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Abstract. Brain tumor segmentation (BraTS) of 3D Magnetic Reso-
nance Imaging (MRI) aims to facilitate clinical analysis of brain cancer. 
Existing BraTS segmentation works tend to exploit convolutional neu-
ral networks (CNNs) or vision transformers (ViTs), yet CNNs have a 
restricted receptive field that focuses on local context only and ViTs 
suffer from high computational overheads due to quadratic complexity. 
Recently, Mamba has shown superior performance over ViTs in long-
range dependency modeling, offering linear computational complexity 
and lower memory consumption. However, these methods primarily learn 
feature representation in the spatial domain, overlooking valuable heuris-
tics embedded in the frequency domain. Inspired by this, we propose 
BraTS-UMamba, a novel Mamba-based U-Net designed to enhance brain 
tumor segmentation by c apturing and adaptively fusing bi-granularity
based long-range dependencies in the spatial domain while integrating
both low- and high-band spectrum clues from the frequency domain to
refine spatial feature representation. We further enhance segmentation
through an auxiliary brain tumor classification loss. Extensive experi-
ments on two public benchmark datasets demonstrate the superiority of
our BraTS-UMamba over state-of-the-art methods.
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1 Introduction 

Accurate brain tumor segmentation of 3D Magnetic Resonance Imaging (MRI) 
images is crucial for d iagnosis, treatment planning and management of brain
cancer [15, 25]. Many convolutional neural network (CNN) based methods have 
been proposed for brain tumor segmentation. The works of [12, 20] proposed f ully
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convolutional network (FCN) [9] based methods for brain tumor segmentation. 
Ronneberger et al. [13] introduced U-Net, an U-shaped architecture with skip 
connections to enhance localization ability and gradient flow, which h as become
widely used for medical image segmentation. Based on U-Net, nnU-Net [6] devel-
oped a dynamic adaptation mechanism, allowing automatic optimization of the 
network depth, ach ieving promising brain tumor segmentation results. Zhou et
al. [26] further optimized U-Net by integrating 3D ShuffleNet as the encoder, 
creating a computationally efficient segmentation model.

However, CNN-based methods can hardly capture global information owing 
to their fixed receptive field and pooling operations [11]. Therefore, attention 
mechanism [19] and vision transformers (ViTs) [3] have been adopted to over-
come this. For instance, [18, 28] leveraged attention mechanisms to strengthen 
the representation of global dependencies and improve the segmentation accu-
racy. The works of [16, 24] leveraged ViTs to model global context within and 
across different brain MRI sequences, and S2CA-Net [25] employed ViTs to facil-
itate the feature extraction of brain tumors’ shape and scale. The hybrid CNN-
Transformer architectures were also explored to integrate transformers with local
information and enhance brain tumor boundary representation [7, 15]. Due to 
their quadratic complexity, ViTs face the challenge o f high computational over-
heads.

Recently, Mamba based methods [4, 8, 10, 21– 23, 27] have been proposed to 
perform state-space sequence modeling with linear computational complexity 
and lower memory consumption, exhibiting supe rior performance compared to
attention and ViTs. Of these, [22, 27] performed sequence modeling along dif-
ferent directions, such as forward and backward, to enhance the feature rep-
resentation learning. Besides, U-Mamba [10] adopted a hybrid CNN-Mamba 
architecture to extract local details and long-distance dependencies concurrently. 
Although Mamba based approaches showed strong performance in vision tasks, it 
has not been applied to brain tumor segmentation. Moreover, small tumors often 
have blurred boundaries, making it hard for Mamba to capture local details. In
addition, CNN-, ViT- and Mamba-based methods tend to utilize spatial fea-
tures, ignoring valuable information in the frequency domain [11] that can help 
enhance the representation of spatial features.

In this paper, we propose BraTS-UMamba that exploits Mamba in a U-Net 
shaped encoder-decoder architecture for effective brain tumor segmentation. At 
each encoder layer, we design a novel Adaptive Mamba (AdM) module to cap-
ture bi-granularity based global features that describe long-range dependencies 
from different perspectives. Unlike other Mamba methods using hard fusion, 
our AdM module adaptively fuses these bi-granularity based features. To con-
sider small-sized tumors, we also equip AdM modules with multi-scale convo-
lutions to extract local details from multiple scales. Besides, brain tumor seg-
mentation emphasizes the completeness and clear boundary of the segmentation
maps. Hence, we further refine these spatial features by leveraging frequency
domain information. In the frequency domain, high-band spectrum focuses on
edges and texture variations, while low-band spectrum represents global struc-
tures and continuous regions. We introduce the Frequency Guidance based Fea-
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Fig. 1. Overview of the proposed BraTS-UMamba - a UNet style architecture. Its key 
components include adaptive Mamba (AdM) module, frequency guidance based feature 
enhancement (FGFE) module and two training losses with the main loss Lseg and an
auxiliary one Lcls.

ture Enhancement (FGFE) module to complement spatial features by selecting 
informative features from both of low- and high-band spectrum. We also apply 
an auxiliary brain tumor classification loss to enhance segmentation accuracy. 
Experimental results show that BraTS-UMamba outperforms several competi-
tive baselines on two challenging brain tumor segmentation datasets. Also, we
report an ablation study highlighting the contribution of the components of
BraTS-UMamba.

