
S. Spaccapietra et al. (Eds.): Journal on Data Semantics VI, LNCS 4090, pp. 115 – 142, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Semantic Data Management in Peer-to-Peer
E-Commerce Applications

Yosi Ben-Asher and Shlomo Berkovsky*

Computer Science Department, University of Haifa
31905 Haifa, Israel

{yosi, slavax}@cs.haifa.ac.il

Abstract. Weakly organized structure of Peer-to-Peer systems may cause
severe data management problems and high communication overheads. We par-
tially resolve these problems by developing a novel semantic approach to effi-
ciently create, search and organize data objects in E-Commerce Peer-to-Peer
applications. The approach is based on the notion of Unspecified Ontology
(UNSO). Unlike many existing systems using a global predefined ontology,
UNSO approach assumes that the ontology is not fully defined, leaving some
parts of it to be dynamically specified by the users. The data objects inserted to
the system organize a multi-layered hypercube graph topology, providing a
stable infrastructure for efficient semantic search and routing operations. The
proposed method has a potential of becoming a practical infrastructure for Peer-
to-Peer data management applications.

Keywords: Peer-to-Peer Systems, Data Management, Ontology, E-Commerce.

1 Introduction

Peer-to-Peer (P2P) [21] technology offers a solid alternative to the traditional Client-
Server model of computing. While Client-Server model typically bases on a single or
small number of servers, in P2P systems every user (peer) acts as both the client and
the server at the same time, and provides a portion of the system capability. Thus, P2P
technology allows a dynamic set of users to efficiently share resources without any
centralized management. The shared resources are computing power (e.g., in distrib-
uted computation), data (e.g., in large-scale file sharing), bandwidth (e.g., data trans-
fer from multiple sources) and others. As a result, the advantages of P2P technology
over the Client-Server model include roughly unlimited scalability, high privacy and
anonymity of the users, and low costs. Sharing and aggregation of the resources guar-
antees robustness and high availability of P2P systems.

In this work we examine the issue of developing a P2P infrastructure supporting a
dynamic semantic management (i.e., insertion and search) of general-purpose
E-Commerce advertisements (in short, ads). The infrastructure is capable of manag-
ing E-Commerce ads of both supply and demand types. Supply ads are ads, where the
users offer a product or a service in exchange for a payment, whereas in demand ads

* This work was supported by a research grant from Caesarea Edmond Benjamin de Roths-

child. Foundation Institute for Interdisciplinary Applications of Computer Science (CRI).

116 Y. Ben-Asher and S. Berkovsky

the users seek for a product or for a service provided by other users. The main func-
tionality of the proposed system is to identify matching between appropriate demand
and supply ads. This is further referred as publish-locate functionality. Note that we
do not aim at performing higher functions, such as selecting the best offer, conducting
public auctions or implementing market clearing (see [9] and [20] for a discussion on
distributed systems performing these tasks).

In the state-of-the-art E-Commerce systems, a user publishing or searching an ad,
is usually required to fill-in a predefined form describing the matter of the ad. For
example, CarSmart (http://www.carsmart.com) users searching for a car are asked to
fill-in a form containing the following fields: manufacturer name, geographical loca-
tion, and price range. On the contrary, in another cars site, Motocar
(http://www.motocar.co.il), the users are asked to fill-in a more complicated form,
containing the following fields: producer name, model, range of production years,
gearbox type, engine volume and number of previous owners. Although both sites
refer to the same type of products, the forms (and even the names or parallel fields in
the form) are different, such that a search query launched by the user in one site, is
incompatible to the other.

This approach, exploiting predefined forms containing a set of attributes describing
the objects, is further referred as ontology-based approach. According to [13], ontol-
ogy is a formal explicit specification of a domain. Thus, the set of attributes, describ-
ing the objects from a particular domain, is considered as the ontology of a domain,
whereas the attributes are the slots of the ontology.

HyperCuP [32] proposed a flexible ontology-based hypercube topology for P2P
data management. It used a single predefined ontology to classify users as providers
of particular information associated with the ontology slots. This classification deter-
mined the position of the user in the underlying hypercube and allowed location of
any desired information in a bounded number of steps through a semantic routing (see
[27] and [5] for a discussions on semantic routing in P2P systems). Thus, HyperCup
formed an alternative to distributed hashing [29], [33], [26], network flooding [3],
local routing tables [10], gossiping [2], and others fundamental search techniques in
P2P systems. Additionally, HyperCuP proposed decentralized algorithms, capable of
constructing and maintaining highly-connected hypercube graph, stable to dynamic
joins and departures of users.

However, HyperCuP approach, requiring a single predefined ontology, is applica-
ble only to a limited set of domains and is inappropriate for general-purpose
E-Commerce systems, implying dynamic and a-priori unknown set of objects. A pos-
sible solution might be allowing users to add new types of ontological forms. How-
ever, this will flood the system with multiple (partially similar and overlapping)
ontologies. As a negative example, consider a setting, where a user publishing an
object and a user looking for the same object, are using slightly different ontologies.
Another solution might be developing a global comprehensive ontology, comprising
as many domain ontologies as possible. However, projecting this ontology on the
underlying hypercube will result in a huge, sparse and barely manageable structure.
Moreover, sharing of the single ontology by all the users will obstruct it from being
expanded.

All these restrictions contradict the decentralized spirit of P2P networks and raise
an issue of developing a flexible mechanism for managing a dynamic set of

 Semantic Data Management in Peer-to-Peer E-Commerce Applications 117

ontologies. Recent researches, e.g., [23] and [34], aim at resolving the ontologies
management issue through integrating local ontologies used by various systems.
These works try to overcome the autonomous nature of P2P systems and the resulted
heterogeneity of the ontologies by developing semantic mappings between the on-
tologies. The mappings exploit semantic knowledge about the ontology slots for the
purposes of identifying commonalities between the ontologies and matching differ-
ent terms describing similar underlying data.

Conversely, in this work we developed a novel approach of an UNSpecified Ontol-
ogy (UNSO) for the management of E-Commerce ads. Instead of trying to identify the
matching between the ontologies, UNSO presumes that the ontology is not fully de-
fined, and parts of it can be dynamically specified by the users. This broader notion of
ontology allows UNSO to be exploited in different application domains, rather than
just in the domains defined a-priori by the ontology experts.

To maintain the semantic routing, UNSO extends the original hypercube graph of
HyperCuP to a Multi-Layered Hypercube (MLH). MLH can be schematically de-
picted as a hypercube where each node is recursively constructed of another hyper-
cube. Hashing mechanism is used to deal with the unspecified nature of the ontology,
and with the variety of terms mentioned in the ads. Besides that, hashing uniformly
distributes the ads among the MLH to guarantee equivalent load partitioning.

The generated structure facilitates the semantic routing, similar to the routing of
HyperCuP. To eliminate ambiguity and enhance the precision, the terms mentioned in
the ads undergo simple semantic standardization using WordNet [11]. In summary,
UNSO expands the traditional notion of ontological data management and provides a
novel technique for a decentralized management of a dynamic set of ontology-based
ads, while keeping the essential publish-locate functionality. The fact that the users
are not forced to share any predefined ontology simplifies the use of the system by
inexperienced users and increases the chance of successful searches.

The rest of the paper is organized as follows. In section 2 we review the research
efforts in P2P computing, the major classes of P2P applications, their advantages and
shortcomings. Section 3 discusses the works in the area of ontology-based manage-
ment in P2P systems and particularly HyperCuP [32]. Section 4 presents the notion of
unspecified ontology, and discusses the generalization of a fixed ontology to UNSO.
Section 5 discusses the details of UNSO implementation. In section 6 we present the
experimental results, showing the performance of UNSO. Finally, section 7 concludes
the work and discusses the directions of further research.

2 Peer-to-Peer Data Management

P2P computing refers to a subclass of distributed computing, where the system func-
tionality is achieved in a decentralized way by unifying a set of distributed resources,
such as computing power, data and network traffic. P2P systems usually lack a desig-
nated centralized management, rather depending on the voluntary contribution of
resources by the users. These systems are usually characterized by one or more of the
following advantages: cost sharing/reduction, improved scalability/reliability, re-
source aggregation and operability, increased autonomy, dynamism, anonym-
ity/privacy and ad-hoc communication and collaboration [21].

118 Y. Ben-Asher and S. Berkovsky

The first generation of P2P systems was based on three classical architectures: me-
diated P2P architecture (e.g., [30]), pure P2P architecture (e.g., [10] and [26]), and
hybrid architecture (e.g., [38] and [22]). An elaborate comparison, advantages and
shortcomings of the above architectures, and discussion on the typical applications of
each architecture can be found in [6].

Basically, they all were designed for a large-scale data sharing. Applications, such
as Napster [30], Freenet [10] and Gnutella [3], allowed users to download data
(mainly multimedia files), shared by other users. Performance of these systems suf-
fered from severe problems. For example, in Napster a cluster of central servers,
called super-peers maintained the indices of the files shared by the users. Flooding
search algorithm of Gnutella limited the scalability of the system and did not allow
proper functioning over a heterogeneous set of users. Freenet, despite being fully
decentralized and employing efficient routing algorithms, could not guarantee reliable
data location. This led to a development of content-addressable P2P systems.

