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Abstract
Objective: This study aims to summarize the research literature evaluating machine learning (ML)-based clinical decision support (CDS) systems
in healthcare settings.

Materials and methods: We conducted a review in accordance with the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and
Meta Analyses extension for Scoping Review). Four databases, including PubMed, Medline, Embase, and Scopus were searched for studies
published from January 2016 to April 2021 evaluating the use of ML-based CDS in clinical settings. We extracted the study design, care setting,
clinical task, CDS task, and ML method. The level of CDS autonomy was examined using a previously published 3-level classification based on
the division of clinical tasks between the clinician and CDS; effects on decision-making, care delivery, and patient outcomes were summarized.

Results: Thirty-two studies evaluating the use of ML-based CDS in clinical settings were identified. All were undertaken in developed countries
and largely in secondary and tertiary care settings. The most common clinical tasks supported by ML-based CDS were image recognition and
interpretation (n¼12) and risk assessment (n¼9). The majority of studies examined assistive CDS (n¼23) which required clinicians to confirm
or approve CDS recommendations for risk assessment in sepsis and for interpreting cancerous lesions in colonoscopy. Effects on decision-
making, care delivery, and patient outcomes were mixed.

Conclusion: ML-based CDS are being evaluated in many clinical areas. There remain many opportunities to apply and evaluate effects of ML-
based CDS on decision-making, care delivery, and patient outcomes, particularly in resource-constrained settings.

Key words: artificial intelligence; automation; clinical decision support; evaluation; machine learning.

Background and significance

Contemporary clinical decision support (CDS) systems are
increasingly being embedded with artificial intelligence (AI),
especially machine learning (ML) models trained on a wide
variety of clinical datasets.1,2 Like the previous generation of
CDS which were largely based on human-engineered rules,
ML-based CDS can support clinicians in tasks such as disease
diagnosis, treatment selection, patient monitoring, and risk
stratification for primary prevention.3 While many studies
have demonstrated the performance of ML models for specific
clinical tasks,4,5 little is known about the use of ML-based
CDS in healthcare settings as well as their effects on decision-
making, care delivery, and patient outcomes.6 In contrast,
rule-based CDS have been shown to be effective in improving
care delivery and patient outcomes in a wide-variety of clini-
cal tasks such as computerized provider order entry (CPOE)
and electronic prescribing, diagnostic assistance, and for pre-
ventive care reminders.7,8

Previous reviews have examined the application of AI in
specific health conditions, such as colonoscopy, stroke, and
sepsis.9–11 This scoping review aims to take a broader view by
summarizing the research literature about the evaluation of
ML-based CDS in clinical settings. Here, ML models must
perform well on real-world populations and ML-based CDS
need to be seamlessly integrated with clinical workflows as
well as the existing information technology (IT) infrastruc-
ture.12 To better understand the role of ML-based CDS in
clinical tasks, we examined the level of system autonomy13

and summarized effects on decision-making, care delivery,
and patient outcomes.14 As ML-based CDS operates within a
human-technology system, clinician interaction with CDS
influences how they make decisions that then affect care deliv-
ery and patient outcomes. Previous reviews that have exam-
ined AI in clinical settings have not considered the level of
system autonomy or the specific role of the CDS in clinical
tasks.15–17
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Materials and methods

Given that the research literature about the evaluation of ML-
based CDS appears young and heterogeneous, a scoping
review was undertaken focusing on studies reporting the eval-
uation of ML-based CDS systems in clinical settings and their
effects on decision-making, care delivery, or patient outcomes.
The review was conducted using the methodology outlined by
Arksey and O’Malley18 and refined by Levac et al.19 This
framework consists of 5 steps: setting the research question;
searching relevant studies; selecting the study based on inclu-
sion and exclusion criteria; extracting the data; and collating,
summarizing, and reporting the results. Reporting was guided
by the PRISMA-ScR (Preferred Reporting Items for System-
atic Reviews and Meta Analyses extension for Scoping
Reviews) standard.20

Search strategy

Bibliographic databases, including PubMed, Medline,
Embase, and Scopus were searched in April 2021. The search
query used was (“artificial intelligence” OR “machine
learning” OR “deep learning”) AND (“clinical decision
support” OR “computer-assisted”) AND (predict* OR
screen* OR diagno* OR treat* OR manag* OR detect* OR
prescri* OR prognosis OR triage OR monitor*) AND (inpa-
tient* OR in-patient OR “clinical setting” OR “hospital
setting” OR “primary care”). Appropriate vocabulary terms
were included (Table S1), and the retrieval set was limited to
articles published in 2016 or later. In addition to the 4 data-
bases, we searched ClinicalTrials.gov and manually searched
the reference lists of the retrieved articles using a forward-
backward snowballing approach.

Study selection

The search identified a total of 1255 studies (Figure 1). After
removal of duplicates, the title and abstract of 1111 articles
were screened independently by 2 reviewers (A.P.S. and F.M.)
to identify relevant studies according to inclusion and exclu-
sion criteria (Table S2).21 Articles were limited to literature
published in commercial bibliographic databases, including
primary studies published over a 5-year period (2016-2021).
Our search was limited to 5 years as the application of ML-
based CDS and medical device approvals were mostly since
2016.13,15 Studies about systems not used by healthcare pro-
fessionals (ie, consumer facing systems without clinician
supervision) or those reporting development or validation of
models on retrospective datasets were excluded. Non-English
articles and conference abstracts were also excluded leaving
45 studies for further assessment. Full-length articles were
retrieved and assessed independently against the inclusion cri-
teria by 2 reviewers (A.P.S. and F.M.). Articles not meeting
the inclusion criteria were excluded and any disagreements
about inclusion or exclusion of an article were resolved by
consensus.

