,

26 participants were recruited with a median age of 72 years, with

16 male and 10 females, a mean period of living with a T2DM diag-

nosis for 19.5 years, where 16 were using insulin (10 using oral med-

ications) at the time of the study.

In ref.,5 we describe the study protocol of our mixed-methods

study, which includes: (1) visiting participants at home to learn

about their self-management routines through interviews and ques-

tionnaires; (2) asking participants to wear a body camera for an en-

tire waking day (�16 h) and complete a time-use diary to document

their daily activities; and (3) visiting participants the following day

for a post-study interview and to go through the wearable camera

footage together. Eventually, the data captured by wearable camera,

diary, interviews, and questionnaires were utilized to analyze self-

management routines and behaviors. Here, the participants were

given a wearable camera (Edesix VB 300, Edinburgh, UK), which

automatically recorded silent continuous video footage. It could be

attached to clothing and/or worn on a lanyard, being located in

front of the chest.

The study was approved by the Macquarie University Human

Research Ethics Committee for Medical Sciences (reference number

5201700718) and informed participant consent was obtained. For

full details on how we address these issues, please refer to our study

protocol.5 We elaborate on this in the Discussion section.

Deep-learning approach and experimental setup
Our approach of applying deep-learning to classify daily activities of

patient work consists of 4 main steps: dataset preparation, Sleeping

activity filtering, non-sleeping activities classification, and weighted

ensemble network (a brief flowchart is shown in Figure 1). We filter

out Sleeping as one of the initial steps because wearable cameras

normally face the ceiling or empty walls during the recording, so

that the captured images lack texture and cannot be effectively rec-

ognized. Consequently, sleeping activity images are filtered out be-

fore classifying other activities.

Our method was implemented using Pytorch, an open-source li-

brary for deep learning applications development. Some models in

our ensemble network were pre-trained on the large classification

dataset ImageNet.20 Details of our deep learning environment setup

are found in Table 1.

Step 1—dataset preparation
We conducted further data cleaning to optimize the screenshots for

deep learning training. Some of the activity coding did not contain

enough images for training, and we therefore aggregated images

from similar activities into one category. By doing this, the dataset

was collapsed from 23 daily activity classes into 12 classes (see Sup-

plementary Appendix Table S2 for more details on we collapsed 23

classes into 12).

Figure 1. An overview of our approach. It consists of 4 steps: Dataset Preparation, Sleeping Activity Classification, Non-Sleeping Activities Classification, and

Weighted Ensemble Network.
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In our method, the dataset was first split into training and test

subset using the ratio of 7:3. The training data was then further split

into a training and validation dataset with the ratio of 9:1. Here, the

validation dataset is utilized to evaluate and select the optimal

trained model in the training phase. The splitting process was manu-

ally implemented by analyzing all the images as a set of events,

where images with similar events were grouped into the same cate-

gory. Table 2 shows the training and testing data for each of the 12

activity classes.

Step 2—sleeping activity filtering
The Sleeping activity is separately recognized by a machine learning

classifier since wearable cameras normally faced the ceiling or empty

walls when participants were asleep. As a result, images captured

during sleeping are highly likely to contain the ceiling/empty walls

only. For these textureless sleeping images, no features can be effec-

tively extracted, learned, and recognized by neural networks. In con-

trast, images from other non-sleeping activities contain various

objects and textures, which can be exploited to differentiate from

sleeping images.

Linear discriminant analysis

To classify whether an image is a Sleeping activity, we first convert

the RGB images from all activities to image histograms. Here, image

histogram counts the number of pixels for each tonal value in an im-

age, which thus represents the distribution of entire tonal.21 (shown

in Step 2 of Figure 2) Then, these histograms are fed into Linear Dis-

criminant Analysis (LDA)22 classifier for training and recognition.

