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A B S T R A C T

Deep learning has shown its effectiveness in histopathology image analysis, such as pathology detection
and classification. However, stain colour variation in Hematoxylin and Eosin (H&E) stained histopathology
images poses challenges in effectively training deep learning-based algorithms. To alleviate this problem, stain
normalisation methods have been proposed, with most of the recent methods utilising generative adversarial
networks (𝐺𝐴𝑁). However, these methods are either trained fully with paired images from the target domain
(supervised) or with unpaired images (unsupervised), suffering from either large discrepancy between domains
or risks of undertrained/overfitted models when only the target domain images are used for training.

In this paper, we introduce a colour adaptive generative network (CAGAN) for stain normalisation which
combines both supervised learning from target domain and unsupervised learning from source domain.
Specifically, we propose a dual-decoder generator and force consistency between their outputs thus introducing
extra supervision which benefits from extra training with source domain images. Moreover, our model is
immutable to stain colour variations due to the use of stain colour augmentation. We further implement
histogram loss to ensure the processed images are coloured with the target domain colours regardless of their
content differences. Extensive experiments on four public histopathology image datasets including TCGA-IDH,
CAMELYON16, CAMELYON17 and BreakHis demonstrate that our proposed method produces high quality
stain normalised images which improve the performance of benchmark algorithms by 5% to 10% compared
to baselines not using normalisation.
1. Introduction

Histopathology images provide valuable information of diseases and
their effects on tissues (Gurcan et al., 2009). To assist with microscopic
analysis of tissues and cells, staining is applied to highlight structural
features and enhance their contrast. However, undesired effects during
the staining procedure can potentially lead to variations in the staining
appearance. For example, Fig. 1 shows the colour variations within
the same dataset of histological samples. While pathologists can deal
with such colour variations, the performance of machine learning-based
algorithms in digital histopathology image analysis can be heavily
affected.

A target domain in histopathology image datasets can be defined as
a group of images with relatively homogeneous stain colours, whereas
the rest of the images are considered to be the source domain. The
purpose of stain normalisation methods is to normalise the source
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domain images and match their colour distribution to the target domain
and hence to compensate for the negative impacts of stain colour het-
erogeneity within a dataset. Many studies have used stain normalisation
as the first step in the pipeline of histopathology image analysis (Ciompi
et al., 2017; Stanisavljevic et al., 2018; Gandomkar et al., 2018; Kumar
et al., 2020). However, most of these methods have implemented tra-
ditional stain normalisation methods (Reinhard et al., 2001; Macenko
et al., 2009) which match the stain colour with a selected template
image. These methods are designed based on mathematical models but
can be heavily biased if a less representative template image is selected.

Recently, generative adversarial networks (𝐺𝐴𝑁𝑠) (Goodfellow
et al., 2014) have been widely investigated in stain normalisation.
Among these methods, cycle-consistent generative adversarial networks
(𝐶𝑦𝑐𝑙𝑒𝐺𝐴𝑁) (Zhu et al., 2017) based approaches have been stud-
ied most widely. These methods perform stain normalisation without
vailable online 27 August 2022
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Fig. 1. Patch samples from TCGA-IDH (row one) and CAMELYON16 (row two). Colour
heterogeneity can be observed within the same dataset.

requiring any template images and can generally achieve good re-
sults (Shaban et al., 2019). However, these methodologies still suffer
from large discrepancies between source and target domains. In another
study (Salehi and Chalechale, 2020), stain normalisation was treated as
an image colourisation task, demonstrating improved performance over
CycleGAN-based approaches. However, such methods require image
colourisation outputs as ground truth for supervised learning and thus
can only be trained on the target domain images. Such a setting does
not directly represent the objective of stain normalisation, which is to
normalise the colour of source domain images to that of the target do-
main images. To benefit from supervised image colourisation learning
and also incorporate the source domain images into the colourisation
learning process, we propose a colour adaptive generative adversarial
network (CAGAN) for stain normalisation. Our method utilises the
concept of consistency regularisation from semi-supervised learning so
that source domain images can be used to enhance the learning of the
colourisation model without requiring paired ground truth images.

1.1. Related work

1.1.1. Stain augmentation
Stain augmentation methods aim to reduce the model generalisation

error by simulating variations in the dataset (Tellez et al., 2019). To
mimic such variations, previous works conduct different types of image
augmentations which can be roughly grouped into two categories: mor-
phological and colour augmentations. Morphological augmentations
simulate variations in morphological structures. Such augmentations
typically include image rotation, flipping, elastic transformation, scal-
ing and Gaussian blurring (Liu et al., 2017; Tellez et al., 2018a, 2019).
Moreover, a wide range of colour augmentation methods have been
proposed. These methods range from simple brightness, contrast and
hue perturbations (Liu et al., 2017) to complicated operations on 𝐻&𝐸
colour space augmentation (Tellez et al., 2018a, 2019). Furthermore,
recent studies have shown that using GAN (Wagner et al., 2021) or
mix-up (Chang et al., 2021) to synthesise samples can further improve
the model generalisation performance. These methods have shown that
stain augmentations can be easily integrated with downstream models
to enhance its robustness against stain variations, but they require prior
knowledge about the data for careful design to guarantee effectiveness
(refer to Section 4.1.1).

1.1.2. Stain normalisation
Stain normalisation approaches typically follow one of two cate-

gories: traditional methods and deep learning-based methods. Specif-
ically, traditional methods use mathematical frameworks to match
image features with a carefully selected template image. One group
2

of studies focuses on aligning the colour distribution between two
domains (Tabesh et al., 2007; Wang et al., 2007; Roy et al., 2019;
Nadeem et al., 2020; Shafiei et al., 2020). These methods have been
shown to produce satisfactory results but some (Roy et al., 2019;
Nadeem et al., 2020) are at high computational costs for distribution
estimation. For example, the computational complexity of these distri-
bution alignment methods (measured in CPU time during inference) is
normally 2∼3 times (Roy et al., 2019), in some extreme cases even 50
times (Nadeem et al., 2020) higher than the baselines (especially the
traditional methods (Reinhard et al., 2001; Macenko et al., 2009). In
fact, the high computational cost is a known limitation of these methods
(Roy et al., 2019; Nadeem et al., 2020), making it hard to apply these
methods in real-world clinical applications. Another group of studies
sets out to normalise the stain vectors which are decomposed from
the 𝑅𝐺𝐵 space (Ruifrok and Johnston, 2001; Macenko et al., 2009;
Li and Plataniotis, 2015b,a; Vahadane et al., 2016). These methods
can be further improved by incorporating morphological features to
produce cell-specific stain colour normalisation (Magee et al., 2009;
Basavanhally and Madabhushi, 2013; Khan et al., 2014; Bejnordi et al.,
2015; Janowczyk et al., 2017).

Deep learning-based stain normalisation methods usually treat stain
normalisation as an image-to-image translation task and 𝐺𝐴𝑁 is used
often in these approaches. Specifically, unsupervised deep stain nor-
malisation models are trained using both source and target domain im-
ages, wherein the source domain images are normalised to exhibit the
target domain stain appearance, without requiring their paired input
and ground truth images. Among these methods, 𝐶𝑦𝑐𝑙𝑒𝐺𝐴𝑁 (Shaban
et al., 2019) and its variants (de Bel et al., 2019; Shrivastava et al.,
2019; Zhou et al., 2019; Mahapatra et al., 2020; Kang et al., 2020;
de Bel et al., 2021) have been applied broadly in stain normalisation.
Moreover, to save the effort of retraining a downstream task-specific
network, BenTaieb and Hamarneh (2017) introduced a task-specific
branch in the discriminator network and Nishar et al. (2020) com-
bined an HRNet-based (Sun et al., 2019) generator with perceptual
loss (Johnson et al., 2016) for better image content preservation. One
drawback of unsupervised/unpaired stain normalisation methods is
that their performance can deteriorate if the colour variations between
domains is large. On the other hand, supervised deep stain nor-
malisation methods (Cho et al., 2017; Zanjani et al., 2018; Tellez
et al., 2019; Salehi and Chalechale, 2020; Cong et al., 2021a) are
trained purely on target domain images. They normalise or colourise
certain transformed representations (e.g., grayscale space) of the target
domain images back to their original stain appearances (e.g., 𝑅𝐺𝐵
space). While these approaches can produce high-quality normalisation
results, their performance is constrained by the limited amount of target
domain images available within a dataset. Moreover, the target-domain
colourisation formulation does not fully resemble the objective of the
stain normalisation between source and target domains.

