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A B S T R A C T   

Anxiety disorders are common among youth, posing risks to physical and mental health development. Early 
screening can help identify such disorders and pave the way for preventative treatment. To this end, the Youth 
Online Diagnostic Assessment (YODA) tool was developed and deployed to predict youth disorders using online 
screening questionnaires filled by parents. YODA facilitated collection of several novel unique datasets of self- 
reported anxiety disorder symptoms. Since the data is self-reported and often noisy, feature selection needs to 
be performed on the raw data to improve accuracy. However, a single set of selected features may not be 
informative enough. Consequently, in this work we propose and evaluate a novel feature ensemble based 
Bayesian Neural Network (FE-BNN) that exploits an ensemble of features for improving the accuracy of disorder 
predictions. We evaluate the performance of FE-BNN on three disorder-specific datasets collected by YODA. Our 
method achieved the AUC of 0.8683, 0.8769, 0.9091 for the predictions of Separation Anxiety Disorder, 
Generalized Anxiety Disorder and Social Anxiety Disorder, respectively. These results provide initial evidence 
that our method outperforms the original diagnostic scoring function of YODA and several other baseline 
methods for three anxiety disorders, which can practically help prioritizing diagnostic interviews. Our promising 
results call for investigation of interpretable methods maintaining high predictive accuracy.   

1. Introduction 

Anxiety disorders is a common mental problem among youth and 
adolescents [42]. Inappropriate or late discovery and treatment of such 
disorders can severely affect the individual’s wellbeing. Presently, 
cognitive behavioural therapy (CBT) is an established treatment for 
anxiety disorders owing to its first line intervention and efficacy 
[7,18,21]. Although CBT treatment are efficacious, many anxious 
youths may not receive proper treatment [35], partially attributable to 
the lack of accessible and efficient diagnostic instruments. For instance, 
individuals may be uncertain whether they have an anxiety disorder and 
need treatment [29]. 

In this work, we focus on predictions of three disorders: separation 
anxiety disorder (fear of separating from attachment figures), general-
ized anxiety disorder (excessive anxiety and worry across a range of 
domains), and social anxiety disorder (fear of negative evaluation by 
others during social situations). For these, we propose a novel Bayesian 

Neural Network (BNN) approach to address the anxiety disorder pre-
diction problem. The proposed model is trained and evaluated using 
datasets collected by YODA [34]. Instead of using the raw data, we 
exploit the features selected from the data for training and inference. 
The features can be considered as indicative representatives of the raw 
data and are selected by feature selection algorithms. 

However, a single set of features may not be informative and 
diversified enough. Hence, we develop and study a Feature Ensemble 
based Bayesian Neural Network (FE-BNN) that leverages the advance-
ments in BNNs to integrate an ensemble of feature sets. We exploit the 
Markov Chain Monte Carlo approximation to sample a large number of 
features from the latent space. As a result, the inference of the model can 
be interpreted as averaging the predictions made by each feature set in 
the sampled ensemble. The ensemble feature set achieves high predic-
tive accuracy for all three disorders. 
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1.1. Related work 

The instruments currently used to assess youth disorders include the 
Anxiety Disorders Interview Schedule (ADIS) [45], Development and 
Wellbeing Assessment (DAWBA) [16], Diagnostic Interview Schedule 
for Children (DISC) [10,22], DISC screeners [50], and the Kiddie 
Schedule for Affective Disorders and Schizophrenia (K-SADS) [24]. 
These instruments facilitate informal interviews, devised to identify the 
disorder symptoms. Normally, these instruments are administered via 
personal interaction between a clinician and a child/parent. Instead of 
face-to-face interaction, conducting phone assessment is a viable alter-
native [33]. 

However, traditional diagnostic procedures often require hours of a 
qualified clinical psychologist’s time, to accurately assess and diagnose a 
patient. As a result, the concept of online administration of diagnostic 
tools has been proposed. Online tools can be partially automated, are 
easy to access, diminish interviewer- and clinician-associated errors, and 
alleviate limitations related to the clinician availability [6,25,28,49,51]. 
To increase the diagnosis validity, online instruments often factor in 
additional clinical reviews, which still reduce the load on the clinicians 
[15,47]. 

As the accuracy of the online instruments is often inferior to that of 
the traditional assessments [34], previous works focused on machine 
learning methods for improving their accuracy. For instance, to predict 
generalized anxiety disorder, Support Vector Machine was applied to 
multimodal bio-behavioural data [19], and Logistic Regression and 
Bayesian Network were applied to heart rate variability data [5]. Be-
sides, several works applied common machine learning classifiers to 
predict post-traumatic stress disorder and social anxiety disorder 
[9,23,37,39,44,53]. Other methods also employed feature selection to 
extract features out of the raw data and then feed the selected features 
into the classifiers, to further improve the accuracy 
[23,37,39,44,56,57]. In addition, [41] presented an extensive review of 
machine learning methods for anxiety disorder predictions. In this work, 
we exploit the recent advancement in deep learning and propose a 
Bayesian ensemble approach to enhance the accuracy of the predictions. 

1.2. Significance and objectives 

Anxiety disorders are frequently comorbid with depressive disorders 
or chronic physical health problems. If untreated, anxiety disorders are 
likely to have adverse effects on a patient’s (and their family’s) func-
tioning and quality of life, and induce increasingly high health and so-
cial costs. Hence, it is of a paramount importance to diagnose and treat 
anxiety disorders early. In this work, we investigate the ability of 
ensemble-based deep learning methods to enhance the accuracy of 
anxiety disorder predictions in youths. The proposed Bayesian deep 
learning approach exploits an ensemble of more informative and diverse 
data features. These have the potential to produce more accurate pre-
dictions of anxiety disorders than several baseline methods, such as the 
currently deployed scoring function, as well as machine learning and 
deep learning baselines. 