As shown in Step 2 of Figure 2, the pixel values of sleeping images

are normally distributed within the tonal range of 70–120 in our

dataset, while the pixel values of the non-sleeping images are scat-

tered across the full tonal range. Visually, the patterns of sleeping

and non-sleeping image histograms differ substantially, which ren-

ders them distinguishable by the LDA classifier. After classifying all

testing images using LDA, those classified as non-sleeping activities

proceed to the subsequent Step 3 of activity classification.

Step 3—Non-sleeping activities classification
All video images of non-sleeping activities can be classified using

several deep learning-based models: image classification network

(ResNet152,23 WideResNet,24 and ResNeXt 50 and ResNeXt

10025), video classification network (3D-ResNet26), and object de-

tection network (YoloV327). All these techniques were deployed and

compared to identify the best approach to classify each activity

class.

Image classification network

Deep convolutional neural networks have led to a series of break-

throughs for image classification. They naturally incorporate low/

mid/high level features and classifiers into an end-to-end multilayer

fashion.23–26 The low/mid/high level features are extracted from

images by convolutional layers of the network. ResNet15223 first

proposes a devised residual block to increase the network depth. As

a result, it is possible to extract higher level features and achieve

high image classification accuracy. Besides increasing the network

depth, WideResNet also aims to augment the width of residual net-

work and proves to be more accurate.24 Other than network depth

and width, the concept of cardinality (the size of the set of transfor-

mations) was first introduced in ResNeXt,25 and showed that in-

creasing cardinality is more effective for enhancing image

classification accuracy than simply going deeper or wider.

Video classification network

Traditional ResNet exploits 2D convolutions to extract features for

image classification.23 However, 2D convolutions can only extract

features within a single image. Normally, the extracted features are

referred to as spatial information. Instead of 2D convolutions, 3D-

ResNet26 incorporates 3D convolutions that not only extract fea-

tures within one image but also across several consecutive video

images. Therefore, in addition to spatial information, the extracted

features also contain temporal information across the video images,

which is key to improving video classification accuracy.

Object detection network

In our dataset, the Socializing activity typically occurs in an indoor/

outdoor setting, where images belonging to the Socializing activity

are often misclassified as indoor or outdoor activities using image/

video classification networks. Based on the observation that most

Socializing images contain a person or body part of another person

that the participant is interacting with, we apply YoloV327 object

detection model to detect person objects (eg, arms, head, legs) in

images, similar to28 and.29 This way, images containing the detected

person/body parts are regarded as Socializing.

Table 1. Our weighted ensemble network consists of 2 models: im-

age and video classification based networks

Hyper-parameter Image classification

models

Video classification

models

Input size 640 � 368 640 � 368

Batch size 32 8 � 8

Inference batch size 4 64

Learning rate 0.0001 0.001

Momentum 0.09 0.9

Optimizer SGD SGD

Epochs 50 200

Early stopping 5 5

Pre-trained dataset ImageNet Kinetics-MomentsInTime

Note: The implementation parameters of these models are shown in the

table.

Table 2. Dataset distribution

Training Validation Testing

Activity Events (images) Events (images) Events

(images)

Managing health 31 (577) 5 (60) 7 (94)

Exercise 8 (1231) 1 (142) 3 (550)

Food related 130 (4491) 7 (488) 40 (1606)

Indoor 125 (7956) 17 (910) 66 (3614)

Outdoor 37 (1514) 6 (161) 31 (897)

Shopping 12 (693) 1 (87) 1 (291)

Electronic devices52 (3893) 9 (417) 8 (1747)

Driving 52 (2392) 6 (263) 25 (1379)

Socializing 88 (2067) 13 (209) 15 (976)

Watching TV 27 (5214) 10 (408) 14 (2226)

Study 92 (1909) 7 (191) 30 (599)

Sleeping Training images Testing images

1062 353

Note: There are 12 different activities in our dataset and each activity is

further broken down into training, validation, and testing images.
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Step 4—weighted ensemble network
In Step 3, the image, video classification and object detection net-

works are applied independently to all testing images. In this step,

we designed a weighted ensemble network aggregating all individual

predictions from these networks, in order to achieve more accurate

classification.