1.1.3. Semi-supervised image colourisation
Inspired by semi-supervised learning (SSL) frameworks which com-

bine unsupervised learning with supervised learning to obtain en-
hanced performance (Ouali et al., 2020a), in this paper, we focus
on improving the previously proposed supervised deep learning-based
methods by incorporating unsupervised learning on source domain
images to enhance the performance of an image colourisation model.
Specifically, we focus our work on the application of consistency regu-
larisation (Lee et al., 2013; Tarvainen and Valpola, 2017; Park et al.,
2018; Miyato et al., 2018; Verma et al., 2019; Berthelot et al., 2019;
Ke et al., 2019; Sohn et al., 2020) and proxy-labelling (Lee et al., 2013;
Yalniz et al., 2019; Arazo et al., 2020; Fang and Li, 2020; Ouali et al.,
2020b; Xie et al., 2020), especially co-training (Han et al., 2018; Qiao
et al., 2018) in our method.

Consistency regularisation, based on the assumption that a model’s
decision boundary should locate in the low-density region utilises un-
labelled data to enhance the model by forcing it to produce consistent
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outputs from an unperturbed unlabelled input and perturbed unlabelled
input (Chapelle et al., 2009). While this simple and effective idea is
widely used in semi-supervised deep learning for classification, the
application of such a concept to image colourisation is not straightfor-
ward. As objects with similar shapes can have different colours, simply
forcing the colourisation results to be consistent under perturbations
can lead to a sub-optimal solution. To tackle this issue, the Trans-
formation Consistency Regularisation (𝑇𝐶𝑅) (Mustafa and Mantiuk,
2020) has recently been published. This work successfully incorporates
consistency regularisation into image translation tasks by enforcing
consistency between the prediction of a geometric transformation of an
image and the geometric transformation of the prediction of the origi-
nal image. However, based on our empirical studies, we find that such
geometric transformation consistency is more helpful on natural image
translation tasks, whereas consistency based on colour augmentations
brings more benefits in a histopathology stain normalisation task.

Our work also explores the use of co-training (Blum and Mitchell,
1998). We design a model with a dual-decoder structure to enforce the
consistency between two decoders as a form of self-training, wherein
the outputs of the two decoders can be treated as perturbed views of
each other. The benefits of this dual-decoder design are twofold: (1)
it is a straightforward way to calculate the consistency loss between
two decoders rather than designing a smoothing function to generate
pseudo labels from multiple decoders; and (2) it is computational
efficient as adding more decoders will increase the model complexity
and require more computational resources to train.

1.2. Our contribution

In this paper, we propose a colour adaptive generative adversarial
network (CAGAN) for stain normalisation to address the drawbacks
of current supervised stain normalisation methods. Specifically, our
contributions are summarised as follows:

• We propose a unified framework that combines both supervised
learning from target domain and unsupervised learning from
source domain.

• Our model adopts a novel dual-decoder design with consistency
regularisation to enforce the generator to produce coherent stain
normalisation results under perturbations.

• To properly adapt the concept of consistency regularisation to
stain normalisation, we design two forms of perturbations: stain
colour perturbation and model-embedded perturbation.

• Extensive experiments on the TCGA-IDH,1 CAMELYON162/173

and BreakHis4 datasets demonstrate that our method improves
the downstream classification task on three types of histopathol-
ogy images.

Compared to our earlier work (Cong et al., 2021b), we apply stain
olour augmentations as a source of perturbation on the inputs to
imulate different situations which makes our colourisation model more
obust to staining variations. Moreover, we improve the design of
he loss functions with a histogram loss to generate better and more
table normalisation results. We have also conducted more extensive
erformance evaluation, ablation studies and included the additional
AMELYON16/17 datasets.

. Materials & methods

.1. Materials

We trained and evaluated our model as a preprocessing step of the
umour classification task using Hematoxylin and Eosin (H&E) stained

1 https://portal.gdc.cancer.gov/
2 http://camelyon16.grand-challenge.org/
3 http://camelyon17.grand-challenge.org/
4 https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-

atabase-breakhis/
3

Table 1
Overview of data used in this study.

Name Slide count Patch count Tissue type

TCGA-IDH 1,494 – Brain
CAMELYON16 400 – Breast
CAMELYON17 100 – Breast
BreakHis – 7,909 Breast

histopathology images. Detailed information for each dataset is shown
in Table 1.

For brain tumour classification, we focused on predicting the isoc-
itrate dehydrogenase (IDH) gene mutation status as it is an important
diagnostic, prognostic and therapeutic biomarker in glioma (Parsons
et al., 2008). Specifically, we used the same dataset that we curated
from The Cancer Genome Atlas (TCGA) program (Clark et al., 2013) in
our previous study (TCGA-IDH) (Liu et al., 2020). TCGA-IDH consists of
1,494 whole-slide images (WSIs) from 921 glioma patients in the TCGA
Lower Grade Glioma and Glioblastoma cohorts. Each patient has been
labelled as either IDH wildtype (WT, n=517) or mutant (MU, n=404)
based on immunohistochemistry and/or genetic sequencing.

Classification of breast cancer histopathology images into explicit
histopathology patterns is of vital importance due to its high inci-
dence rate in women (Siegel et al., 2021). In this work, we selected
three breast cancer classification datasets for evaluation, including
BreakHis, CAMELYON16 and CAMELYON17. The BreakHis dataset
contains histopathology image patches of breast tumour tissue which
were collected by surgical biopsy and labelled by pathologists from the
P&D Lab (Spanhol et al., 2016). The aim of the task is to classify breast
tumour tissue as benign or malignant. Specifically, surgical samples
from 24 patients with benign breast tumours and 58 with malignant
breast tumours were collected, forming a dataset of 2,480 benign and
5,429 malignant tumour images. The images contain a mixture of four
magnification levels (i.e., 40X, 100X, 200X, and 400X).

We selected CAMELYON16 (Bejnordi et al., 2017) and CAME-
LYON17 (Bandi et al., 2019) for training and evaluating our pro-
posed stain normalisation methods as a preprocessing step for breast
cancer metastases classification in lymph nodes. In particular, CAME-
LYON16 contains a total of 400 WSIs from two medical centres, and
CAMELYON17 contains 1,000 WSIs with 5 slides per patient collected
from five medical centres. Following the experimental setup described
in (Zhou et al., 2019; Mahapatra et al., 2020), we used CAMELYON16
for training the stain normalisation model and evaluate whether it
improves the classification performance on CAMELYON17. The clas-
sification task on CAMELYON17 aims to discriminate between slides
with metastases (positive) and without metastases (negative). We used
the training set of CAMELYON17 for evaluation and the number of
negative/positive slides of each of the 5 medical centres: 64/10, 58/10,
75/10, 60/10 and 61/10.

2.2. Methods

In this section, we first introduce the underlying 𝐺𝐴𝑁 model for
upervised stain normalisation on the target domain images. Then,
e describe our modifications to facilitate colour adaptive learning

ncorporating source domain images. The overall model structure is
hown in Fig. 2.

