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Abstract
Simultaneous Localisation andMapping (SLAM) in computer vision
involves estimating the camera poses and the surrounding depth
information. Current deep learning based approaches achieve great
success, yet most of them suffer from the domain generalisation
issue. Accordingly, the online adaptation based methods have been
proposed, enabling the SLAM model to continuously adapt to the
changing open-world environments. However, these models are
not computationally efficient while pursing accurate adaptation.
In this work, we present a novel variational information transfer
and preservation based visual SLAMmethod that aims to adapt fast
while maintaining good precision. To reduce model size for faster
adaptation, we introduce a lightweight network with a shared en-
coder for estimates of both poses and depths. To ensure adaptation
precision, we exploit a large-sized network to pass our network the
knowledge using a proposed information theory inspired knowl-
edge distillation method that variationally maximizes the mutual
information between the large network and ours. With pre-learned
knowledge preservation, our model then learns to adapt against
catastrophic forgetting by introducing the variational distribution
of network weights pre-learned from knowledge distillation into
the information bottleneck framework. During learning and adap-
tation, we keep these pre-learned weights fixed and utilise several
adapters to adjust the feature representations instead. In terms of
both speed and accuracy, our method surpasses several state-of-
the-art baselines in evaluations of online visual SLAM adaptation.
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• Computing methodologies→ Computer vision.
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1 Introduction
Visual SLAM plays a crucial role in various real-world applications,
including robotics, autonomous vehicles, and augmented reality.
Deep learning-based SLAM methods have emerged as powerful
techniques, leveraging the capabilities of neural networks to achieve
remarkable performance in mapping and localisation tasks. These
works can be broadly classified into self-supervised [4, 5, 42] and
supervised [34, 38] methods.

However, a common challenge among both self-supervised and
supervised methods is their generalizability to the data from un-
known domains, for which its environments and scenarios differ
from the training data (as shown in Fig. 1). In real-world setting,
it is imperative to enhance the generalizability of the model since
the environments tend to be dynamic and continuously changing.
Hence, domain adaptation (DA) techniques are exploited to bridge
the domain discrepancy by aligning images, feature representations
or decision boundaries across source and target domains [6, 24, 25].
These methods normally require the data of both source and tar-
get domains for offline adaptation learning. However, the offline
learning is slow and is inapplicable to the real-world scenarios
with constantly changing environments. In that case, learning and
updating SLAM models on-the-fly is more desirable.

Accordingly, the online adaptation based visual SLAM methods
[19, 26, 39, 40] have been proposed and demonstrate the superior-
ity of continuous adaptation in an online manner. Despite that, it
tends to be confronted with the catastrophic forgetting problem,
for which the model forgets previously learned knowledge when
adapting to the new data. Forgetting previously learned knowledge
may causes the model becomes overly specialized to the new data,
potentially losing its ability to generalize across different contexts
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Figure 1: Existing visual SLAM approaches tend to suffer
from domain shit problem. In contrast, our visual SLAM
model performs faster and more accurate online adaptation
to new environments.

and induce the overfitting. Other than catastrophic forgetting, these
methods cannot maintain a good balance between the computa-
tional efficiency and the adaptation precision.

To attain fast online adaptation with high accuracy, we first
harness a lightweight network with the shared encoder for both
estimates of pose and depth. The lightweight architecture reduces
model size and ensures fast adaptation but may loses precision. To
improve adaptation quality, we propose a variational information
transfer and preservation scheme that enhances the capability of
our model by distilling knowledge from a large-sized network to our
network in the pre-training step, and then preserve the pre-learned
knowledge to prevent catastrophic forgetting in the learning-to-
adapt step. In the pre-training step, we reformulate our model as a
Bayesian neural network that exploits information theory to per-
form knowledge distillation by maximizing the mutual information
between the larger network and ours. As a result, this Bayesian re-
formulation introduces uncertainty to the network weights where
the transferred knowledge are reserved eventually. The reason we
explicitly consider uncertainty into knowledge distillation is be-
cause the larger network may contain irrelevant knowledge to the
task of our network, and such irrelevant information introduces the
uncertainty affecting the performance. In next learning-to-adapt
step, we explore it under the framework of information bottleneck
which learns the latent encoding aiming to filter out irrelevant in-
formation from input data while maximally satisfying the tasks of
depth and pose estimations. We further reformulate the information
bottleneck framework by introducing the variational distribution of
network weights learned from previous pre-training step, such that
exploiting the pre-learned network parameters to avoid pre-learned
knowledge forgetting and facilitate the adaptation. Rather than op-
timising the parameters of our pre-learned network, we keep them
fixed and integrate our model with adapters to adjust the feature
representations for adaptation. We train the learning-to-adapt step
using the meta-learning algorithm [10]. After that, our model is

able to adapt consistently and quickly to new scenarios in an online
manner. Our contributions can be summarized as:

• We introduce an efficient network architecture including a
shared encoder for fast online adaptation of visual SLAM.