A number of similar fully decentralized content-addressable P2P systems, such as
CAN [26], Pastry [29], Chord [33] and some others, are referred as the second genera-
tion of P2P systems. They implement highly scalable self-organizing infrastructure
for a fault-tolerant routing over distributed hashing data management mechanism
(DHT). In these systems, the users and the data objects are assigned unique identifiers
(respectively, user-ids and keys) from a sparse space. Data objects are inserted and
located through put(key,user-id) and get(key) primitives in a bounded number of rout-
ing network hops. An elaborate description of and survey of P2P content-addressable
distribution technologies can be found in [4].

In Pastry [29], user-ids and keys are 128 bit vectors. Routing tables of the con-
nected users contain O(logN) rows and 16 columns, where N is the total number of
users. The entries in the row n of the routing tables refer to the logical neighbors,
whose user-ids share the first n digits with the user-id of the current users, whereas
the digit (n+1) of the user-id in column m of the row n is m. Unlike Pastry, Chord
[33] uses a one-dimensional circular 160-bit space and instead of the prefix-based
neighbors table, Chord users maintain a finger table, containing user-ids and ad-
dresses of the other connected users. Entry number i in the table of a user n refers to
another user with the smallest user-id, clockwise from n+2i-1. The first entry in the
table points to the direct successor of user n, whereas the following entries point to
the users at repeatedly doubling distances from n. CAN [26] is operated over
d-dimensional toroidal space, where each user is associated with a hypercubal zone of
the space, and its neighbors are the other users managing the adjacent hypercube
zones.

The routing algorithm of content-addressable systems is based on Plaxton routing
algorithm, developed in [25]. Plaxton algorithm was not designed for P2P systems,
rather for graphs with a static nodes’ population. The main idea of Plaxton algorithm
is correcting a single digit of address in every routing step. Consider the following
example. User 1234 receives a message, addressed to user 1278 (note that the first
two digits of the address already match). The message is forwarded to user 1275
(since there the first three digits will match). To support this routing, each user main-
tains a data structure of logical neighbors that match i-digits length prefix of its own
user-id, but differ in the (i+1)th digit. To maintain a connected system with N users,
each user is connected to O(logN) neighbors. Since a single digit of address is

 Semantic Data Management in Peer-to-Peer E-Commerce Applications 119

corrected each time the message is routed, the total length of the routing path is
O(logN) hops.

In P2P implementations of Plaxton routing algorithm, the routed message is con-
tinuously forwarded to the user, whose user-id is closer to the user-id of the addressee
than the current user. Although each one of the above DHT-based systems (Pastry,
CAN, and Chord) employs slightly different variant of Plaxton routing algorithm,
they all outperform the routing algorithms used in the first generation of P2P systems.
Their communication overhead is significantly lower due to the fact that the messages
are routed to the relevant users only.

However, DHT-based system rely on the hashing primitives of put(key,user-id) and
get(key). Thus, one of their major limitations is their support in exact-match searches
only. For example, consider two similar, but not identical keys: key1 and key2. The
results of their insertions into the system through hashing-based put primitive will
usually be absolutely different. Therefore, only the searches, specifying the exact key
that was used when the key was inserted, will succeed to find it, and an approximated
search can not be operated.

Possible solutions for this issue are discussed in [15]. The paper compares various
approaches facilitating complex range queries in DHT-based P2P networks. An archi-
tecture for relational data sharing in Chord-based systems was proposed in [14]. It
exploits hashing mechanisms on the possible values within a given range to facilitate
answering range queries. Solution for range queries problem in CAN-based systems
are proposed in [30]. In this work, CAN space is partitioned to zones, in a way that
allows the peers managing the zones to store information regarding the range of val-
ues that are mapped to this zone, as well as to the neighbor zones. This facilitates
resolving range queries through their iterative forwarding to the zone that is managing
the requested range of values.

Basically, the above approaches focus on constructing search indices enabling to
perform database-like queries using operators such as selection, join, aggregation and
others. These indices can help only in domains where the terminology of the keys
names is agreed between the users, e.g., in music files, where the songs names are
known. However, in domains with no well-defined naming standards, particularly in
general-purpose E-Commerce applications, different users might use different terms
to describe the same (or highly similar) object. Thus, in order to develop a generic
infrastructure facilitating matching of similar E-Commerce ads, the ads should be
preprocessed to a semi-structured form of attributes (slots) and their respective values.
To achieve that, there is an emergent need for more complex type of P2P systems,
built upon users that explicitly use semantic structures to describe the matters of their
ads. This approach is further referred as ontology-based approach.

3 Ontology-Based Data Management

One of the basic concepts in the semantic data management is ontology (according to
the Wikipedia, it is “the study of existence and the basic categories thereof”). Practi-
cally, it provides both human-understandable and machine-processable mechanisms,
allowing enterprises and application systems to collaborate in a smart way. According
to [13], ontology is a formal shared conceptualization of a particular domain. It is

120 Y. Ben-Asher and S. Berkovsky

used to describe structurally heterogeneous and distributed information sources, such
as those found on the Web, and acts as a standardized reference model, providing a
stable baseline for shared understanding of the domain knowledge.

Ontological metadata facilitates a standardized access to the domain knowledge.
Existing approaches of ontology-based data management assume a setting where the
data sources share a single ontology allowing the access to the data. This technique of
shared ontology was implemented in HyperCuP [32] that proposed a set of dynamic
P2P algorithms for maintenance of ontology-based hypercube-like graph topology
supporting semantic search and broadcast operations.

HyperCup developed a flexible ontology-based P2P platform generating a hyper-
cube-like graph of users, where each user is treated as a data provider. HyperCup
needs predefined domain ontology to be exploited, such that the dimensions of the
hypercube will match the ontology slots, i.e., a set of attributes characterizing the
domain objects. According to the above ontology, each user is categorized as a pro-
vider of particular data. This categorization determines the location of the user within
the hypercube. Thus, the hypercube is virtually constructed of the connected users,
whereas each user maintains a data structure of its respective neighbors. For example,
in 3-dimensional hypercube, a node located in coordinates (x,y,z) will be connected to
6 logical neighbors: (x+1,y,z), (x-1,y, z), (x,y+1,z), (x,y-1,z), (x,y,z+1) and (x,y,z-1).
The user providing multiple data objects from the same domain, or data objects from
multiple domains, will maintain a set of hypercube locations, such that a separate data
structure of neighbors will reflect each location.

The hypercube-like P2P structure was chosen due to its logarithmic diameter, in-
creased fault tolerance and the symmetry that guarantees equal load of the users. The
hypercube dimension d and the range of possible values in the dimensions (further
referred as the coordinates range) k determine the maximal number of users con-
nected to the hypercube. A complete hypercube contains at most Nmax=kd users, where
every user is connected to two logical neighbors in each dimension, resulting in
Nn=2d neighbors. This topology generates a symmetric structure where the load of the
connected users in the system is similar, as each user holds roughly equal functional-
ity in terms of routing load.

Any edge in the hypercube, connecting a pair of adjacent users X and Y, is assigned
a numeric value, referred as rank. When user Y is a neighbor of user X over a dimen-
sion i, the rank of the edge, connecting X and Y, is i. Thus, the edges rank ranges from
0 to d-1. Any user T in the hypercube can act as an initiator of search or broadcast
operation, which is performed as follows. The message, jointly with the rank of the
connecting edge, is sent to all the neighbors of the initiating user T. Upon receiving a
message, other users forward it only over the edges, whose ranks are higher than the
rank of the edge the message was received from. This guarantees that each user in the
graph will receive the message exactly once, and also that any connected user will be
reached in O(d) routing hops.

Consider the following example hypercube with a dimension d=3 and the coordi-
nates range k=2 (figure 1a). Eight users, numbered from 1 to 8, are connected and
form a complete hypercube. Each user is connected to exactly d=3 logical neighbors,
and the ranks of the connecting edges are 0, 1, or 2. For example, in respect to user 8,
user 1 is regarded as 0-neghbor, user 3 is 1-neighbor, and user 4 is 2-neighbor. Let

 Semantic Data Management in Peer-to-Peer E-Commerce Applications 121

Fig. 1. HyperCuP Example (a) 3-dimensional HyperCuP structure with 8 connected users;
(b) Broadcast procedure stages over the example HyperCuP structure

user 8 be the initiator of the broadcast operation. The messages are sent to the
neighbors, i.e., users 1, 3 and 4. Upon receiving a message over 0-rank edge, user 1
forwards it to 1- and 2-neghbors, i.e., users 2 and 5. User 3 forwards it to 2-neighbor,
user 6, and this broadcast through “higher-rank forwards” continues until all the nodes
in the hypercube are covered (figure 1b). Obviously, no node receives the broadcasted
message more than once, and the longest path in the hypercube is d=3 hops long.

HyperCuP also proposes a dynamic P2P algorithm for hypercube construction and
maintenance. The algorithm is based on the idea that a user can manage not only a
single node, but also a number of nodes in the hypercube graph. This is required in
order to simulate the missing users in the topology of the next complete hypercube,
which is implicitly maintained in any topology state. For example, consider node 4
simulating three missing nodes of the hypercube (figure 2a). The simulated nodes are
schematically illustrated by the dashed edges 1-4, 2-4 and 3-4, as node 4 acts as a
logical neighbor of nodes 1, 2 and 3.