Data extraction and synthesis

For each included study, descriptive information about the
clinical task, care setting, study design, CDS users, CDS task,
ML type, and method were extracted. Key findings about
CDS effects on clinical decision-making, care delivery, and
patient outcomes were also identified. The following data
were extracted:

Geo-economic setting
We examined the countries where the study took place and
classified them using the World Bank’s classification by
income.22

CDS task
CDS systems can assist with a variety of clinical tasks. We
categorized CDS tasks into1: evidence retrieval, CPOE and
electronic prescribing, diagnostic assistance, therapy planning
and critiquing, risk assessment, process support systems,
image recognition and interpretation including computer
aided diagnosis, and expert laboratory information systems.

ML type and method
Where available the type and method of ML were examined.
ML type was categorized into supervised learning, unsuper-
vised learning, and reinforcement learning. ML methods were
reported as extracted from the literature. A study could be
assigned to 1 or more method(s).

Level of autonomy
The level of autonomy was examined using a previously pub-
lished 3-level classification based on how clinical tasks are
divided between the clinician and CDS13:

1) Autonomous information: These CDS systems are char-
acterized by a separation between what CDS and clini-
cian contribute to the task, where CDS contributes
information that clinicians can use to make decisions,
for example, an imaging system provides a colored dis-
play to enhance clinician’s perception to differentiate
human tissue images.

2) Assistive: These CDS are characterized by overlap in
what clinician and CDS contribute to the task, but
where clinicians provide the decision on the task. Such
overlap or duplication occurs when clinicians need to
confirm or approve CDS provided information or deci-
sions; for example, a CDS assists clinicians to detect
osteoarthritis from a knee X-ray image with a disclaimer
that the system should be used in lieu of full patient
evaluation.

3) Autonomous decision: Here CDS provides the decision for
the clinical task which can then be enacted by clinicians or
the CDS itself, for example, a CDS provides screening for
diabetic retinopathy in primary practice where the result is
directly used as referral decisions.

To determine the level of autonomy, we examined the CDS
task, the stage of human information processing that was
automated by the CDS,23 as well as the CDS input and out-
put. The clinician task and CDS task were subsequently com-
pared to assess whether clinicians needed to verify decisions
provided by the CDS system (assistive) or could rely on the
CDS information or decisions (autonomous). Classification of
the stage of automation and level of autonomy was performed
by A.P.S. and reviewed by D.L.

Effects on decision-making, care delivery, and patient
outcomes
CDS effects were examined using an established framework
called the information value chain, which shows that multiple
steps are necessary from using ML-based CDS to impacting
patient outcomes including clinicians interacting with CDS
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systems, receiving new information that then alters decisions,
the care delivery process, and outcomes.14,24 For instance, a
clinician may interact with a CDS system to receive important
new information based on which they decide to implement
(decision-making) an intervention (care delivery) that leads to
changes in the patient’s clinical condition (patient outcomes).
Thus, effects of CDS systems were examined based on
changes in decision-making, care delivery, or patient out-
comes. When studies did not evaluate these effects, we sum-
marized their key findings.

A narrative synthesis then integrated findings into descrip-
tive summaries for each level of autonomy. We focused on the
clinical task assisted by CDS and reported effects on decision-
making, care delivery, or patient outcomes.

Results

Descriptive analysis of all studies

We identified 32 studies describing the evaluation of ML-
based CDS in healthcare settings (Figure 1, Table 1). The
majority were prospective cohort studies (n¼ 18; 56%) or
randomized controlled trials (RCTs) (n¼ 9; 28%) in
secondary-tertiary care settings (n¼ 29; 91%). Only 14
(44%) reported the clinical trial registration. Most studies
were conducted after 2019 (n¼27; 84%) in high-income
nations (n¼24; 75%; Figure 2).

Of the 32 studies reviewed, the most common task sup-
ported by ML-based CDS was image recognition and inter-
pretation (n¼ 12; 38%) followed by risk assessment (n¼ 9;
28%) where sepsis (n¼ 5) was the predominant risk to be
evaluated (Table 2). Most CDS were based on supervised
learning (n¼ 28; 88%) using a wide variety of methods,
including random forest (n¼ 7) and convolutional neural net-
works (n¼ 7). While convolutional neural networks were
mainly used for image recognition (n¼ 6), classic ML meth-
ods such as random forest (n¼ 4) and gradient boosting
(n¼ 2; Table 3) were utilized for risk assessment. A summary
of the studies by the level of autonomy of the CDS is given in
the following sections (Table 4).

Assistive: CDS assists human decisions

Most studies examined ML-based CDS that were assistive
(n¼23; Table 2). Here clinicians needed to confirm or
approve CDS provided information or decisions such as rec-
ommendations, alerts, or risk scores for diagnosis or further
actions. The following sections summarize these studies by
the CDS task.