In practice, our approach would allow clinicians to predict patients’ 
anxiety scores using the data prospectively collected by the online tool. 
The predicted scores can be leveraged to (i) prioritize diagnostic clinical 
interviews, such that patients with higher predicted scores are inter-
viewed first and (ii) focus the interviews on the types of anxiety most 
likely to be a problem for the patient. While other methods can also 
support the prioritization of focus of the interviews, the proposed 
method is shown to be more accurate than the baselines. This means that 
the diagnostic clinical interviews would include fewer false positive 
patients, who do not have anxiety disorders but are misclassified as 
anxious. Consequently, more accurate predictions and prioritization 
have the potential to efficiently use the time of clinical psychologists, 
improve the quality of health care, and reduce the associated costs. 

2. Method and materials 

In this section, we describe the YODA datasets, formalize the prob-
lem, introduce the Feature Ensemble based Bayesian Neural Network, 
and present our experimental design. 

2.1. Data description 

McLellan et al. [34] developed an online diagnostic tool, Youth 
Online Diagnostic Assessment (YODA), to assess and diagnose a range of 
anxiety disorders in children and adolescents. During the assessment, 
parents complete multiple screening questionnaires, containing ques-
tions pertaining to anxiety disorders their children may have. Screening 
questions lead each diagnostic category, with negative responses trig-
gering a skip of the remaining questions for that disorder. YODA re-
sponses are scored based on an automated scoring function aligned with 
the DSM (Diagnostic and Statistical Manual) criteria [34]. 

The YODA tool originally helped to diagnose seven anxiety disorders 
and was deployed by the Centre for Emotional Health at Macquarie 
University. Some disorders did not have a sufficient number of diag-
nosed participants or completed assessment questionnaires to warrant 
the development and training of machine learning methods. Hence, our 
work focuses on three specific anxiety disorders, which have sufficient 
training data available. These are Separation Anxiety Disorder, Gener-
alized Anxiety Disorder, and Social Anxiety Disorder. 

In our evaluation, each of the above three anxiety disorders was 
considered as a standalone dataset. This, we evaluate the performance of 
the developed methods using three datasets that are summarized in 
Table 1. The ‘Dim’ column presents the data dimensionality for each 
disorder: number of completed assessments (broken down into the 
Disorder and Control cases shown in the next columns) and the number 
of questions for the disorder (varies across the disorders). The Disorder/ 
Control status is determined by the clinician’s decision following the 
face-to-face diagnostic interview. The three datasets include a total of 
297 participants, all children or adolescents aged 6 to 16. The mean age 
was 9.34 years and 45.8% were male. 

The parents of the children completed the diagnostic assessments of 
YODA. The assessments contained questions addressing various symp-
toms, e.g., “does the child get distressed when he/she needs to separate from 
particular family members or home?”. The answers used either binary 
responses or severity/frequency scales. Note that the parents might have 
provided inaccurate responses due to misinterpreting the questions or 
just being unaware of the symptoms. Likewise, when assessing the 
severity of a symptom, the parents inherently introduced noise into the 
collected data. The proposed FE-BNN method addresses the uncertainty 
and noises associated with self-reported data. 

2.2. Problem formulation 

We focus on diagnosis of three disorders: separation anxiety disor-
der, generalized anxiety disorder, and social anxiety disorder. The 
problem can be cast as a binary classification task, which receives an 
input describing the symptoms of a patient and predicts whether an 
individual has the disorder. An overview of the proposed classification 
method is illustrated in Fig. 1. We initially introduce three key concepts: 
input, feature, and prediction. 

Table 1 
Summary of the datasets for the three disorders.  

Datasets Dim assessments ×
questions  

Disorder Control 

Separation Anxiety Disorder 69 × 19  39 30 
Generalized Anxiety 

Disorder 
171 × 32  76 95 

Social Anxiety Disorder 132 × 28  58 74  
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(1) Input: For anxiety disorder assessments, consider a questionnaire 
consisting of D questions answered by the patient (or their parent). The 
questions refer to various symptoms of the disorder and their severity. 
The answers to the questions can be encoded as either binary ‘yes/no’ or 
symbolic values on a predefined scale, e.g., 5 values ranging from ‘very 
little’ to ‘very much’. Upon a patient answering the D questions, their 
input is represented as x1×D. Suppose there are N patients answering the 
questionnaire; then, the entire input is represented as XN×D. 

(2) Feature: It is common for some information in x to be noisy or 
redundant. Consequently, feature selection is performed, in order to 
extract a subset of most informative features out of the raw input data. 
We use a binary vector c1×D to denote the elements of x that are selected, 
such that |c| = |x|. The values that are set to 1 in c indicate that their 
corresponding elements in x are selected. The selected features will be 
considered as predictors for our model. 

(3) Prediction: Given the input x and selected features c, the goal of 
the model is to estimate the predicted output variable y ∈ {0,1}. In the 
context of anxiety disorder predictions, y is a binary variable indicating 
whether the patient is predicted to be diagnosed with a disorder by the 
clinician. For the cohort of N patients, YN×1 represents the diagnostic 
outcome for each anxiety disorder. 

2.3. Bayesian neural network 

We utilize Bayesian Neural Network (BNN) as our backbone. BNN 
incorporates the uncertainty of the weights into the deep neural network 
and derives the Bayesian equivalent of the network. As such, it places the 
prior probability over the model weights ω, such that ω ∼ p(ω), where 
p(ω) is the standard Gaussian prior. 

