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Abstract. Medical image classifiers often suffer from the imbalanced
class distribution of datasets. For example, among the 7 classes in the
ISIC2018 skin lesion detection dataset, over 67% of the instances belong
to melanocytic nevus while only 1% belong to dermatofibroma. Con-
trastive feature learning has been shown to achieve promising results in
enhancing the performance for imbalanced classification tasks. However,
the contrastive learning methods are either not end-to-end or require
extra memory, which may lead to less compatible and sub-optimal fea-
tures and classifiers. In this paper, we propose a novel unified feature and
classifier learning framework for imbalanced medical image datasets. We
equip our model with an adaptive unified contrastive (AduC) loss which
progressively adapts model learning between feature learning and classi-
fier learning. Furthermore, we explore the impact of different sampling
methods on model training under data sparsity. The experimental results
on two long-tailed medical datasets demonstrate that our methods can
substantially improve the classification accuracy and F1-score over all
classes without using extra memory storage. Our code is available at
https://github.com/thomascong121/AdUni.
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1 Introduction

Deep learning has shown great progress in medical image classification in recent
years. However, many medical datasets are imbalanced, i.e., majority classes
have substantially more samples than other rare classes. As shown in Fig. 1, the
majority classes (e.g., “melanocytic nevus” in ISIC2018 [4] and “No Diabetic
Retinopathy” in APTOS2019 [1]) dominate the other categories. Classification
models that are trained under such imbalanced settings tend to be biased towards
the majority classes and perform poorly on the minority classes.

To alleviate this issue in medical image datasets, data re-sampling techniques
are widely used [2,12,25], which either up-sample the minority classes or down-
sample the majority classes. Conditional generative networks [21] and the mix-up
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Fig. 1. Class distribution of the dataset used in this paper. Both datasets pose highly
imbalanced distributions.

strategy [28] are also commonly used for generating synthetic samples [23,29].
Recently, Marrakchi et al. [17] adopted a supervised contrastive learning frame-
work [11] and achieved substantially improved performance for lesion diagnosis
and blindness detection under highly imbalanced settings. However, solutions
for class imbalance in the medical domain are still under explored.

On the other hand, methods addressing class imbalanced learning for general
classification tasks have been well studied. Re-sampling [19,24] and loss-sensitive
learning [3,6,20] are the most widely used strategies. However, they normally
gain improved performance on minority classes by sacrificing performance on
majority classes and they ignore the different properties of feature learning and
classifier learning [29]. Decoupled training [9,10,26,27,30] generally conducts fea-
ture learning in the first stage and performs classifier learning via cross-entropy
(CE) in the second stage. Based on different feature learning methods, they can
be divided into two categories: classification pre-training and instance discrimi-
nation pre-training. For classification pre-training [10,30], CE is typically used as
the loss function which, however, has limited robustness against class imbalance
(see Fig. 2 (left)). To alleviate this issue, these methods either use extra sampling
methods (e.g., square-root sampling [16]) or data mixup [28]. Contrastive learn-
ing (CL) is commonly used for instance discrimination pre-training, as it helps
forming a more balanced feature space. For instance, Yang et al. [27] pre-trained
the model using self-supervised contrastive learning; Kang et al. [9] proposed
κ-positive contrastive learning for enhanced balancedness; and, Wang et al. [26]
forced samples to be closer to their class prototype.

Although the decoupled training methods have demonstrated improved per-
formance, these models are not trained end-to-end and are learned separately
with two different targets for the feature learning and classifier learning stages,
which makes the features learned from the first stage less compatible with the
classifier in the second stage. To learn features and classifier compatibly, Para-
metric Contrastive Learning (PaCo) [5] provided a unified framework to per-
form both feature learning and classifier learning concurrently via a modified
supervised contrastive loss and showed promising results. However, PaCo uses a
memory queue [8] to store negative samples which impairs the class imbalance
learning. To further illustrate this, we record the average number of instances of
the majority class and minority class in a batch on APTOS2019 for PaCo and
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our framework. On average, for each batch in our method, the number of major-
ity class samples (70) is approximately 5 times greater than that of the minority
class (14). On the other hand, since PaCo uses a memory queue of length 1024
(default value in [5]), the number of majority class samples (795) is over 10 times
as many as the minority class samples (68). This indicates that using a memory
queue exacerbates the biased learning towards the majority classes. Moreover,
PaCo focuses more on classifier learning throughout the training. We argue such
a biased learning is sub-optimal for medical datasets in which samples between
classes share high semantic similarity (see Fig. 1).

Fig. 2. We compare the loss magnitudes (y-axis) of 5 classes in the APTOS2019 dataset
based on the model trained using cross-entropy loss (left) and AdUni (right). Classes
are sorted by their cardinality. Clearly, AdUni shows a more balanced distribution of
each class.