Risk assessment
Eight studies related to CDS that assisted clinicians in assess-
ing the risk of complications during hospitalization. Of these,
5 alerted clinicians about sepsis risk by text message or phone
call providing them with a predictive risk score for interpreta-
tion, triggering re-assessment and further action should the
clinician observe heightened risks.27–29,42,43 One study used
the learning health system framework to integrate a deep
learning sepsis CDS into routine care.42 In 2 other studies, the
majority of clinicians (55-62%) did not change their percep-
tions about sepsis risk and reported no change in care deliv-
ery, although few orders were significantly increased such as
intravenous bolus, hematology, and metabolic blood
tests.28,29 However, 2 studies, including 1 RCT by Shimabu-
kuro et al., demonstrated that the use of a CDS to predict sep-
sis risk shortened hospital stay and reduced mortality.27,43

Risk of delirium, another complication of hospitalization,
was predicted by 1 CDS using a random forest-based algo-
rithm achieving a sensitivity of 74% and a specificity of
82%.32,33 Although most clinicians indicated that the infor-
mation about delirium and its early detection provided by the
CDS was useful (n¼ 47; 68%), only 1 in 3 (33%) reported
using the system and considering its recommendations in their
clinical decisions (19%).32 Another study that compared the
accuracy of perioperative risk assessment between physicians
and CDS found physicians changing their risk-assessment
score in more than 75% of cases (n¼ 150).26

Image recognition and interpretation
The next most common CDS task was image recognition and
interpretation (n¼ 8). Six studies examined polyp detection
during colonoscopy, where CDS assisted clinicians to

Figure 1. Article search and retrieval process flow diagram.
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distinguish between cancerous adenoma lesions and benign
polyps.30,34,35,38,46,47 Of these, 5 RCTs demonstrated superi-
ority of CDS in assisting clinicians.30,34,38,46,47 CDS-assisted
colonoscopy was found to increase the adenoma finding rate
leading to better clinical outcomes. In another prospective
study, the real-world performance of a colonoscopy image
recognition system was shown to be comparable to expert
gastroenterologists.35

Another study evaluated a radiology double reading sys-
tem whereby a CDS was used to detect discrepancies
between CT scans and the interpretation reports provided
by radiologists.45 Here, the CDS combined ML algorithms
with natural language processing to process lung CTs and

provide interpretation reports. Out of the 104 potential pul-
monary cancer nodules flagged by the system, decisions on
7 cases (7%) were subsequently corrected by re-issuing
results about clinically significant nodule requiring follow-
up care. Another CDS that assisted clinicians in magnetic
resonance imaging segmentation for radiotherapy was
shown to shorten segmentation time while maintaining the
safety of organs-at-risk.40

Diagnostic assistance
Three CDS assisted clinician in diagnosis. A CDS that pro-
vided a probability score, based on web-based patient ques-
tionnaires, predicted differential diagnosis of various pediatric
neuromuscular diseases.31 An antibiotic selection CDS used
blood and microbiological data to predict the probability of
bacterial infection.37 The CDS provided recommendations for
prescription of antibiotics within 72 hours of patient admis-
sion. Another RCT of a CDS assisting emergency dispatchers
in diagnosing out of hospital cardiac arrest demonstrated
higher sensitivity when dispatchers were assisted by CDS
(85%) compared to dispatchers alone (77%).25 However, this
study observed lower specificity in CDS-assisted dispatchers
versus dispatchers alone (97.4% vs 99.6%, P< .001) and no
difference in dispatchers’ decision to recognize cardiac arrest.

Treatment planning
Two studies compared the use of ML-based CDS in treatment
planning with conventional techniques. In the first, an ML
algorithm that assisted with planning of prostate cancer bra-
chytherapy was shown to shorten planning time and maintain
safe dosimetry levels.36 The second involved computed
tomography-guided radiotherapy planning where CDS used
reduced treatment time and the radiotherapy dose by 42%.44

Process support
One study examined a CDS that identified patients at high-
risk for glycemic control and recommended socio-clinical
interventions to assist clinicians in managing diabetic patients
in a primary care setting.39 Undesirably, clinicians reported
that the system was unhelpful in identifying the right interven-
tions (median score 11 out of 0-100 on helpfulness scale).

CPOE & Electronic prescribing
One study evaluated an ML-enabled order entry system
designed to provide both synchronous and asynchronous
alerts about prescription errors using outlier detection.41 The
system was shown to have high accuracy (85%) and was con-
sidered to be clinically useful with 43% of alerts resulting in
the subsequent modification of orders. Clinicians changed
prescriptions in response to system flags about bradycardia,
elevated liver function tests, and hypotension.

Autonomous information: CDS provides

information to make decisions

Only 2 studies examined ML-based CDS that contributed
information for clinicians to make decisions. In the first, a
CDS that provided an objective prediction of the patient’s dry
weight for hemodialysis prescription was shown to be effec-
tive in lowering or stopping antihypertensive treatments in
29% of cases compared to a subjective estimation by clini-
cians.49 The second study examined use of a CDS that pro-
vided body mass index (BMI) prediction based on 190

Table 1. Characteristics of studies reporting evaluation of ML-based CDS

in healthcare settings (n¼ 32).

Characteristics n %

Study design
Experimental, randomized controlled trial 10 31
Experimental, nonrandomized trial 1 3
Experimental, cross-over trial 1 3
Observational, prospective cohort 17 53
Observational, cross-sectional 2 6
Mixed-methods 1 3

Year of publication
2021 8 25
2020 13 41
2019 6 19
2018 2 6
2017 2 6
2016 1 3

Clinical trial registration 14 44
Geo-economic setting

High-income countries (HIC) 24 75
Upper middle-income countries (UMIC) 8 25
Lower middle-income countries (LMIC) – –
Low-income countries (LIC) – –

Clinical setting
Primary care 2 6
Secondary-tertiary care 29 91
Community care 1 3

CDS task
Image recognition & interpretation 12 38
Risk assessment 9 28
Diagnostic assistance 5 16
Treatment planning & critiquing 3 9
Process support system 2 6
CPOE & electronic prescribing 1 3
Evidence retrieval – –
Expert laboratory information system – –

ML type
Supervised learning 28 88
Reinforcement learning 1 3
Unsupervised learning – –
Not reported 3 9