Suppose fω is the output of a network. Then, the anxiety disorder 
predictions can be cast as a classification task with the following like-
lihood model: 

p

(

Y|X,ω
)

=
∏N

i=1
p

(

yi|xi,ω
)

=
∏N

i=1
softmax

(

fω

(

xi

))

, (1)  

where yi ∈ {0,1} (0 = normal, 1 = disorder). Predictive distribution 
p(y*|x*,X,Y) infers the output y* given testing input x* and training data 
X,Y. As per [13], it is defined as: 

p
(

y*|x*,X, Y
)

=

∫

p
(

y*|x*,ω
)

p
(

ω|X, Y
)

dω. (2) 

However, posterior distribution p(ω|X,Y) renders the integral in Eq. 
2 intractable. Thus, variational distribution q(ω) is introduced to 
approximate p(ω|X,Y) and make Eq. 2 tractable. Then, the task at hand 
becomes minimization of the Kullback–Leibler (KL) divergence between 
q(ω) and p(ω|X,Y): 

KL
(

q
(

ω
)

||p
(

ω|X,Y
))

= −

∫

q
(

ω
)

log
p(ω|X, Y)

q(ω) (3)  

According to the Bayes theorem, p
(

ω
⃒
⃒
⃒
⃒X,Y) =

p(Y|X,ω)p(ω)

p(Y|X) , such that Eq. 3 

can be re-written as: 

KL(q(ω)||p(ω|X, Y)) =

−

∫

q
(

ω
)

logp
(

Y
⃒
⃒
⃒
⃒X,ω

)

+ KL
(

q
(

ω
)⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒p
(

ω
))

+ const (4)  

Then, Eq. 4 can be approximated as a dropout network with a penalty 
term. 

KL

⎛

⎜
⎜
⎝q

⎛

⎜
⎜
⎝ω

⎞

⎟
⎟
⎠||p

⎛

⎜
⎜
⎝ω|X,Y

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠ = −

∑N

i=1
logp

(
yi

⃒
⃒
⃒xi, ω̂i

)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
network with dropout

+
⃒
⃒
⃒
⃒ω
⃒
⃒|

2

⏟̅̅⏞⏞̅̅⏟penalty
+ const.

(5) 

As mentioned, ω refers to the parameters of the whole network. By 
applying the dropout, some parameters will be dropped. Therefore, ω̂i 

denotes the network parameters remaining after the dropout. 

2.4. Feature ensemble based Bayesian neural network 

As the raw input data is self-reported, thus, potentially noisy or 
containing redundant information, features selected out of the raw input 
can alternatively be utilized. This allows various classifiers exploiting 
the selected features to achieve more accurate classification. We illus-
trate how to exploit the features using the framework of BNN for anxiety 
disorder predictions. 

Suppose, for input X, we have the binary vector c indicating the 
selected features. Now, the BNN is p(ω|Y,X, c). Given input x in X, its 
corresponding features are selected by c. Hence, the training of BNN 
relies on the labels Y and a subset of features of X selected by c. 
Accordingly, the predictive distribution becomes: 

Fig. 1. Pipeline of the proposed anxiety disorder predictions. (a) Sample questions in the YODA questionnaire and pre-processed input data. (b) Network architecture 
(different anxiety disorders have a different number of layers). (c) Ensemble inference process deployed for anxiety disorder predictions. 
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p
(

y*|x*, c*,X,Y, c
)

=

∫

p
(

y*|x*, c*,ω
)

p
(

ω|X,Y, c
)

dω. (6) 

Here, c* is the binary vector indicating the position of key features in 
test input x*. As can be seen, Eq. 6 does not change the standard BNN, as 
the features of X are used for training and prediction. 

However, combining multiple predictive features may be preferred 
over using a single feature set. This is due to the observation that one set 
of features can only describe x from a single, potentially restricted 
perspective. In contrast, multiple feature sets can surface more infor-
mative characteristics of x. Based on this assumption, we propose a 
Feature Ensemble based Bayesian Neural Network (FE-BNN). Thus, we 
introduce E to denote an ensemble of features and explore the disorder 
predictions using this ensemble under the framework of BNN. Now, the 
BNN p(ω|X,Y,E) and the predictive distribution can be re-written as: 

p
(

y*|x*,X, Y
)

=

∫

p
(

y*|x*,E,ω
)

p
(

ω|X,Y,E
)

p
(

E|Z
)

p
(

Z
)

dωdEdZ

(7)  

Here, variable Z is a latent variable of E utilized to generate the ensemble 
of features and prior p(Z) is placed over Z. As the integral in Eq. 7 is 
intractable, Markov Chain Monte Carlo is used to approximate it 
[2,31,36]. Here, the Monte Carlo approximation of Eq. 7 is: 

p

(

y*|x*,X,Y

)

≈
1
Ni

∑Ni

i

1
Nj

∑Nj

j
p

(

y*|x*,Ei,ωi,j

)

. (8) 

In Eq. 8, Ni samples of latent variables Zi are firstly drawn from p(Z). 
For each Zi, its corresponding Ei is sampled from p(E|Z). In similar to c,Ei 

is a binary vector used to extract features from input. Lastly, Nj weight 
matrices ωi,j are sampled from p(ω|X, Y, Ei), standard BNN accepting a 

single set of features extracted via Ei as an input. In Eq. 8, 1
Nj

∑Nj
j p
(
y*
⃒
⃒
⃒
⃒x

*,

Ei,ωi,j

)

represents the prediction using a single set of features. Essen-

tially, there are Ni individual BNN models trained for the corresponding 
Ni feature sets. Thus, Eq. 8 averages the predictions generated using the 
ensemble of features, that is FE-BNN. This resembles a voting process, 
where the final prediction depends on the majority of predictions, each 
using a single set of features. 