In this paper, we explore the effectiveness of feature learning in class imbal-
anced medical image classification. Since the memory queue mechanism in pre-
vious feature learning literatures may exacerbate the biased learning for imbal-
anced classification, we conduct both feature and classifier learning using batch
contents only. Furthermore, inspired by the unified feature and classifier learning
framework (PaCo), we propose an Adaptive Unified Contrastive (AduC) loss
which well balances feature learning and classifier learning throughout train-
ing to obtain enhanced performance on datasets with high inter-class similar-
ity. We also design an end-to-end unified learning framework (AdUni) which
jointly performs feature learning and classifier learning using batch contents
only with AduC. We conduct extensive experiments on the public ISIC2018
and APTOS2019 datasets, demonstrating that our method provides significant
performance improvement over existing approaches.

2 Methodology

We design an Adaptive Unified learning framework (AdUni) (see Fig. 3) for
imbalanced classification of medical images. AdUni, which is equipped with the
proposed Adaptive Unified Contrastive (AduC) loss, provides a compatible learn-
ing process for feature and classifier without using any memory queue. As can be
seen in Fig. 2, AdUni shows a relatively uniform loss distribution across classes
which indicates that AdUni keeps a more balanced learning of each class. Both
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Fig. 3. The proposed AdUni framework which performs both feature learning and clas-
sifier learning via contrastive learning with Batch samples only. The model progressively
transitions its learning focus from feature learning to classifier learning.

feature learning and classifier learning are conducted via supervised contrastive
loss based on batch contents only and are jointly learned via our proposed adap-
tive unified mechanism to boost performance.

2.1 Feature Learning and Classifier Learning

Feature Learning via Contrastive Learning. We conduct feature learning
using contrastive loss. Specifically, given a batch of N input images, for each
image xi(1 ≤ i ≤ N), we obtain two augmentations xi

1 and xi
2, respectively,

which forms a total of 2N augmented training samples. Then, we obtain nor-
malised feature vectors f i

1 and f i
2 using a ResNet-based encoder [7] followed by

a two-layer multi-layer perceptron (MLP) (see Fig. 3). Finally, the classifier is
trained with the features that are optimised by a supervised contrastive loss
LSCF L

:

LSCF L
= −

∑

p∈P (i)

log
exp(fi · fp)/τ∑

j∈B(i)

exp(fi · fj)/τ (1)

For each anchor sample with index i, P (i) collects indices of positive samples (i.e.,
samples with the same label of sample i), B(i) represents the other 2N − 1 sam-
ples and τ is the temperature parameter. Here, LSCF L

, which explicitly favours
higher similarity between samples with the same class labels, pulls positive pairs
closer to each other and forms denser clusters.

Classifier Learning via Contrastive Learning. Previous methods [10,17]
use cross-entropy loss (CE) to perform classifier learning separately from feature
learning. However, CE is not robust enough under class imbalance. Thus, we
replace cross-entropy loss with contrastive loss which is shown to be more robust
to class imbalance [9,13]. To achieve this, we use the form of supervised con-
trastive loss for classifier learning in [5] where we maximise similarities between
the class logits g ∈ R2N×C produced by the encoder with the ground-truth label
in one-hot format l ∈ R2N×C , where C indicates the number of classes. This can
be expressed as:

LSCCL
= −

∑

p∈P (i)

log
exp(gi · lp)/τ∑

j∈C

exp(gi · lj)/τ (2)
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where i indicates the index of anchor sample. LSCCL
explicitly encourages the

model to maximise the similarities between the logit gi and the ground-truth
label lp over other classes.

2.2 Adaptive Unified Contrastive (AduC) Learning

To achieve joint feature and classifier learning, we first define a unified loss func-
tion LAduC , which merges LSCF L

and LSCCL
by modifying the denominators:

LAduC = −α
∑

p∈{P (i)}
log

exp(fi · fp)/τ∑
j∈C

exp(gi · lj)/τ +
∑

k∈B(i)

exp(fi · fk)/τ

−
∑

p∈{P (i)}
log

exp(gi · lp)/τ∑
j∈C

exp(gi · lj)/τ +
∑

k∈B(i)

exp(fi · fk)/τ

The parameter α in Eq. 3 balances the loss function between feature learning
and classifier learning. Generally, a smaller α weakens the influence of feature
learning and strengthens the influence of classifier learning; and a larger α would
make the model focus more on feature learning.

It has been observed that excessively focusing on classifier learning would
lead to overfitting, whereas over-emphasising feature learning prevents the model
from achieving a better accuracy. To capture the advantages of both feature
learning and classifier learning and keep a balance between them, we propose to
adaptively unify both training by gradually reducing α to smoothly transition
model training from feature learning in the early stage of training to classifier
learning in the later stage:

α = ω(t)αmax + (1 − ω(t))αmin (3)

Here, αmin/αmax are the minimum/maximum values of α, t is the current epoch
number and ω is a function which moderates the decrease of α.