.2.1. Problem definition
Given a histopathology image dataset 𝐼 , we define a subset 𝐼𝑡 which

ontains relatively homogeneous stain colours as the target domain
nd the rest of the images as the source domain 𝐼𝑠. The aim of stain
ormalisation is to reduce the stain colour discrepancy between the two
omains, such that all images in 𝐼 have the stain appearance of 𝐼𝑡. In
his work, we use a pix2pix GAN (Isola et al., 2017) as our backbone
etwork which requires paired image data to be trained. Ideally, these

https://portal.gdc.cancer.gov/
http://camelyon16.grand-challenge.org/
http://camelyon17.grand-challenge.org/
https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-database-breakhis/
https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-database-breakhis/
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Fig. 2. The overall model structure. The generator takes the grayscale representations of the augmented patches from target and source domains as input 𝑥𝑡∕𝑠 and generates two
normalisation results. This dual-decoder design is to perform unsupervised learning for source domain images in which two decoders can provide pseudo-labels for each other.
Moreover, the introduction of content loss and histogram loss is to explicitly help the model generate image without losing structural and colour information.
pairs should be composed of images with different stain colours of
the same sample. However, it is hard to obtain such image pairs in
real-world datasets. Thus, we follow previous works (Cho et al., 2017;
Salehi and Chalechale, 2020) and use the gray-scale transformation
and the corresponding RGB image as paired image data. Specifically,
given a transformed representation 𝑥𝑖, e.g., grayscale transformation
of an image 𝑖 ∈ 𝐼 , we set out to train a model 𝐺𝜃 that colourises 𝑥𝑖
with the stain colour of 𝐼𝑡. Furthermore, being aware that converting
𝐻&𝐸 stains into gray-scale images can cause information loss, we apply
content loss (Johnson et al., 2016) and histogram loss (Afifi et al., 2021)
to explicitly regularise the model to recover this information as much
as possible and show further improved performance.

2.2.2. Supervised stain normalisation using target domain images
We first describe stain normalisation as a supervised image colouri-

sation task using the target domain 𝐼𝑡 only. Any target domain images
𝑖𝑡 ∈ 𝐼𝑡, can be displayed in various representations. To train the
colourisation model, we use its grayscale transformation 𝑥𝑡 and its
𝑅𝐺𝐵 representation 𝑦𝑡 as labelled pairs (𝑥𝑡, 𝑦𝑡). Specifically, we aim
for the colourisation model to colourise 𝑥𝑡 into 𝑦𝑡 using a 𝐺𝐴𝑁 model
with supervised learning. We adapt a conditional generative adversarial
network (𝑐𝐺𝐴𝑁) as our colourisation model. The generator 𝐺 is used
for colourising the inputs with the desired stain colours, whereas the
discriminator 𝐷 is designed to judge whether the colourisation results
are from the target domain colour distribution or not. Here, 𝑥𝑡 is used
as input to 𝐺 and we train 𝐺 to map the inputs back to their original
coloured appearance 𝑦𝑡, that is 𝐺(𝑥𝑡) = 𝑦𝑡, where 𝑦𝑡 ≈ 𝑦𝑡. Unlike in
the original 𝐺𝐴𝑁 , discriminator 𝐷 in 𝑐𝐺𝐴𝑁 takes a paired input and
assigns a higher value for actual 𝑅𝐺𝐵 images 𝑦𝑡 in the target domain
and lower value for the colourisation results of 𝐺. In contrast, 𝐺 tries
to fool 𝐷 by making 𝐷 assign higher value for 𝑦𝑡.

Network architecture. For the generator network (Fig. 4(a)), we used
a U-Net (Ronneberger et al., 2015) structure with 5 down-sampling
blocks ConvBlock and the same number of up-sampling blocks UpCon-
vBlock. For each ConvBlock, we used batch normalisation followed by a
convolutional layer and LeakyReLU is used as the activation function.
Moreover, for each UpConvBlock, we applied ConvBlock to the up-
sampled feature maps obtained using transposed convolution. For the
discriminator network, a 5-layer PatchGAN (Isola et al., 2017) was
4

used. Instead of producing a scale value, the PatchGAN network gives
a 𝑁 ×𝑁 vector whose dimension depends on the shape of the input.

Regularisation. To train the colourisation model in a supervised
fashion, we used the ground truth RGB 𝑦𝑡 with shape 𝐻 × 𝑊 × 𝐶 as
the label and apply 𝐿1 loss as the supervised loss 𝐿𝑠𝑢𝑝:

𝑠𝑢𝑝 =
1

𝐻𝑊𝐶
|

|

𝑦𝑡 − 𝑦𝑡|| (1)

We used adversarial loss 𝐿𝑎𝑑𝑣𝐷∕𝐺
to update the discriminator and

generator in turn, and we found that the least square loss from (Mao
et al., 2017) can stabilise the training process as opposed to cross
entropy in regular 𝐺𝐴𝑁𝑠.

𝑎𝑑𝑣𝐷 = (𝐷(𝑥𝑡, 𝑦𝑡) − 1)2 + (𝐷(𝑥𝑡, 𝑦𝑡))2 (2)

𝑎𝑑𝑣𝐺 = (𝐷(𝑥𝑡, 𝑦𝑡) − 1)2 (3)

We further implemented the content loss 𝐿𝑐𝑜𝑛𝑡 (Johnson et al., 2016)
to preserve the structural features as a form of content preservation.
Specifically, a pretrained 𝑉 𝐺𝐺16 model was used as a feature extractor.
We take 𝑛 layers of deep features for comparison. Since we extract
features from both generated images 𝑦𝑡 and the original 𝑅𝐺𝐵 image
𝑦𝑡, this forms 𝑛 pairs of feature maps. We then measured the distance
between each feature map pairs to account for the content differences:

𝑐𝑜𝑛𝑡(𝑦𝑡, 𝑦𝑡) =
𝑛
∑

𝑗
𝜔𝑗

1
𝐶𝑗𝐻𝑗𝑊𝑗

||𝜙𝑗 (𝑦𝑡) − 𝜙𝑗 (𝑦𝑡)|| (4)

where 𝜙𝑗 is the feature map produced by the 𝑗𝑡ℎ layer before applying
the max pooling operation, 𝐶𝑗𝐻𝑗𝑊𝑗 is the shape of 𝜙𝑗 and 𝜔𝑗 = 1∕𝑛.
In implementation, we use every layer before max-pooling to calculate
content loss.

Thus, the total training loss for the supervised stain normalisation
on the target domain is a combination of the above mentioned loss
functions:

𝑠𝑢𝑝𝐷 = 𝐿𝑎𝑑𝑣𝐷 (5)

𝐺𝑡𝑎𝑟𝑔𝑒𝑡
= 𝐿𝑠𝑢𝑝 + 𝐿𝑎𝑑𝑣𝐺 + 𝐿𝑐𝑜𝑛𝑡 (6)
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Fig. 3. Colour augmentations are applied to the inputs before they are introduced to
the model which colourises them with the target domain colour appearances.

Fig. 4. Generator structures used in this work. The dotted arrow between encoders and
decoders indicates the skip connection. Specifically, (a) shows the network in supervised
stain normalisation; and, (b) shows the dual-decoder structure used in semi-supervised
stain normalisation.

2.2.3. Colour adaptive learning using source domain images
In this section, we describe our modifications to the supervised stain

normalisation 𝐺𝐴𝑁 . Supervised stain normalisation models are trained
on the target domain; however, they are not able to investigate the
dataset fully as the source domain images are left unused. To make full
use of the dataset, we incorporated the source domain images into the
training of stain normalisation. However, this is not straightforward, as
the colour appearance of source domain images 𝑦𝑠 is not particularly
useful in the supervised colourisation setting and the desired output
after normalisation is not known. Therefore, inspired by the consistency
regularisation from semi-supervised learning, we designed a colour
adaptive learning framework which uses the source domain images by
an adaptation of consistency regularisation. In particular, we designed
a dual-decoder generator which outputs two colourisation results under
some perturbations. Given an unlabelled source domain image as input,
the generator produces two colourisation results which can be viewed
as alternative representations of each other. By forcing consistency
between them, we effectively assign a pseudo label for one decoder
using the colourisation result from the other. In this way, the two
decoders are able to learn from each other and the shared encoder can
be further enhanced by the extra learning from the unlabelled source
domain images. We also incorporate histogram loss (Afifi et al., 2021)
to better regularise the colourisation results minimising the influence
of semantic differences between the source and target domains.