We set Nj = 500 for all the anxiety disorders. As for Ni, we set it to 69, 
94 and 87 for the separation anxiety disorder, generalized anxiety dis-
order and social anxiety disorder, respectively. In theory, larger Ni and 
Nj values facilitate more samples and more accurate predictions. How-
ever, we found in offline experiments that the predictive accuracy 
hardly improves when Ni and Nj are greater than the above values. For 
example, for the separation anxiety disorder, Ni=69 yields the optimal 
AUC value reported below. For Ni=74 AUC improves by 0.05% only, 
while the training time increases by 7.96%. Thus, the selected values of 
Ni and Nj offer the best trade-off considering both the training time and 
predictive accuracy. 

2.4.1. Derivation of p(E|Z) and p(Z)
The distribution of p(E|Z) and p(Z) can be obtained by auto-encoding 

variational Bayes [27], where the marginal distribution of E is: 

p
(

E
)

=

∫

p
(

E|Z
)

p
(

Z
)

dZ. (9)  

Here, prior p(Z) is a centered isotropic multivariate Gaussian N(Z; 0, I)
and p(E|Z) is a multivariate Gaussian, the distribution parameters of 
which are derived from Z using a fully-connected neural network with 
one hidden layer. As the integral in Eq. 9 is intractable, a variational 
distribution q(E|Z) is introduced. Thus, the log likelihood of p(E) is: 

log(p(E)) = KL(q(Z|E)||p(Z|E))+L (E). (10)  

Here, q(Z|E) and p(E|Z) are called encoder and decoder, respectively. 
Besides, q(Z

⃒
⃒E) ∼ N(μ, σ2I) is a multivariate Gaussian with a diagonal 

covariance structure. μ and σ are the outputs of a multilayer perceptron, 
and L (E) is the variational bound of E represented as: 

L

(

E
)

= − KL
(

q
(

Z|E
)

||p
(

Z
))

+

∫

q
(

Z|E
)

logp
(

E|Z
)

dZ. (11)  

The variational bound L (E) is intractable and should be approximated 
by Markov Chain Monte Carlo. Then, the parameters of q(Z|E) and p(E|Z)
are optimized using Stochastic Gradient Descent (SGD) [43]. A detailed 
implementation of auto-encoding variational Bayes is presented in [27]. 

Algorithm 1. Feature Ensemble Based Bayesian Neural Network (FE- 
BNN)   

Input: x*,y* ,X,Y  
Output: p(y*|x*,X,Y)
1. Initialization: train variational auto-encoder to initialize p(E|Z) and p(Z).  
2. for i = 1:Ni do  
3. sample Zi ∼ p(Z)
4. sample Ei ∼ p(E|Zi)

5. for j = 1:Nj do  
6. sample ωi,j with dropout by training BNN over the feature extracted by Ei  

7. end for 
8. end for 
9. approximate p(y* |x* ,X,Y) using Eq. 8   

In our case, the features selected by a feature selector can be used to 
train the auto-encoder. We experimented with several feature selection 
methods and chose Lasso due to its strong performance [48]. By 
adjusting the threshold in Lasso, different features can be selected from a 
single input. After training, the obtained p(E|Z) and p(Z) can be used to 
generate samples used in Eq. 8. The complete FE-BNN method is out-
lined in Algorithm 1. 

2.4.2. Implementation details 
The proposed FE-BNN method was implemented with PyTorch [40]. 

It consists of one input layer, one output layer, and hidden layers. The 
size of the input layer depends on the input (i.e., number of questions/ 
features) and the size of the output layer is 2 (binary prediction for each 
disorder). The number of hidden layers depends on the target disorder 
(one for the separation anxiety disorder, two for generalized anxiety, 
and one for social anxiety) and this was determined experimentally 
(results reported below). The size of each hidden layer was fixed to 200. 
The dropout rates for the input layer and hidden layer were set to 0.2 
and 0.5, respectively. The network was optimized using SGD with 
learning rate of 0.01 [43]. We trained the model using the CPU only. 

Note that the feature selection methods may be trained stochasti-
cally, which could result in a different set of features being selected. To 
mitigate this, we performed an exhaustive search on the feature selec-
tion methods. Specifically, the feature selection methods use a threshold 
hyper-parameter to select different sets of features. In general, low 
threshold values select more features and vice versa. In our experiments, 
we used variables a and b to define an interval [a,b], which was divided 
by 100 to obtain 100 thresholds within [a,b]. After that, 100 feature sets 
were selected and fed into the classifiers to find the optimal feature set. 
Combining with the classifiers, the optimal feature set should induce the 
best accuracy of the predictions. In the experiments, we observed that 
100 feature sets were repetitive and it was sufficient to select a fixed set 
of features outperforming other feature sets. 

3. Results 

We evaluate the performance of the proposed method on data per-
taining to three disorders-separation anxiety disorder, generalized 
anxiety disorder, and social anxiety disorder-all collected by YODA [34]. 
Using the three datasets, we experimentally compare the performance of 
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our method with a number of baselines, including YODA’s scoring 
function, machine learning based classifiers, deep learning based clas-
sifiers, combination of feature selectors and classifiers, and ensemble 
methods. We also report an in-depth study of the number of hidden 
layers in the neural network. 