When a new user connects the network, he takes his place (according to the data
provided) in the next complete hypercube, releases the user that previously managed
that node and starts functioning as a real hypercube node. For example, if a new user,
which should be positioned in node 5, is connected, he is routed to one of the existing
logical neighbors of node 5, i.e., either to the user maintaining node 1 or to the user
maintaining node 4. As node 5 is practically simulated by the user maintaining node
4, the new user contacts the user of node 4, builds a real edge between them and takes

Fig. 2. (a) Implicitly preserved topology of the next complete hypercube; (b) Join of a new
node

 0 1

 2 3

4

 3 2

 0 1

 54

8 1

2

0

11

3 0

4 5

7

0

11

6 0

2 2

22

(a)
8 1

2

0

11

3 0

4 5

7

0

11

6 0

2 2

22

(b)

122 Y. Ben-Asher and S. Berkovsky

part of its functionality, i.e., builds a real edge with node 1 and starts simulating the
neighbor of node 2 (fig. 2b).

When a user disconnects, one of the remaining logical neighbors takes the respon-
sibility for the node, previously managed by the leaving user. Since the next complete
hypercube is constantly maintained, previously discussed broadcast and search
operations are not affected by sporadic joins and departures of users. An elaborate
description of the way the HyperCuP topology is maintained, and examples of such
departures and joins, can be found in [32].

As already stated, users are classified as providers of particular contents. A single
predefined ontology defining the domain semantics, inherently organizes the users
providing the same or similar contents, in concept clusters using the above construc-
tion and maintenance algorithm. Note that the similarity of users within a cluster is
significantly higher that the similarity of arbitrarily chosen users. This facilitates que-
rying the generated topology and efficiently routing the queries only to the clusters
(and users) that can potentially answer it.

For example, consider the following simple ontology of cars domain, used to con-
struct a 3-dimensional HyperCuP (figure 1a): dimension 0 distinguishes between
manual(0) and automatic(1) gearbox, dimension 1 stands for USA(0) or non-USA(1)
produced cars, and dimension 2 for metallic(0) or non-metallic (0) color of the car.
Clearly, a query for automatic cars produced in the USA is routed to nodes 1 and 5, as
only these nodes store the requested type of cars.

However, the predefined ontology constitutes one of the main drawbacks of Hy-
perCuP approach. If used in a general-purpose E-Commerce application capable of
supporting various types of transactions and objects, HyperCuP would require global
all-inclusive ontology to be exploited. This is a severe limitation, as the state-of-the-
art ontologies are usually limited to a single application domain, and even ontologies
from the same domain can be highly heterogeneous due to existence of different views
on the domain data.

Earlier research efforts, such as [16] and [12], focus on the issue of merging on-
tologies and generating a global ontology. To create a unified view enabling to inte-
grate data originated by different ontologies, their semantic reconciliation is required.
Merging two ontologies means creating a new ontology comprising the slots of both
ontologies. Merging process is mainly based on recognizing relationships and com-
monalities between the slots of the ontologies. The ontology, generated as a result of
merging, matches both merged ontologies.

However, the issue of constructing all-inclusive ontology is a controversial issue
(see [35] for an elaborate discussion). Besides the philosophical question of creating a
universal ontology, it leads to a setting where updates of the ontology are conducted
through a central point of management, unacceptable in pure P2P networks. More-
over, existence of this global ontology forces all the users to use it, contradicting the
decentralized free spirit of P2P networks.

In P2P, we rather face a situation, where individual users maintain their own views
of the domain ontology. However, since data sharing is one of the primary motiva-
tions behind the state-of-the-art P2P systems, we need to find a way to distributively
manage multiple dynamic ontologies escribing the domain data objects. The task of
sharing heterogeneous ontological data became an important research direction in P2P
community. It is referred in the literature as the Data Integration problem [8].

 Semantic Data Management in Peer-to-Peer E-Commerce Applications 123

Traditional data integration approaches adapted from the distributed databases
community [36], assume a central unified representation of the data objects, which
contradicts the decentralized nature of P2P systems and suffers from scalability prob-
lem. In addition to the lack of central point of management, P2P data integration tech-
niques have to cope with multiple (sometimes ambiguous and overlapping) and highly
dynamic ontologies representing the data. Most of the techniques achieve the goal of
sharing and integrating data through developing semantic mapping mechanisms, de-
scribing the relationships between the slots of the ontologies [19].

Automatic approaches for ontology (or schema) mapping in P2P systems do not
require central ontology, but perform the mapping at one of three levels:

• Pair mapping – the mappings are performed between the relevant peers only [7].
In this setting, one of the peers involved in the mapping process, defines specific
translation and coordination rules allowing to relate the slots of his ontology to the
ontology of the other peer.

• Peer-mediated mapping – a generalization of pair mapping, where one of the peers
defines a mapping that relates to a number of peers. This approach was imple-
mented in [34] through machine learning technique that exploited various evi-
dences of semantic similarity of the ontology slots. In [23], the authors used
Information Retrieval techniques for extracting descriptive keywords, which were
exploited later for identifying appropriate slots in the ontologies. The mappings
are generated ‘on-the-fly’, whenever they are needed for the integration of data.

• Super-peer mediating mapping – semi-centralized approach, where the mappings
are performed at the super-peers level. In this setting, super-peers is responsible
for managing the mappings for the ontologies of the underlying peers, whereas
super-peer to super-peer mappings facilitate data sharing between any peers. This
approach was implemented in Edutella [22], RDF-based P2P platform for educa-
tional data sharing.

Most of the state-of-the-art P2P systems refer to the semantic heterogeneity be-
tween the underlying ontologies. However, they assume that the mappings between
the ontologies can be constructed. Although we do not negate the possibility of con-
structing such mappings, we highlight an observation that the process of creating
these mappings might be one of the most challenging tasks in a heterogeneous and
highly dynamic P2P realm. Alternatively, in this work we propose another way to
overcome the issue of semantic heterogeneity in P2P data integration. We developed
the approach of Unspecified Ontologies (UNSO) that instead of providing mapping
mechanisms between various ontologies, inherently supports dynamic organization of
users (as providers of particular data objects) in a HyperCuP-like graph structure. The
following section discusses the details of UNSO and the stages of generalizing the
regular notion of ontologies to UNSO.

4 Generalization of Ontology to an Unspecified Ontology

In this work we propose a novel approach to resolve the issue of global ontology that
should from one hand grow dynamically with no limited range, from other hand to be
used and updated in a fully distributive way. Initially, let us characterize the structure
of ontologies and their usage in semantic routing.

124 Y. Ben-Asher and S. Berkovsky

As a data structure, each ontology is considered as a vector, whose slots corre-
spond to the attributes of the objects being described. As such, the range of values for
each slot is the set of possible values of the respective attribute. For example, consider
a simple ontology for cars domain, where the objects are described by a vector con-
taining three slots only: [manufacturer | engine_volume | year_of_production]. Let us
consider each slot having the following range of predefined values [manufac-
turer={Ford, Mercedes, Jaguar} | engine_volume={1000-1500, 1500-2000, 2000-
2500} | year_of_production={new, 2000+, 1990+}]. Clearly, semantic P2P system
based on this ontology will generate a hypercube containing at most 27 nodes, each
having up to 6 logical neighbors.

A generalization of a fixed ontology to the Unspecified Ontology is performed at
the following levels (referring to the above example of cars ontology):

• The set and the range of possible values is made unlimited by operating on them a
fixed-length hashing instead of defining a set of predefined values. For example,
in the above ontology we use hashing to a range of size three, mapping new values
to their corresponding positions. For example, object [manufacturer:BMW | en-
gine_volume:3000 | year_of_production:1987] is mapped to [hash(BMW) |
hash(3000) | hash(1987)]. Therefore, the same 3-dimensional cube is now used to
hold the objects, whose values were not anticipated by the slots of the predefined
ontology. Moreover, the users can independently insert new objects in a fully dis-
tributed way, using the hashing above mechanism.

• More than one vector is used in the ontological description of an object, obtaining
a multi-layered ontology that is hierarchical instead of using one flat vector. Hier-
archical ontology produces a hypercube, whose nodes are recursively constructed
of another hypercubes. This structure is further referred as a multi-layered hyper-
cube (MLH). For example, consider a 3-layered ontology with three vectors [attr11
| attr12 | attr13] + [attr21 | attr22 | attr23] + [attr31 | attr32 | attr33] (where attrij refers
to slot number j in ontological layer number i) with two possible values for each
slot. Such ontology generates a hypercube with 8 nodes, where each node recur-
sively contains another hypercube (figure 3). This structure should be compared to

Fig. 3. Multi-Layered Hypercube (MLH)

 Semantic Data Management in Peer-to-Peer E-Commerce Applications 125

 a 512-nodes hypercube, had we used one flat vector for the whole ontology. Ob-
viously, hierarchical representation of the ontological vectors results in smaller
and denser hypercubes, alleviating the connectivity maintenance of the hypercubes
in pure decentralized P2P environment.