Perturbations & Consistency Regularisation. The smoothness assump-
tion in SSL classification states that, if two data points share the
same label, their corresponding outputs should be the same. In the
case of SSL image colourisation, we made a similar proposition that
the colourisation output of an image should be consistent even if
different transformations or different generators are applied to that
image. Thus, in this work, we introduced two forms of perturbations,
i.e., input perturbation and model-embedded perturbation, therefore asking
5

the model to output consistent colourisation results under such per-
turbations. In particular, we applied input perturbations to simulate
varying staining appearances. For this purpose, we used a combination
of data augmentations, including Gaussian blur, contrast adjustment,
saturation adjustment and H&E augmentation (Tellez et al., 2018b).
Fig. 3 demonstrates some of the augmentation results, which show
different staining colours of the same input image that should ideally
be colourised with the same target domain colour appearance after
stain normalisation. In addition, inspired by the concept of co-training
illustrated in (Fang and Li, 2020; Ouali et al., 2020b), we present
model-embedded perturbation, which generates perturbations via the
design of model structures. Specifically, we modified the generator
to have a dual-decoder structure and explicitly design these two de-
coder branches with different structures, as illustrated in Fig. 4. For
Decoder One (𝑑1), we used the same structure described in Section 2.2.2,
whereas for Decoder Two (𝑑2), we made a simple and effective mod-
ification which adds residual connections between the blocks. Such
a design ensures the two decoders generate two alternative views of
the same encoded feature and we show its effectiveness in Fig. 5
and Table 3. For any unlabelled source domain inputs, our generator
outputs two colourisation results. Forcing the two results to be close to
each other allows the model to be trained in an unsupervisedly manner
by using the source domain images. Thus, for any source domain data
𝑥𝑠 with shape 𝐻 × 𝑊 × 𝐶, the consistency regularisation 𝐿𝑐𝑜𝑛𝑠𝑖𝑠 can
be formulated as minimising the mean absolute distance between two
decoders’ outputs:

𝑐𝑜𝑛𝑠𝑖𝑠 =
1

𝐻𝑊𝐶
|

|

|

𝐺𝑑1(𝑥𝑠∕𝑡) − 𝐺𝑑2(𝑥𝑠∕𝑡)
|

|

|

(7)

Histogram Loss. It is likely that the two decoders generate consistent
but incorrect colourisation results. A solution to this issue is to add
an extra regularisation term which would align the output colour
distribution with the target domain colour distribution. The recently
proposed histogram loss (Afifi et al., 2021), which explicitly focuses
on comparing the colour attributes was adapted into our method. To
successfully incorporate histogram loss, we need to select a template
image 𝑦𝑡 for the source domain images to match. Such a template
should represent the target domain colour distribution. Here, we chose
the target domain image whose pixel mean and standard deviation are
closest to the overall mean and standard deviation of the target domain
as our template. Then, given a source domain image 𝑥𝑠 and template
image 𝑦𝑡, we first converted them into log-chrominance space represen-
tations. Subsequently, we constructed histogram features 𝐻𝑠 and 𝐻𝑦𝑡 by
estimating the contribution of each pixel in the log-chrominance space
to the histogram bins. To make the histogram feature differentiable for
loss computation, we implemented an inverse-quadratic kernel 𝜅 with
two tuneable parameters 𝑢 and 𝑣 to control the contribution of each
pixel:

𝜅(𝐼𝑢𝑐 , 𝐼𝑣𝑐 , 𝑢, 𝑣) =
1

1 + (𝐼𝑢𝑐 −
𝑢
𝜏 )

2
× 1

1 + (𝐼𝑣𝑐 −
𝑣
𝜏 )

2
(8)

where, 𝐼𝑢𝑐 , 𝐼𝑣𝑐 are the pixel intensity in log-chrominance space and 𝜏 is
used to control smoothness. We apply this kernel function to each pixel
in log-chrominance space to obtain the differentiable histogram feature
𝐻 . Then we used the Hellinger distance to compute the histogram loss
𝐿ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚:

ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚 = 1
√

2
‖

‖

‖

𝐻1∕2
𝑡

−𝐻1∕2
𝑠

‖

‖

‖

(9)

Thus, we use the following equation to update the model using the
source domain images where we replaced the content loss 𝐿𝑐𝑜𝑛𝑡 and
supervised loss 𝐿𝑠𝑢𝑝 with histogram loss 𝐿ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚 and consistency loss
𝐿𝑐𝑜𝑛𝑠𝑖𝑠:

𝐺𝑠𝑜𝑢𝑟𝑐𝑒
= 𝐿𝑐𝑜𝑛𝑠𝑖𝑠 + 𝐿ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚 (10)

In summary, during the learning process, we use Eq. (5) to update
discriminator and we update the generator using Eq. (6) for any inputs
from the target domain and use Eq. (10) for the source domain inputs.
Algorithm 1 shows the pseudo code of the overall training procedure.
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Algorithm 1: Obtaining a trained generator of semi-supervised stain
ormalisation.
Data: 𝑚 batches of target domain images pairs

{(𝑥𝑡𝑖, 𝑦𝑡𝑖) ∶ 𝑖 = 1, ..., 𝑚}, 𝑚 batches of source domain images
{𝑥𝑠𝑖 ∶ 𝑖 = 1, ..., 𝑚}, a pseudo label for the source domain
image 𝑦𝑡 and a random initialised model 𝑝 ∋ (𝐺𝜃𝑔 , 𝐷𝜃𝑑 )

Result: Trained models 𝐺𝜃𝑔 and 𝐷𝜃𝑑
for number of epoch 𝑒 do

for number of steps 𝑘 do
𝑥𝑡𝑖 ← 𝑎𝑢𝑔𝑚𝑒𝑛𝑡(𝑥𝑡𝑖);
𝑥𝑠𝑖 ← 𝑎𝑢𝑔𝑚𝑒𝑛𝑡(𝑥𝑠𝑖);
Forward to obtain normalisation results:;

�̂�𝑡𝑖1, �̂�𝑡𝑖2 = 𝐺𝜃𝑔 (𝑥𝑡𝑖);
�̂�𝑠𝑖1, �̂�𝑠𝑖2 = 𝐺𝜃𝑔 (𝑥𝑠𝑖);

Updating discriminator:;
∇𝜃𝑑

1
𝑚
∑𝑚

1 𝑎𝑑𝑣𝐷 (𝑥𝑡𝑖, 𝑦𝑡𝑖, �̂�𝑡𝑖1∕2) ;
Updating generator:;

𝐺𝑡𝑎𝑟𝑔𝑒𝑡
= 𝑎𝑑𝑣𝐺 (𝑥𝑡𝑖, �̂�𝑡𝑖1∕2)+𝑠𝑢𝑝(�̂�𝑡𝑖1∕2, 𝑦𝑡𝑖)+𝑐𝑜𝑛𝑡(�̂�𝑡𝑖1∕2, 𝑦𝑡𝑖)

;
𝐺𝑠𝑜𝑢𝑟𝑐𝑒

=
𝑎𝑑𝑣𝐺 (𝑥𝑠𝑖, �̂�𝑠𝑖1∕2)++𝑐𝑜𝑛𝑠𝑖𝑠(�̂�𝑠𝑖1, �̂�𝑠𝑖2)+ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚(�̂�𝑠𝑖1∕2, 𝑥𝑡);

∇𝜃𝑔
1
𝑚
∑𝑚

1 (𝐺𝑡𝑎𝑟𝑔𝑒𝑡
+ 𝐺𝑠𝑜𝑢𝑟𝑐𝑒

) ;
end

nd

Table 2
Train/test splits of each dataset.

Dataset Train Test

Slides Patches Slides Patches

TCGA-IDH 1,191 17,686 149 2310
BreakHis-f1 – 5,005 – 2,904
BreakHis-f2 – 5,506 – 2,403
BreakHis-f3 – 5,332 – 2,577
BreakHis-f4 – 5,211 – 2,698
BreakHis-f5 – 4,826 – 3,083
CAMELYON16 270 319,861 129 120,129
CAMELYON17-C0 52 6,631 22 2,842
CAMELYON17-C1 48 7,312 20 3,134
CAMELYON17-C4 50 6,443 21 2761

3. Experiment

We first describe the datasets used in our experiments (details are
show in Table 2). Then, we show the experiment setups which include
both in-domain and cross-domain comparisons.

3.1. Dataset description

TCGA-IDH. TCGA-IDH (Liu et al., 2020) contains 1,494 slides, with
,191 for training, 154 for validation and 149 for testing. Patches of
ize 1024 × 1024 pixels are cropped from each WSI at 10x magnifica-

tion level and those with over 50% tissue contents are used. Since the
images were collected from several tissue source sites (TSS), we selected
training images which were collected from the largest TSS (contains
most images) to form the target domain (200 slides) and the rest were
used as source domain (991 slides).