Specifically, each prediction from the chosen network is assigned

a weight that defines the importance and reliability of that network.

Here, the weighted output of a network determines how much it

contributes to the final prediction. Following this, we sum up the

weighted outputs from all networks in the ensemble and an aggre-

gated output with newly calculated probability scores is generated.

Among the probability scores of the aggregated output, the one with

highest score is referred to as the predicted activity class. Details of

our proposed method are illustrated in Figure 2. An ablation study

was also conducted to identify the optimal combination of weights

for the best-performing weighted ensemble network.

Evaluation metrics
In our experiments, we utilize Top-1 and Top-5 metrics, commonly

used to evaluate image/video classification performance,23–26 to

evaluate the classification accuracy of our model and baselines.

Top-1 accuracy reports conventional accuracy, assessing whether

the highest probability prediction matches the ground truth activity

label of an image. Top-5 accuracy measures whether the ground

truth label is included in the 5 highest probability predicted labels

produced by the model.

Baseline methods
We compare the performance of our weighted ensemble network

against several baselines:

ResNet15223—an image classification method that exploits the

residual learning framework to avoid potential overfitting.

WideResNet24—an image classification method that focuses on

increasing the width rather than the depth of the network.

ResNext50 and ResNext10025—an image classification method

that devises a new dimension called cardinality, in addition to the

depth and width of the network.

3D ResNet26—a video classification method that exploits tem-

poral information by analyzing the relationships among category

and instance.

RESULTS

Performance of baselines and weighted ensemble

network
Table 3 shows the Top-1 and Top-5 scores (in %) obtained in the

evaluation. We compare the proposed method with the aforemen-

tioned baselines. The highest score for each activity is highlighted in

bold. First, we observe that the average Top-1 and Top-5 scores of

WideResNet101 are the lowest among all methods. In fact, the over-

all performances of the whole image-based classification methods,

including ResNext50, ResNext100, and ResNet152, are inferior to

3D ResNet. Second, we observe that by exploiting the temporal in-

formation for activity classification, the video-based 3D ResNet sub-

stantially enhances the accuracy compared to image classification

methods, mainly for Top-1 predictions. Averaging Top-1 and Top-5

scores of all image-based classification methods, we observe an im-

provement of 41.9% and 3.8% for Top-1 and Top-5, respectively.

More importantly, the average Top-1 and Top-5 scores of the pro-

posed weighted ensemble network outperforms all the other meth-

ods. This justifies our assumption that integrating several baseline

classification and object recognition methods into an ensemble net-

work indeed enhances performance.

In addition to average accuracy comparison, the Top-1 scores of

our method are highest for all activities and the Top-5 scores of our

Figure 2. Flowchart and detailed illustration for each step involved in our approach.
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method are highest for 7 activities out of the 12. Furthermore, the ef-

fect of applying ensemble technique is even more evident in some activ-

ities, such as Socializing and Sleeping. For these classes, the accuracy of

our ensemble method substantially outperforms the other baselines. It

can also be seen that for Driving, Exercise, and Shopping activities,

our method achieved 100% accuracy in the Top-1 score. However,

Managing Health demonstrated lowest accuracy scores than other ac-

tivities, with 13% and 15% Top-1 and Top-5 scores, respectively. A

confusion matrix of the detailed prediction by our method is shown in

Figure 3. As can be seen, some activities are hardly distinguishable pri-

marily due to these activities sharing similar visual contexts. For in-

stance, Food Related activity normally occurs in an indoor setting and

is often misclassified as Indoor activity. Likewise, Indoor activity is

likely to be misclassified as Food Related and Study activities.

Ensemble model weights
Our weighted ensemble network enhances classification accuracy by

combining several baseline classification networks. For each base-

line network, a weight is assigned to define the importance and reli-

ability of that model. The final prediction is then made by fusing all

the predictions from baselines using their weights.