• The vector can dynamically grow by letting the users to add new levels to the
ontology. An unspecified vector (ontology-based description) is formed by attrib-
ute:value pairs. Two different hashing functions are used to map the unspecified
vector to the MLH. The first maps the attributes to the respective ontology slots,
while the second maps the values to the numeric values of the slots. Thus,
hash1(attribute) determines the dimension of the MLH, while hash2(value) deter-
mines the numeric value in this dimension. For example, consider the following
description [manufacturer:ford | engine_volume:1600]. It is mapped to the under-
lying MLH by applying hash1(manufacturer) and hash1(engine_volume) to obtain
the slot numbers (MLH dimensions), and hash2(ford) and hash2(1600) to deter-
mine the numeric values in these dimensions.

• The users can specify a different number of unspecified slots. When an unspeci-
fied vector is mapped to an existing MLH, its slots are extended to the dimension
of the MLH. For example, unspecified vector [manufacturer:ford] is extended to
[manufacturer:ford | engine_volume:1600], when inserted to an MLH of dimen-
sion 2 from the above example. If the inserted object contains more slots than the
number of dimensions in the current MLH, the vectors in the relevant hypercube
are updated to accordingly contain more slots. We assume that upon long enough
period of time and large enough number of object descriptions accumulated in the
system, these updates will not be frequent, thus, they will be feasible. Note that
exploiting two different hashing functions allows ignoring the order of the attrib-
utes in the unspecified descriptions.

• To distinguish between different objects having the same attributes (e.g., both cars
and bicycles have attributes such as color, wheels_type, number_of_gears and so
on), we require the ontological descriptions to contain so-called universal, or
specified slots. A slot is referred as universal if it can be applied to as many ob-
jects as possible, and its values form a meaningful separation between the objects.
For example, a universal attribute useful to separate between many objects is size,
reflecting the size of the object comparing to a well-known standard. This allows
distinguishing between the descriptions of cars and bicycles having the same at-
tributes. It should be stated that we rely on a common sense and common patterns
of thinking in specifying the values of the universal slots.

• The last attributei:valuei pair in description must be a discriminative attribute, i.e.,
its should be unique for any given object. For example, consider an IP address of
the user, or an ID number of the ad as such discriminative attributes. This allows
two ads (either identical, or distinct, but accidentally mapped to the same node) to
be separated according to the value of the discriminative attribute.

One of the heaviest steps in the management of the hypercube-like graph structure
is the extension of the hypercube and the stored vectors as a result of a new slot men-
tioned in the ontological description of an object. Although these extensions are theo-
retically possible at any point of time, we conjecture that they mostly occur at the
initial stages of graph construction. This is explained by the observation that large

126 Y. Ben-Asher and S. Berkovsky

number of new slots will be introduced during the initial insertions of objects, while at
the latter stages the probability of introducing a new slot (unless introduced mali-
ciously) that was not encountered yet, will decrease. As a result, the hypercube-like
graph will stabilize at the initial stages of objects insertions and the extensions will be
infrequent. This behavior is well-known in information search studies, where “as a
user obtains more information…, the probability of soliciting information from an
additional source is likely to decrease” [18]. Our conjecture regarding the similar
behavior of UNSO slots is verified in the experimental part.

The above steps of extending a fixed specified ontology to the Unspecified Ontol-
ogy are illustrated in figure 4. Predefined attributes and values of a fixed ontology are
mapped to the underlying hypercube graph. On the contrary, in UNSO the number of
<attributei:valuei> pairs in the unspecified description is unlimited. Thus, UNSO
dynamically generates a hypercube-like graph structure, where each node is recur-
sively constructed of another hypercube.

The generated MLH acts as a convenient infrastructure for the operations proposed
in HyperCuP. When an object is inserted by a user to the MLH, it is forwarded to-
wards its proper position. There, the user connects to its logical neighbors and starts
functioning as an MLH node. Disconnection of a user causes another user to take the
responsibility for the node of the disconnected user. Semantic routing in the MLH
consists of a series of routings to the appropriate node in the current-layer hypercube

Fig. 4. Generalization of the Fixed Ontology to the Unspecified Ontology

val31

val32

val3n

val11

val21

val1n

val21

……

 … val2n

semantic

routing

<val1i, val2j, …, val3k>

UNSO
generalization

a1:v1 a2:v2 a3:v3

a1:v1 a2:v2

a1:v1 a2:v2 a3:v3

a1:v1 a2:v2

a3:v3 a2:v2 a1:v1

specified
part

unspecified
part

fixed ontology

UNSO

semantic

routing

 Semantic Data Management in Peer-to-Peer E-Commerce Applications 127

and deepenings to the appropriate next-layer hypercube. Note that in the MLH the
routing is performed according to Plaxton routing algorithm, i.e., every network hop
corrects one digit of the address.

Important property of UNSO data structure is a property of implicit locality (basi-
cally, inherited from HyperCup). Both in HyperCup and in UNSO, the location of a
user in the underlying MLH is determined according to the contents provided by the
user. For example, consider two users providing similar (but not identical) data
objects, described by the respective unspecified vectors: <attribute1:value1, attrib-
ute2:value2, attribute3:value3> and <attribute1:value1, attribute2:value2, attrib-
ute3:value4>. Clearly, mapping of both vectors to the underlying MLH will produce
identical numeric coordinates within the dimensions corresponding to attribute1 and
attribute2, whereas the coordinates within the dimension of attribute3 will be differ-
ent. As a result, the distance between the above pair of data objects will be lower than
the distance between arbitrarily chosen pair of data objects. This can be explained by
the observation that the distance between the locations of objects, whose descriptions
overlap in a subset of <attributei:valuei> pairs, will be lower than the distance be-
tween the locations of objects with non-overlapping descriptions. We refer to this
property of UNSO as implicit locality, since providers of similar contents are mapped
to close locations in the underlying MLH graph.

Although the implicit locality property seems to contradict the load balancing
property of hashing mechanism, this is not exactly the case. The insertion of the data
objects into the MLH is performed through the mapping of <attributei:valuei> pairs,
such that attributei is mapped to one of the MLH dimensions, and valuei to the nu-
meric value (coordinate) within the dimension. Since UNSO exploits hashing-based
mapping mechanisms, the distribution of values among any given MLH dimension
will be uniform, and the load of MLH nodes will be similar. Although implicit local-
ity property might lead to high-populated regions of the MLH, the number of real (not
simulated) nodes in these regions will be also higher, and they will keep proper func-
tionality under the conditions of higher load.

Another issue deals with the mapping of values from continuous domain to the
MLH dimensions’ coordinates. Although hashing-based mapping is suitable for map-
ping the values of discrete or non-enumerable attributes (e.g., color, manufacturer, or
model), it is inappropriate for the values of continuous attributes (e.g.,
year_of_production, price, or engine_volume) since hashing-based mapping of con-
tinuous attributes loose their original inherent order relation. To resolve this issue, we
replaced the hashing-based mapping of continuous attributes with a simple bucketing
of the values. For example, consider a mapping of price attribute, whose values range
between 0 and 100,000 to a dimension with 10 possible numeric values. In this case,
prices between 0 and 10,000 will be mapped to numeric value 0 within the coordinate,
prices between 10,000 and 20,000 – to 1, and so forth. By doing so, we facilitate an-
swering range and approximate queries over the continuous coordinates, since close
values are mapped to the same (or neighbor) buckets, and the order relation of values
between the buckets is also kept.

In summary, we would like to stress the main advantages of the Unspecified On-
tologies mechanism and the underlying MLH graph of UNSO over the approach pro-
posed by HyperCuP:

128 Y. Ben-Asher and S. Berkovsky

• Lack of centralized ontology – the mapping of an object to its position in the MLH
is performed through hashing-based mechanism, instead of using a fixed prede-
fined ontology.

• Contents flexibility – new types of objects and attributes can be easily added to the
system, not requiring any updates of the ontology.

• Unlimited range of attributes and values – the unspecified part of the ontology
allows the users to mention relatively free list of attributes and values in the onto-
logical descriptions of the objects.

• Insignificant order of attributes – the unspecified part of the ontology does not
require any order of the mentioned attributes, allowing high flexibility in further
search of the data objects.

• Implicit locality – similar descriptions (i.e., similar objects), are mapped to adja-
cent positions within the MLH. Thus, similar objects are autonomously clustered
without any explicit clustering mechanism.

• Approximated search – property of implicit locality in UNSO allows employing
approximated searches, finding the objects similar (but not identical) to the object
being searched.

• Partial searches – a search, containing a subset of the required object attributes can
be conducted, finding a wider range of relatively similar objects.

• Multi-layered structure – increases the independence of the data management, as
an update a particular hypercube layer does not affect the rest of the layers.

Compared to the existing DHT-based systems, UNSO proposes functionalities that
were not supported earlier. Hashing mechanism of DHT systems is based on a single
key. As a result, successful search in DHT-based systems requires exact matching of
the keys. This is unreasonable when the key is a natural language description of an
object. Conversely, UNSO handles keys represented by a list of attributes and their
respective values. Thus, UNSO facilitates partial search of a subset of object
attributes, whereas the order of the specified attributes is insignificant. Hence, data
management and search mechanisms of UNSO are more flexible, than the parallel
mechanisms of DHT-based systems.