BreakHis. For BreakHis, the provided images are of size 700 × 460
ixels. We mixed images of different magnification levels and con-
ucted five-fold cross validation as published in (Spanhol et al., 2015).
urthermore, we used 𝑘-means (𝑘=5) clustering to form clusters on
raining images based on pixel mean and standard deviation. Then,
6

e selected the largest cluster as the target domain and the remaining
images were treated as the source domain. Specifically, the distri-
butions of images in target/source domain of each fold are: fold1:
299/4,706, fold2: 357/5,149, fold3: 324/5,008, fold4: 477/4734 and
fold5: 337/4489.

CAMELYON16. CAMELYON16 contains 399 slides collected from
two centres in which 270 slides are used for training and 129 slides are
used for testing. We first loaded slides from 20× magnification level and
hen used the Otsu algorithm (Otsu, 1979) to filter out the background
egions and randomly sampled image patches of size 256 × 256 from
ach slide. Then, we used the patches from the 𝑈𝑡𝑟𝑒𝑐ℎ𝑡 centre as the
arget domain (100 slides) and the patches from the 𝑅𝑎𝑑𝑏𝑜𝑢𝑑 centre as
he source domain (170 slides).
CAMELYON17. For each centre in the CAMELYON17, we mixed

atches from 10 positive slides with those from negative slides and
andomly selected 70% for training and 30% for testing. We used
AMELYON17 as an external evaluation dataset for cross-domain com-
arison (refer to Section 3.2) and we removed the two centres in
AMELYON17 which originally belong to CAMELYON16 and perform
valuation using the images from the other centres.

.2. Experiment setup

To evaluate the quality of stain normalised images, we performed
wo sets of comparisons: in-domain comparison and cross-domain
omparison. For in-domain comparison, we trained the stain nor-
alisation models using the training set and evaluated the quality

f stain normalised images on the test set separately for TCGA-IDH,
reakHis and CAMELYON16. To further examine the generalisation
erformance of CAGAN, we conducted cross-domain comparison in
hich we trained CAGAN on one dataset and evaluated its performance
n the other datasets. Specifically, we measured the quality of stain
ormalised images on TCGA-IDH, BreakHis and CAMELYON17 using
he trained model from CAMELYON16. For evaluation metrics, we use
he Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index
SSIM) (Wang et al., 2004) to measure the image quality of the stain
ormalised results. Both measures were obtained using the grayscale
ransformation of images before and after stain normalisation. More-
ver, to evaluate colour consistency, we calculated the normalised me-
ian intensity (𝑁𝑀𝐼). We used only the pixel intensity from the tissue
egion by filtering out the background regions using Otsu algorithm.
hen we calculated the standard deviation 𝑁𝑀𝐼𝑆𝐷 and coefficient of
ariation 𝑁𝑀𝐼𝐶𝑉 as the measures of colour consistency.

We further evaluated the impact of stain normalisation on the
lassification performance. Specifically, we chose accuracy (𝐴𝑐𝑐), F1-
core (𝐹1) and area under the receiver operating characteristic curve
𝐴𝑈𝐶) as the metrics. Firstly, we conduct stain normalisation on all
mages in the dataset. Then, we trained a ResNet34 (He et al., 2016)
lassifier on the training sets and evaluate its performance on the test
et. For BreakHis, we followed (Bayramoglu et al., 2016; Benhammou
t al., 2020) to report mean and standard deviation of five-fold cross
alidation. To fairly compare with the baseline methods in TCGA-
DH and CAMELYON17, we used the train/test splits provided in Liu
t al. (2020), Mahapatra et al. (2020) and reported results with 5
ndependent runs.

Both CAGAN and ResNet34 were developed using PyTorch on
VIDIA RTX 3090 GPUs. We obtained the best results by resizing the

mages to 256 × 256 for input and setting the batch size to 8. We used
ifferent learning rates for discriminator (𝑙𝑟 = 0.0003) and generator
𝑙𝑟 = 0.0001). We trained CAGAN for 100 epochs and ResNet50 for 40

epochs until convergence. Our code is available at https://github.com/
thomascong121/CAGAN_Stain_Norm.

4. Results & discussion

In this section, we present our quantitative and qualitative evalua-
tion results for both in-domain comparison and cross-domain compar-
ison.

https://github.com/thomascong121/CAGAN_Stain_Norm
https://github.com/thomascong121/CAGAN_Stain_Norm
https://github.com/thomascong121/CAGAN_Stain_Norm
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Table 3
SSIM and PSNR comparison with different methods on each dataset.

Method TCGA-IDH BreakHis CAMELYON16

SSIM PSNR SSIM PSNR SSIM PSNR

Macenko 0.870 ± 0.035 23.41 ± 4.73 0.864 ± 0.024 23.92 ± 2.44 0.878 ± 0.117 22.31 ± 4.01
Reinhard 0.844 ± 0.044 23.64 ± 2.54 0.899 ± 0.022 26.27 ± 2.88 0.881 ± 0.176 20.20 ± 5.41
Vahadane 0.948 ± 0.037 26.14 ± 5.15 0.941 ± 0.010 28.75 ± 2.30 0.953 ± 0.017 28.29 ± 2.66
StainGAN 0.966 ± 0.024 28.45 ± 3.19 0.850 ± 0.021 23.93 ± 3.03 0.928 ± 0.028 19.98 ± 3.29
STST 0.912 ± 0.012 21.78 ± 5.60 0.935 ± 0.007 25.91 ± 1.35 0.973 ± 0.035 26.16 ± 4.87
Tellez et al. 0.965 ± 0.026 27.04 ± 3.42 0.916 ± 0.017 23.08 ± 0.78 0.961 ± 0.032 26.81 ± 2.32
Supervised 0.953 ± 0.011 26.06 ± 4.00 0.930 ± 0.011 26.85 ± 1.20 0.956 ± 0.031 25.58 ± 3.25
CAGAN 𝟎.𝟗𝟖𝟒 ± 𝟎.𝟎𝟏𝟑 𝟑𝟐.𝟖𝟔 ± 𝟒.𝟖𝟗 𝟎.𝟗𝟓𝟏 ± 𝟎.𝟎𝟎𝟔 𝟑𝟑.𝟎𝟏 ± 𝟏.𝟑𝟑 𝟎.𝟗𝟖𝟔 ± 𝟎.𝟎𝟏𝟒 𝟑𝟏.𝟓𝟖 ± 𝟐.𝟐𝟐
Table 4
NMI statistics comparison with different methods on each dataset.

Method TCGA-IDH BreakHis CAMELYON16

𝑁𝑀𝐼𝑆𝐷 𝑁𝑀𝐼𝐶𝑉 𝑁𝑀𝐼𝑆𝐷 𝑁𝑀𝐼𝐶𝑉 𝑁𝑀𝐼𝑆𝐷 𝑁𝑀𝐼𝐶𝑉

w/o SN 0.046 0.057 0.050 ± 0.002 0.050 ± 0.003 0.065 0.067
Macenko 0.042 ± 0.008 0.051 ± 0.010 0.044 ± 0.006 0.051 ± 0.004 0.062 ± 0.005 0.065 ± 0.004
Reinhard 0.046 ± 0.004 0.052 ± 0.008 0.046 ± 0.003 0.052 ± 0.004 0.058 ± 0.004 0.060 ± 0.006
Vahadane 0.041 ± 0.002 0.045 ± 0.005 0.043 ± 0.008 0.048 ± 0.010 0.056 ± 0.012 0.068 ± 0.007
StainGAN 0.029 ± 0.004 0.034 ± 0.002 0.031 ± 0.007 0.038 ± 0.007 0.054 ± 0.003 0.064 ± 0.003
STST 𝟎.𝟎𝟐𝟔 ± 𝟎.𝟎𝟏𝟒 0.032 ± 0.010 0.035 ± 0.015 0.040 ± 0.018 0.050 ± 0.001 0.059 ± 0.002
Tellez et al. 0.028 ± 0.009 0.034 ± 0.011 0.037 ± 0.012 0.041 ± 0.014 0.052 ± 0.002 0.056 ± 0.002
Supervised 0.028 ± 0.012 0.036 ± 0.010 0.031 ± 0.012 0.036 ± 0.014 0.048 ± 0.002 0.057 ± 0.003
CAGAN 0.027 ± 0.006 𝟎.𝟎𝟑𝟎 ± 𝟎.𝟎𝟎𝟕 𝟎.𝟎𝟑𝟎 ± 𝟎.𝟎𝟏𝟑 𝟎.𝟎𝟑𝟖 ± 𝟎.𝟎𝟎𝟓 𝟎.𝟎𝟒𝟎 ± 𝟎.𝟎𝟎𝟐 𝟎.𝟎𝟒𝟓 ± 𝟎.𝟎𝟎𝟒
4.1. In-domain comparison