ML methoda

Support vector machine 3 9
Random forest 7 22
Logistic regression 2 6
Gradient boosting 3 9
Convolutional neural network 7 22
Artificial neural network 3 9
(Unspecified) deep learning 3 9

Abbreviations: CDS, clinical decision support; CPOE, computer processed
order entry; ML, machine learning.

a CDS could be assigned to 1 or more ML method(s).
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variables related to genetic, social, diet, and other risk factors,
identifying 4 important predictive variables for early interven-
tion in childhood obesity and predicting disease risk, includ-
ing nutri-status perception, energy expenditure, mother’s
BMI, and father’s BMI.48

Autonomous decision: CDS decides in place of

human

Seven studies examined ML-based CDS that provided deci-
sions for clinical tasks that could be enacted by clinicians.
Four of these involved image recognition and interpretation

CDS. A CDS which processed clinical dermatology photo-
graphs to distinguish between fungal onychomycosis and
noninfectious onychodystrophy was found to reduce prescrip-
tions for unnecessary antifungal medications.52 Another study
involving an RCT with 300 patients examined the diagnosis
of childhood cataract based on anterior ocular images.53

Here, the CDS provided recommendations for surgery or con-
servative follow-up based on the diagnosis. Although real-
world performance was degraded compared to expert clini-
cians, patients managed in the CDS group reported faster
service (2.79 vs 8.53 minutes, P< .001) and better

Figure 2. Geographical distribution of the included studies.

Table 2. Included studies by CDS task and level of system autonomy.13

Level of autonomy Assistive Autonomous
information

Autonomous
decision

Total

CDS task Image recognition & interpretation 8 – 4 12
Risk assessment 8 – 1 9
Diagnostic assistance 3 1 1 5
Treatment planning 2 1 – 3
Process support system 1 – 1 2
CPOE & electronic prescribing 1 – – 1

23 2 7 32

Abbreviations: CDS, clinical decision support; CPOE, computerized provider order entry.

Table 3. Included studies by ML method and CDS task.

CDS task CPOE &
e-prescribing

Diagnostic
assistance

Treatment
planning

Risk
assessment

Process
support

Image
recognition

Total

ML method Support vector machine – 2 – – – 1 3
Random forest – 2 – 4 – 1 7
Logistic regression – 2 – – – – 2
Gradient boosting – 1 – 2 – – 3

Convolutional neural network – – 1 – – 6 7
Artificial neural network – 2 – 1 – – 3
Unspecified deep learning – 1 – – – 2 3

Abbreviations: CDS, clinical decision support; CPOE, computerized provider order entry.
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Table 4. Studies reporting evaluation of ML-based CDS in clinical settings grouped by the level of autonomy (n¼ 32).

Author Country Clinical task Care setting; study
design

CDS users CDS task1 Stage of human
information
processing23

Effects on decision-making, care deliv-
ery and patient outcomes, or other key

findings

Assistive: CDS assists human decisions (n 5 23)
Blomberg et al. (2021)25

Denmark
Identifying patients sus-

pected of outside of
hospital cardiac arrest
in emergency phone
calls

Secondary-tertiary care;
experimental random-
ized controlled trial

Emergency dispatchers,
Emergency physicians

Diagnostic assistance Decision selection Decision: No significant difference in
dispatchers’ decision to recognize
cardiac arrest. Performance of CDS-
assisted dispatchers versus dispatch-
ers alone: sensitivity (85% vs 78%,
P< .001) and specificity (97% vs
100%)

Brennan et al. (2019)26

United States
Risk assessment for 6

postoperative
complications

Secondary-tertiary care;
experimental non-
randomized trial

Surgeons,
anesthesiologists

Risk assessment Decision selection Decision: Physicians changed their
risk-assessment score in more than
75% cases (n¼150)

Burdick et al. (2020)27

United States
Predicting sepsis in hos-

pitalized patients and
providing alerts to
clinician

Secondary-tertiary care;
observational pro-
spective cohort

Doctors/Critical Care Risk assessment Decision selection Outcomes: Decreased hospital mortal-
ity by 39.5%, hospital length of stay
by 32.3%, and 30-day readmission
rate for sepsis-related patients by
22.7%

Giannini et al. (2019)28

United States
Predicting sepsis in hos-

pitalized patients and
providing alerts to
clinician

Secondary-tertiary care;
observational pro-
spective cohort

Doctors/Critical Care Risk assessment Information analysis Care: Slight increase in lactate test-
ing, administration of IV fluid
boluses, and blood test (complete
blood count and metabolic panel)

Outcomes: Shortening time to ICU
transfer. No significant effect on
hospital length of stay and
mortality

Ginestra et al. (2019)29

United States
Predicting sepsis in hos-

pitalized patients and
providing alerts to
clinician

Secondary-tertiary care;
observational pro-
spective cohort

Nurses and doctors Risk assessment Decision selection Decision: Majority of clinicians
(55% nurses and 62% providers)
reported no change in perception
of the patient’s risk for sepsis

Care: Some clinicians (30% nurses
and 9% providers) reported
change of care upon alert from
CDS

Gong et al. (2020)30

China
Detecting colonoscopy

insertion-withdrawal
time and endoscope
slipping to aid clini-
cian distinguish
between adenomatous
colorectal cancer and
benign polyps

Secondary-tertiary care;
experimental random-
ized controlled trial

Gastroenterologist/
Endoscopist

Image recognition &
interpretation

Information analysis Outcomes: Increased adenoma detec-
tion rate over the control group
(odds ratio 2.30, 95% CI 1.40–
3.77; P¼ .0010)