Comparing UNSO to HyperCuP [32] yields another important advantage of
UNSO. HyperCuP is based on a fixed predefined ontology that must be explicitly
used by all the users. This is a severe limitation, as the users are forced to share and
use it when describing their objects. On the contrary, UNSO allows the users to pro-
vide relatively free description of objects in form of attributei:valuei pairs list. As
well, new objects and attributes can be easily added to UNSO, not requiring update of
the ontology and the update distribution to maintain consistency. Multi-layered struc-
ture of UNSO provides an efficient mean to resolve hashing collisions, since the at-
tributes and their values are used to distinguish between objects from different
domains.

5 UNSO Implementation Details

This section discusses the details of UNSO implementation. A multi-layered UNSO
model, similar to the model, described in the previous section, was implemented. The

 Semantic Data Management in Peer-to-Peer E-Commerce Applications 129

primary layer of UNSO contains the hypercube constructed by the specified part of
the ontological descriptions of objects. The secondary MLHs are originated by the
unspecified parts of the data objects’ descriptions.

The specified part of UNSO is the subset of object attributes that should by explic-
itly mentioned by the users when describing the object. As the target application ob-
jects are general-purpose E-Commerce ads, the slots of the specified part should be
applicable to as wide as possible range of objects. Clearly, these attributes are the
universal attributes of the objects, such as size, weight, price, material and so forth.
Note that here we refer to real-life tradable objects only, such as cars, apartments,
books, tickets and others, which are the matter of E-Commerce ads.

The following set of the universal attributes was chosen to serve as the slots of the
specified part of the ontology:

• Product – the name of the object, i.e., a noun describing the class of objects the
described object belongs to. For example, car, book, telephone and so forth.

• Relative size – the size of the object. Since the size is a relative concept, we pro-
vide a standard size, such that the size of the described object is measured with re-
spect to it. The standard is chosen to be an average size of a human being, and the
objects are graded from ‘very small’ to ‘very big’ in comparison to it. For exam-
ple, pen or mobile phone are ‘very small’, while house or truck are ‘very big’.

• Usage range – the physical distance from the current location of the user, where
the object is operated. As this concept is also a relative one, a standard for the pos-
sible values is provided. The usage distance is defined as ‘very close’, if the object
is operated “at arm’s reach” (i.e., in the room or indoor), and ‘very far’ if the dis-
tance of operation is roughly unlimited. Thus, housewares or furniture are ‘very
close’ objects, while cars or optical equipment are ‘very far’.

• Price – the price of the object, i.e., the sum the seller expects to get, or the sum the
buyer is ready to pay for it. Price is also a universal attribute as it separates be-
tween different types of objects, such as houses and cars (although it may fail to
separate books from CDs).

The attribute:value pairs mentioned by the user in the ontological description of an
object, determine its position in the underlying MLH. The dimension of the primary
hypercube equals to the number of slots in the specified part of the ontology. Thus,
the above four slots generate a 4-dimensional primary hypercube. The number of
dimensions in the secondary MLHs is theoretically unlimited. Practically, a number of
attributes mentioned by the users in the unspecified part of ontological descriptions is
limited and quickly converges to its upper bound. Therefore, HyperCuP approach,
where the connected users simulate the missing nodes, allows to maintain connec-
tivity in the generated MLH.

In HyperCuP, the mapping of objects to the hypercube was performed according to
the values of the ontology slots. On the contrary, in UNSO, the mapping is performed
through a set of simple hashing functions operating with the numeric codes of the
characters used in the values of ontology attributes. Although smarter hashing mecha-
nisms could provide better distribution [28] and keep the locality and order relations
between the values [17], in this implementation we chose a simple hash functions
only to validate the applicability of the proposed approach.

130 Y. Ben-Asher and S. Berkovsky

Thus, the range of possible values (further referred as the coordinates range) k in
the specified slots product and price is determined by the range of the hashing func-
tions. Since for relative size and usage range slots the set of values is restricted to
{very small, small, medium, big, very big}, the total number of nodes in the primary
hypercube is practically limited by 25k2, where k is the coordinates range.

One of the advantages of hashing-based mapping mechanism is in a uniform distri-
bution of ads among the MLH allowing to uniformly partition the load of the users.
For example, for k=17, an ad [product:car | relative_size:very big | usage_distance:
very far | price:45000] is mapped to [0 | 4 | 4 | 13] in the primary hypercube, while an
ad [product:television | relative_size:medium | usage_distance:very close | price:400]
is mapped to [15 | 2 | 0 | 2]. However, for k=11 the same ads are mapped to other
locations, respectively [7 | 4 | 4 | 8] and [6 | 2 | 0 | 1].

As for the unspecified part of the ontology, the format is a list of attribute:value
pairs, where neither the attributes, nor the values are limited by any predefined ontol-
ogy. For example, consider the following ontological (both specified and unspecified)
description of a car: [product:car | relative_size:very big | usage_distance: very_far |
price:45000] + [manufacturer:BMW | color:red | mileage:5000]. The unspecified part
[manufacturer:BMW | color:red | mileage:5000] is mapped to a position (5, 8, 4) if
the attribute ‘manufacturer’ is mapped to the coordinate number 1 and the value
‘BMW’ is mapped to the value 5, ‘color’ is mapped to coordinate 2 and ‘red’ to value
8, and respectively ‘mileage’ is mapped to coordinate 3 and ‘5000’ to value 4.

Note that two different ads are mapped to the same node either if their ontological
vectors are identical, or the mappings of their attributes and values completely over-
lap. In this case the IP address of the user inserting the ad is chosen to act as the dis-
criminative attribute distinguishing between the ads. Since the IP address is not a real
attribute of the described object, it acts as a discriminative attribute only and is disre-
garded when displaying the search results.

Every new attribute, mentioned in the ads from a particular domain, increases the
total dimension of the respective MLH. For example, consider the domain of car ads
with a single ad [product:car | relative_size:very big | usage_distance: very_far |
price:45000] + [manufacturer:BMW | color:red | mileage:5000] from previous
example. Inserting a new ad, mentioning two unspecified attributes that were not
mentioned yet (e.g., gear and number_of_doors), causes the secondary hypercube to
expand to a 5-dimensional hypercube. So, the original ad is remapped to (5, 8, 4, *,*).
However, analyzing relatively large corpus of car ads shows that the inserted ads
contain in total 12 different attributes only, while most of the ads contained only 3-4
pairs of attributes and values. Thus, most of the hypercube expansions occur during
the initial phases of the MLH construction. In this stage the MLH still contains rela-
tively low number of ads and therefore the update is not expensive. Conversely, in a
hypercube containing many ads, the updates are infrequent.

A possible drawback of the proposed idea is unclarity and ambiguity in supplying
the values of the ontology slots. For instance, one user might define a car as big, while
the other one might search it as very big. In this case the search is mapped to a differ-
ent position in the hypercube, and the matching can not be identified. We conjecture
that most of the users use similar patterns of thinking while describing the objects. If
this is true, most of the ads describing the same objects are mapped to the same posi-
tion in the primary hypercube, forming clusters of similar ads (figure 5).

 Semantic Data Management in Peer-to-Peer E-Commerce Applications 131

Fig. 5. Cluster of Ads in a 3-Dimensional Primary Hypercube

To resolve the issue of semantic heterogeneity, i.e., different terms with the same
semantic meaning in the descriptions of objects, values of the ontological slots are
standardized using WordNet [11]. In WordNet, English nouns, verbs, adjectives and
adverbs are organized into synonyms sets, each representing a single semantic con-
cept. For each concept, the synonyms’ set is sorted according to the usage frequency.
In our implementation, we employed a simple semantic standardization, replacing the
original term, mentioned in object description, with its most frequent synonym. Thus,
similar but not identical terms mentioned by the users, are replaced with a single rep-
resenting term. For example, terms such as “automobile”, “machine”, or “motorcar”,
are replaced with their most frequent synonym “car”.

Another practical issue leading to the semantic heterogeneity might be the use of
hyponyms or hypernyms (respectively, terms that are more specific, or more generic
than popular, standard term implied by most of the users) in the descriptions of ob-
jects. For example, a user might use ‘sport car’ or ‘coupe’ hyponyms or ‘motor vehi-
cle’ hypernym while describing the above mentioned red BMW car. Although current
implementation of UNSO can not handle such standardization, it can be easily ac-
complished through hyponym and hypernym links of the WordNet. This will allow
the standardization process to scan child and parent nodes in addition to currently
scanned sibling nodes of WordNet graph of nouns, and therefore will improve the
retrieval capabilities of UNSO.

To balance the communication load across the system, a modified variant of Plax-
ton routing algorithm [25] is implemented. Plaxton algorithm routes a message by
correcting each time a single digit of the address. In the original algorithm the order
of address digits corrections is known, i.e., the most significant digit of the address is
corrected first, and the least significant digit is corrected last. Simultaneous routing of
multiple messages to/from the same area (cluster) might lead to a communication
bottleneck. To resolve this issue, we randomized the order of address digits correc-
tions. This is further referred as a randomized Plaxton routing.