2 Method 

Figure 1 illustrates the architecture of BraTS-UMama. It consists of three key 
components: 1) adaptive Mamba (AdM) module in each encoder layer to cap-
ture both local and global features at multiple scales, 2) Frequency Guidance 
based Feature Enhancement (FGFE) module in each decoder layer to enhance 
spatial features using clues f rom both low- and high-band spectrum, and 3) the
output is simultaneously constrained by two losses: the main one for brain tumor
segmentation and the auxiliary for brain tumor classification.

2.1 Adaptive Mamba 

Mamba based networks [21, 27] that build up long-distance dependencies from 
different directions have shown promising performance in vision tasks. Unlike



BraTS-UMamba: Adaptive Mamba UNet with Dual-Band Frequency 101

Fig. 2. Details of the Bi-granularity Mamba (BGM) layer. We leave out the depth
dimension for ease of illustration.

prior works, we propose the Adaptive Mamba (AdM) module that extracts global 
features from different perspectives and adopts a soft way to fuse them adap-
tively. We also integrate the AdM module with con volutions of multiple receptive
fields to capture multi-scale local features. As shown in Fig. 1, the AdM module 
in the l-th encoder layer takes features from previous layer as input and produces 
the output feature F l e,  where  l =  1, 2, · · ·  , 5. This process can be written as: 

XMSC = MSC(F l−1
e ), XBGM = BGM(XMSC), F l

e = AFF (XBGM ), (1) 

where feature F l−1 
e from previous layer sequentially goes through the multi-scale 

convolution layer M  SC(·), bi-granularity Mamba layer BGM(·), and adaptive 
feature fusion layer AF F (·). Here, the MSC layer aims to extract multi-scale 
local features from F l−1 

e using 4 parallel convolutions with kernel sizes 1×1×1,
3 × 3 × 3, 5 × 5 × 5, and 7 × 7 × 7.

Bi-Granularity Mamba (BGM) Layer. Suppose XM SC has c channels, the 
BGM layer first flattens it into c subsequences across the channel direction and 
obtains subsequences: s1, s2, · · · , sc. Based on these subsequences, we follow [22] 
to reconstruct two sequences Xg1 and Xg2 with different gran ularities, as shown
in Fig. 2. Then, we have: 

X1 = S6(Xg1)  +  S6(X
′
g1), (2) 

X2 = S6(Xg2)  +  S6(X
′
g2), (3) 

where X
′
g1, X

′
g2 are the reversed sequences of Xg1, Xg2,  and  S6(·) denotes the 

selective scan space state model (S6) [4] that allows each element in a sequence 
to interact with all previously scanned elements via a compressed hidden state.

Adaptive Feature Fusion (AFF) Layer. As  shown  in  Fig. 1 (c), we utilize 
the attention mechanism to estimate the fusion weight for X1 and X2, and
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pass the initial feature integration X̂=X1+X2 to the AFF layer to generate 
the fused feature F l e. We simultaneously estimate pixel-wise and channel-wise 
attention scores Z p and Zc as:

Zp = PA(X̂),Zc = CA(X̂), (4) 
W = σ(Zp ⊕ Zc), (5) 
F l e = W � X1 +  (1  − W ) � X2, (6) 

where P  A(·) refers to pixel attention with convolutions and ReLU to obtain 
Zp, and channel attention CA(·) combines global pooling with convolutions and 
ReLU to obtain Zc. Then, the sigmoid activation function σ(·) squashes the 
attention scores into fusion weight W within the [0,1] range. Here, ⊕ and �
denote broadcasting summation and element-wise multiplication, respectively.

2.2 Frequency Guidance Based Feature Enhancement 

To improve BraTS-UMamba’s ability to represent brain tumor boundaries, fine-
grained textures and global layout, we introduce the Frequency Guidance based 
Feature Enhancement (FGFE) mo dule using both low- and high-frequency infor-
mation to complement spatial features.