3 Experiments and Results

3.1 Datasets and Implementation

We evaluated our methods on the ISIC2018 skin lesion detection dataset [4] and
APTOS2019 blindness detection dataset [1]. ISIC2018 contains 10,015 images of
size 450 × 600 pixels which are categorised into 7 disease states, including 6,705
melanocytic nevus (nv, 67%), 1,113 melanoma (mel, 11%), 1,099 benign keratosis
(bkl, 11%), 514 basal cell carcinoma (bcc, 5%), 327 actinic keratosis (akiec, 3%),
142 vascular lesion (vasc, 1%) and 115 dermatofibroma (df, 1%). APTOS2019
contains 3,662 images with varying image sizes, which are categorised into 5
classes based on severity of diabetic retinopathy (DR): 1,805 (49%) no DR, 999
(27%) moderate, 370 (10%) mild, 295 (8%) proliferative, and 193 (5%) severe
DR. Both the datasets pose data imbalance issues.



Adaptive Unified Contrastive Learning for Imbalanced Classification 353

For both datasets, we conduct 5-fold cross validation and apply resize, ran-
dom affine transformation, horizontal and vertical flip and color jittering for
data augmentation. Furthermore, we resize images to 384 × 384 for training a
ResNet18 backbone and evaluate its performance by measuring classification
accuracy, averaged macro F1-score over all classes. For both datasets, we train
the model for 400 epochs with batch size of 128 on 4 NVIDIA RTX3090 GPUs.
We develop the framework using PyTorch [22] and set the initial learning rate
to 0.1, which is decayed to 0.001 using the cosine schedule [14]. Training takes
5.5 h and 6.5 h on APTOS2019 and ISIC2018, respectively. We set τ = 0.1,
αmin = 0.01, αmax = 1.0, ω(t) = 1 + cos(t/tdecayπ) and tdecay = 1000. For fair
comparison, we re-implement all the baseline models with the same setting.

3.2 Results

Table 1. Classification accuracy and macro F1-score on the test set on both datasets
using different methods.

Methods ISIC2018 APTOS2019

Acc Macro F1 Acc Macro F1

CE [18] 0.841 ± 5.37e–03 0.701±1.21e–03 0.813 ± 6.09e–03 0.603 ± 7.81e–03

BALMS [24] 0.862 ± 2.28e–03 0.756 ± 1.94e–03 0.826 ± 3.46e–03 0.649 ± 3.19e–03

LDAM [3] 0.851 ± 2.28e–03 0.728 ± 1.94e–03 0.815 ± 2.05e–03 0.636 ± 3.46e–03

Decouple [10] 0.861 ± 2.32e–04 0.738 ± 4.01e–03 0.822 ± 2.83e–03 0.661 ± 3.31e–03

CICL [17] 0.866 ± 7.39e–03 0.760 ± 9.71e–03 0.828 ± 2.05e–03 0.676 ± 1.24e–03

PaCo [5] 0.864 ± 2.33e–03 0.768 ± 4.49e–03 0.825 ± 2.00e–03 0.680 ± 3.31e–03

PaCo+AduC 0.869 ± 1.79e–03 0.773 ± 1.25e–03 0.828 ± 2.05e–03 0.687 ± 1.73e–03

AdUni w/o AduC 0.876 ± 2.65e–03 0.778 ± 1.94e–03 0.826 ± 2.44e–03 0.682 ± 1.63e–03

AdUni 0.878 ± 4.36e–03 0.805 ± 1.18e–03 0.839 ± 4.92e–03 0.695 ± 5.51e–03

Comparison to the State-of-the-Art Methods. In Table 1, we compare
the AdUni-based framework to state-of-the-art imbalanced classification studies.
The compared methods [3,10,17,24] cover the three categories mentioned in
Sect. 1, i.e., re-sampling, loss-sensitive learning and decoupled training, and a
recent proposed unified method, i.e., PaCo [5]. Besides, we conduct PaCo+AduC
in which we simply change the original fixed α with an adaptively changing
α in AduC. It can be seen that our method consistently achieves the highest
classification accuracy and macro F1-score.