Grigull et al. (2016)31

Germany
Diagnosing neuromus-

cular diseases (7 diag-
nosis) based on
questionnaire
responses

Secondary-tertiary care;
observational pro-
spective cohort

Primary care physicians Diagnostic assistance Decision selection Real world accuracy reached 89% in
diagnosing different neuromuscular
diseases

(continued)
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Table 4. (continued)

Author Country Clinical task Care setting; study
design

CDS users CDS task1 Stage of human
information
processing23

Effects on decision-making, care deliv-
ery and patient outcomes, or other key

findings

Jauk et al. (2021)32

Austria
Predicting the risk of

delirium among hos-
pitalized patients

Secondary-tertiary care;
mixed-method

Physicians and nurses Risk assessment Decision selection Decision: Majority of clinician agreed
that the CDS provided additional
information (68%), but only 19%
considered the output of CDS in
clinical decisions and 33% used the
CDS regularly

Jauk et al. (2020)33

Austria
Predicting the risk of

delirium among hos-
pitalized patients

Secondary-tertiary care;
observational pro-
spective cohort

Physicians and nurses Risk assessment Decision selection CDS performed with sensitivity of
74% and specificity of 82%

Care: High-risk patient obtained
nonpharmacological preventive
treatment (eg, reinforcement of vis-
ual and hearing aids, hydration,
sleep time management, clear
communication).

Liu et al. (2020)34

China
Detecting polyps in

colonoscopy and dis-
tinguishing between
adenomatous colorec-
tal cancer and benign
polyps

Secondary-tertiary care;
experimental random-
ized controlled trial

Gastroenterologists/
Endoscopists

Treatment planning
& critiquing

Decision selection Outcomes: Increase in adenoma detec-
tion rate versus the control group
(39% vs 24%, P< .001)

Mori et al. (2020)35

Japan
Detecting polyps in

colonoscopy and dis-
tinguishing between
adenomatous colorec-
tal cancer and benign
polyps

Secondary-tertiary care;
observational pro-
spective cohort

Gastroenterologists/
Endoscopist

Image recognition &
interpretation

Decision selection In clinical setting, CAD performed as
good as expert gastroenterologist in
distinguishing between adenoma-
tous colorectal cancer and benign
polyps. NPV¼96%

Nicolae et al. (2020)36

Canada
Planning treatment for

low-dose-rate brachy-
therapy to be input
into a Treatment
Planning System
(TPS)

Secondary-tertiary care;
experimental random-
ized controlled trial

Urologists Image recognition &
interpretation

Information analysis Care: Shorter planning mean plan-
ning time for the PIPA arm
(2.38þ0.96 minutes) compared
with the conventional
(43.13þ58.70 minutes) P� .05

Outcomes: Excellent safety by the
CDS with no significant differences
was observed in preimplant or day
30 dosimetry

Rawson et al. (2018)37

United Kingdom
Diagnosing a commun-

ity-acquired bacterial
infection within 72
hours of admission,
leading to decision of
antibiotic prescription

Secondary-tertiary care;
observational pro-
spective cohort

Physicians Diagnostic assistance Decision selection Care: Ordering microbiological labo-
ratory tests for individuals with high
possibility of bacterial infection
prior to antibiotic prescription

Repici et al. (2020)38

Italy
Detecting polyps in

colonoscopy and dis-
tinguishing between
adenomatous colorec-
tal cancer and benign
polyps

Primary care; experi-
mental randomized
controlled trial

Gastroenterologists/
Endoscopists

Process support
system

Information analysis Outcomes: Increase in adenoma detec-
tion rate over the control group
(55% vs 40%, P< .001)

(continued)

2
0

5
6

J
o
u
rn
a
l
o
f
th
e
A
m
e
ric

a
n
M
e
d
ic
a
l
In
fo
rm

a
tic

s
A
s
s
o
c
ia
tio

n
,
2
0
2
3
,
V
o
l.
3
0
,
N
o
.
1
2

D
ow

nloaded from
 https://academ

ic.oup.com
/jam

ia/article/30/12/2050/7255954 by M
acquarie U

niversity user on 19 N
ovem

ber 2023



Table 4. (continued)

Author Country Clinical task Care setting; study
design

CDS users CDS task1 Stage of human
information
processing23

Effects on decision-making, care deliv-
ery and patient outcomes, or other key

findings

Romero-Brufau et al. (2020)39

United States
Predicting high glycemic

risk in patient with
diabetes and provid-
ing recommendation

Primary care; observa-
tional cross-section

Primary care physicians,
registered nurses,
licensed practical
nurses, social workers

CPOE & electronic
prescribing

Information analysis Care: Clinician felt that care was better
coordinated (P< .001)

Savenije et al. (2020)40

Netherlands
Segmenting organs-at-

risk for prostate
radiotherapy while
manual segmentation
is time consuming

Secondary-tertiary care;
observational pro-
spective cohort

Radiotherapists Image recognition &
interpretation

Information analysis Faster inference time by CDS com-
pared to conventional methods (14
minutes vs 60 seconds) while main-
taining good performance by dice
similarity coefficient (0.92-0.98 for
various organs)

Segal et al. (2019)41

Israel
Preventing prescription

error based on
irregularities

Secondary-tertiary care;
observational pro-
spective cohort

Physicians Risk assessment Decision selection Decision: 43% of the alerts caused
changes in subsequent medical
orders, 39% of the erroneous medi-
cation orders were modified during
the order of medication (synchro-
nous flags), and 61% were modified
during monitoring phase (asynchro-
nous flags) following a change in
clinical indicators

Sendak et al. (2020)42

United States
Predicting sepsis in hos-

pitalized patients and
providing alerts to
clinicians

Secondary-tertiary care;
observational pro-
spective cohort

Intensivists, emergency
department clinicians,
rapid response team,
nurses

Risk assessment Decision selection Learning health system framework
was used to integrate system to rou-
tine care

Shimabukuro et al. (2017)43

United States
Predicting sepsis in hos-

pitalized patients and
providing alerts to
clinicians

Secondary-tertiary care;
experimental random-
ized controlled trial

Critical care doctors Risk assessment Information analysis Outcomes: Decreased length of stay
from 13.0 to 10.3 days (P¼ .042).