We design a cross-domain attention fusion to alleviate feature redundancy 
and select informative features for complementary fusion of features from spatial 
domain and frequency domain. Given a spatial feature F l

s in the l-th decoder
layer, we utilize the 3D Laplacian pyramid decomposition [2]  to  decompose  it  into  
the high- and low-frequency components F h and F l that are passed through a 
mapping layer to produce the query matrices Ql and Qh. Meanwhile, F l s passes 
through another two mapping layers to generate the key and value matrices 
K, V that are shared by both Ql and Q h. Then, we have:

F̂ l = softmax

(
QlK

T

√
d

)
V , F̂ h = softmax

(
QhK

T

√
d

)
V . (7) 

Afterwards, we concatenate F̂ l, F̂ h along channel dimension and add it back 
to F l

s, as shown in Fig. 1. 

2.3 Loss Function 

Brain tumors are typically small, while normal brain tissue occupies most part of 
the brain. During learning, the dominant part of the normal tissue may distract 
the focus and in troduce biases. To mitigate this, we add an auxiliary brain tumor
classification loss to the brain tumor segmentation loss.

We have the ground truth brain tumor mask M ∈  {0, 1, 2, 3}D×H×W and the 
network output P ∈ RD×H×W containing predicted probabilities that are uti-
lized to generate the predicted segmentation mask Ŝ ∈  {0, 1, 2, 3}D×H×W . The
segmentation loss Lseg is supervised by the Dice loss Dice(M , Ŝ). For auxiliary
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brain tumor classification loss Lcls, we divide the ground truth mask M into 
3D patches of size 16 × 16 × 16 along the depth, height and width dimensions. 
Each patch is assigned the ground truth classification label Cp =  1  if it contains 
brain tumor or 0 otherwise. Likewise, we divide the network output P into 3D 
patches M̂ p of size 16× 16 × 16 and compute brain tumor classification loss Lcls

using the binary cross-entropy loss BCE(M̂p,Cp). The network is trained via
both losses with a trade-off parameter λ (set to 0.6) as:

Ltotal = Lseg + λLcls. (8) 

3 Evaluation 

3.1 Experimental Setting 
Datasets. We evaluate the performance of all methods on t wo datasets, MSD
BTS [17]  and BraTS2023-GLI [1], which contain 484 and 1, 251 MRI scans, 
respectively. These MRI scans were captured by four modalities: T1-weighted 
(T1), T1-weighted contrast-enhanced (T1ce), T2-weighted (T2), and fluid atten-
uated inversion recovery (FLAIR). The datasets also provide brain tumor ground 
truth masks annotated by clinical experts, marking three tumor regions: necrotic 
tumor core (NCR), peritumoral edematous/invaded t issue (ED), and enhancing
tumor (ET). The performance is evaluated on three regions: the ET region,
tumor core (TC) region for ET and NCR, and the whole tumor (WT) region for
ET, NCR, and ED.

Baselines and Evaluation Metrics. We compare our method against 
seven recent segmentation baselines including attention-based (EoFormer [15], 
M2FTrans [16], SDV-TUNet [28]), transformer-based (S2CA-Net [25], 
UNETR++ [14], SWinUNETR-V2 [5]), and the latest Mamba-based segmen-
tation method SegMamba [22] that also builds long-range dependencies of a 
different granularity. To our knowledge, we are the first Mamba based method 
for brain tumor segmentation. I n the evaluation, we use the Dice Similarity
Coefficient (DSC) and 95% Hausdorff distance (HD95).

Implementation Details. BraTS-UMamba was implemented using PyTorch 
on a workstation equipped with an NVIDIA 4090 GPU. Our model was trained 
for 1, 000 epochs using the Adam optimizer with batch size of 4. Data aug-
mentation techniques, including rotation, scaling, elastic deformation, and ran-
dom cropping, were applied during training. The brain volume was divided into
patches of 128× 128× 128 with an overlapping step 96 for training or inference,
and the 5-fold cross validation was utilized for evaluation.

3.2 Comparison with SOTA Methods 

As  shown  in  Tables 1 and 2, our proposed BraTS-UMamba consistently outper-
forms all the baselines on two datasets. For instance, BraTS-UMamba achieves
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Fig. 3. Visual comparisons of BraTS-UMamba and several leading baselines on MSD 
BTS (top row) and BraTS2023-GLI (bottom row). The green, yellow a nd red regions
denote necrotic core (NCR), enhancing tumor (ET), and edema (ED).

Table 1. Evaluation with the MSD BTS dataset (b est result in boldface).

Methods DSC (%) ↑ HD95 (mm) ↓ 
ET WT TC Avg. ET WT TC Avg.