• We propose a variational information transfer and preserva-
tion scheme that maintains accurate adaptation by harness-
ing the knowledge transferred from a larger model with con-
sidering uncertainty in the transferred information. Mean-
while, it exploits the variational distribution of pre-learned
parameters to preserve pre-learned knowledge and facilitate
adaptation against catastrophic forgetting.

• Comprehensive evaluations on two adaptation scenarios
demonstrate the superiority of our proposed method over
several state-of-the-art methods.

2 Related Work
2.1 Learning-based Visual SLAM
Learning-based visual SLAM can be broadly categorized as super-
vised SLAM and self-supervised SLAM. Supervised SLAM acquires
the ability to predict depths and poses by learning from annotated
data. In the realm of pose estimation, prior studies [7, 34, 38] uti-
lized a combination of CNN and LSTM to extract both spatial and
temporal features. Other than that, attention mechanisms were also
employed by some methods [29, 36, 38] to extract non-local tempo-
ral features for visual SLAM. Unlike supervised visual SLAM, the
self-supervised visual SLAM eliminates the need of ground truths
for training. Traditional approaches [4, 42] applied two separate
networks for estimates of poses and depths, and trained the net-
work under the appearance consistency constraint. Based on these
techniques, subsequent methods [27, 43] incorporated recurrent
neural networks to capture temporal information, and the works of
[28, 33] investigated a novel self-supervised loss with optical flow
and additional geometric consistency constraints [4, 35] to address
the scale inconsistency issue.

Though these methods demonstrated favorable performance
on the training data, they failed to generalise well on unknown
datasets. Therefore, the objective of our study is to enhance the
generalisability of the visual SLAM model.

2.2 Domain Adaptation based Visual SLAM
Most existing visual SLAM methods rely on Generative Adversar-
ial Networks (GAN) for domain adaptation. GAN can be either
utilised to learn invariant representations across different domains
[18, 22, 30] or align images from source and target domains, thereby
achieving a harmonization of styles and appearances among dif-
ferent domains [6, 41]. Besides GAN, Gurram et al. [17] harnessed
the Gradient-Reversal-Layer (GRL) [13] to learn domain invariant
features. However, these approaches performed adaptation offline
and cannot respond to continuously changing environments.

Instead of offline adaptation, some works [23, 26, 32, 37, 39, 40]
have focused on the online visual SLAM adaptation. During contin-
uous adaptation, the previously learned knowledge may be over-
written, and the catastrophic forgetting of pre-learned knowledge
leads to the performance degradation. To mitigate this issue, a com-
mon solution was utilising a memory buffer to replay pre-learned
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knowledge during adaptation [23, 32], yet the memory buffer re-
quires additional hardware memory for information storage. Some
other methods [26, 37, 39] used meta-learning to address this issue.
For example, [39] introduced adapters to help preserve pre-learned
knowledge, and train them within a meta-learning framework [10].
However, the existing online adaptation visual SLAM methods are
either not memory-efficient to make them scalable or not suffi-
ciently lightweight to run adaptation quickly.

2.3 Variational Information Bottleneck
The Information Bottleneck [31] aims to find a brief but compre-
hensive explanation by extracting from input the compressed rep-
resentation that can maximally explains the task. In the field of
deep learning, Alemi et al. [2] extended this idea and proposed the
Variational Information Bottleneck (VIB) using a variational bound
of the Information Bottleneck objective.

In works of [9, 20], VIB has demonstrated its potential in enhanc-
ing the representation learning. Some other studies investigated VIB
in transfer learning [1] and fine-tuning [3], enabling to eliminate
noises while extracting more relevant information to facilitate their
tasks. To our knowledge, few studies apply VIB to SLAM or online
adaptation. Inspired by this, in this work we explore incorporating
VIB into the problem of visual SLAM online adaptation.

3 Method
Our approach includes three main steps: 1) pre-training with vari-
ational information transfer, 2) learning to adapt by preserving
pre-learned knowledge and 3) online adaptation.