3.1. Experimental design 

3.1.1. K-Fold cross validation 
K-Fold cross validation is commonly used in machine learning, 

particularly useful for evaluating methods on datasets with a limited 
sample size. K-Fold cross validation uses parameter K denoting the 
number of groups that the data set is split into. The experimental pro-
cedure is as follows: (1) the dataset is randomly split into K folds; (2) one 
fold is considered as a test data and the rest as a training data; (3) the 
model is trained and tested accordingly; (4) the process is repeated for 
other test folds; and (5) performance is averaged across the K folds. 
Here, we set K = 5. 

3.1.2. Predictive algorithms 
We evaluate the performance of the proposed FE-BNN approach for 

anxiety disorder predictions against several baseline methods:  

• The original YODA scoring function [34].  
• Classifiers refers to the Logistic Regression (LR) [20], Support Vector 

Machine (SVM) [3], Linear Discriminant Analysis (LDA) [12,30], 
Naïve Bayes (NB) [52], Multi-Layer Perceptron (MLP) [1], Deep 
Neural Network (DNN) and Bayesian Neural Network (BNN) [13] 
classifiers. LR, SVM, LDA, and NB are traditional classifiers, whilst 
MLP, DNN and BNN are deep learning based classifiers. Here, DNN is 
a non-Bayesian variant of BNN and has two versions: one without 
dropout (denoted as DNN) and another one with dropout (denoted as 
DNN (Dropout)). Note that the dropout in DNN (Dropout) can avoid 
the potential overfitting, and does not act as Bayesian approximation 
to perform Monte Carlo integration. BNN is a Bayesian approach that 
uses dropout for Bayesian approximation.  

• Classifiers + FS first deploy feature selectors to select the most 
informative features from the data and then feed these into the 
classifiers for training and prediction. The evaluated feature 

selection methods include ElasticNet [55], Lasso [48], Kernel Lasso 
[32], T Score [54] and Fisher Score [17]. We exhaustively evaluate 
all the combinations of these five feature selection methods with the 
above eight classifiers. Due to space limitations, for every classifier 
we present only the results achieved by the best-performing feature 
selector combination.  

• Ensemble Methods combine the predictions of several estimators in 
order to improve the generalizability and robustness of one esti-
mator. The evaluated ensemble methods include Random Forest (RF) 
[4], AdaBoost [8] and Gradient Tree Boosting (GradBoost) [11]. RF 
builds estimators independently and averages their predictions, 
while AdaBoost and GradBoost build estimators sequentially to 
reduce the bias of the combined estimator. 

3.1.3. Evaluation metrics 
We treat the anxiety disorder predictions as a classification task. 

Thus, sensitivity (with standard deviation, std), specificity (with std), 
and Area Under the Curve (AUC, with std) are considered as the eval-
uation metrics. Sensitivity measures the ratio of participants with a 
disorder, who are correctly classified and, respectively, specificity 
measures the ratio of the correctly classified healthy participants. For 
sensitivity and specificity, we use a threshold of 0.5 to discretize the 
classifiers’ output. AUC refers to the area under the sensitivity–speci-
ficity curve that communicates how well the model distinguishes be-
tween the classes. Higher AUC values indicate a better accuracy of the 
model. 

3.2. Classifier and feature selection combinations 

We experimented with 40 combinations of eight classifiers (LR, SVM, 
LDA, NB, BNN, DNN, DNN (Dropout), MLP) and five feature selection 
methods (Elastic Net, Lasso, Kernel Lasso, T Score, Fisher Score). In 
Fig. 2, we present the AUC achieved by these combinations for each of 
the three disorders. The best combination for each classifier will be 
benchmarked against the proposed FE-BNN method. 

In general, BNN slightly outperformed the other classifiers and NB 
performed worst across all the disorders. For most classifiers, there was 
no substantial variability in AUC across the feature selection methods. 
That said, Lasso generally outperformed other methods and Fisher Score 

Fig. 2. Combinations of classifiers and feature selectors: A. machine learning based classifiers and feature selectors; B. neural network based classifiers and 
feature selectors. 

H. Xiong et al.                                                                                                                                                                                                                                   



Journal of Biomedical Informatics 123 (2021) 103921

6

was inferior in many cases. Considering the combinations of classifiers 
and feature selectors, we note that BNN + T Score and BNN + Lasso 
achieved the best AUC for the separation anxiety disorder, a range of 
combinations achieved comparably high AUC for the generalized anxi-
ety disorder, and BNN + Fisher Score outperformed other combinations 
for the social anxiety disorder predictions. 

3.3. Performance of FE-BNN and baselines 

Tables 2–4 show the sensitivity, specificity, and AUC scores obtained 
by the evaluated methods for the predictions of separation anxiety dis-
order, generalized anxiety disorder, and social anxiety disorder, 
respectively. We compare the proposed FE-BNN with four groups of 
classifiers: original YODA scoring function, classifiers using all the data 
(machine learning based and neural networks), combinations of classi-
fiers and feature selectors (only the best performing one for each clas-
sifier), and ensemble methods. The highest score for each metric is 
highlighted in bold. 

First, we observe that AUC of the YODA scoring function is inferior to 
most machine learning methods, justifying the application of machine 
learning for anxiety disorder predictions. Second, we observe that the 
addition of feature selection boosts across the board the performance of 

the classifiers, supporting our initial assumption that the raw data may 
be noisy and redundant for generating accurate predictions. Averaging 
the AUC of all the seven classifiers + FS methods and comparing to the 
AUC of classifiers only, we observe an improvement of 31.89% for the 
separation anxiety disorder predictions, 5.39%-for the generalized 
anxiety disorder, and 8.08%- for the social anxiety disorder. In terms of 
AUC, sensitivity and specificity, the studied ensemble methods are 
generally comparable to classifiers, but weaker than classifiers + FS. 