Eoformer [15] 74.28 88.29 80.95 81.17 5.98 8.59 7.10 7.23
M2FTrans [16] 77.31 89.53 82.87 83.24 6.12 7.10 5.80 6.34
SDV-TUNet [28] 73.42 87.69 79.59 80.23 5.96 7.09 7.52 6.86
S2CA-Net [25] 77.35 89.40 82.68 83.14 5.62 7.49 7.54 6.88
UNETR++ [14] 75.21 88.69 81.87 81.93 6.17 8.27 7.87 7.44
SwinUNETR-V2 [5] 75.92 88.69 82.28 82.50 5.45 8.03 6.96 6.81
SegMamba [22] 76.82 89.62 82.74 83.06 5.31 7.37 6.45 6.38 
Our method 80.6390.6184.08 85.11 3.924.935.14 4.66

an average DSC of 85.11% and an average HD95 of 4.66 on the MSD BTS 
dataset, outperforming the second-best method M2FTrans by 2.25% and 26.50%, 
respectively. For the BraTS2023-GLI dataset, BraTS-UMamba surpasses the 
second-best results by 1.60% and 23.27% in terms of average DSC and HD95 
scores, respectively. The results highlight BraTS-UMamba’s strong potent ial for
brain tumor segmentation. In Fig. 3, we also visually compare BraTS-UMamba 
and several leading baselines, demonstrating that our method can produce brain 
tumor segmentation with better connectivity and clearer boundary.

3.3 Ablation Study 

We investigate the effects of the key components of BraTS-UMamba. In Table 3, 
S1 refers to our method that only keeps the Adaptive Mamba module, while 
‘baseline’ replaces the adaptive feature fusion (AFF) layer in S1 with a sim-
ple concatenation. The adaptive fusion (S1) enhances performance against the 
hard fusion of baseline. Based on S1, we gradually add t he low-frequency compo-
nent guided feature enhancement (S2), high-frequency component guided feature 
enhancement (S3), and the FGFE module (S4). Although S2 and S3 improve
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Table 2. Evaluation with the BraTS2023-GLI dataset (best result in b oldface).

Methods DSC (%) ↑ HD95 (mm) ↓ 
ET WT TC Avg. ET WT TC Avg. 

Eoformer [15] 83.11 90.68 87.60 87.13 4.60 7.50 5.92 6.01 
M2 FTrans [16] 84.17 91.11 87.77 87.68 4.38 7.84 5.73 5.98 
SDV-TUNet [28] 83.96 90.50 87.36 87.27 3.41 5.61 5.29 4.77 
S2 CA-Net [25] 83.91 91.60 87.91 87.81 4.46 6.94 6.04 5.82 
UNETR++ [14] 83.62 91.63 87.82 87.69 4.21 5.92 5.50 5.21 
SwinUNETR-V2 [5] 84.07 91.85 88.12 88.01 3.92 5.86 5.33 5.04 
SegMamba [22] 84.65 92.12 88.34 88.37 4.22 4.92 5.80 4.98 
Our method 85.7492.9090.71 89.78 3.114.093.80 3.66 

Table 3. Ablation study of investigating key components in our model on the MSD 
BTS dataset. T he best result is indicated in b oldface.

baseline S1 S2 S3 S4 ours 
DSC (%) ↑ 81.74 82.63 83.65 83.50 84.07 85.11 

HD95 (mm) ↓ 7.42 6.52 6.11 5.89 5. 61 4.66 

Fig. 4. Effects of feature maps guided by high-frequency component only (HF only), 
low-frequency component only (LF only), a nd both of low-, high-frequency ( FGFE 
mo dule). 

the accuracy further, S4 considering both low- and high-frequency information 
shows a substantial enhancement. We visualize the feature maps after consider-
ing the frequency domain information in Fig. 4, which illustrates that low- and 
high-frequency features can capture continuous regions and boundaries effec-
tively. Finally, ‘ours’ that incorporates the auxiliary brain tumor classification 
loss function achieves the b est segmentation p erformance. 

4 Conclusions 

In this work, we propose the BraTS-UMamba model for brain tumor segmen-
tation that devises an adaptive Mamba to fuse bi-granularity global features 
in a soft manner and exhibits a higher flexibility than the hard fusion. By 
leveraging the frequency domain information, it enables our n etwork to capture 
clearer tumor boundary and ensures a better connectivity of the segmentation 
masks. Besides, an auxiliary brain tumor classification loss combined with the
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traditional segmentation loss enhances the segmentation accuracy. Experimen-
tal results on two datasets validate the effectiveness and accuracy of BraTS-
UMamba. 
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