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Abstract
Purpose Sleep apnea causes heart rate variability (HRV). HRV can be detected from the electrocardiography (ECG) signal 
and descriptors of HRV during sleep have been shown to be useful predictors of sleep apnea. In this work, we study the use 
of raw ECG signal and deep one-dimensional residual neural network (1-D ResNet) for end-to-end sleep apnea detection.
Methods Our method uses raw single-lead ECG signal as an input to a 1-D convolutional neural network (CNN) with 
residual connections, exploiting CNN’s ability to learn distinguishing signal characteristics directly from the ECG signal 
and thereby forgoing the need for human engineered signal processing, feature extraction, and feature selection. In addition, 
we use weighted cross-entropy loss to account for the imbalance of apnea and non-apnea segments in our dataset, Bayesian 
optimization for fine-tuning the network hyperparameters, and data from current and adjacent epochs for predicting the label 
of the current epoch. The final ECG-based apnea detection network is evaluated on a dataset of 70 overnight ECG recordings.
Results The proposed method achieved an accuracy of 93.05% (AUC = 0.9819) in detecting sleep apnea segments when 
considering adjacent epochs, thus, outperforming several baseline techniques. Furthermore, the method achieved 100% 
accuracy in separating sleep apnea recordings from normal recordings.
Conclusion Our simple yet robust approach to ECG-based apnea detection demonstrates high accuracy. It has the potential 
to improve detection and diagnosis of sleep apnea and improve quality of life and health outcomes for millions of people 
worldwide.

Keywords Bayesian optimization · Electrocardiography · Heart rate variability · Obstructive sleep apnea · Residual neural 
network

1 Introduction

Inadequate sleep has been associated with a range of mental 
and physical health problems [1]. The 2011–2014 national 
health interview survey in the United States shows that 
31.6% of adults get insufficient sleep [2] and a similar 2016 
Australian survey shows that 33–45% of adults are affected 
by inadequate sleep and its daytime consequences [3]. Sleep-
ing disorders are a common cause of inadequate sleep and 
one of the most common sleeping disorders is sleep apnea.

Sleep apnea is the involuntary cessation of breathing dur-
ing sleep. Obstructive sleep apnea (OSA) is the most com-
mon type of sleep apnea, characterized by repeated episodes 

of partial (hypopnea) or complete obstruction (apnea) of the 
upper airways during sleep, limiting airflow to the lungs. 
The severity of sleep apnea is measured by the apnea–hypo-
pnea index (AHI) which is defined as the number of apnea 
and hypopnea events per hour of sleep. The prevalence of 
OSA (AHI ≥ 5) in adults in the general population ranges 
from 9 to 38% [4].

Individuals with OSA experience a significant sleep dis-
turbance leading to excessive daytime sleepiness and fatigue, 
which can potentially cause automobile accidents [5]. OSA 
is also associated with a number of medical conditions. In 
particular, there is an increased risk for coronary artery dis-
ease, congestive heart failure, and hypertension in individu-
als with severe sleep apnea [6].

Early diagnosis and treatment of OSA can help reverse 
symptoms, improve cognitive performance and quality of 
life [7], and reduce cardiovascular risks [8]. Polysomnog-
raphy (PSG) is a widely used procedure in the diagnosis of 
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OSA. PSG is a type of sleep study where multiple physi-
ological signals are recorded during sleep using various 
sensors and channels. The test is normally performed by 
sleep technicians in specialized sleep laboratories and physi-
ological changes such as brain activity, eye movement, heart 
rhythm, muscle activity, respiratory effort, nasal pressure, 
and blood oxygen saturation levels are recorded overnight 
while the subject is asleep [9]. The recorded data is divided 
into small time windows (or epochs), the classifications of 
which is then used to determine the presence and severity of 
sleep apnea for the subject.

Setting up this multi-parametric test is time consuming. 
There can also be subjectivity in the analysis of the multiple 
hours of PSG data and the lack of recommendations about 
screening and the high costs of diagnostic PSG renders OSA 
underdiagnosed [10]. Recent research advancements in this 
area allow for the diagnosis to be achieved with fewer physi-
ological signals, requiring fewer sensors and channels. Port-
able home sleep apnea tests are, therefore, being increasingly 
used to test medically uncomplicated subjects [11, 12].