Decreased in-hospital mortality by
12% (P¼ .018)

Sibolt et al. (2021)44

Denmark
Generating pre-treat-

ment plans for adap-
tive guided
radiotherapy in blad-
der cancer

Secondary-tertiary care;
observational pro-
spective cohort

Radiotherapists Treatment planning
& critiquing

Decision selection Care: Patients obtained faster treat-
ment adaptive CDS with median
duration of 17.6 minutes from
preparation to treatment delivery

Outcomes: Adaptive CDS reduced
high-dose planning target volume
in bladder by 42% compared to
the scheduled conventional
technique

Tan et al. (2021)45

Singapore
Recognizing pulmonary

nodules in CT scan as
a double read safety
system

Secondary-tertiary care;
observational pro-
spective cohort

Radiologists, patient
safety officers

Image recognition &
interpretation

Information analysis Decision: Seven cases of 104 flagged
images were deemed clinically sig-
nificant and clinicians were
informed to change subsequent
management

(continued)
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Table 4. (continued)

Author Country Clinical task Care setting; study
design

CDS users CDS task1 Stage of human
information
processing23

Effects on decision-making, care deliv-
ery and patient outcomes, or other key

findings

Wang et al. (2019)46

China
Detecting polyps in

colonoscopy and dis-
tinguishing between
adenomatous colorec-
tal cancer and benign
polyps

Secondary-tertiary care;
experimental random-
ized control trial

Gastroenterologists/
Endoscopists

Image recognition &
interpretation

Information analysis Outcomes: Increased adenoma detec-
tion rate versus the control group
(29% vs 20%, P< .001)

Wang et al. (2020)47

China
Detecting polyps in

colonoscopy and dis-
tinguishing between
adenomatous colorec-
tal cancer and benign
polyps

Secondary-tertiary care;
observational perspec-
tive cohort

Gastroenterologists/
Endoscopists

Image recognition &
interpretation

Information analysis Outcomes: Decreased in adenoma
miss rate versus the control group
(14% vs 40%, P< .0001)

Autonomous information: CDS provides information to make decisions (n 5 2)
Marcos-Pasero et al. (2021)48

Spain
Calculating predicted

body mass index
(BMI) to predict child-
hood obesity and give
early intervention

Community; observatio-
nal cross-section

Clinical nutritionists Diagnostic assistance Information analysis This study collected information by
self-questionnaire. Five top predic-
tors were nutrition perception, dif-
ference between energy intake and
expenditure, father’s BMI, mother’s
BMI, and mother’s meals

Niel et al. (2018)49

France
Estimating dry weight in

hemodialysis patient
to avoid side effects of
hypertension due to
underestimation or
overestimation of dry
weight

Secondary-tertiary care;
experimental cross-
over trial

Nephrologists Treatment planning
& critiquing

Information analysis Care: discontinuation or decrease in
antihypertensive prescription.

Outcomes: significant decrease in
systolic blood pressure or better
hypertension control.

Autonomous decision: CDS decides in place of human (n 5 7)
Chen et al. (2020)50

United States
Deciding whether to

accept or ignore alerts
and following up with
shingles vaccination

Secondary-tertiary care;
observational pro-
spective cohort

Physicians Process support
system

Decision selection Care: Weekly counts of shingles vacci-
nation remained stable after activa-
tion of suppression system versus
control group (326.3 vs 331.3,
P¼ .38).

Isma’eel et al. (2017)51

Lebanon
Predicting the presence

of cardiac ischemia
Secondary-tertiary care;

observational pro-
spective cohort

Cardiologists, primary
care physicians

Risk assessment Decision selection Decision: Change physician’s deci-
sion to perform downstream stress
testing.

CDS performed better than conven-
tional risk model with higher dis-
criminatory power 1.61, NPV
98%, sensitivity 91%

Kim et al. (2020)52

South Korea
Diagnosing onychomy-

cosis by clinical pho-
tograph, leading to
decision of antifungal
prescription

Secondary-tertiary care;
observational pro-
spective cohort

Dermatologists, other
physicians
(nondermatologist)

Image recognition &
interpretation

Decision selection Decision: Change physician’s prescrip-
tion of antifungal medication (82%)
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Table 4. (continued)

Author Country Clinical task Care setting; study
design

CDS users CDS task1 Stage of human
information
processing23

Effects on decision-making, care deliv-
ery and patient outcomes, or other key

findings

Lin et al. (2019)53

China
Diagnosing childhood

cataract, providing
comprehensive evalu-
ation of the disease,
and recommending
option of surgery

Secondary-tertiary care;
experimental random-
ized controlled trial

Ophthalmologists, pri-
mary care physicians

Image recognition &
interpretation

Decision selection Faster time in receiving diagnosis by
CDS (2.79 minutes) compared to
experts (8.52 minutes), P< .001

CDS had inferior accuracies com-
pared to experts, both in determin-
ing cataract diagnosis (87%) and
treatment recommendation (71%)