In step 1), our lightweight network is pre-trained on the source
domain dataset using a novel information theory inspired knowl-
edge distillation approach to achieve fast inference while maintain-
ing accurate adaptation. The next step 2) preserves the knowledge
learned from step 1) to prevent catastrophic forgetting, and intro-
duce a number of adapters to learn to adapt under the framework
of information bottleneck using the meta-learning. In step 3), our
model is able to adapt quickly and continuously to the video from
a target domain with changing environments.

3.1 Network Architecture
The overall framework of our method is illustrated in Fig. 2. We
utilise the architecture as described in [37] which proposed two
independent networks to predict depths and poses, respectively.
Unlike [37], we reduce its model size for faster inference using a
shared encoder of ResNet-50 and keep the same two decoders for
separate estimates of depths and poses. For the teacher network, in-
stead of using a shared encoder, we still exploit the two independent
networks to maintain its performance. We further enhance its ca-
pacity using the larger ResNet-101 as the encoders, and accordingly
the number of deconvolution layers in its decoders is increased as
well. The large-sized teacher network ensures high precision and
then helps enhance the performance of our network by distilling
its knowledge to ours. To prevent forgetting past experiences, we
introduce a number of adapters into our network for adaptation
while keeping pre-learned network weights fixed. The adapters
only contain the convolutional LSTM module, and are attached to
blocks of the shared encoder and two decoders.

3.2 Pre-training with Variational Information
Transfer

In the pre-training step, we aim to train our visual SLAM network
on the source domain data, and then utilise the pre-trained network
to perform fast online adaptation on the target video from a dif-
ferent domain. We train our model using the self-supervised loss
L𝑠 as defined in [37]. To ensure fast inference and adaptation, we
exploit a lightweight architecture with the shared encoder to pre-
dict both depth maps and poses. Though achieving fast inference,
the lightweight network is inclined to degrade the performance.
We therefore harness a teacher network that distills its knowledge
to our network so that retaining the performance of our model.
Here, we regard our network as the student and the teacher is a
large-sized network with higher knowledge capacity.

The overall loss of the pre-training stage is defined as a combi-
nation of the self-supervised learning and the information theory
inspired knowledge distillation:

L𝑝𝑟𝑒 = L𝑠 − 𝜆𝑑𝑖𝑠𝑡
𝐾∑︁
𝑖

𝐼 (z𝑖𝑡 ; z𝑖𝑠 ), (1)

where L𝑠 is the self-supervised loss and 𝜆𝑑𝑖𝑠𝑡 is a hyper-parameter.
The second term 𝐼 (z𝑖𝑡 ; z𝑖𝑠 ) defines the mutual information between
the 𝑖th feature map z𝑖𝑡 of the teacher network and the 𝑖th feature
map z𝑖𝑠 of the student network. Here, we formulate the knowledge
distillation as maximizing the mutual information between the
feature maps of student and teacher networks, and the feature
maps are from a total of 𝐾 layers in the network. It is noteworthy
that z𝑖𝑡 , z

𝑖
𝑠 refer to feature maps from either pose estimation network

or depth estimation network.
In information theory, the mutual information 𝐼 (z𝑖𝑡 ; z𝑖𝑠 ) between

z𝑖𝑡 and z𝑖𝑠 is defined as:

𝐼 (z𝑖𝑡 ; z𝑖𝑠 ) = E(z𝑖𝑡 ,z𝑖𝑠 )∼𝑝 (z𝑖𝑡 ,z𝑖𝑠 ) [log𝑝 (z
𝑖
𝑡 |z𝑖𝑠 )] + 𝐻 (z𝑖𝑡 ), (2)

where 𝐻 (z𝑖𝑡 ) is the entropy term that is independent of our opti-
misation and can be ignored. Meanwhile, we further factorise the
term log𝑝 (z𝑖𝑡 |z𝑖𝑠 ), such that log 𝑝 (z𝑖𝑡 |z𝑖𝑠 )=log

∫
𝑝 (z𝑖𝑡 |z𝑖𝑠 , 𝜃𝑠 )𝑝 (𝜃𝑠 )𝑑𝜃𝑠

and 𝜃𝑠 denotes the weight of the student network. Due to the
intractable integration in this term, we introduce a variational
distribution 𝑞(𝜃𝑠 ) and apply the Jensen’s inequality to obtain the
evidence lower bound (ELBO) of log

∫
𝑝 (z𝑖𝑡 |z𝑖𝑠 , 𝜃𝑠 )𝑝 (𝜃𝑠 )𝑑𝜃𝑠 as:

log
∫

𝑝 (z𝑖𝑡 |z𝑖𝑠 , 𝜃𝑠 )𝑝 (𝜃𝑠 )𝑑𝜃𝑠 ≥
∫

𝑞(𝜃𝑠 ) log
𝑝 (z𝑖𝑡 |z𝑖𝑠 , 𝜃𝑠 )𝑝 (𝜃𝑠 )

𝑞(𝜃𝑠 )
𝑑𝜃𝑠 .