While various approaches have been investigated [13–15], 
one line of research that has gained significant attention over 
the last two decades utilizes heart rate data. Apnea and hypo-
pnea events lead to variations in heart rate, where the heart 
rate decreases during apnea and increases during recovery 
[16]. This characteristic behavior, known as heart rate vari-
ability (HRV), has been the subject of multiple studies inves-
tigating objective detection of apnea epochs using signal 
processing and machine learning techniques [17–21].

1.1  Related Work

Past techniques for HRV based apnea classification involve 
detecting the location of the R peaks in the ECG signal using 
the QRS detection algorithms followed by feature engineer-
ing. The R–R interval is computed as the difference between 
two consecutive R peaks and the resulting signal is used for 
feature extraction. Time and frequency domain features of 
the R–R interval signal are by far the most commonly used 
features [19–23].

For the computation of frequency domain features, the 
R–R interval signal needs further transformation into the 
frequency domain. The Lomb–Scargle periodogram [24] has 
been shown to be more suited for estimating the power spec-
tral density of the unevenly sampled R–R interval signals 
then fast Fourier transform based methods [25]. Analysis 
of normalized spectral energy in four frequency bands is 
used: ultra-low frequency (0–0.003 Hz), very-low frequency 
(0.003–0.04 Hz), low frequency (0.04–0.15 Hz), and high 
frequency (0.15–0.4 Hz), together with the ratio of energy in 
the high and low frequency bands [26–28]. However, spec-
tral analysis in finer frequency sub-bands is also useful [19]. 
Frequency-domain analysis of the R–R interval signals has 

generally produced better results than time-domain analysis 
[17].

Other feature extraction techniques such as the ECG-
derived respiratory (EDR) signal [19, 21, 22, 29], cardio-
pulmonary coupling (CPC) [19], QRS morphology and 
subspace projections [22], and wavelet transform [30] have 
also been studied. While various classification methods have 
been experimented with, support vector machines (SVM) 
have been a popular choice of classifier due to their superior 
accuracy compared to conventional classification methods 
[18, 20–22, 30].

However, over the last decade, deep learning techniques 
have outperformed feature engineering-based techniques in 
apnea detection. Convolutional neural networks (CNNs), 
a popular deep learning method, originally used for image 
classification, have been shown to learn discriminative class 
characteristics directly from images [31]. CNNs have also 
been adopted in physiological signal classification applica-
tions by transforming the signal to an image-like representa-
tion [32, 33].

In detecting sleep apnea using ECG, the R–R interval 
signal has been used as an input to CNN [28, 34–36]. HRV 
is an unevenly sampled data. In [28, 34], cubic interpola-
tion [37] is utilized to resize the data to a common dimen-
sion and padding is another technique to resize signals to 
equal dimensions [38, 39]. In [35], the R–R interval signal 
is adjusted to an image-like representation for classification 
using CNN. More recently, CNNs have been used to detect 
apnea directly from the ECG signal [40, 41].

1.2  Raw ECG and 1‑D ResNet for Apnea Detection

In this study, we explore the use of raw single-lead ECG sig-
nal as a direct input to a one-dimensional CNN (1-D CNN) 
for detecting sleep apnea epochs. Our method offers vari-
ous advantages and improvements compared to earlier works 
using a similar approach to this problem [40, 41]. With the 
conventional plain CNN, the convergence of the model starts 
to degrade with a deep architecture [42]. This problem can 
be addressed using residual learning, such as using identity 
and projection shortcuts [42]. While residual learning has 
been applied to the R–R interval signal for this purpose [36], 
in this work, we extend the residual learning framework to a 
1-D CNN for raw ECG-based apnea detection. The resulting 
network is referred as a 1-D residual neural network (1-D 
ResNet) [43, 44] and evaluated against various conventional 
classification methods and a plain network used in [40, 41].