Wintjens et al. (2020)54

Netherlands
Diagnosing COVID-19

by recognizing the
pattern of volatile
organic compound
from a breath ana-
lyzer to exclude
infected patients for
elected surgery

Secondary-tertiary care;
observational pro-
spective cohort

Physicians Diagnostic assistance Decision selection The CDS demonstrated real world sen-
sitivity of 86% and NPV of 92% to
be used as triage tool for patients
undergo elected surgery

Xiao (2021)55

China
Diagnosing hepatobili-

ary diseases using
ocular images

Secondary-tertiary care;
observational pro-
spective cohort

Ophthalmologists, hepa-
tobiliary surgeons

Image recognition &
interpretation

Decision selection The ROC were 0.93 (0.91-0.94) for
slit lamp and 0.68 for fundus images

Yao et al. (2021)56

United States
Identifying patients with

ventricular dysfunc-
tion to recommend
for further supporting
examination

Primary care; experi-
mental randomized
controlled trial

Primary care physicians Image recognition &
interpretation

Decision selection Outcomes: Increase diagnosis of low
ejection fraction within 90 days of
the ECG (2.1% in intervention arm
vs 1.6% in control group OR 1.32
P¼ .007)

Abbreviations: CDS: clinical decision support; CPOE: computerized provider order entry; CT: computed tomography; ECG: electrocardiogram; NPV: negative predictive value; ROC: receiving operating
characteristic.

J
o
u
rn
a
l
o
f
th
e
A
m
e
ric

a
n
M
e
d
ic
a
l
In
fo
rm

a
tic

s
A
s
s
o
c
ia
tio

n
,
2
0
2
3
,
V
o
l.
3
0
,
N
o
.
1
2

2
0

5
9

D
ow

nloaded from
 https://academ

ic.oup.com
/jam

ia/article/30/12/2050/7255954 by M
acquarie U

niversity user on 19 N
ovem

ber 2023



satisfaction. The third study demonstrated real-world per-
formance of a CDS to screen patients for 7 hepatobiliary dis-
eases based on changes in eye appearance and color using slit
lamp and fundus images (AUC¼ 0.74).55 The fourth study
involved a CDS that identified ventricular dysfunction from
analysis of electrocardiogram (ECG) images and was found to
maintain referrals rate for echocardiography (18% control vs
19% CDS intervention, P¼ .17), while increasing the case
finding at the same time (odds ratio¼1.32; P¼ .007).56

The fifth study evaluated a CDS that automated referrals
for costly stress test and noninvasive imaging based on the
risk of cardiac ischemia from clinical data.51 The CDS was
shown to perform better than a conventional risk model with
potential to reduce 59% of unnecessary tests (n¼486). The
sixth study related to a CDS that automated the diagnosis of
COVID-19 to screen patients for elective surgery.57 The sys-
tem utilized biosensors for breath analysis and was demon-
strated to have a real-world sensitivity of 0.86 and negative
predictive value of 0.92. The final study examined CDS to
suppress irrelevant alerts from another CDS about shingles
vaccination.50 The CDS deployment was able to reduce 44%
of inappropriate alerts and maintained similar vaccination
counts.

Effects of ML-based CDS on decision-making, care

delivery, and clinical outcomes

Only 8 studies (25%) examined the effects of ML-based CDS
on decision-making in healthcare settings reporting mixed
results. Of these, 5 reported benefits and improvements in a
variety of decisions including surgery risk assessment,26 new
clinically significant CT scan interpretation,45 reducing fur-
ther examinations,51 and better prescription decisions.41,52 In
the other 2 studies, CDS implementation did not influence
diagnostics of cardiac arrest25 as well as predicting risk of sep-
sis29 and delirium.32

The effects of ML-based CDS on care delivery were exam-
ined in 10 studies (31%). Patients predicted to be at high risk
of hospital complications were given more aggressive treat-
ments. Patients with high-risk bacterial infection and sepsis
prediction were ordered more blood tests and administered
more IV fluid bolus.28,37 Nonpharmacological preventive
treatments, such as hydration and sleep management, were
given to high-risk delirium patients.32,33 Use of CDS in treat-
ment planning was also shown to reduce time and improve
care coordination.36,39,44 However, in 1 study that evaluated
a CDS to predict sepsis, no changes were observed in the 12
out of 15 care process measures assessed.29

Discussion

Despite rapid growth in the development of ML-based CDS,
few studies have evaluated these CDS in clinical settings to
examine their effects on decision-making, care delivery, or
patient outcomes. We found that most CDS evaluated in clini-
cal settings were assistive (n¼ 23), requiring clinicians to con-
firm or approve CDS provided information or decisions, and
where the responsibility for the final decision generally rests
with the clinician. The most common use of assistive CDS
was in risk assessment for sepsis27–29,42,43 and for interpreting
cancerous lesions in colonoscopy.30,34,35,38,46,47 While ML-
based CDS are being applied in many clinical areas, further
observational studies are required to understand how they are

used by clinicians as well as their effects on decision-making,
care delivery, and patient outcomes.

Clinical decisions assisted by CDS

The level of autonomy determines how clinicians interact
with and use CDS. Our findings are consistent with the find-
ings of previous reviews of ML-based medical devices13 and
nursing CDS58 which found that most contemporary systems
were assistive.