(3)
For the ELBO in Eq. 3, we further apply the Monte Carlo inte-

gration using dropout as Bayesian approximation [12]:

log
∫

𝑝 (z𝑖𝑡 |z𝑖𝑠 , 𝜃𝑠 )𝑝 (𝜃𝑠 )𝑑𝜃𝑠 ≥ log𝑝 (z𝑖𝑡 |z𝑖𝑠 , 𝜃𝑠 ) − ||𝜃𝑠 | |2, (4)

where 𝜃𝑠 ∼ 𝑞(𝜃𝑠 ). After inserting Eq. 4 back to the Eq. 2, we have:

𝐼 (z𝑖𝑡 ; z𝑖𝑠 ) ≥ E(z𝑖𝑡 ,z𝑖𝑠 )∼𝑝 (z𝑖𝑡 ,z𝑖𝑠 ) [log𝑝 (z
𝑖
𝑡 |z𝑖𝑠 , 𝜃𝑠 )] − ||𝜃𝑠 | |2 + 𝐻 (z𝑖𝑡 ), (5)

Similarly, 𝑝 (z𝑖𝑡 |zis, 𝜃𝑠 ) in Eq. 5 is intractable, we thus introduce
a variational distribution 𝑞(z𝑖𝑡 |z𝑖𝑠 ) to approximate it. Due to the
fact that the KL divergence 𝐷𝐾𝐿 (𝑝 (z𝑖𝑡 |zis, 𝜃𝑠 ), 𝑞(z𝑖𝑡 |z𝑖𝑠 )) is always
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Figure 2: The proposed framework includes the pre-training step and the learning-to-adapt step. In the pre-training, we
introduce the information theory inspired knowledge distillation 𝐼 (z𝑖𝑡 ; z𝑖𝑠 ) that maximizes the mutual information between ours
and the larger teacher network to enhance our capability. Afterwards, the learning-to-adapt step keeps pre-learned weights 𝜃𝑠
fixed to preserve pre-learned knowledge and introduce adapters for adaptation under a framework of information bottleneck.

positive, we obtain:

𝐼 (z𝑖𝑡 ; z𝑖𝑠 ) ≥ E(z𝑖𝑡 ,z𝑖𝑠 )∼𝑝 (z𝑖𝑡 ,z𝑖𝑠 ) [log𝑞(z
𝑖
𝑡 |z𝑖𝑠 )] − ||𝜃𝑠 | |2 + 𝐻 (z𝑖𝑡 ), (6)

Here, 𝑝 (z𝑖𝑡 , z𝑖𝑠 ) can be approximated using the empirical data
distribution [2] 𝑝 (z𝑖𝑡 , z𝑖𝑠 ) =

1
𝑁

∑𝑁
𝑛=1 𝛿 (z𝑖𝑡 )𝛿 (z𝑖𝑠 ). Then,

𝐼 (z𝑖𝑡 ; z𝑖𝑠 ) ≥
1
𝑁

𝑁∑︁
𝑛=1

log𝑞(z𝑖
𝑡 (𝑛) |z

𝑖
𝑠 (𝑛) ) − ||𝜃𝑠 | |2 − 𝐻 (z𝑖𝑡 ), (7)

where𝑁 refers to the number of training samples and𝑞(z𝑖
𝑡 (𝑛) |z

𝑖
𝑠 (𝑛) )

is a Gaussian distribution with the identity matrix as the covariance
matrix. Therefore, the log-likelihood here is equivalent to the 𝐿2
norm of knowledge distillation. Other than that, our information
theory based knowledge distillation 𝐼 (z𝑖𝑡 ; z𝑖𝑠 ) also introduces the
uncertainty to network weights 𝜃𝑠 , for which 𝜃𝑠 in essence pro-
duces the feature map z𝑖𝑠 for learning knowledge from the teacher
network. By doing that, we consider the uncertainty induced by the
potentially irrelevant knowledge transferred from the teacher. The
variational distribution 𝑞(𝜃𝑠 ) containing pre-learned knowledge
will be exploited by subsequent steps to facilitate online adaptation.

3.3 Learning to Adapt by Preserving
Pre-Learned Knowledge

In this step, we exploit the information bottleneck principal to en-
hance the adaptation capability of our network by filtering out
irrelevant information while passing through the information maxi-
mally explainable to target domain datasets. To prevent catastrophic
forgetting, we keep fixed the network weights pre-learned via sec-
tion 3.2 and introduce into our network a number of adapters that
adjust feature representations for adaptation.