In addition, the duration of apnea episodes can last over 
a minute [45]. However, only a small portion of an episode 
may be present in an epoch, which typically have a dura-
tion of 30 or 60 s, and the episode can span multiple adja-
cent epochs [46]. With conventional classification methods, 
using data from epochs adjacent to the current epoch being 
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predicted, has shown to strengthen the ability of the clas-
sifier to distinguish between apnea and non-apnea epochs 
[19, 23, 34, 47]. In this work, we extend this approach to 
a deep learning framework. In particular, we evaluate two 
scenarios: using ECG data from the current epoch only to 
predict the current label and using ECG data from the cur-
rent and adjacent, previous and following, epochs to predict 
the label of the current epoch.

Also, in medical applications, the number of disease sam-
ples is generally much lower than the number of normal 
samples which can lead to a biased model, particularly in 
deep learning applications. Conventionally, this problem has 
been addressed by balancing the dataset [40], such as using 
oversampling, undersampling, and data augmentation [35]. 
In this work, we explore the use of a weighted classification 
loss function [48] with the advantage of utilizing the full 
dataset without the need for data duplication, data removal, 
or generation of synthetic data.

Furthermore, a deep learning network has a number of 
hyperparameters, variables which determine how the net-
work is trained. These variables can be tuned using trial 
and error, as in [41]. However, training deep learning mod-
els in this fashion can be time consuming and the obtained 
hyperparameters may not be optimal. In this work, we use 
Bayesian optimization for fine-tuning the 1-D ResNet hyper-
parameters. The Bayesian optimization algorithm aims to 
minimize an objective function in a bounded domain. The 
generalization performance of the Bayesian optimization 
learning algorithm is modeled from a Gaussian process and 
it has been shown to be effective in various hyperparameter 
optimization tasks [49, 50]. To analyze the robustness of 
our proposed method in ECG-based apnea classification, 
we analytically compare our results against several earlier 
methods.

The rest of the paper is organized as follows. In Sect. 2, 
we overview the dataset used in this work and the proposed 
and baseline methods. Experimental results are provided in 
Sect. 3 followed by the discussion of the results and conclu-
sions in Sect. 4.

2  Method

We first describe the dataset used in this work followed by 
the proposed and baseline methods.

2.1  Dataset

This work utilizes the Apnea-ECG dataset [51, 52]. The 
dataset contains 70 overnight ECG recordings divided 
equally into training and test subjects: 35 recordings (total 
recording time of 285.42 h) for training and 35 for testing 
(total recording time of 288.38 h). The ECG signals are sam-
pled at 100 Hz and vary in duration from 401 to 578 min. 
Human experts annotated each 60 s window (or epoch) as 
apnea or non-apnea based on simultaneously recorded res-
piration and other related signals. The age of the subjects 
in the dataset ranges from 27 to 63 years with 30 male sub-
jects in the training dataset and 27 male subjects in the test 
dataset.

The recordings of every subject are grouped into one of 
the following three classes: Class A (apnea)—at least one 
hour with an AHI ≥ 10 and at least 100 min with apnea, 
Class B (borderline)—at least one hour with AHI ≥ 5 and 
5–99 min with apnea, and Class C (control)—fewer than 
5 min with apnea. This dataset was originally released for 
two tasks: classifying each epoch as apnea or non-apnea and 
classifying each subject’s recording as apnea (Class A) or 
normal (Class C). These two tasks also form the subject of 
investigation in this work.

2.2  Proposed Method

An overview of the proposed method in apnea and non-
apnea epoch classification is given in Fig. 1. The training 
block contains the ResNet model, which is trained, and the 
hyperparameters optimized, on the training data. At the end 
of the training process, we obtain a trained ResNet. The per-
formance of the trained ResNet is evaluated on the test data.