Over the hypercube-like graph topology (which is a subclass of expander graphs
[24]), Plaxton routing algorithm corrects one digit of the address at each network hop.
Since the bits of HyperCuP neighbor nodes differ in exactly one digit of the address,
and each correction modifies only a single digit of the address, the order of the digit
corrections can be shuffled. For example, consider correcting an address of length
logN, where N is the maximal number of users in the hypercube. The number of

132 Y. Ben-Asher and S. Berkovsky

possible correction orders that can be applied, i.e., the number of possible routes, is
(logN)!. This number allows high routing flexibility in the hypercube-like expander
graph topology and improves the communication load balancing.

On the first view, Plaxton routing algorithm seems to be very inefficient form of
routing, since correcting a multi-dimensional address in a MLH of total dimension d
with coordinates range k will require O(kd) network hops. However, this observation
will not hold in practical P2P systems which will be highly sparse, i.e., the number of
real connected nodes will be significantly lower than the number of possible locations
in the underlying MLH. Due to the sparsity of the MLH, a number of nodes will be
simulated by a single user and as a result, the number of network hops required for the
query routing will be significantly decreased. In any case, the above randomized Plax-
ton routing allows to better distribute the communication load among the connected
users.

The system prototype implementation includes Graphical User Interface (GUI)
enabling the users to launch search queries (figure 6). The GUI contains fields for
inserting the values of the specified slots, textual fields for the unspecified attributes
and values, and textual area for displaying query results.

In a typical search scenario, the user starts from filling-in the values of the speci-
fied slots of the ontology. Assuming common patterns of thinking, the system finds a
node in the primary hypercube, which stores the ads from the relevant domain. For a
large enough corpus of ads, the number of the matching ads might be too high. Thus,

Fig. 6. Typical Search Scenario (a) Only the slots of the fixed part of the ontology are
specified; (b) In addition, two unspecified slots are specified

 Semantic Data Management in Peer-to-Peer E-Commerce Applications 133

 the user needs to refine the query by mentioning the unspecified attributes and their
values. As a result, the system filters out the irrelevant ads and displays to the user a
shorter list of ads.

Consider the search scenario, illustrated in figure 6. In the first query (figure 6a),
the specified slots [product:car | relative_size:very_big | usage_distance:very_far |
price:50000] only are filled-in. The query is mapped to a node [7 | 4 | 4 | 8] of the
primary hypercube (for k=11). As no unspecified attributes are mentioned, the num-
ber of returned ads is 16 (out of 34 matching ads in the corpus), which is relatively
high. In the second query, the user expands the description using two unspecified
attributes: manufacturer and color. The search for [product:car | relative_size: very_
big | usage_distance:very_far | price:50000] + [manufacturer:BMW | color:black] is
mapped to [7 | 4 | 4 | 8] + [7 | 3 | * | * | *]. Note that since the secondary MLH con-
sists of a single 5-dimensional hypercube, the system automatically expands the ad-
dress through inserting wildcards instead of the attributes that are not mentioned in
the search. The use of unspecified attributes filters the irrelevant ads, returning a
smaller set of 4 matching ads only (figure 6b).

6 Experimental Results

To conduct the experiments, a corpus of both supply and demand E-Commerce ads
was downloaded from http://www.recycler.com. The corpus of supply ads contains
1272 ads from 14 different categories. Before inserting the ads into the system, they
were manually converted to the form of ontological descriptions. For example, the
following ad “Philips 50FD995 50" plasma television, brand new, $4800” was con-
verted to the following unspecified ontological description [product:television | rela-
tive_size:medium | usage_distance: very_close | price:4800] + [manufacturer:Philips
| model: 50FD995 | size:50" | material:plasma | condition:brand new]. The conver-
sions were done as close as possible to the original contents of the ads, to mimic the
insertions by naïve users. Corpus of 136 demand ads was automatically built by modi-
fying a subset of the attributes and values mentioned in the supply ads.

The following experiments were conducted. Initially, we evaluate the Information
Retrieval metrics of precision and recall [37] through launching queries for the ob-
jects from the demand ads. Then we validate the property of locality, namely the
distance between similar and dissimilar ads in UNSO. Finally, we measure the scal-
ability and stability of UNSO through evaluating the performance of the system for
gradually increasing number of ads in the system. The results of the experiments are
presented in the following sub-sections.

6.1 Information Retrieval Metrics

This experiment was designed to evaluate two traditional Information Retrieval accu-
racy metrics: precision and recall [37]. In context of publish-locate application, preci-
sion is computed as the number of relevant ads in a node divided by the total number
of ads there. Similarly, recall is computed as the number of relevant ads in a node
divided by the total number of relevant ads in the system. For example, consider 100
cars ads inserted to the system. User looking for a car launches a query, and receives

134 Y. Ben-Asher and S. Berkovsky

80 ads. 60 out of them are cars ads, while the rest are ads from other application do-
mains. In this case the precision is 60/80=0.75, and the recall is 60/100=0.6.

An ad might be included in a query results due to two reasons: it might either be an
ad that really satisfies the constraints posed by the query, i.e., mentions the terms that
were searched in the query, or it might be irrelevant ad that was accidentally mapped
to the same node. To accurately measure the values of precision and recall, relevance
metrics should be explicitly defined. In this work, the relevance of the returned ads is
automatically determined through comparing the attributes and the values mentioned
in the query with attributes and values mentioned in the ads returned by the system.

The values of precision and recall are measured for different coordinate ranges k
(hashing function range) of the UNSO slots, varying from 1 to 100. For each value of
k we compute the average recall and precision among launching the 136 demand
queries. Recall and precision are computed through computing the number of relevant
ads and the total number of ads in the nodes the queries are mapped to, and the total
number of ads relevant from the given domain.

The chart in figure 7 shows the average values of precision and recall as a function
of the coordinates range k. The dashed curves show the precision values, while the
continuous curves stand for the recall. Both the precision and the recall are measured
twice: for the original terms specified in the ads (the brighter curves), and after stan-
dardizing the values of the ontology slots with WordNet (the darker curves).

In general, both the probability of hashing collisions and the number of irrelevant ads,
accidentally mapped to a node, decrease with the increase of k. Thus, the precision in-
creases with the coordinates range k. It can be clearly seen from the chart that the stan-
dardized results outperform the original results. This holds for any coordinates range k,
and the standardized precision values asymptotically converge to 1 (maximal precision,

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100
coordinates range

p
re

ci
si

o
n

/r
ec

al
l

Standard. precision

Precision

Standard. recall

Recall

Fig. 7. Recall and Precision as a Function of the Coordinates Range k

 Semantic Data Management in Peer-to-Peer E-Commerce Applications 135

if all the ads returned by a search are relevant) starting from relatively low values of k
(k>30). The observation that the standardized precision values are higher is reason-
able, since WordNet replaces similar terms mentioned in the ads with a single repre-
senting term. Thus, the number of different attributes and in particular the number of
ads accidentally mapped to a node monotonically decreases with k, whereas the preci-
sion monotonically increases.

The original recall values of the system are relatively low, approximately 0.29. This
is explained by the observation that without the WordNet standardization the users
mention different terms to describe the same semantic concepts. Consequently, the
searches succeed in finding only the ads that mentioned the appropriate term (or the ads
that were accidentally mapped to the same position). Using WordNet, the recall values
are significantly higher, roughly 0.8. Note that initially the recall values decrease when
the coordinates range k increases. This happens due to the fact that the probability of
similar ads mentioning different terms to be accidentally mapped to the same node is
relatively high for low values of the coordinates range k. For example, for k=1 all the
ads are mapped to the same location, as the MLH basically consists of a single node.

Obviously, there is a clear trade-off between the coordinates range k and the accu-
racy (in terms of recall and precision) of the system. From one hand the chart shows
that a linear combination of recall and precision improves for higher values of k, as
the recall converges starting from relatively low values of k, and the precision in-
creases. However, practical maintenance of large enough MLHs is complicated for a
low number of connected users, due to the sparsity causing the connected users to
simulate high number of ‘missing’ nodes.

For example, let us compare two possible coordinate ranges: k=30 and k=80. The
values of recall and precision for these values of k are close: the precision is respec-
tively 0.89 and 0.97, while the recall roughly remains unchanged, 0.81. But, the esti-
mated size of the primary hypercube only increases from 22,500 to 160,000 nodes.
Thus, every connected user is forced to simulate about 7 times more nodes, resulting
in a significantly higher communication loads and maintenance overheads of the con-
nected users. Therefore, we conjecture that the optimal value of k for a moderate
number of connected users and inserted ads is between 20 and 30. For such values of
k, both precision and recall values are above 0.8, while the size of the primary hyper-
cube remains reasonably small.

6.2 Locality

An important metric of quality of a system using semantic routing is locality, i.e.,
mapping of similar ads to close positions in the underlying MLH. To verify this prop-
erty, a subset of 128 supply ads was randomly chosen. For each chosen ad X, we de-
note by X’j a modified ad, where the values of j attributes are changed. Both X and X’j
are inserted into the system and the distance d between their positions is computed.