Let 𝑋 , 𝑌𝑝 , 𝑌𝑑 , 𝑍𝑝 , 𝑍𝑑 denote input, pose prediction, depth pre-
diction, latent encodings of pose and depth. Besides, we denote the
parameters of adapters attached to the shared encoder, the depth
estimation decoder and the pose estimation decoder as 𝜔𝑒 , 𝜔𝑑 and

𝜔𝑝 , respectively. Then, we define our learning objective as:

L𝑚𝑒𝑡𝑎 =

𝐼 (𝑍𝑑 , 𝑌𝑑 ;𝜔𝑑 ) − 𝛽𝐼 (𝑍𝑑 , 𝑋 ;𝜔𝑒 ) + 𝐼 (𝑍𝑝 , 𝑌𝑝 ;𝜔𝑝 ) − 𝛽𝐼 (𝑍𝑝 , 𝑋 ;𝜔𝑒 ) .
(8)

In Eq. 8, it minimises the mutual information between the input
and learned latent encodings, while maximising the mutual infor-
mation between latent encodings and predictions of depths and
poses. However, Eq. 8 is intractable, as per [2] we first derive upper
bounds of 𝐼 (𝑍𝑑 , 𝑋 ;𝜔𝑒 ) and 𝐼 (𝑍𝑝 , 𝑋 ;𝜔𝑒 ) using 𝑞(z𝑑 ) and 𝑞(z𝑝 ) as
variational approximation to intractable 𝑝 (z𝑑 ) and 𝑝 (z𝑝 ):

𝐼 (𝑍𝑑 , 𝑋 ;𝜔𝑒 ) ≤ E(z𝑑 ,x)∼𝑝 (z𝑑 ,x)
[
log

𝑝𝜔𝑒
(z𝑑 |x)

𝑞(z𝑑 )

]
,

𝐼 (𝑍𝑝 , 𝑋 ;𝜔𝑒 ) ≤ E(z𝑝 ,x)∼𝑝 (z𝑝 ,x)
[
log

𝑝𝜔𝑒
(z𝑝 |x)

𝑞(z𝑝 )

]
,

(9)

By introducing the variational distributions 𝑞𝜔𝑝
(y𝑝 |z𝑝 , 𝜃 ) and

𝑞𝜔𝑑
(y𝑑 |z𝑑 , 𝜃 ), lower bounds of 𝐼 (𝑍𝑑 , 𝑌𝑑 ;𝜔𝑑 ) and 𝐼 (𝑍𝑝 , 𝑌𝑝 ;𝜔𝑝 ) are:

𝐼 (𝑍𝑑 , 𝑌𝑑 ;𝜔𝑑 ) ≥ E(z𝑑 ,y𝑑 )∼𝑝 (z𝑑 ,y𝑑 ) [log𝑞𝜔𝑑
(y𝑑 |z𝑑 , 𝜃 )] + 𝐻 (y𝑑 ),

𝐼 (𝑍𝑝 , 𝑌𝑝 ;𝜔𝑝 ) ≥ E(z𝑝 ,y𝑝 )∼𝑝 (z𝑝 ,y𝑝 ) [log𝑞𝜔𝑝
(y𝑝 |z𝑝 , 𝜃 )] + 𝐻 (y𝑝 ),

(10)

where 𝐻 (y𝑑 ), 𝐻 (y𝑝 ) refer to the entropy and are independent of
the optimisation and so can be ignored. To preserve pre-learned
knowledge against catastrophic forgetting, we take expectation
with respect to 𝑞(𝜃𝑠 ) on both sides of Eq. 8. Here, 𝑞(𝜃𝑠 ) refers to
the variational distribution of network weights 𝜃𝑠 and is obtained
via the previous step of pre-training. Then, we have:

L𝑚𝑒𝑡𝑎 ≥ E𝜃∼𝑞 (𝜃 )E(z𝑑 ,y𝑑 )∼𝑝 (z𝑑 ,y𝑑 ) [log𝑞𝜔𝑑
(y𝑑 |z𝑑 , 𝜃 )]

+ E𝜃∼𝑞 (𝜃 )E(z𝑝 ,y𝑝 )∼𝑝 (z𝑝 ,y𝑝 ) [log𝑞𝜔𝑝
(y𝑝 |z𝑝 , 𝜃 )]