However, there is no underlying principle to determine the optimal

combination of weights that generates the best result. We empirically

tested several combinations and found that we were able to achieve

promising performance by following these heuristic rules. In principle,

the 4 image classification models, ResNet152, ResNeXt 50, ResNeXt

100, and WideResNet, share the same relatively low weights. Besides,

the video classification model—3D ResNet has a higher weight than

the image classification models owing to its higher predictive accuracy.

Lastly, the object detection model YOLOv3 was allocated the highest

weight in the ensemble network. Given the above rules, our weighted

ensemble network sampled 5 combinations of weights shown in Ta-

ble 4. Of the evaluated weighted combinations, set 5 achieved the

highest accuracy, although this may not be the most optimal combina-

tion. However, the overall number of possible combinations is high

and we are unable to test all the possible combinations to identify the

most optimal combination. Despite that, we demonstrate that our

weighted ensemble network with the selected combination (set 5) out-

performed all the other sets as well as baseline methods.

Visualization of patient work classifications
Summarizations of daily activities for selected participants are visu-

alized in Figures 4 and 5. In Figure 4, we illustrate classification

examples generated by our method, alongside ground truth labels. It

is noteworthy that some activities have relatively lower accuracy,

due to similar physical contexts. For instance, the Participate in

Study image (first image of second column) in Figure 4 was misclas-

sified as Indoor, as it appeared like an indoor environment even

from a human perspective. Another Indoor activity shown in the

third row of first column was misclassified as Food Related Activi-

ties due to the kitchen-like scenario presenting in the image.

In Figure 5, each pair of bars represents a patient and contains a

variety of daily activities that are encoded by different colors. For

ease of comparison, each prediction bar of a participant (POxx) is

associated with a corresponding ground truth bar (GTxx). It can be

seen that the bars of our predictions and ground truths were tightly

matched for our participants, which indicates a high level of predic-

tion accuracy.

DISCUSSION

Main findings
To the best of our knowledge, we are among the first to apply

deep learning models to identify daily activities of people with

type 2 diabetes and chronic comorbidities collected from wear-

able cameras. Across the 12 daily activities, our approach of com-

bining Linear Discriminant Analysis, Deep Convolutional Neural

Networks, Object Detection algorithms, and Weighted ensemble

network achieved the best Top-1 and Top-5 scores of 81.9 and

86.8, demonstrating the feasibility of automatically classifying

images of patient work collected from wearable cameras with

high accuracy.

Comparison with other studies
Past studies on self-management and patient work are highly depen-

dent on self-reports from participants,10,11 or rely on external sen-

sors such as GPS, smart phones, and auditory and motion

sensors.30–32 However, self-report methods are subject to its own set

of problems (eg, recall bias),10,11 and wearable sensor-based meth-

ods tend to perform pooly due to noise33 or can only identify simple

activities (eg, walking) that may not be useful to understand the full

spectrum of health behaviors.34–36 Studies have demonstrated that

images captured by wearable camera are more reliable than the writ-

ten diary to assist with the recalling of past events.37–39

The approaches, which involve non-wearable or wearable devi-

ces, to capture daily activities of self-management amongst people

Table 3. A comparison of our weighted ensemble network and its baseline methods (The best result is indicated in boldface)