4.1.1. Quantitative comparison
Image quality of stain normalised images was evaluated using SSIM

and PSNR as shown in Table 3. For both metrics, a larger value
indicates better image quality. For comparison, we selected a range
of stain normalisation benchmarks which include both traditional and
deep learning-based approaches. In particular, for traditional stain nor-
malisation approaches, we selected Macenko (Macenko et al., 2009),
Reinhard (Reinhard et al., 2001) and Vahadane (Vahadane et al.,
2016). For deep learning-based stain normalisations methodologies,
we chose unsupervised methods (StainGAN (Shaban et al., 2019)) and
supervised methods, such as stain-to-stain translation (STST) (Salehi
and Chalechale, 2020), and the approach proposed by Tellez et al.
(2019). Furthermore, we compared with the stain colour augmentation
methods (StainAug) used in Tellez et al. (2018a, 2019) which uses both
morphological augmentation and 𝐻&𝐸 augmentation. We also com-
pared with using only the supervised part of our method as described
in Section 2.2.2, which we refer to as ‘‘Supervised’’.

SSIM evaluates the structural feature similarity which can be used
to measure the degree of structural preservation. CAGAN obtains the
highest SSIM score over all the compared methods, indicating higher
degree of structural preservation, which is partly attributed to the
use of content loss 𝐿𝑐𝑜𝑛𝑡. Moreover, incorporating unlabelled source
domain images helps improve the overall stain normalised image qual-
ity. Table 3 shows that the PSNR score of CAGAN consistently out-
performs other supervised and unsupervised methods. Additionally,
we measured the stain colour consistency using 𝑁𝑀𝐼 with differ-
ent stain normalisation methods (the results are shown in Table 4).
A smaller 𝑁𝑀𝐼𝑆𝐷∕𝐶𝑉 indicates better colour consistency. Generally,
deep learning-based approaches generate stain normalised results with
better colour consistency. Moreover, supervised methods tend to out-
perform the unsupervised methods, especially in the case where the
colour variations between domains is large. Here, we use the differ-
ence between target domain 𝑁𝑀𝐼 statistics and source domain 𝑁𝑀𝐼
statistics (𝐷𝑖𝑓𝑓𝑁𝑀𝐼 = {𝐷𝑖𝑓𝑓𝑁𝑀𝐼𝑆𝐷 , 𝐷𝑖𝑓𝑓𝑁𝑀𝐼𝐶𝑉

}) to measure the
olour variations between domains. 𝐷𝑖𝑓𝑓𝑁𝑀𝐼 of TCGA-IDH, BreakHis,
AMELYON16 are {0.010, 0.009}, {0.008, 0.010} and {0.018, 0.015} re-

spectively. Specifically, the 𝐷𝑖𝑓𝑓𝑁𝑀𝐼 of BreakHis is the average value
of the five folds. Compared with supervised methods, unsupervised
7

method generates stain normalised images with similar or even better
Table 5
Classification performance comparison of CAGAN and other stain normalisation
methods on TCGA-IDH.

TCGA-IDH

Acc F1 AUC

w/o SN 0.837 ± 0.011 0.851 ± 0.012 0.878 ± 0.023
𝐼𝐷𝐻𝑠𝑡𝑢𝑑𝑦 0.870 – 0.938
Macenko 0.867 ± 0.006 0.835 ± 0.015 0.909 ± 0.004
Reinhard 0.818 ± 0.003 0.830 ± 0.008 0.911 ± 0.007
Vahadane 0.897 ± 0.004 0.807 ± 0.005 0.925 ± 0.004
StainGAN 0.878 ± 0.006 0.873 ± 0.006 0.917 ± 0.006
STST 0.891 ± 0.004 0.880 ± 0.004 0.919 ± 0.002
Tellez et al. 0.916 ± 0.004 0.930 ± 0.004 0.948 ± 0.002
CAGAN 𝟎.𝟗𝟒𝟏 ± 𝟎.𝟎𝟎𝟓 𝟎.𝟗𝟔𝟓 ± 𝟎.𝟎𝟎𝟔 𝟎.𝟗𝟖𝟑 ± 𝟎.𝟎𝟎𝟓

StainAug 0.841 ± 0.003 0.865 ± 0.008 0.886 ± 0.015

Table 6
Classification performance comparison of CAGAN and other stain normalisation
methods on BreakHis datasets.

BreakHis

Acc F1 AUC

w/o SN 0.825 ± 0.043 0.823 ± 0.066 0.910 ± 0.020
𝐵𝑟𝑒𝑎𝑘𝐻𝑖𝑠𝑠𝑡𝑢𝑑𝑦1 0.890 ± 0.025 – –
𝐵𝑟𝑒𝑎𝑘𝐻𝑖𝑠𝑠𝑡𝑢𝑑𝑦2 0.834 ± 0.011 – –
Macenko 0.938 ± 0.029 0.899 ± 0.044 0.885 ± 0.027
Reinhard 0.910 ± 0.034 0.911 ± 0.036 0.911 ± 0.024
Vahadane 0.908 ± 0.028 0.910 ± 0.036 0.921 ± 0.013
StainGAN 0.895 ± 0.015 0.811 ± 0.047 0.944 ± 0.012
STST 0.935 ± 0.024 0.924 ± 0.039 0.972 ± 0.017
Tellez et al. 0.939 ± 0.016 0.958 ± 0.044 0.969 ± 0.014
CAGAN 𝟎.𝟗𝟖𝟏 ± 𝟎.𝟎𝟎𝟒 𝟎.𝟗𝟕𝟑 ± 𝟎.𝟎𝟎𝟖 0.981 ± 0.014

StainAug 0.971 ± 0.027 0.957 ± 0.038 𝟎.𝟗𝟖𝟒 ± 𝟎.𝟎𝟏𝟔

colour consistency on TCGA-IDH and BreakHis, but it produces images
with lower colour consistency on CAMELYON16. This indicates that, on
a dataset which has large colour variations between domains, unsuper-
vised stain normalisation methods tend to generate results with lower
colour consistency. Moreover, CAGAN has the smaller standard devia-
tion and coefficient of variation of 𝑁𝑀𝐼 than most of the supervised
methods, which shows the benefits of learning from extra unlabelled
source domain images.
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Table 7
Cross-domain SSIM, PSNR and NMI statistics comparison of CAGAN (pretrained on CAMELYON16).
TCGA-IDH BreakHis CAMELYON17

SSIM PSNR SSIM PSNR SSIM PSNR
0.970 ± 0.019 32.37 ± 3.86 0.973 ± 0.006 32.84 ± 2.85 0.935 ± 0.025 30.05 ± 1.98

𝑁𝑀𝐼𝑆𝐷 𝑁𝑀𝐼𝐶𝑉 𝑁𝑀𝐼𝑆𝐷 𝑁𝑀𝐼𝐶𝑉 𝑁𝑀𝐼𝑆𝐷 𝑁𝑀𝐼𝐶𝑉
0.028 ± 0.009 0.031 ± 0.007 0.025 ± 0.005 0.036 ± 0.008 0.046 ± 0.008 0.056 ± 0.007
Table 8
Cross-domain classification performance on TCGA-IDH and BreakHis of CAGAN (pretrained on
CAMELYON116).
TCGA-IDH BreakHis