Fig. 1  An overview of the proposed method used for classifying raw ECG signal epoch into apnea and non-apnea
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The dataset contains 17,010 epochs (6514 of them being 
apnea epochs) from the 35 training recordings and 17,268 
epochs (6550 apnea epochs) from the 35 test recordings. We 
use raw ECG signals as a direct input to a 1-D ResNet and 
do not apply any preprocessing. We consider two strategies 
for the problem of predicting the label of each 60 s epoch. In 
the first approach, we use data from the current epoch �i to 
predict the label yi of the epoch. In the second approach, we 
use data from a window of the current and adjacent (both 
previous and following) epochs xi� =

[

xi−a,… , xi,… , xi+a

]

 
to predict the label of the current epoch. The total number of 
combined epochs is 3 when a = 1 and 5 when a = 2.

The architecture of the 1-D ResNet is shown in Fig. 2. 
The plain network architecture was informed by offline 
experiments with a number of parameters and is inspired by 
the architecture of [38]. In the input layer, the ECG signal is 
normalized using zero mean and unit standard deviation to 
remove the effect of subject variability on the signal. Con-
sidering the adjacent epochs, the plain network for classi-
fication of 5 combined epochs (5 min with 30,000 sample 
points), consists of twelve convolutional layers, each fol-
lowed by a batch normalization (BN) layer [53], rectified 
linear unit (ReLU) [54], and a max pooling layer [55]. Each 
convolutional layer has 32 filters. The kernel size for the first 
nine convolutional layers is 10 × 1 while the filter sizes of 
the remaining three convolutional layers are 6 × 1 , 5 × 1 , and 
4 × 1 , all with a stride of 1 × 1 . The inclusion of a batch nor-
malization layer after each convolutional operation makes 
the learning process faster and more stable [53]. The first 
nine max pooling layers have a pool size of 6 × 1 and the 
remaining three are 4 × 1 , 3 × 1 , and 2 × 1 . Each max pool-
ing layer uses a stride of 2 × 1 which halves the input and we 
couple a pooling layer with each convolutional layer.

The residual connections are added to the network every 
two sets of layers [42]. Projection shortcuts, a couple of 
1 × 1 convolutions with stride 2 × 1 , are used to match the 
dimension reduction of the pooling layers, transforming 
the plain network to a residual network. The final layers 

include a fully connected layer and a softmax layer [56]. 
The training data has many more non-apnea than apnea 
epochs. A weighted classification layer is used in the final 
layer to account for this class imbalance. This is realized 
using a weighted cross-entropy loss between the prediction 
scores Y  and training targets T  computed as

where N  represents the number of observations, K—the 
number of classes, and c—the class weights. The final net-
work, therefore, consists of 70 layers.

The ResNet model was trained from scratch using adap-
tive moment estimation (Adam) [57], which we found 
to be more robust than stochastic gradient descent with 
momentum [56]. The Adam optimization algorithm adapts 
the learning rate using the moving average of the first and 
second moments of the gradients. The estimators for the 
bias-corrected first and second moments, m̂ and v̂ , respec-
tively, for the current training iteration t  are given as

respectively, where �1 and �2 are the hyperparameters of the 
algorithm. The model weight w is then updated as

where � is the step size and � is a small scalar.
We conducted a grid search to determine the effective 

range of the initial learn rate, learn rate drop factor, learn 
rate drop period, and L2 regularization. These parame-
ters were then fine-tuned within the limits of this range 
using Bayesian optimization [50] with the aim of finding 
a hyperparameter set that minimizes the cross-validation 
error on the training dataset as

(1)L = −
1

N

N
∑

n=1

K
∑

i=1

ciTni log
(

Yni
)

(2)m̂t =
mt

1 − 𝛽 t
1

and v̂t =
vt

1 − 𝛽 t
2

,

(3)wt = wt−1 − 𝜂
m̂t

√

v̂t + 𝜀

Fig. 2  Architecture of the 1-D ResNet used in this work
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where f  is the objective function to minimize, the input x 
is part of the feasible set X , and x∗ is the hyperparameter 
set yielding the lowest value. Bayesian optimization works 
by building a probabilistic model of the objective function. 
This is then searched using an acquisition function to deter-
mine the hyperparameters to evaluate on the true objective 
function. As an example, fine-tuning of the initial learn rate 
and L2 regularization using Bayesian optimization is illus-
trated as a surface plot in Fig. 3. The objective function is 
minimization of the cross-validation error. In practice, we 
could minimize the error by concurrently tuning more than 
two variables but for illustration we use only two variables.