ResNet152 WideResNet101 ResNeXt50 ResNeXt100 3DResNet Ours

Activity Top-1/Top-5 Top-1/Top-5 Top-1/Top-5 Top-1/Top-5 Top-1/Top-5 Top-1/Top-5

Socializing 3%/7% 0%/4% 8%/9% 8%/8% 1%/4% 81%/83%

Sleeping 7%/8% 7%/8% 0%/2% 1%/1% 0%/1% 90%/90%

Driving 93%/95% 82%/93% 87%/95% 89%/95% 100%/100% 100%/100%

Electronic device 63%/95% 44%/88% 44%/88% 63%/95% 82%/100% 86%/92%

Exercise 74%/97% 68%/95% 67%/91% 74%/97% 100%/100% 100%/100%

Food related 33%/85% 26%/86% 22%/90% 22%/85% 54%/83% 71%/89%

Indoor 57%/98% 49%/96% 57%/98% 57%/98% 64%/91% 79%/90%

Managing health 4%/31% 2%/14% 1%/34% 4%/31% 13%/13% 13%/15%

Outdoor 51%/78% 48%/74% 46%/74% 51%/78% 86%/97% 90%/96%

Shopping 91%/96% 85%/95% 84%/97% 91%/96% 100%/100% 100%/100%

Study 33%/78% 26%/78% 23%/74% 30%/78% 59%/86% 74%/87%

Watching TV 70%/97% 62%/95% 53%/94% 70%/97% 97%/100% 99%/100%

Average 59.9%/84.1% 50.6%/79.1% 50.0%/81.2% 58.9%/83.3% 74.5%/85.0% 82.7%/87.1%
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with chronic conditions are briefly outlined here. For instance, some

works have used non-wearable approaches to investigate self-man-

agement of Type 2 diabetes.40–43 These works often involve open-

ended interviews, survey-based assessment, questionnaires and

booklets that require people with Type 2 diabetes to complete and

reflect upon using their lived experiences.44–46 In essence, these stud-

ies rely on self-reports which are also subject to biases previously

mentioned.

Wearable devices attached to body parts including finger,47

knee,48 and heart,49 have been used to capture human movement

such as flexion and extension of fingers, passive flexion of knee,

heart rate variability, in order to monitor disease progression for

people with stroke, heart disease and Parkinson. In fact, these wear-

able devices can only capture simple body motions rather than pro-

viding diverse activity information for self-management analysis.

Specific to diabetes, wearable devices, such as Gyroscope,50 Infrared

sensor,51 Eversense Glucose Monitoring,52 GPS and Wifi,53 are also

utilized to obtain diabetes related parameters including gait detec-

tion, change of temperature on the feet, glucose level monitoring,

and quantification of sedentary behavior. Though these wearable

sensors offer more accurate, objective and automatic measurements,

they capture only small and narrow aspects of daily self-

management for diabetes patients.

Strengths and limitations
The main strength of this study is that we have demonstrated, it is

indeed possible to apply deep learning on images collected from

wearable cameras to classify self-management routines amongst

people with Type 2 diabetes and co-morbidities. Acknowledging the

wide range of health behaviors captured in this study, as well as

overcoming real-life camera image issues (such as blurring and low

lighting), our method incorporates several networks into an ensem-

ble network, demonstrating it is possible to study the spectrum of

patient work by using wearable cameras and a deep-learning ap-

proach.

Figure 3. Confusion matrix of our weighted ensemble network for the 12 classes with rows as the predicted labels and columns as the actual labels.

Table 4. A comparison of 5 combinations of weights in the ensemble model (The best result is indicated in boldface)

ResNet152 WideResNet101 ResNeXt50 ResNeXt100 3DResNet YoloV3 Top-1/Top-5

accuracy

Set 1 0.1 0.1 0.1 0.1 0.4 0.2 70.3%/76.1%

Set 2 0.1 0.1 0.1 0.1 0.2 0.4 74.9%/81.3%

Set 3 0.09 0.09 0.09 0.09 0.3 0.34 76.2%/82.4%

Set 4 0.1 0.1 0.1 0.1 0.3 0.3 81.9%/85.8%

Set 5 0.1 0.1 0.1 0.1 0.25 0.35 82.7%/87.1%
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Another strength lies in combining image-based, video-based,

and object detection networks into an ensemble-based model, where

each method is used to target and classify a specific activity. As a re-

sult, such an ensemble network leverages the advantages of those in-

dividual networks, addressing the unique features of each activity.