Most importantly, AUC of the proposed FE-BNN consistently out-
performs all the other methods across all three disorders under inves-
tigation. Unlike feature-based classifiers, integrating an ensemble of 
features into a BNN allows to consider a broader and more informative 
feature set and, as a result, the generated disorder predictions are more 
accurate. Although FE-BNN outperforms all other baselines for AUC, it 
should be noted that BNN in combination with T-score and Fisher Score 
achieves a higher specificity for the separation anxiety disorder and a 
higher sensitivity for the social anxiety disorder. Also, the YODA scoring 
function achieves a higher specificity for the generalized anxiety dis-
order, implying that YODA can accurately rule out disorders for healthy 
participants. Nevertheless, considering AUC as a single metric reflecting 
the overarching accuracy, FE-BNN steadily shows its superiority over all 
the evaluated baselines. 

Table 2 
Separation Anxiety Disorder predictions.  

Methods Sensitivity 
(std) 

Specificity 
(std) 

AUC (std) 

YODA 0.8205 
(0.1760) 

0.4333 
(0.2816) 

0.6269 
(0.1812) 

Classifiers LR 0.6923 
(0.2066) 

0.5000 
(0.2863) 

0.6427 
(0.2651) 

SVM 0.7436 
(0.2519) 

0.3667 
(0.2702) 

0.5915 
(0.2881) 

LDA 0.6410 
(0.2439) 

0.6333 
(0.3258) 

0.6419 
(0.2644) 

NB 0.7692 
(0.1817) 

0.4333 
(0.2341) 

0.6538 
(0.2055)  

Neural 
Networks 

BNN 0.9231 
(0.0571) 

0.5000 
(0.2989) 

0.6794 
(0.1682) 

DNN 0.5641 
(0.1903) 

0.5333 
(0.2737) 

0.5068 
(0.2351) 

DNN 
(Dropout) 

0.5897 
(0.1384) 

0.5000 
(0.2702) 

0.5017 
(0.2181)  

MLP 0.4872 
(0.1588) 

0.5667 
(0.2887) 

0.5350 
(0.2470)  

Classifiers þ
FS 

LR + Lasso 0.8462 
(0.0918) 

0.5333 
(0.2409) 

0.8030 
(0.1353) 

SVM + Lasso 0.6923 
(0.1828) 

0.7333 
(0.1807) 

0.7876 
(0.0827) 

LDA + Lasso 0.8462 
(0.0918) 

0.7000 
(0.1021) 

0.8137 
(0.1024) 

NB + T Score 0.8974 
(0.1817) 

0.3000 
(0.2341) 

0.7274 
(0.2055)  

Neural 
Networks þ
FS 

BNN + T Score 0.7949 
(0.1510) 

0.8667 
(0.1393) 

0.8436 
(0.1192) 

DNN + Lasso 0.7436 
(0.1828) 

0.6333 
(0.1021) 

0.8090 
(0.0914) 

DNN 
(Dropout)+
Lasso 

0.7692 
(0.1828) 

0.5667 
(0.0908) 

0.7982 
(0.1290)  

MLP + Elastic 
Net 

0.8718 
(0.1828) 

0.6000 
(0.1636) 

0.8226 
(0.0719)  

Ensemble 
Methods 

RF 0.6410 
(0.1967) 

0.6333 
(0.1693) 

0.7368 
(0.1809) 

AdaBoost 0.6410 
(0.2179) 

0.5667 
(0.1714) 

0.6077 
(0.1473) 

GradBoost 0.7692 
(0.0768) 

0.5667 
(0.3021) 

0.7167 
(0.1026) 

FE-BNN 0.9744 
(0.0571) 

0.6667 
(0.3429) 

0.8683 
(0.1248)  

Table 3 
Generalized Anxiety Disorder predictions .  

Methods Sensitivity 
(std) 

Specificity 
(std) 

AUC (std) 

YODA 0.6974 
(0.1306) 

0.8737 
(0.0874) 

0.7855 
(0.0731) 

Classifiers LR 0.7105 
(0.0782) 

0.7579 
(0.0867) 

0.7967 
(0.0260) 

SVM 0.6711 
(0.1145) 

0.8105 
(0.1076) 

0.8133 
(0.0490) 

LDA 0.7632 
(0.0881) 

0.7579 
(0.1177) 

0.8018 
(0.0377) 

NB 0.7105 
(0.1376) 

0.7789 
(0.1084) 

0.7849 
(0.0289)  

Neural 
Networks 

BNN 0.8026 
(0.1219) 

0.8421 
(0.1116) 

0.8360 
(0.0271) 

DNN 0.6579 
(0.1641) 

0.7579 
(0.0958) 

0.7744 
(0.0440) 

DNN (Dropout) 0.6315 
(0.1201) 

0.7473 
(0.1436) 

0.7688 
(0.0511)  

MLP 0.6053 
(0.1088) 

0.8421 
(0.1095) 

0.7830 
(0.0378)  

Classifiers þ
FS 

LR + Lasso 0.7763 
(0.1756) 

0.7579 
(0.1070) 

0.8450 
(0.0191) 

SVM + Lasso 0.8289 
(0.1010) 

0.7684 
(0.1133) 

0.8613 
(0.0178) 

LDA + Lasso 0.7895 
(0.1576) 