The distance d between the positions of two ads X and X’j is defined as a sum of
their distances (i.e., differences in the numeric coordinates) in each one of the dimen-
sions. For example, the distance between the positions (1, 3, 5, 7) and (8, 6, 4, 2) in a
4-dimensional hypercube is |(1-8)|+|(3-6)|+|(5-4)|+|(7-2)|=16. In the MLH topology,
distance between two positions is the sum of the distances in each one of the layers.

136 Y. Ben-Asher and S. Berkovsky

0

10

20

30

40

50

60

70

80

5 15 25 35 45 55 65 75 85 95
coordinates range

av
er

ag
e

ed
it

in
g

 d
is

ta
n

ce

 j=1

 j=2

 j=3

 j=4

Fig. 8. Average Distance as a Function of a Number of Changes (j) for Different Values of the
Coordinates Range k

The chart in figure 8 shows the average distance d over the chosen 128 ads as a func-
tion of j, computed for the coordinates range k varying from 1 to 100.

Each quadruplet of bars in the chart shows the average distance between the ads for
j=1, 2, 3 and 4 (the leftmost column stands for one change, and the rightmost for four
changes). It can be clearly seen that for any value of the coordinates range k, the dis-
tance increases with the number of changes inserted to the ads. For example, for k=55,
the distance for one change is 12.8, while for four changes it is 45.4. The results show
that the property of locality holds in UNSO and the average distance between two
similar ads (small number of changed values) is lower than the average distance be-
tween two different ads (higher number of changed values).

The chart also shows that the distance d for a given j increases with the increase of
the coordinates range k. The higher is the value of k, the wider is the range of possible
coordinates the ad can be mapped to, and the higher is the distance. However, the
growth of the average distance is linear with k. This observation holds for all the val-
ues of j, i.e., it is true for different magnitudes of the distance.

In the discussion on precision, we concluded that the best precision is achieved for
high values of k. The linear growth rate of the distance shows that precision im-
provement will not negatively affect the distance and the property of locality will hold
for different values of coordinates range k.

6.3 Scalability

Scalability is one of the most important properties of P2P systems, and certainly one of
their biggest advantages of P2P over the Client-Server approach. We define it as an

 Semantic Data Management in Peer-to-Peer E-Commerce Applications 137

indicator of a system’s ability to maintain quality performance under an increased load.
In UNSO, “maintenance of quality performance” means reasonable MLH data man-
agement and efficient query routing under conditions of heavy load. The meaning of
“heavy load” can be interpreted in a few ways. It can be referred as a high number of
ads in the system, communication overload, high rate of users’ joins and disconnections,
and so on. This experiment was designed to evaluate the scalability of UNSO under
conditions of high communication overload in a particular area of the MLH.

To create a high number of routing operations in a particular area, we insert into
the system two sets of ads (about 120 ads in each one): housewares ads and tele-
phones ads. These sets generate two clusters, further denoted as P and Q. We gradu-
ally increase the number of ads in each cluster and simulate the communication
overload by simultaneously routing queries from P to Q and from Q to P. For each ad
in P (and in Q) we randomly select an ad in Q (and respectively in P), and simulate a
routing operation between the positions of the ads. In the experiments we measure the
maximal number of queries routed through a single node. The measures are conducted
for a number of coordinates ranges k, such as k=13, 17, 23, 29, and 37. As the ran-
domized Plaxton routing is not deterministic, the experiments are repeated 1000
times. The chart in figure 9 shows the average results.

The chart shows that starting from approximately 36 ads (30% of the maximal size
of the sets) in P and Q, increasing the number of ads does not affect the maximal
traffic in the system, i.e., the number of simultaneous routings increases without any
significant change in the traffic load. This observation is explained by a relatively
high connectivity of the underlying MLH structure (as a subclass of expander graph)
and by the randomized variant of Plaxton routing algorithm that is exploited in

Fig. 9. Maximal Load in the Network Under Conditions of High Number of Simultaneous
Routing Operations

138 Y. Ben-Asher and S. Berkovsky

UNSO. Note that this observation holds for different values of the coordinates range
k. Moreover, the maximal load in the system decreases with the increase of k, as for
high values of k the number of possible routing paths is higher and the communica-
tion overload of each node is lower.

This allows us to conclude that UNSO is scalable with respect to its functionality
under conditions of communication overload resulting in a high number of concurrent
routings. Thus, the proposed UNSO approach implemented over the MLH topology
can work-out and function efficiently as a large-scale general-purpose E-Commerce
application (e.g., launched over the Web).

6.4 Stability

In this experiment was designed to measure the “average size” of the generated struc-
ture as a function of the number of inserted ads. One of the key metrics for evaluating
the size of the network is the characteristic path length. For two given nodes A and B
in the MLH, a path length between their positions in the hypercube is defined as a
minimal number of Plaxton corrections needed in order to reach B starting from A.
The characteristic path length is defined as the average path lengths over all pairs of
nodes in the system. In this experiment we gradually increase the number of ads in-
serted into the system and compute the characteristic path length. Since the ads
inserted into the system are chosen randomly from the corpus of 1272 supply ads, for
each number of ads in the system the experiment is repeated 1000 times. The average
values of the characteristic path length are shown in figure 10.

The chart shows that the initial insertions of ads increase the characteristic path
length by increasing the number of dimensions in the MLHs. However, starting from

0

5

10

15

20

25

0 127 254 382 509 636 763 890 1018 1145 1272

corpus size

ch
ar

ac
te

ri
st

ic
 p

at
h

le
ng

th

Fig. 10. Characteristic Path Length as a Function of the Corpus Size

 Semantic Data Management in Peer-to-Peer E-Commerce Applications 139

approximately 20% of the maximal corpus size, inserting ads has roughly no effect on
the characteristic path length. This validates our assumption that the total cardinality
of the set of attributes used for describing an object is final and bounded. Moreover,
most of the attributes are used in the first descriptions that are inserted, while the rest
of the descriptions contribute very few new attributes. Therefore, the proposed algo-
rithm of the MLH expansion during the insertion of higher-dimensional ads does not
lead to a significant overhead due to the expansion.

7 Conclusions and Future Work

In this work we proposed and evaluated a novel notion of Unspecified Ontology
(UNSO). This concept refers to a non-fixed variant of ontological descriptions of the
data objects. In comparison to the fixed predefined ontologies, UNSO facilitates more
flexible way to describe the objects. Multi-layered hypercube graph (MLH) topology,
supporting efficient semantic routing, is constructed based on UNSO. We designate
the MLH to be used as an infrastructure for general-purpose E-Commerce applica-
tions over Peer-to-Peer network. This work focuses on the basic functionality of
E-Commerce systems, i.e., publishing and locating the objects. It allows the users to
publish their objects using ontological description, while other users are able to easily
locate them.

Note, that using UNSO does not force the users to share or to use any single ex-
plicit ontology. The users can provide relatively free ontological descriptions of their
data object by specifying the object attributes and their respective values. Instead of
using a predefined ontological mapping, hashing-based mechanism is used to map the
ads to their positions in the underlying MLH. Thus, the order of the attributes, men-
tioned by the user is insignificant, and if the attributes are properly recognized, they
are mapped to the same hypercube coordinates.

Experimental results show that the performance of UNSO with respect to the In-
formation Retrieval metrics is good. The precision of the system is high, and it in-
creases with the increase of the MLH coordinates range. Although the recall values
are moderate, they become very high as a result of performing a simple standardiza-
tion with WordNet. Note that UNSO, unlike traditional Information Retrieval systems
and search engines, demonstrates high values of both recall and precision at the same
time. Smart semantic standardization tools and dynamic hashing mechanisms, uni-
formly distributing the ads among the MLH nodes, will assist in achieving a better
performance with respect to the Information Retrieval metrics.

Performance of UNSO with respect to the P2P metrics is also good. As can be seen
form the results of scalability experiments, the proposed system is highly scalable.
For a relatively low number of concurrent routings, the system reaches its maximal
communication load, and further routings do not increase it. This leads to a
conclusion, that when implemented and launched as a large-scale data sharing P2P
application, e.g., over the Web, UNSO-based systems will keep proper functioning
under conditions of heavy load. Thus, we believe UNSO can serve as efficient infra-
structure for real-life Web applications and it has the potential of opening Web
E-Commerce activities to a larger community of P2P users.

140 Y. Ben-Asher and S. Berkovsky

The following directions of further research, based on the developed UNSO con-
cepts, are of particular interest:

• Developing a statistical model for hierarchical management of the MLHs. It will
simplify the maintenance of the MLH, shorten the characteristic path length, en-
sure semantic homogeneity in every level and inherently introduce smart error-
correction mechanism. In addition, it will protect the hypercube-like graph against
organized attacks, maliciously introducing new ontology slots.

• Improving the proposed simple standardization mechanism through integrating
more sophisticated Natural Language Processing (NLP) tools recognizing the
terms context during the semantic standardization. This will improve the Informa-
tion Retrieval performance of UNSO.

• Discovering the importance (weights) of attributes and the distances between the
different values of the same attribute. This will allow more accurate assessment of
the distance between two nodes in the hypercube-like graph and will facilitate
more accurate ranking of the results displayed to the user.

• Developing a smarter routing algorithm, dynamically generating the optimal rout-
ing path between two MLH nodes as a function of the changing workloads of the
connected users.