− 𝛽𝐷𝐾𝐿 (𝑝𝜔𝑒
(z𝑑 |x) | |𝑞(z𝑑 )) − 𝛽𝐷𝐾𝐿 (𝑝𝜔𝑒

(z𝑝 |x)𝑞(z𝑝 )). (11)

By applying dropout as Bayesian approximation [12] and us-
ing empirical data distribution [2] 𝑝 (x, y𝑑 ) = 1

𝑁

∑𝑁
𝑛=1 𝛿 (x)𝛿 (y𝑑 ),
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𝑝 (x, y𝑝 ) = 1
𝑁

∑𝑁
𝑛=1 𝛿 (x)𝛿 (y𝑝 ), we can approximate the lower bound

in Eq. 11 as the following:

L𝑚𝑒𝑡𝑎 ≥ 1
𝑁

𝑁∑︁
𝑛=1

[
Ez𝑑 |x𝑛∼𝑝𝜔𝑒 (z𝑑 |x𝑛 ) [log𝑞𝜔𝑑

(y𝑑 (𝑛) |z𝑑 , 𝜃𝑠 )]

+ Ez𝑝 |x𝑛∼𝑝𝜔𝑒 (z𝑝 |x𝑛 ) [log𝑞𝜔𝑝
(y𝑝 (𝑛) |z𝑝 , 𝜃𝑠 )]

− 𝛽𝐷𝐾𝐿 (𝑝𝜔𝑒
(z𝑑 |x𝑛) | |𝑞(z𝑑 )) − 𝛽𝐷𝐾𝐿 (𝑝𝜔𝑒

(z𝑝 |x𝑛) | |𝑞(z𝑝 ))
]
,

(12)

where 𝜃𝑠 ∼ 𝑝 (𝜃𝑠 ) and 𝑁 is the number of training samples. We as-
sume Gaussian distributions for 𝑝𝜔𝑒

(z𝑑 |x) = N(z𝑑 |𝑓
𝜇

𝑑
(x), 𝑓 𝜎

𝑑
(x))

and 𝑝𝜔𝑒
(z𝑝 |x) = N(z𝑝 |𝑓 𝜇𝑝 (x), 𝑓 Σ𝑝 (x)), where 𝑓𝑑 and 𝑓𝑝 refer to

the network modules. To enable back-propagation, we utilise the
reparameterization trick [21] to write 𝑝𝜔𝑒

(z𝑑 |x)𝑑z𝑑 = 𝑝 (𝜖)𝑑𝜖 and
𝑝𝜔𝑒

(z𝑝 |x)𝑑z𝑝 = 𝑝 (𝜀)𝑑𝜀, where z𝑑 = 𝑓𝑑 (x, 𝜖) and z𝑝 = 𝑓𝑝 (x, 𝜀) are
deterministic functions of x and Gaussian random variables 𝜖 , 𝜀.
The lower bound in Eq. 12 becomes:

L𝑎𝑑𝑎𝑝𝑡 =
1
𝑁

𝑁∑︁
𝑛=1

[
−E𝜖∼𝑝 (𝜖 ) log𝑞𝜔𝑑

(y𝑑 (𝑛) |𝑓𝑑 (x𝑛, 𝜖), 𝜃𝑠 )

− E𝜀∼𝑝 (𝜀 ) log𝑞𝜔𝑝
(y𝑝 (𝑛) |𝑓𝑝 (x𝑛, 𝜀), 𝜃𝑠 )

+ 𝛽𝐷𝐾𝐿 (𝑝𝜔𝑒
(z𝑑 |x𝑛) | |𝑞(z𝑑 )) + 𝛽𝐷𝐾𝐿 (𝑝𝜔𝑒

(z𝑝 |x𝑛) | |𝑞(z𝑝 ))
]
,

(13)

Here, the two terms of KL divergence are computationally ana-
lytic by defining 𝑝𝜔𝑒

(z𝑑 |x𝑛), 𝑞(z𝑑 ), 𝑝𝜔𝑒
(z𝑝 |x𝑛) and 𝑞(z𝑝 ) as Gauss-

ian distributions. The other two negative log-likelihoods contain
predictive functions for estimates of poses and depths and are
defined by the self-supervised loss as decribed in [37]. We then
optimise adapters to learn adaptation with the loss L𝑎𝑑𝑎𝑝𝑡 using
the meta-learning algorithm MAML [10]. To preserve pre-learned
knowledge against catastrophic forgetting, we keep pre-learned
network weights 𝜃𝑠 fixed and instead optimise adapter parameters
including 𝜔𝑒 , 𝜔𝑑 and 𝜔𝑝 .