0.8000 
(0.0912) 

0.8510 
(0.0194) 

NB + Fisher 
Score 

0.7237 
(0.1376) 

0.7895 
(0.1084) 

0.7917 
(0.0289)  

Neural 
Networks 
þ FS 

BNN + Elastic 
Net 

0.8289 
(0.0643) 

0.8105 
(0.1089) 

0.8493 
(0.0417) 

DNN + Kernel 
Lasso 

0.8026 
(0.0997) 

0.7579 
(0.0665) 

0.8476 
(0.0522) 

DNN 
(Dropout)+
Kernel Lasso 

0.6578 
(0.1167) 

0.8315 
(0.0829) 

0.8354 
(0.0651)  

MLP + Kernel 
Lasso 

0.6184 
(0.1067) 

0.8526 
(0.0863) 

0.8457 
(0.0434)  

Ensemble 
Methods 

RF 0.7105 
(0.1263) 

0.8000 
(0.1189) 

0.8470 
(0.0501) 

AdaBoost 0.6711 
(0.1078) 

0.6842 
(0.1786) 

0.7537 
(0.0969) 

GradBoost 0.6184 
(0.0954) 

0.7579 
(0.1030) 

0.7785 
(0.0492) 

FE-BNN 0.8289 
(0.0881) 

0.8211 
(0.1089) 

0.8769 
(0.0451)  
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Note that the performance of both BNN and FE-BNN, which relies on 
the backbone of BNN, is relatively stable. The AUC scores of these 
methods are mostly close to 0.8 or even higher, alleviating the adverse 
effects of the limited and noisy self-reported training data. That said, the 
exact accuracy of these methods still depends on the devised neural 
network architecture, which is one of the key determinants of 
performance. 

3.4. BNN sensitivity analysis 

The number of hidden layers in Neural Network based methods is an 
important parameter to study. For four classifiers (BNN, DNN, DNN 
(Dropout), MLP), four best performing classifiers + FS (BNN + FS, DNN 
+ FS, DNN (Dropout)+FS, MLP + FS), and FE-BNN, we modify the 
number of hidden network layers to assess how this affects the perfor-
mance of the methods. Fig. 3 shows the AUC scores, with the number of 
hidden layers gradually increasing from 1 to 5. 

Overall, the proposed FE-BNN outperforms the other eight methods 
for all three disorders. However, the optimal number of hidden layers 
fluctuates across the disorders. The general trend observed is that the 
AUC of FE-BNN is inversely correlated with the number of hidden layers. 
This can be explained by the fact that a larger number of hidden layers 
increases the number of network parameters, which boosts the likeli-
hood of overfitting thus, degrading the predictive accuracy of FE-BNN. 

4. Discussion 

As shown in Tables 2–4, the performance of neural networks is 
similar to that of other machine learning based classifiers. At the first 
sight, it seems that deep learning methods do not improve the pre-
dictions of anxiety disorders. However, anxiety disorders predictions 
benefit from the Bayesian variant of neural network, which considers the 
uncertainty of the network weights. For the separation anxiety and so-
cial anxiety disorders, BNN with feature selection outperforms both 
machine learning based and deep learning based baselines. It has been 
found that predictions of Bayesian networks considering such an un-
certainty are more accurate than those determinant predictions of non- 
Bayesian, ordinary networks [13,14,26,38]. 

Other machine learning based probabilistic models, such as Gaussian 
processes, may also be applied to the disorder classification problem. 
However, since we consider feature ensembles in the probabilistic 
model, the inference process involves several integration operations. 
Integrating the variables in Eq. 4 is not straightforward, as these vari-
ables appear non-linear. To the best of our knowledge, the dropout as 
approximation [13] is the most practical way to address the integration 
issue in BNNs, especially compared to other probabilistic models. 
Another benefit of adding dropout to the neural network is that our 
model becomes more robust to overfitting [46], which is likely to occur 
in small datasets like YODA. Hence, we choose BNN as the backbone, on 
which we build our feature ensemble based method. 

We observe in Tables 2–4 that the feature selection based methods in 
the Classifiers + FS and Neural Network + FS groups generally 
outperform other baseline methods. These methods exploit key features 
selected for the predictions, which eliminates redundant and noisy 
features and hence improves the predictive accuracy. The proposed 
ensemble FE-BNN is in essence similar to those feature selection based 
methods. In Eq. 8, we sample Ni times to obtain the ensemble of features. 
Suppose that each sample contains m features and the total number of 
sampled features is mNi. A feature may be selected k⩾0 times within the 

Table 4 
Social Anxiety Disorder predictions.  

Methods Sensitivity 
(std) 

Specificity 
(std) 

AUC (std) 

YODA 0.6552 
(0.0775) 

0.7297 
(0.1555) 

0.6925 
(0.0773) 

Classifiers LR 0.6724 
(0.0916) 

0.7568 
(0.1544) 

0.7754 
(0.1097) 

SVM 0.5172 
(0.1263) 

0.8243 
(0.1369) 

0.7174 
(0.1174) 

LDA 0.7241 
(0.0797) 

0.7973 
(0.1468) 

0.7640 
(0.1015) 

NB 0.5345 
(0.0478) 

0.6892 
(0.1254) 

0.6966 
(0.1058)  

Neural 
Networks 

BNN 0.7759 
(0.1103) 

0.7432 
(0.1599) 

0.7775 
(0.1231) 

DNN 0.6552 
(0.1041) 

0.7568 
(0.1607) 

0.7463 
(0.0910) 

DNN (Dropout) 0.6034 
(0.1352) 