• Adding other E-Commerce functionalities to the system. For example, real-life
E-Commerce systems usually support sophisticated functionalities (e.g., public
auctions and market clearings) rather then simple publish-subscribe functionality.
We intend to investigate exploiting UNSO for supporting such functionalities.

• Implementing distributed P2P UNSO client, launching it over the Web and creat-
ing hypercube-like graph of real-life users, and performing large-scale experi-
ments with large number of E-Commerce ads.

In summary, we believe that the unspecified and flexible nature of UNSO, jointly
with its good data management capabilities, will facilitate UNSO usage not only for
E-Commerce applications, but for any kind of publish-locate services.

References

[1] K.Aberer, M.Punceva, M.Hauswirth, R.Schmidt, “Improving Data Access in P2P Sys-
tems”, IEEE Internet Computing, January-February 2002.

[2] K.Aberer, P.Cudre-Mauroux, M. Hauswirth, “The Chatty Web: Emergent Semantics
Through Gossiping”, In proceedings of the International World Wide Web Conference,
Budapest, Hungary, 2003.

[3] E.Adar, B.Huberman, “Free Riding on Gnutella”, Technical Report, Xerox PARC, 2000.
[4] S.Androutsellis-Theotokis, D.Spinellis, “A Survey of Peer-to-Peer Content Distribution

Technologies”, ACM Computing Survey, 36(4), pp. 335-371, 2004.
[5] S.Ayyasamy, C.Patel, Y.Lee, “Semantic Web services and DHT-based Peer-to-Peer Net-

works: A New Symbiotic Relationship”, In proceeding of the Workshop on Semantics in
Peer-to-Peer and Grid Computing, Budapest, Hungary, 2003.

[6] P.Backx, T.Wauters, B.Dhoedt, P.Demeester, “A Comparison of Peer-to-Peer applica-
tions”, In proceedings of Eurescom Summit, Heidelberg, Germany, 2002.

 Semantic Data Management in Peer-to-Peer E-Commerce Applications 141

[7] P.Bernstein, F.Giunchiglia, A.Kementsietsidis, J.Mylopoulos, L.Serafini, I.Zaihrayeu,
“Data Management for Peer-to-Peer Computing: A Vision”, In proceedings of the Work-
shop on the Web and Databases, Madison, Wisconsin, 2002.

[8] P.A.Bernstein, S.Melnik, “Meta Data Management”, in Proceedings of the International
Conference on Data Engineering, Boston, MA, 2004.

[9] A.Blum, T.Sandholm, M.Ziukevich, “Online Algorithms for Market Clearing”, In pro-
ceedings of the ACM-SIAM symposium on Discrete algorithms, San Francisco, CA,
2002.

[10] I.Clarke, O.Sandberg, B.Wiley, T.Hong, “Freenet: a Distributed Anonymous Information
Storage and Retrieval System”, In proceeding of the ICSI Workshop on Design Issues in
Anonymity and Unobservability, Berkeley, CA, 2000.

[11] C.Fellbaum, “WordNet - An Electronic Lexical Database”, MIT Press, 1998.
[12] N.Fridman Noy, M.A.Musen, “PROMPT: Algorithm and Tool for Automated Ontology

Merging and Alignment”, In proceedings of the National Conference on Artificial Intelli-
gence (AAAI'2000), Austin, TX, 2000.

[13] T.R.Gruber, “A Translation Approach to Portable Ontology Specifications”, Knowledge
Acquisition Journal, 6(2), pp. 199–221, 1993.

[14] A.Gupta, D.Agrawal, A.Abbadi, “Approximate Range Selection Queries in Peer-to-Peer
Systems”, In proceedings of the Conference on Innovative Data Systems Research, Asi-
lomar, CA, 2003.

[15] M.Harren, J.M.Hellerstein, R.Huebsch, B.T.Loo, S.Shenker, I.Stoica, “Complex Queries
in DHT-based Peer-to-Peer Networks”, In proceedings of the International Workshop on
Peer-to-Peer Systems, Cambridge, MA, 2002.

[16] E.Hovy, “Combining and Standardizing Large-Scale, Practical Ontologies for Machine
Translation and Other Uses”, In proceedings of the International Conference on Lan-
guage Resources and Evaluation, Granada, Spain, 1998.

[17] P.Indyk, R.Motwani, P.Raghavan, S.Vempala, “Locality-Preserving Hashing in Multidi-
mensional Spaces”, In proceedings of the Symposium on Theory of Computing, El Paso,
TX, 1997.

[18] E.J.Johnson, W.Moe, P.S.Fader, S.Bellman, J.Lohse ,“On the Depth and Dynamics of
Online Search Behavior”, Management Science, 50 (3), pp. 299-308, 2004.

[19] J.Madhavan, A.Y.Halevy, “Composing Mappings Among Data Sources”, In proceedings
of the Conference on Very Large Databases, Berlin, Germany, 2003.

[20] P.Maes, R.H.Guttman, A.G.Moukas, “Agents that Buy and Sell: Transforming Commerce
as we Know it”, Communications of the ACM, 42(3), pp. 81-91, March 1999.

[21] D.S.Milojicic, V.Kalogeraki, R.Lukose, K.Nagaraja, J.Pruyne, B.Richard, S.Rollins,
Z.Xu, “Peer-to-Peer Computing”, Technical Report HPL-2002-57, HP Labs, 2002.

[22] W.Nejdl, B.Wolf, “Edutella: A P2P Networking Infrastructure Based on RDF”, In pro-
ceedings of the World Wide Web Conference, Honolulu, HI, 2002.

[23] W.S.Ng, B.C.Ooi, K.L.Tan, A.Zhou, “PeerDB: A P2P-Based System for Distributed
Data Sharing”, In proceedings of the International Conferene on Data Engineering, Ban-
galore, India, 2003.

[24] D.Peleg, E.Upfal, “Constructing Disjoint Paths on Expander Graphs”, in International
Journal on Combinatorics and the Theory of Computing, 9, pp.289-313, 1989.

[25] C.Plaxton, R.Rajaraman, A.Richa, “Accessing Nearby Copies of Replicated Objects in a
Distributed Environment”, In proceedings of ACM SPAA, Newport, RI, 1997.

[26] S.Ratnasamy, P.Francis, M.Handley, R.Karp, S.Shenker, “A Scalable Content-
Addressable Network”, In proceedings of ACM SIGCOMM, San Diego, CA, 2001.

142 Y. Ben-Asher and S. Berkovsky

[27] S.Ratnasamy, S.Shenker, I.Stoica, “Routing Algorithms for DHTs: Some Open Ques-
tions”, In proceedings for the International Workshop on Peer-to-Peer Systems, Cam-
bridge, MA, 2002.

[28] R.L.Rivest, “The MD5 Message-Digest Algorithm”, Request for Comments 1321, IETF
Network Working Group, 1992.

[29] A.Rowstron, P.Druschel, “Pastry: Scalable, Distributed Object Location and Routing for
Large-Scale Peer-to-Peer Systems”, In proceeding of the International Conference on
Distributed Systems Platforms (Middleware), Heidelberg, Germany, 2001.

[30] O.D.Sahin, A.Gupta, D.Agrawal, A.Abbadi, “A Peer-to-Peer Framework for Caching
Range Queries”, In proceedings of the International Conference on Data Engineering,
Boston, MA, 2004.

[31] S.Saroiu, K.P.Gummadi, S.D.Gribble, “Measuring and Analyzing the Characteristics of
Napster and Gnutella Hosts”, Multimedia Systems, 9, pp. 170-184, 2003.

[32] M.Schlosser, M.Sintek, S.Decker, W.Nejdl, “A Scalable and Ontology-Based P2P Infra-
structure for Semantic Web Services”, In proceeding of the IEEE International Confer-
ence on Peer-to-Peer Computing, Linkoping, Sweden, 2002.

[33] I.Stoica, R.Morris, D.Karger, M.F.Kaashoek, H.Balakrishan, “Chord: A Scalable Peer-to-
Peer Lookup Service for Internet Applications”, In proceedings of ACM SIGCOMM, San
Diego, CA, 2001.

[34] I.Tatarinov, Z.G,Ives, J.Madhavan, A.Halevy, D.Suciu, N.N.Dalvi, X.Dong, Y.Kadiyaska,
G.Miklau, P.Mork, “The Piazza Peer-to-Peer Data Management Project”, ACM
SIGMOD Record, 32(3), pp.47-52, 2003.

[35] M.Uschold, “Creating, Integrating and Maintaining Local and Global Ontologies”, In
proceedings of the European Conference on Artificial Intelligence, Berlin, Germany,
2000.

[36] G.Wiederhold, “Mediators in the Architecture of Future Information Systems”, in “Read-
ings in Agents”, pp. 185-196, Morgan Kaufmann Pubs., 1997.

[37] I.H.Witten, A.Moffat, T.C.Bell, “Managing Gigabytes: Compressing and Indexing Docu-
ments and Images”, Morgan Kaufmann Publishers, 1999.

[38] B.Yang, H.Garcia-Molina, “Designing a Super-Peer Network”, In proceedings of the In-
ternational Conference on Data Engineering, Los Alamitos, CA, 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