We use the same network as in Fig. 2 for combinations 
of 3 epochs with input dimension of 18,000. When only 
the current epoch is used to predict the current label, the 
input dimension is 6000. The first two sets of convolution, 
batch normalization, ReLU, and pooling layers and the 
accompanying residual connection are removed to account 
for the smaller input size.

2.3  Baseline Methods

The dataset provides the location of the R-peaks, com-
puted using the QRS complex detection algorithm [58]. 
We use the R–R interval signal for implementing two base-
line methods.

(4)x∗ = argmin
x∈X

f (x) 2.3.1  R–R Interval Signal Features

The first baseline method involves time and frequency 
domain features extracted from the R–R interval signal. 
We use 10 time-domain features [26, 27]. These include the 
mean, standard deviation, skewness, and kurtosis of the R–R 
intervals; root mean square and standard deviation of succes-
sive R–R interval differences; number of pairs of successive 
R–R intervals that differ by more than 20 ms and 50 ms; and 
fraction of the R–R intervals that differ by more than 20 ms 
and 50 ms.

For frequency-domain feature extraction, the spec-
tral energy of the R–R interval data is computed using 
Lomb–Scargle periodogram. We analyzed the spectral 
energy in 32 equally spaced frequency bands up to the fre-
quency of 0.4 Hz.

Apart from the individual time and frequency domain 
feature sets, we also consider their combined feature set. As 
such, this baseline method has 10 time-domain R–R interval 
features, 32 frequency-domain R–R interval features, and 42 
features in the combined feature set. The classifiers for these 
feature sets are logistic regression (LR) [59] and SVM [60] 
with a radial basis function (RBF) kernel.

2.3.2  R–R Interval Signal and 1‑D CNN

In the second baseline method, the R–R interval signal is fed 
directly into a 1-D CNN. The length of the R–R interval sig-
nal varies, depending on the heart rate. Since CNN requires 
a fixed size input, we use zero-padding and cropping to get 
to a common data size.

The 1-D CNN network architecture for classifying R–R 
interval signal is similar to the plain network shown in 
Fig. 2. The data input length is set to 400, 250, and 100 for 
5 epochs, 3 epochs, and 1 epoch, respectively. There are 6 
sets of convolutional, batch normalization, ReLU, and pool-
ing layers when data from 5 epochs is combined, 5 sets when 
data from 3 epochs is combined, and 4 sets when the current 
epoch only is utilized.

2.4  Evaluation Metrics

The performance of the proposed and baseline methods 
is evaluated on the test dataset using accuracy, sensitiv-
ity, specificity, and the area under the curve (AUC). Accu-
racy is defined as the percentage of apnea and non-apnea 
epochs that were predicted correctly, sensitivity/specificity 
is the percentage of apnea/non-apnea epochs that were pre-
dicted correctly, and AUC corresponds to the area under 
the receiver operating characteristic (ROC) curve. For the 
class A versus class C subject classification task, we report 
the percentage of correctly classified subjects based on 
the epoch classifications and the definition of classes from 

Fig. 3  Illustration of Bayesian optimization of the initial learn rate 
and L2 regularization 
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Sect. 2.1. For all the metrics, values closer to 1 or 100% indi-
cate a strong performance of an algorithm in distinguishing 
between apnea and non-apnea epochs or subjects.

3  Results

Results using the proposed and baseline algorithms 
described in Sects. 2.2 and 2.3, respectively, are presented 
in this section. Results using the current epoch data only 
are presented first, followed by results using the current and 
adjacent epochs, and concluded by the results of recording-
level predictions. We discuss the obtained results in Sect. 4.

3.1  Current Epoch to Predict Current Label

Results for apnea and non-apnea epoch classification using 
data from the current epoch only are given in Table 1. In 
the analysis we focus on the predictive accuracy and AUC 
(as a single-number combination of sensitivity and speci-
ficity) metrics. With the R–R interval signal features, the 

frequency-domain features yield a better classification per-
formance than time-domain features, with SVM consistently 
outperforming LR. There is only a minor improvement in 
the classification performance when the two feature sets 
are combined. The best classification accuracy of 79.61% 
(AUC = 0.8483) is achieved using the combined feature set 
and SVM classifier.