Acc F1 AUC Acc F1 AUC

0.936 ± 0.009 0.946 ± 0.010 0.982 ± 0.005 0.968 ± 0.014 0.976 ± 0.011 0.985 ± 0.016
Tables 5 and 6 show the classification performance on stain nor-
alised images processed by various stain normalisation methods.

pecifically, for TCGA-IDH, we compared the results with the recent
tudy (𝐼𝐷𝐻𝑠𝑡𝑢𝑑𝑦 (Liu et al., 2020)), which applies GAN for data aug-
entation aimed to improve the classification performance without

tain normalisation. For BreakHis, we chose two deep learning-based
pproaches (𝐵𝑟𝑒𝑎𝑘𝐻𝑖𝑠𝑠𝑡𝑢𝑑𝑦1 (Benhammou et al., 2020) and
𝑟𝑒𝑎𝑘𝐻𝑖𝑠𝑠𝑡𝑢𝑑𝑦2 (Bayramoglu et al., 2016) that show good performance
n the BreakHis dataset. Though the compared studies on TCGA-IDH
nd BreakHis datasets used exactly the same train/test splits as our
tudy, Liu et al. (2020) used extra GAN-generated samples to obtain
he best result. Since we do not have access to those synthetic samples,
e only reported their best performance for comparison. It can be

een that our CAGAN achieves consistently higher performance on all
atasets compared to the current state-of-the-art stain normalisation
pproaches. Specifically, CAGAN ranks first on TCGA-IDH and BreakHis
n terms of 𝐴𝑐𝑐 (0.944 ± 0.005; 0.981 ± 0.017), 𝐹1 (0.965 ± 0.006;
.973± 0.026) and 𝐴𝑈𝐶 (0.987± 0.005; 0.99± 0.005). Moreover, CAGAN
hows slightly better performance than StainAug which was shown to
utperform the stain normalisation methods in Tellez et al. (2019).
owever, we observed that the performance of StainAug dropped

ignificantly on TCAG-IDH, which reveals that stain augmentation
hould be specifically designed for different datasets to work well.

Overall, stain normalisation, as a preprocessing step, improves clas-
ification performance to varying degrees (1% ∼ 10%) across different
atasets. Unlike deep learning-based stain normalisation methods, tra-
itional approaches save the effort of training. Among the evaluated
raditional approaches, Vahadane (Vahadane et al., 2016) outperforms
he results by Macenko (Macenko et al., 2009) and Reinhard (Reinhard
t al., 2001), producing images with a higher degree of structural
reservation and less colour distortion but it also has higher com-
utational complexity. Tables 5 and 6 show that Macenko (Macenko
t al., 2009) and Reinhard (Reinhard et al., 2001) were able to increase
lassification performance in most cases. However, in some cases, their
tain normalised images may decrease performance of a downstream
lassifier. This is due to the fact that template-based traditional stain
ormalisation methods overly rely on a single template image which
ay not be representative of the entire target domain.

In contrast, deep learning-based methods circumvent the heavy
eliance on a template target image by directly learning the colour
istribution of the target domain. All the presented deep learning-based
tain normalisation methods can improve downstream classification
erformance. Moreover, by introducing semi-supervised learning on the
ource domain images, our CAGAN further improves on the supervised
tain normalisation methods.

.1.2. Qualitative comparison
For qualitative results, Fig. 5 presents the normalisation results of

hree datasets using different stain normalisation methods. From the
esults, it is possible to observe that traditional stain normalisation ap-
roaches, such as the ones proposed by Macenko (Macenko et al., 2009)
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and Reinhard (Reinhard et al., 2001), are likely to generate outputs
with apparent artifacts. In contrast, the method by Vahadane et al. (Va-
hadane et al., 2016) produces stain normalised images with much
better quality, however, the nuclei are shown with lower contrast. On
the other hand, it can be observed from Fig. 5 that the unsupervised
CycleGAN-based approach (StainGAN (Shaban et al., 2019)) gener-
ates images with lower quality possibly due to the large discrepancy
between the two domains, whereas supervised stain normalisation
methods can produce images which better inherit the colours from
the target domain. However, colour inconsistency and colour artifacts
still persist in the results of these supervised approaches. This may be
due to the fact that purely supervised-learning on the target domain
cannot fully exploit the semantic features of the whole dataset which
leads to parts of the nuclei being colourised incorrectly. Our CAGAN
incorporates semi-supervised learning on the source domain images
and generates stain normalised images which not only preserve image
content of the source images, but also show better contrast of cell
structures.

4.2. Cross-domain comparison

4.2.1. Quantitative comparison
We define 𝐶𝐴𝐺𝐴𝑁𝑐𝑟𝑜𝑠𝑠 as the model trained using the cross-domain

setting and 𝐶𝐴𝐺𝐴𝑁𝑖𝑛 as the model trained using the in-domain setting.
In terms of image quality, we show the value of SSIM and PSNR of
the images generated by 𝐶𝐴𝐺𝐴𝑁𝑐𝑟𝑜𝑠𝑠 in Table 7. From the table, we
notice that the mean values of PSNR and SSIM of 𝐶𝐴𝐺𝐴𝑁𝑐𝑟𝑜𝑠𝑠 are close
to those of 𝐶𝐴𝐺𝐴𝑁𝑖𝑛 on TCAG-IDH and BreakHis. Furthermore, we
measured the colour consistency in terms of 𝑁𝑀𝐼 . As shown in Ta-
ble 7, interestingly, 𝐶𝐴𝐺𝐴𝑁𝑐𝑟𝑜𝑠𝑠 actually generates images with higher
colour consistency on BreakHis compared to 𝐶𝐴𝐺𝐴𝑁𝑖𝑛. Specifically,
the mean 𝑁𝑀𝐼𝑆𝐷∕𝐶𝑉 of 𝐶𝐴𝐺𝐴𝑁𝑐𝑟𝑜𝑠𝑠 are 0.002 ∼ 0.003 lower than
value of 𝑁𝑀𝐼𝑆𝐷∕𝐶𝑉 in 𝐶𝐴𝐺𝐴𝑁𝑖𝑛. These results indicate the robustness
of our proposed CAGAN.

The effects of 𝐶𝐴𝐺𝐴𝑁𝑐𝑟𝑜𝑠𝑠 on the downstream classification task
are shown in Tables 8 and 9. While the classifier trained using the
images generated by 𝐶𝐴𝐺𝐴𝑁𝑐𝑟𝑜𝑠𝑠 performs equally well as 𝐶𝐴𝐺𝐴𝑁𝑖𝑛
on TCGA-IDH, it outperforms 𝐶𝐴𝐺𝐴𝑁𝑖𝑛 on BreakHis in terms of F1
score and AUC. Moreover, for CAMELYON17, we compared our results
with the ones reported in two recent studies, the segmentation based
colour normalisation network (SegCN-Net) (Mahapatra et al., 2020)
and CNGAN (Zhou et al., 2019), which also trained stain normalisa-
tion on CAMELYON16 and conducted the testing on CAMELYON17.
However, since we could not ascertain how prior studies distributed
images across splits, the results from SegCN-Net and CNGAN are indica-
tive of state-of-the-art performance, rather than offering direct result
comparison. Overall, the classifier trained using the stain normalised
images produced by CAGAN achieves consistently higher performance
compared to the state-of-the-art approaches. These results show that
our CAGAN is robust to domain changes and benefits from training on
larger datasets.
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Fig. 5. Stain normalisation results on different datasets using various methods. The blue boxes indicate regions of some failure models, such as colour artifacts, incorrect colourisation,
low contrast and colour inconsistency.
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Table 9
Cross-domain classification performance on centre 0/1/4 in CAMELYON17 of CAGAN
(pretrained on CAMELYON116).

Acc F1 AUC

C0
CAGAN 0.947 ± 0.002 0.948 ± 0.004 0.967 ± 0.015
CNGAN – – 0.958
SegCN-Net – – 0.967

C1
CAGAN 0.951 ± 0.005 0.956 ± 0.008 0.968 ± 0.012
CNGAN – – 0.788
SegCN-Net – – 0.864

C4
CAGAN 0.940 ± 0.012 0.947 ± 0.010 0.965 ± 0.017
CNGAN – – 0.911
SegCN-Net – – 0.946

Fig. 6. Visualisation results of cross-domain evaluation. CAGAN was pre-trained on
CAMELYON16 and evaluated on the other three datasets.