0.7432 
(0.1483) 

0.7491 
(0.0801)  

MLP 0.6034 
(0.0512) 

0.7432 
(0.1517) 

0.7330 
(0.1132)  

Classifiers þ
FS 

LR + T Score 0.6897 
(0.0916) 

0.7838 
(0.1544) 

0.8027 
(0.1097) 

SVM + Lasso 0.7069 
(0.0920) 

0.7973 
(0.1715) 

0.8250 
(0.0953) 

LDA + Fisher 
Score 

0.7241 
(0.0797) 

0.8108 
(0.1468) 

0.8115 
(0.1015) 

NB + T Score 0.5172 
(0.0478) 

0.7973 
(0.1254) 

0.7248 
(0.1058)  

Neural 
Networks þ
FS 

BNN + Fisher 
Score 

0.8103 
(0.0884) 

0.7973 
(0.1394) 

0.8772 
(0.1371) 

DNN + T Score 0.6034 
(0.1099) 

0.8108 
(0.1565) 

0.8017 
(0.0981) 

DNN 
(Dropout)+T 
Score 

0.6724 
(0.1306) 

0.8108 
(0.1543) 

0.7928 
(0.0840)  

MLP + T Score 0.6207 
(0.0783) 

0.8243 
(0.1358) 

0.7882 
(0.0972)  

Ensemble 
Methods 

RF 0.6379 
(0.1218) 

0.7973 
(0.1634) 

0.8096 
(0.1136) 

AdaBoost 0.5517 
(0.1259) 

0.7703 
(0.0804) 

0.7013 
(0.0872) 

GradBoost 0.6034 
(0.1192) 

0.7297 
(0.2142) 

0.7295 
(0.1254) 

FE-BNN 0.7586 
(0.0799) 

0.8511 
(0.1489) 

0.9091 
(0.0876)  

Fig. 3. Impact of the number of hidden layers in deep learning based methods on AUC.  
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mNi features and we quantify its weight by k/(mNi), which communi-
cates the frequency of a selected feature in the ensemble. As a result, 
features with higher frequency (and weight) will be considered as more 
important by and contribute more to the predictions. This differentiates 
FE-BNN from those feature selection methods, which treat the selected 
features equally important. We posit this is the main reason for the 
observed strong performance of FE-BNN. We demonstrate the ensemble 
of features used by FE-BNN and their respective weights in the supple-
mentary material. 

Despite achieving promising results, our work is not without limi-
tations. First, we exploited three datasets collected by YODA, focusing on 
Australian population, and addressing three anxiety disorders. Further 
experiments are needed to validate replicability and generalizability of 
our method on other populations and disorders. Such a work is, how-
ever, hampered by a lack of detailed and validated public datasets in the 
mental health space. Collating and preparing a dataset like YODA is a 
substantial task, especially considering the individual diagnostic in-
terviews that need to be conducted by a clinical psychologist for every 
patient. The datasets exploited in this work took several years to collect 
and other public datasets of this kind are unfortunately not available. 
However, the data was collected in a common urban setting, with a 
population of an average socio-economic level, and the data collection 
relied of questionnaires, which is a common practice for online diag-
nostic procedures. We posit that the developed methods are likely to be 
applicable to similar populations and accurately predict other anxiety 
disorders and mental conditions. 

Second, the proposed method is currently a black box that takes the 
YODA questionnaire responses as an input and directly outputs the 
disorder predictions. Other than the predictions themselves, our model 
cannot point out specific parts of the questionnaire that are the key 
determinants of the predicted diagnosis. This may be a limitation for 
translation into clinical practice, as psychologists may be willing to 
inspect and focus the interviews on specific patient answers when 
validating the diagnosis. In the supplementary material, we demonstrate 
the ensembles of features utilized by our method and compare them 
with the features selected by the feature selection algorithms. While 
features that occur frequently in the ensemble are potentially more 
important, exploring the explainability of the predictive model itself is 
beyond the scope of our work. 

Predictions generated in this study are sought to be exploited for 
prioritizing the diagnostic interviews rather than making clinical de-
cisions. Hence, the interviews of the predicted true positives are sup-
posed to be prioritized over those of the true negatives. However, false 
positives mean that patients without disorders will be prioritized and 
interviewed sooner, while false negatives mean that the interviews of 
patients with disorders will be deferred. While sensitivity is deemed 
more important generally, deciding on the appropriate trade-off and 
prioritizing either sensitivity or specificity depends on the volume of 
patients in a clinic and availability of psychologists. Despite this, such 
prioritization will not affect the final diagnosis, since the clinicians will 
still interview the patients and make the decisions. 

5. Conclusions 

In this work, we focused on the predictions of psychological anxiety 
disorders in youth. Although automated online systems have been 
developed, their accuracy may not be sufficiently high to warrant clin-
ical translation. To improve the predictive accuracy, we proposed and 
evaluated FE-BNN, a Feature Ensemble based Bayesian Neural Network. 
We evaluated FE-BNN on three disorder-specific datasets collected by 
the online YODA tool and benchmarked it against a collection of ma-
chine learning methods and the original scoring function of YODA. The 
obtained results clearly demonstrate the superiority of FE-BNN over the 
evaluated methods, not requiring the involvement of clinical 
psychologists. 

In the future, we primarily intend to investigate how the proposed 

ensemble approach can be made more interpretable and explainable, so 
that it can highlight the key features and questions affecting the attained 
outcome. Clinicians will directly benefit from such an explainability, as 
this can practically save time and increase the transparency of machine 
learning methods deployed for clinical decision-support in mental 
health applications. 
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