3.4 Online Adptation
The previous learning-to-adapt step equips our model with the ca-
pability of adapting online. Likewise, when performing adaptation
upon target domain videos, we only update adapters such that the
knowledge learned from the source domain can be preserved to
facilitate the adaptation. In similar to the learning-to-adapt step, we
harness the meta-learning method MAML [10] to update adapters.

4 Experiments
4.1 Implementation Details
Our model was implemented using PyTorch, and the input image
size is 192 × 640. The dataset we used in our experiments include
virtual KITTI [11], CityScapes [8], KITTI [14], and KITTI odometry
[15]. In the pre-training step, our shared encoder was initialised
on the ImageNet beforehand and was pre-trained on the source
domain data for a total of 20,000 iterations. For the teacher network,
we first trained it for 100 epochs with ground truths data, and then

ran another 100 epochs using self-supervision. The learning rate of
training both teacher and student was set to 1𝑒−4.

Afterwards, in the learning-to-adapt step, the meta-learning
algorithmMAML [10] was used to train all adapters. In this step, the
learning rates of inner and outer optimisations were respectively
set to 1𝑒−4 and 1𝑒−5. We used the Stochastic Gradient Descent
(SGD) for the inner optimisation of the meta-learning, and used
the Adam optimiser for the outer optimisation. The adapters were
meta-trained for 10,000 iterations. The hyperparameters 𝜆𝑑𝑖𝑠𝑡 , 𝛽
were set to 5 and 1𝑒−3. Meanwhile, the batch sizes of pre-training,
learning-to-adapt and online adaptation were 4, 2, 1, respectively.
In all steps, the length of the input sequence is 5.

4.2 Evaluation Metrics
Depth Evaluation: As previous methods [16, 42], we evaluate
depth estimations usingmean absolute relative error, average squared
relative error, root mean squared error, root mean squared log error,
and accuracy under thresholds at 𝛿 ∈ {1.251, 1.252, 1.253}. Since
self-supervised methods are unable to predict depth values with
the absolute scale, we use the method of [42] to align the scaling of
results produced by those methods with that of the ground truth.
Pose Evalutation: To assess the performance of pose estimations,
we compute the average root mean square error (RMSE) [15] for
both predicted translations and rotations. Likewise, the predicted
poses are not in absolute scale and are thus adjusted by a scaling
factor to match with the scale of ground truth poses.

4.3 Evaluation of Depth and Pose Estimation
We compare our method against several state-of-the-art online
adaptation baselines including Zhang et al. [39], Li et al. [26], CL-
SLAM [32], CoMoDA [23], Hornauer et al. [18], Xu et al. [37]. Our
evaluations involve pre-training models using virtual KITTI, and
then evaluated the online adaptation performance on KITTI and
CityScapes, respectively.

Table 1 shows the comparison results of all methods that adapted
from Virtual KITTI to KITTI. Our method outperforms each
individual baseline with respect to most of the metrics. Take
CL-SLAM [32] as an example, out of 11 metrics we only have 4
metric values inferior to those of [32]. This is remarkable because
we exploit a lightweight network that not only adapts quickly
but also demonstrates accurate adaptation. It benefits from our
information theory based framework which captures more task-
relevant information to ensure the accuracy. In Fig. 3, it illustrates
estimated trajectories of KITTI dataset, and our approach is able to
produce trajectories with less drifting from the ground truths.

Please refer to the supplementary material for adaptation results
of Virtual KITTI to CityScapes.

4.4 Computational Efficiency
We utilise frames per second (fps), model size and FLOPS to evaluate
computational efficiency. Here, fps indicates how many frames are
processed in one second, model size counts the number of model
parameters, and FLOPS measures the number of floating-point
arithmetic calculations being performed by the processor within a
second. As shown in Table 3, our method is ranked as second
best against each individual baseline in terms of evaluations
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Table 1: Quantitative comparison of depth and pose predictions in vKITTI to KITTI adaptation scenario.

Error (lower is better) Accuracy (higher is better) Seq 09 Seq 10
Methods AbsRel ↓ SqRel ↓ RMSE ↓ RMSLog ↓ < 1.25 ↑ < 1.252 ↑ < 1.253 ↑ 𝑡𝑟𝑒𝑙 ↓ 𝑟𝑟𝑒𝑙 ↓ 𝑡𝑟𝑒𝑙 ↓ 𝑟𝑟𝑒𝑙 ↓

Zhang et al. [39] 0.153 - 5.508 - 0.776 0.923 - - - - -
Li et al. [26] 0.152 1.226 5.510 0.231 0.796 0.919 0.964 17.94 5.36 26.27 7.01

CL-SLAM [32] 0.153 1.218 5.506 0.223 0.802 0.923 0.965 16.68 5.24 22.07 8.35
CoMoDA [23] 0.155 1.23 5.521 0.227 0.787 0.920 0.964 21.57 6.13 27.42 10.08

Hornauer et al. [18] 0.179 1.478 6.499 0.263 0.727 0.908 0.962 - - - -
Xu et al. [37] 0.151 1.221 5.507 0.224 0.801 0.925 0.965 17.51 4.98 24.97 7.97

ours 0.151 1.220 5.506 0.224 0.803 0.925 0.965 17.30 4.89 24.67 7.95

Table 2: Ablation study on key components of our visual SLAMmodel for online adaptation.