Our approach worked exceptionally well for specific activities,

namely Driving, Exercise, and Shopping, which achieved Top-1

scores of 100%.

Privacy concerns are a crucial and important aspect of this study,

which we address seriously and detailed strategies on ways to mitigate

privacy risks are outlined in our study protocol.5 Throughout the

study, participants were reminded that they could withdraw consent

at any time, and that participants should prioritize their privacy (eg,

turn off camera) over the needs of the research. As such, it is possible

that due to privacy considerations we did not capture the full range of

participants’ daily activities using the wearable camera approach.

Figure 4. Example classification results of our weighted ensemble network for patients 03, 12, 18, 26. The class in bold corresponds to the ground truth labels.

Figure 5. Complete illustrations of daily activities for patients 03, 12, 28, 26.
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To this date, we have not received any withdrawal or complaints

from participants or third parties. Several approaches were used to

protect participants’ identities and to elicit bystander consent.5 To

recap, we asked participants to:

• Carry a wallet-sized card with description of the study, ethics ap-

proval, and contact details of the researchers shall they get

approached by third parties about the study;
• Inform their household members, friends and acquaintances

about the study, and seek permission from these parties prior to

recording;
• Turn off video recording if participant (or any bystander)

requests filming to be stopped;
• Take note of the time requests were made by bystanders that

video recordings were to be deleted, and assure the enquirers

that the related recordings will be removed; and
• Review video footage during post-study session and delete any

recording they do not want others to see before sharing with

researchers.

Furthermore, a potential technical solution to alleviate this issue

is to apply face/object detection models, such as Yolo,27 to detect

the faces captured by the camera and de-identify them accordingly.

Such de-identification is not expected to affect the performance of

our model since our method does not rely on any face features for

activity recognitions. Although this technical approach to de-

identify participants’ faces and protect their identity is available, we

did not need to apply these techniques in this study.

Future research direction
From a methodological perspective, further research is required to

investigate under what circumstances it is acceptable and appropri-

ate to use wearable camera to study self-management behaviors. For

example, we have found that wearable cameras have been particu-

larly useful to understand what people do at home, especially when

they are alone on their own. This approach has been important for

understanding their daily routines, at what time and how much time

they spent on each activity, and how their home environment may

affect their abilities to conduct self-management. Such intrinsic

knowledge is often ingrained in participants’ daily routines that peo-

ple experience difficulty in articulating certain aspects accurately.

Wearable cameras, in this case, could offer a reliable alternative ap-

proach in studying self-management routines, especially for those

who spend a lot of time alone at home, without causing additional

burden to recall details, nor worrying about bystander involvement.

From a deep learning perspective, classification accuracy can be fur-

ther enhanced by collecting more training data, especially in the

Managing Health class, to augment training samples. In addition,

the overall classification may be improved by integrating metric

learning, such as triplet loss.

It is noteworthy that our ensemble network can be considered a

rather generic activity recognition model and has the potential to in-

vestigate daily activities of people with other chronic conditions.

That is, the developed method is potentially a generalizable and ro-

bust approach to study self-management routines beyond type 2 dia-

betes. However, generalization of our deep learning approach

beyond the diabetes context is outside the focus of this study, and fu-

ture studies could utilize our approach to investigate non-diabetes

context and examine whether our approach harnessing wearable

cameras and deep learning to study other chronic conditions is repli-

cable and generalizable.

CONCLUSION

In this work, we have successfully applied deep learning to classify

images of daily living collected from wearable cameras worn by peo-

ple with type 2 diabetes and chronic comorbidities with a high level

of accuracy. Fine-turning these methods would facilitate an alterna-

tive approach to studying self-management, providing a more realis-

tic and objective picture of the challenges involved. By offering a

more robust approach to understand the ‘work’ involved in self-

management, we hope to shed light into understanding areas where

self-management may fail, and help people overcome the daily chal-

lenges they experience with managing their chronic conditions.
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