With a classification accuracy of 82.60% (AUC = 0.8975), 
the classification performance is further improved using the 
R–R interval signal with 1-D CNN. The use of raw ECG 
signal with 1-D CNN (plain network) yields an accuracy 
of 87.10% (AUC = 0.9398). However, the best classification 
accuracy of 89.30% (AUC = 0.9520) is achieved using the 
proposed raw ECG signal and a 1-D ResNet.

3.2  Current and Adjacent Epochs to Predict Current 
Label

In Table 2, we present results for apnea and non-apnea 
epoch classification using a combination of the current and 
adjacent epochs. As far as the time and frequency domain 
features of the R–R interval signal are concerned, the latter 
outperform the former, while the best classification accu-
racy is achieved again using the combined feature set and 
SVM classifier. The classification accuracy using 3 epochs is 
82.65% (AUC = 0.8765), which is slightly inferior to 83.27% 
(AUC = 0.8772) achieved with 5 epochs. These increase to 
86.83% (AUC = 0.9377) and 88.60% (AUC = 0.9467) using 
the R–R interval signal and 1-D CNN. The results are fur-
ther improved with the use of raw ECG signal and 1-D 
CNN; accuracy of 91.08% (AUC = 0.9695) with 3 epochs 
and 91.72% (AUC = 0.9730) with 5 epochs. However, the 
best results are again achieved using the raw ECG and 1-D 
ResNet; accuracy of 91.94% (AUC = 0.9760) with 3 epochs 
and 93.05% (AUC = 0.9819) with 5 epochs. Overall, the 
accuracy and AUC scores produced by the 5 epochs data 
are superior to those produced using 3 epochs.

Table 1  Results of current epoch data only

Bold indicates best result (highest value) in each column

Input Classifier Acc
(%)

Sens
(%)

Spec
(%)

AUC 

Time-domain features LR 73.82 58.32 83.32 0.7800
SVM 77.57 72.89 80.43 0.8298

Frequency-domain 
features

LR 78.55 67.64 85.23 0.8149
SVM 79.12 73.00 82.87 0.8458

Combined features
(time + frequency)

LR 76.48 62.42 85.10 0.8085
SVM 79.61 70.51 85.18 0.8483

Raw R–R Intervals CNN 82.60 76.34 86.44 0.8975
Raw ECG Signal CNN 87.10 81.65 90.43 0.9398
Raw ECG Signal ResNet 89.30 85.62 91.55 0.9520

Table 2  Results of current and 
adjacent epochs data

Bold indicates best result (highest value) in each column

Input Classifier Current Epoch ± 1 Epoch Current Epoch ± 2 Epochs

Acc
(%)

Sens
(%)

Spec
(%)

AUC Acc
(%)

Sens
(%)

Spec
(%)

AUC 

Time-domain features LR 71.21 62.50 76.57 0.7599 70.18 58.74 77.24 0.7518
SVM 78.32 73.07 81.55 0.8398 78.39 66.32 85.85 0.8389

Frequency-domain features LR 81.66 74.86 85.85 0.8473 81.93 71.73 88.22 0.8498
SVM 82.01 76.20 85.58 0.8682 82.34 73.78 87.63 0.8695

Combined features
(time + frequency)

LR 69.72 27.15 95.95 0.6155 78.83 63.30 88.42 0.8286
SVM 82.65 77.39 85.89 0.8765 83.27 74.02 88.98 0.8772

Raw R–R intervals CNN 86.83 81.89 89.88 0.9377 88.60 81.44 93.03 0.9467
Raw ECG signal CNN 91.08 88.93 92.40 0.9695 91.72 87.88 94.09 0.9730
Raw ECG signal ResNet 91.94 89.33 93.55 0.9760 93.05 90.16 94.84 0.9819
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3.3  Recording Prediction

Finally, we use the epoch prediction results to predict the 
label of the recordings in the test dataset as per the criteria 
described in Sect. 2.1. We achieve an accuracy of 100% in 
classifying the recordings of the subjects as apnea (Class 
A) and normal (Class C). The perfect accuracy is obtained 
by all the evaluated 1-D ResNet classification models using 
the raw ECG data.