Error (lower is better) Accuracy (higher is better) Seq 09 Seq 10
Methods AbsRel ↓ SqRel ↓ RMSE ↓ RMSLog ↓ < 1.25 ↑ < 1.252 ↑ < 1.253 ↑ 𝑡𝑟𝑒𝑙 ↓ 𝑟𝑟𝑒𝑙 ↓ 𝑡𝑟𝑒𝑙 ↓ 𝑟𝑟𝑒𝑙 ↓
Base 0.161 1.229 5.527 0.232 0.789 0.920 0.963 17.98 5.21 25.93 8.69

w/o VIT 0.152 1.223 5.508 0.227 0.801 0.922 0.964 17.54 4.97 24.81 8.03
w/o IB 0.151 1.225 5.508 0.228 0.797 0.922 0.963 17.64 5.17 25.16 8.22
ours 0.151 1.220 5.506 0.224 0.803 0.925 0.965 17.30 4.89 24.67 7.95

Table 3: Comparison of computational efficiency with our
method and other baselines.

Method fps ↑ Model Size (no. of parms) ↓ FLOPS ↓
Li et al. [26] 23 42.2M 7.2G

CL-SLAM [32] 18 113.5M 7.8G
CoMoDA [23] 24 66.1M 7.3G

Hornauer et al. [18] 25 43.6M 3.5G
Xu et al. [37] 18 89.2M 6.7G

ours 20 64.4M 5.4G

Figure 3: Trajectories of the moving camera predicted by
different methods on KITTI dataset.

across all fps, model size and FLOPS. Although [18] is most
efficient, it is unable to estimate poses, and its depth estimations are
inferior to ours. Hence, our method is better than other baselines
considering both efficiency and accuracy.

Figure 4: Illustration of long-range adaptation capability of
ourmethod. The x-axis denotes the number of testing frames,
and the y-axis represents the value of RMSE error.

4.5 Ablation Study
We analyse the effectiveness of different components in our model,
and use Base to denote the base network without proposed knowl-
edge distillation and information bottleneck based framework. Be-
sides,w/o VIT refers to substitute proposed knowledge distillation
with the standard knowledge distillation, andw/o IBmeans remov-
ing our information bottleneck based framework only.

In Table 2, we observe a substantial performance degradation of
w/o VIT when compared to ours. This is because substituting our
knowledge distillation disregards the uncertainty in the transferred
knowledge that may cause the performance degradation. Similarly,
w/o IB shows worse results. This indicates our information bottle-
neck framework enables to extract domain-relevant features that
enhance the adaptation. We also provide visual comparisons of
depth estimations in the supplementary material.

4.6 Long-range Online Adaptation
In Fig. 4, we illustrate the long-term adaptation ability of ourmethod
by online adapting our model that is pre-trained on virtual KITTI
to approximately 600 target frames of KITTI, and visualize the
change of RMSE values across the adaptation. During adaptation,
we can see that our model is able to effectively prevent catastrophic
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forgetting. That is, the RMSE values of our method becomes clearly
smaller after adapting to about 200 frames, and then the curve of
RMSE values becomes stable to the end of all frames.

5 Conclusion
In this work, we propose a fast online adaptation method of visual
SLAM. To achieve fast inference, we exploit a lightweight network
architecture. Meanwhile, we introduce the information theory in-
spired knowledge distillation in the pre-training step to ensure
the precision of our lightweight network by transferring knowl-
edge from a larger teacher network with high knowledge capacity.
Followed by that, we train our model to learn adaptation under
the reformulated framework of information bottleneck by incor-
porating variational distribution of network weights pre-learned
from the pre-training step. As a result, our model performs adap-
tation without forgetting past experiences and can also capture
more domain-specific information to facilitate the adaptation. In
terms of running speed and adaptation precision, extensive exper-
iments demonstrate the superiority of our method over several
state-of-the-art online visual SLAM adaptation baselines.
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