4.2.2. Qualitative comparison
Fig. 6 shows the results of cross-domain evaluation. CAGAN, which

was pre-trained on CAMELYON16, is able to normalise images from
other datasets into the CAMELYON16 stain colours without retraining
the network. To further test if CAGAN is invariant to the change of
magnification levels, we used various magnification levels for different
datasets, among which BreakHis consists of image patches extracted
from 40×, 100×, 200× and 400× and we used 10× for TCGA-IDH, 20× for
CAMELYON16, 40× for CAMELYON17. As can be seen from the results,
CAGAN which was trained on CAMELYON16 successfully normalises
image from other datasets at various magnification levels.

4.3. Ablation studies

Loss Function Comparison. We also investigated the usefulness of
applied histogram loss (𝐿ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚), content loss 𝐿𝑐𝑜𝑛𝑡 and adversarial
loss. In particular, we evaluate the impact of (1) removing the his-
togram loss (w/o 𝐿ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚); (2) removing the content loss (w/o 𝐿𝑐𝑜𝑛𝑡);
and (3) changing least-square to cross entropy for adversarial loss
(𝐿𝐶𝐸). In the first plot of Figs. 8, 9 and 10, we notice that removing
𝐿ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚 and 𝐿𝑐𝑜𝑛𝑡 from the regularisation terms always worsens the
performance. As discussed in Section 2.2.3, the dual-decoder design of
the generator helps the model learn from the source domain images
by providing pseudo labels for each other. However, without applying
𝐿ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚 as an extra constraint, they are likely to provide noisy labels.
Moreover, we observe the largest performance drop without 𝐿ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚.
Fig. 7(d) shows one failure of the model without applying 𝐿ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚 in
which the normalisation result does not fully match the target domain’s
10
Fig. 7. Stain normalisation results on TCGA-IDH using different loss functions.

stain colour. This proves the importance of 𝐿ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚 in helping the
model to better align the resultant colourisation distribution with the
target domain. Fig. 7(f) illustrates the role of 𝐿𝑐𝑜𝑛𝑡 in preserving the
structural features of the source images. Specifically, we observe that
the normalisation results do not represent the cell structures well and
show less contrast without 𝐿𝑐𝑜𝑛𝑡. However, implementing 𝐿𝑐𝑜𝑛𝑡 requires
the use of a pretrained network which increases the computational
overhead significantly. Future work may investigate other forms of
content preservation to achieve similar effects with smaller computa-
tional overhead. With regard to the adversarial loss, in our previous
work (Cong et al., 2021b), we show that using cross entropy is able
to produce satisfactory stain normalisation results. In this work, we
found that replacing cross entropy with least square loss leads to further
improvement, as least square loss provides a smoother, non-saturated
gradient for training the discriminator with accurate estimation of the
distance from a data point to the decision boundary.

Input Perturbation Comparison. Input perturbation plays an important
role in the success of consistency learning in unlabelled source domain
images. In this work, we applied Gaussian blur, contrast adjustment,
saturation adjustment and H&E augmentation (Tellez et al., 2018a) to
simulate various stain variations. As can be seen in the second plot in
Figs. 8, 9 and 10, the application of a combination of data augmentation
leads to a 2%–7% improvement in terms of classification accuracy
over the baseline with no augmentations. However, using a single aug-
mentation might be insufficient. We observe that using Gaussian blur
alone can sometimes negatively affect the model training especially
on TCGA-IDH and CAMELYON17. As stated in (Tellez et al., 2019),
Gaussian blur helps simulate out-of-focus defects due to improper use
of scanners. We argue that such an augmentation benefits datasets
which contain multi-resolution images such as BreakHis. This can be
demonstrated from the results in Fig. 9 where using Gaussian blur alone
can improve performance. It is noteworthy that we intentionally control
the augmentation levels to produce in-distribution results which are
more conservative.

Model-embedded Perturbation Comparison. Model-embedded pertur-
bation is the main component which drives the model to learn in
an unsupervised fashion from the unlabelled source domain images.
As mentioned in Section 2.2.3, two decoder branches take the same
encoded feature as input and generate two alternative views which
are used as pseudo labels for each other. To make such a design
effective, the implementation of Decoder Two (𝑑2) should not decrease
the performance of Decoder One (𝑑1). In the third plot in Figs. 8, 9
and 10, we compared the performance with different choices of 𝑑2.
Specifically, we firstly use the same structure as 𝑑1 but initialise it with
different weights to obtain 𝑑2 and name this structure as 𝑑2𝑈𝑁𝑒𝑡. We
observe unstable performance of 𝑑2𝑈𝑁𝑒𝑡 as random initialisation may
lead to a network worse than 𝑑1. We then evaluated two choices of
𝑑2 that both have stronger learning abilities than a single multi-block
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Fig. 8. Classification performance comparison with different losses (left), different augmentations (middle) and different design the second decoder (right) on TCGA-IDH.
Fig. 9. Classification performance comparison with different losses (left), different augmentations (middle) and different design the second decoder (right) on BreakHis.
Fig. 10. Classification performance comparison with different losses (left), different augmentations (middle) and different design the second decoder (right) on CAMELYON17.
CNN (𝑑1). They include 1) 𝑑2𝐴𝑡𝑡𝑒𝑛𝑡𝑈𝑁𝑒𝑡 which incorporates channel-
wise attention on skip connection at each level; and 2) 𝑑2𝑅𝑒𝑠𝑈𝑁𝑒𝑡 with
residual connection between each convolution blocks (Fig. 4). Both
designs obtain close performances, and 𝑑2𝑅𝑒𝑠𝑈𝑁𝑒𝑡 generates overall
better stain normalisation results. Thus, we present 𝑑2𝑅𝑒𝑠𝑈𝑁𝑒𝑡 as our
final design of 𝑑2.

Clinical Applicability. Our study, supported by extensive validation
experiments, demonstrates that CAGAN is highly effective in stain nor-
malisation and leads to improved performance in various histopatho-
logical image analysis tasks. For instance, with CAGAN, the IDH pre-
diction model achieved an AUC of 0.987, compared to an AUC of 0.9
with no stain normalisation. As mutant IDH targeting therapies have
been recently approved for the treatment of acute myeloid leukaemia
(AML) (Issa and DiNardo, 2021) and as similar clinical trials for gliomas
are already on-going (Chou et al., 2021), being able to accurately
predict IDH mutation status from glioma H&E slides even before or
without immunohistochemistry and/or genetic sequencing, which are
the actual diagnostic gold-standard techniques, would allow more pa-
tients to benefit from precise treatments that target the underlying
11
genetic cause of their cancer. The proposed method also improves
the performance in benign and malignant breast tissue classification
and breast cancer metastases classification in lymph nodes, thereby
bringing it a step closer to clinical application in glioma and breast
cancer diagnosis.

4.4. Limitations

Though we have shown the robustness of CAGAN, it is worth
discussing its limitations. Firstly, CAGAN takes long time to train and
requires high computational resources. Because of the introduction of
an extra encoder, we were not able to use more than 8 images in
a single batch on a NVIDIA RTX 3090 machine and it takes roughly
about 5 to 6 days to finish the training on CAMELYON16. Moreover,
we need to carefully select a reference target image for the histogram
loss calculation. In future work, we aim to simplify the framework and
design a reference image free loss function for the source domain colour
regularisation.
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5. Conclusion

In this work, we present a colour adaptive generative adversarial
network (CAGAN) for stain normalisation which improves the current
supervised stain normalisation approaches. We leverage the concepts of
co-training and consistency regularisation from semi-supervised learning
and design a dual-decoder generator in which each decoder outputs
an alternative view of the same encoded feature. By forcing con-
sistency between the two decoders, we allowed the model to effec-
tively learn in an unsupervised manner from the unlabelled source
domain images. Moreover, we introduced several colour augmentations
as input perturbations which improve model robustness against stain
colour variations. We extensively evaluated its effectiveness as an
image pre-processing step on three histopathology image classification
tasks. Results have shown that our method generates images exhibiting
great consistency with the target domain which effectively improves
downstream classification performance.
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