Fig. 4. Feature visualisation of training images on ISIC2018 using t-SNE [15]
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Among all the compared methods, the model trained with cross-entropy
loss (CE) [18] has the lowest performance which indicates the limitation of CE
for imbalanced classification. Decoupled training [10,17,24] produces compara-
ble results; however, their learning schema are not end-to-end and the features
learned from the first stage may become less compatible with the second stage
learning. The unified training framework, PaCo [5], shows improved performance
over the decoupled methods. PaCo+AduC can further enhance the performance
of PaCo on both datasets which indicates the usefulness of AduC on datasets
with similar semantic information across categories. Furthermore, we observe
improved performance over PaCo even by removing the AduC loss from AdUni
(AdUni w/o AduC) which illustrates the benefit of removing the memory queue.
Moreover, as shown in Fig. 4, compared to the decoupled training method [17]
which demonstrates superior performance on both datasets, the features learned
by unified frameworks (PaCo [5] and AdUni are more visually separable. The
proposed AdUni framework obtains a more distinguishable feature space than
PaCo without using a memory queue. Furthermore, compared to the other meth-
ods, our proposed framework not only has the best overall classification perfor-
mance but also achieves improved F1-score on every individual class for both
the datasets, as shown in Fig. 5, demonstrating the consistent effectiveness of
our method for both majority and minority classes.

Fig. 5. F1-score for each class on the test set on ISIC2018 (left) and APTOS2019
(right) using different class-imbalanced studies.

Ablation Studies and Discussion. For ablation studies, we study the impor-
tance of different α values and show that our designed progressive adaptive α
shows improved performance. Finally, we analyse the usefulness of data sampling
for further performance improvement.

Table 2 presents the classification accuracy and macro F1-score using differ-
ent α values and different sampling approaches. Unlike natural images, medical
images typically have similar semantic information across categories; thus, we
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Table 2. Classification accuracy and macro F1-score on the test set on both datasets
with different sampling approaches.

ISIC2018 APSTOS2019

Acc Macro F1 Acc Macro F1

α0.01 w/o sampling 0.867 ± 4.49e–03 0.760 ± 2.16e–03 0.822 ± 2.44e–03 0.675 ± 1.63e–03

up-sampling 0.876 ± 3.55e–03 0.782 ± 5.79e–03 0.830 ± 1.34e–03 0.684 ± 3.74e–03

SqRt sampling [16] 0.869 ± 3.29e–03 0.769 ± 2.94e–03 0.789 ± 3.87e–03 0.643 ± 1.89e–03

ProBal sampling [3] 0.873 ± 1.70e–03 0.767 ± 4.77e–03 0.787 ± 6.48e–03 0.641 ± 6.02e–03

α1→0.01 w/o sampling 0.878 ± 4.36e–03 0.805 ± 1.18e–03 0.839 ± 4.92e–03 0.695 ± 5.51e–03

up-sampling 0.886 ± 2.87e–03 0.808 ± 2.78e–03 0.841 ± 2.78e–03 0.711 ± 3.54e–03

SqRt sampling [16] 0.877 ± 3.19e–03 0.776 ± 1.72e–03 0.823 ± 2.49e–03 0.676 ± 4.90e–03

ProBal sampling [3] 0.880 ± 1.72e–03 0.793 ± 3.27e–03 0.810 ± 3.99e–03 0.682 ± 3.26e–03

believe that a more separable feature space can make classifier learning easier.
One way to focus the model on learning separable features is to use a large
α throughout the training. However, we experimented with α = {1, 100} and
found that setting large α normally leads to slow convergence. Thus, it is impor-
tant to balance both feature learning and classifier learning. Here, we choose to
adaptively change α using a cosine updating function ω(t) = 1 + cos(t/tdecayπ)
based on epochs t. By choosing suitable tdecay, we can keep α large in early
training, then gradually drop it to smaller values in the later stage. We observe
that using αmax = 1.0 and progressively reducing it to 0.01 offers a reasonable
choice. Table 2 shows that such mechanism improves the accuracy and F1-score
by 2∼3%.

Moreover, we compare the results with different sampling approaches where
up-sampling means we re-sample the minority classes to ensure every class has
the same number of instances in each batch. Square-root (SqRt) sampling [16]
calculates the sampling probability of each class using the square root of its
sample numbers and progressive-balanced (ProBal) sampling [3] progressively
increases the probability of minority samples until each class has equal chances to
be selected. The results in Table 2 also show an interesting finding that the simple
up-sampling approach works the best with AdUni and provides further improve-
ment. We posit this may be due to the fact that contrastive learning-based
approaches are more data-demanding. Although advanced sampling techniques
like SqRt and ProBal increase the chance of minority classes to be selected, they
cannot provide additional training data.

4 Conclusions

In this paper, we attempt to address the imbalanced data distribution issue for
medical image classification. A novel end-to-end training framework is proposed,
which jointly performs feature learning and classifier learning based on super-
vised contrastive loss and an adaptively unified mechanism. Our framework,
while not requiring extra memory queue, improves classification performance
for all classes in two public datasets ISIC2018 and APTOS2019. Our findings
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highlight the benefits of enhanced feature learning in improving classification
performance for medical image datasets which have an imbalanced data distri-
bution and high similarity between classes.
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