4  Discussion and Conclusions

The proposed raw ECG signal and 1-D ResNet approach 
performed well on the apnea and non-apnea epoch classifi-
cation task. The distinguishing characteristics of the ECG 
signal are typically derived from analysis of the time-series 
data and handcrafted features are then used to represent the 
ECG signal [19]. This inevitably leads to information loss. 
On the contrary, in this work, deep residual neural network 
is shown to accurately learn such temporal characteristics 
directly from the raw signal, forgoing the need for manual 
signal processing and feature engineering.

The performance of our method improved when the data 
of the epoch being predicted was complemented with data 
from adjacent epochs. The best results were achieved using 
5-min windows, although, only marginally better than 3-min 
windows. Notably, 5-min window length is also recom-
mended for analysis of short-term recordings by the Task 
Force of the European Society of Cardiology and the North 
American Society of Pacing Electrophysiology [61].

When compared to [40, 41], in our work the ECG signals 
do not require any preprocessing, the use of residual con-
nections provides improvement over a plain network, and 
the imbalance in our dataset is catered for using a weighted 
cross-entropy loss, without the need for data deletion or 
duplication required in undersampling and oversampling, 
respectively. Our method is further strengthened by the use 
of ECG data from adjacent epochs and fine-tuning of net-
work hyperparameters using Bayesian optimization, achiev-
ing the highest accuracy of 93.05% (AUC = 0.9819) when 
data from adjacent epochs is considered.

We propose a simple yet robust method for detecting 
sleep apnea. While sleep apnea affects millions of people 
worldwide, sleep studies for diagnosing sleep apnea are 
expensive, not readily available, involve a suite of expen-
sive sensors requiring time to set up, and the multitude of 
signals captured during a sleep study requires significant 
time to analyze. The proposed method, on the other hand, 
relies only on single-lead ECG data which can be measured 
by commercial-grade wearable devices, such as the Apple 
Watch [62]. As such, the proposed method could be inte-
grated with wearable devices for screening apnea subjects at 

the comfort of their home. The method is shown to achieve 
strong classification performance, at the epoch and subject 
level alike, having the potential to improve apnea detection 
and diagnosis. Treatment of sleep apnea can follow the diag-
nosis and clinical treatments, such as using positive airway 
pressure, have been associated with improvement in quality 
of life [63] and reduced mortality [64].

Our work, however, has some limitations. First, we evalu-
ated only a small number of neural network implementations 
and architectures. While we obtained promising results, it 
should be highlighted that recently there has been a tremen-
dous interest in the deep learning research and a multitude 
of new methods are regularly published. It is possible that 
some of these perform well with ECG data and sleep apnea 
detection task, and eventually outperform our results. We 
leave a thorough evaluation of other deep learning methods 
for future studies. Second, the use of single-lead ECG signal 
only may be seen as a limitation. Despite being relatively 
cheap and easy to administer, the obtained results could 
potentially be improved by fusing other sensing technolo-
gies. While not aiming to achieve the full instrumentation 
offered by the PSG setting, we posit that adding a pulse 
oximeter sensor may improve the accuracy of sleep apnea 
detection, as pulse oximetry captures complementary oxy-
gen saturation information [65]. Finally, our training dataset 
is limited to only 35 subjects of which only 5 are females 
and only 10 are normal. As such, it is not clear if a model 
developed on this small and imbalanced dataset will gen-
eralize to larger and more diverse populations. In addition, 
the dataset does not include any records of comorbidities, 
which would be present in practical situations. The proposed 
method would need to be evaluated on a larger and more bal-
anced dataset with a more diverse population and a range of 
comorbidities, so that it could be eventually used as a robust 
sleep apnea diagnostic tool.
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