Only 1 in 4 studies (26%) examined effects on decision-
making which were mixed. While 3 studies demonstrated
improvements with the use of assistive CDS,26,41,45 3 others
found no improvement.25,29,32 Although such observational
studies provide an opportunity to examine effects in real-
world settings, controlled experiments which enable patient-
and risk-free evaluation are useful to better understand spe-
cific effects on decision-making.59

Clinicians typically integrate many different sources of
information including CDS advice to make decisions.60 In this
context, assistive CDS may often require clinicians to consider
“black-box” CDS advice against their own decisions. For
instance, when predicting the risk of surgical complications,
to validate CDS advice clinicians must independently assess
risk based on history taking, physical examination, labora-
tory results, and other supporting examinations on top of
using the CDS.26 Such a double up in the clinical workflow
may require more time and delay decisions, especially if the
clinician’s decision does not agree with the CDS, potentially
increasing risks to patient safety.61

Still, early demonstration of benefits supports the use of
assistive CDS in clinical settings. Of the 23 studies we exam-
ined, 5 demonstrated improvements in care delivery such as
increasing preventive orders in high-risk patients,28,37 shorter
time to treatment,36,44 and improved care coordination.39 Six
studies showed enhanced patient outcomes including higher
case finding,30,34,38,46 shorter hospital length of stay, and
lower mortality.27,43 Such benefits strengthen the case for
using these systems and are likely to increase implementation.

Tasks supported by ML-based CDS

Different to rule-based CDS that are mostly focused on sup-
porting prescribing and care reminders,7,8 we found that the
most common task supported by ML-based CDS was in
image recognition and interpretation followed by risk assess-
ment. This shift in clinical tasks supported by CDS could be
attributed to the wide availability of deep learning ML meth-
ods such as convolutional neural networks34,38,40,52,53,56 as
well as the large amounts of standardized data readily avail-
able in imaging and electronic health record data in risk
assessment. For instance, a CDS for sepsis risk assessment
was trained with data from 684 443 encounters over 5 years
from across 6 institutions.27,62 While rule-based CDS have
been shown to improve care delivery (57%) and patient out-
comes (30%) especially in drug ordering and preventive
care,7 the effects of ML-based CDS were mixed.

Evaluating ML-based CDS in clinical settings

Most studies in this review come with high levels of heteroge-
neity in outcome measures making comparison difficult. We
observed many different study designs ranging from RCTs to
qualitative interviews, using a wide variety of outcome meas-
ures to examine effects on decision-making, care delivery, and
patient outcomes. The reporting of evaluation studies is likely

2060 Journal of the American Medical Informatics Association, 2023, Vol. 30, No. 12
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to improve with recent publication of reporting standards,
such as DECIDE-AI for early-stage clinical evaluation63 and
CONSORT/SPIRIT-AI for larger clinical trials.64,65

Only a few of the studies we reviewed examined effects on
decision-making (25%), care delivery (31%), and clinical out-
comes (38%). To that end we have demonstrated the use of
2 frameworks. The first is the level of autonomy, a 3-level
classification based on how clinical tasks are divided between
the clinician and CDS that allows examination of the specific
role of the CDS in clinical tasks.13 The second is an estab-
lished information value chain framework, which separates
the multiple steps from system use to impacting clinical out-
comes—interacting with CDS, receiving new information,
decision-making, and care delivery.9 Were these to be used as
standard templates in future studies, it would be possible to
make comparative assessments between studies.

There is also a need to examine the actual use of CDS by
clinicians in the real world. None of the studies examined pat-
terns of use, and only 10 (31%) reported the number of clini-
cians involved in evaluations. The number of clinicians, their
expertise, and experience with CDS are important variables
affecting adoption and use.63 To that end, mixed-method
studies are particularly valuable to measure actual use and to
understand factors affecting acceptance of ML systems.32

ML-based CDS in resource-constrained settings

Most studies were undertaken at secondary and tertiary set-
tings (91%) in the developed world (100%). Despite the
potential for AI to improve health services in resource-
constrained settings,66–68 our review has identified a gap in
evaluating ML-based CDS in such settings.69,70 Resource-
constrained settings are characterized by limited medical
expertise and infrastructure leading to the suboptimal delivery
of services.71 Such conditions are not bound by the economic
conditions as resource limitations are also experienced by
developed countries, such as in rural or regional areas with
limited access to expertise and modest IT infrastructure. In
addition, there may be a greater role for AI to provide specific
clinical expertise in primary care with the shift toward promo-
tive and preventive care which is increasing the demand for
primary health services.

These facts, combined with the main finding of this review
that most ML-based CDS were assistive and still required
experts to oversee decision-making, make it necessary to
examine the appropriateness of ML-based CDS in resource-
constrained settings as these systems may increase the burden
on clinicians and even increase risks. Accordingly, we argue
that autonomous CDS may be more suitable for resource-
constrained settings. For instance, 3 studies in this review pro-
posed potential use of their autonomous CDS to screen hepa-
tobiliary disease,55 childhood cataract,53 and
onychomycosis52 in remote or poorly serviced areas.

Limitations

There are several limitations. First, this review is limited to
the published research literature about ML-based CDS in clin-
ical settings. We did not include gray literature, such as white
papers and reports. Second, our analysis of the level of CDS
autonomy was limited to the CDS information that was
reported in the papers and prior validation studies. This infor-
mation was less structured than the indications of use in medi-
cal device approval documents which informed the
development of the level of autonomy.13 Finally, there was

considerable heterogeneity in the study designs and outcome
measures which prevented quantitative examination of the
effects on decision-making, care delivery, and patient
outcomes.

Conclusion

ML-based CDS are being applied in a variety of clinical areas,
but evaluation of their effects on decision-making, care deliv-
ery, and patient outcomes is limited. There remain opportuni-
ties to evaluate the feasibility of using ML-based CDS in
clinical settings, especially in resource-constrained contexts,
to support clinical decisions where there is a lack of specialist
expertise and sophisticated medical equipment.
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