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ABSTRACT

Malaria may seriously threaten an individual’s health and wellbeing, and early screening is pivotal for timely
treatment and recovery. In malaria screening, thick blood smears are exploited to count the parasites and assess
the severity of the disease. Parasites are tiny objects that can be found in high resolution blood smear images,
which renders them difficult for detection. Other than using object detection based methods, prior works also
applied image classification techniques to this problem. They first extracted image patches from blood smears
as parasite candidates and then utilized convolutional neural networks to classify these patches as parasites or
non-parasites. However, these approaches overlook the fact that the blood smear images may contain noises,
errors, and background artifacts, which introduces uncertainty and makes the model predictions less stable. In
this work, we propose an uncertainty-guided attention learning based network for malaria parasite detection
from thick blood smears, which incorporates pixel attention mechanism to identify more fine-grained and pixel-
wise informative features, to improve the classification capability of our model. We further put uncertainty
estimation on channels of the feature map to guide pixel attention learning, such that the features from channels
with higher uncertainty are considered unreliable and are thus restrictively exploited by pixel attention learning.
To estimate channel-wise uncertainty, we introduce the Bayesian channel attention, which reformulates the
traditional channel attention under the Bayesian framework. As a result, it denotes channel uncertainties with
estimated variances that guide the pixel attention learning. We compared to several state-of-the-art baselines
on two public datasets using parasite-level and patient-level evaluations. The proposed method demonstrates
superior performance with respect to most metrics on two datasets, especially achieving highest average precision
(AP) scores in both parasite and patient-level scenarios.

1. Introduction

smears for parasite detection; yet visual examination of blood smears is
a tedious procedure. Also, well-trained experts are scarce, especially in

Malaria is a life threatening disease caused by parasites that are
transmitted to people by the bite of infected mosquitoes. The 2022
malaria report of the World Health Organization suggests that 247 mil-
lion malaria cases were detected worldwide and 619,000 deaths were
reported in 2022 (Organization, 2022). Although malaria is curable,
improper diagnosis and treatment may lead to various complications
and even death. Owing to low cost and accessibility, microscopic ex-
amination of thick and thin blood smears is currently the gold stan-
dard for malaria diagnosis (Makhija et al., 2015). Blood smears are uti-
lized to detect the presence of malaria parasites in blood, and the par-
asite density in blood smears is a key index for diagnosing malaria and
quantifying its severity. Experts normally examine the thick and thin
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malaria-endemic and resource-constrained areas, while intensive loads
may cause human fatigue and result in inaccurate diagnosis leading to
poor clinical decision-making. Thus, an automatic and reliable malaria
diagnosis tool is urgently needed.

In this work, we exploit thick blood smear images for malaria screen-
ing. Compared to thin blood smears, thick smears provide sufficient vol-
umes of blood and facilitate more reliable diagnosis of low parasite den-
sity cases, with approximately 11 times higher sensitivity (Warhurst &
Williams, 1996). A thick blood smear is produced by spreading a drop
of blood on a slide which is then dried and stained with Romanovsky-
type stain (Organization, 2020). Though thick blood smears are more
sensitive/informative than thin smears, the parasites in thick smears
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(a) thick blood smear (b) thin blood smear

Fig. 1. Example of thick and thin blood smears. (a) The red bounding box con-
tains the parasite that appears as a small purple disk. The blue box refers to
the white blood cell (WBC), which has similar color to parasite but looks much
larger. (b) the green circle contains the parasitized red blood cell which appears
more visible and easier to detect than parasites in thick blood smear.

are stained as small, round, purple disks that cannot always be effec-
tively identified. A visual comparison between thick and thin blood
smears is shown in Fig. 1. As can be seen, the red blood cells in thin
blood smear appear to be much larger and are thus easier to detect
than those stained small parasites in thick blood smears. Besides that,
some non-parasite components of the thick film also absorb the stain
and appear similar to parasites. These components, or distractors, in-
duce background noises and affect the identification of parasites. Thus,
we focus our work on identification of malaria parasites in thick smear
images.

Traditional parasite detection methods tend to extract low-level fea-
tures, which fed into classifiers for automatic detection (Elter et al.,
2011a; Purnama et al., 2013; Quinn et al., 2014; Rosado et al., 2016b;
Yunda, 2011). Such hand-crafted or low-level features can hardly ensure
sufficiently high classification accuracy. Due to recent advancement of
deep learning, a large number of deep learning based methods have been
proposed to detect objects in images (Dai et al., 2016; Girshick, 2015;
Girshick et al., 2014; Redmon et al., 2016; Ren et al., 2017). Based on
these, Lin et al. proposed a malaria cell detection method to solve class
imbalance problem between healthy and infected red blood cells (De-
lahunt et al., 2015). In fact, parasites are small objects found in high
resolution thick blood smear images; therefore, the above-mentioned
object detection methods are not sufficiently effective to identify tiny
malaria parasites. In addition to object detection, alternative methods
first extracted a number of patches from blood smear images as par-
asite candidates and then classified these patches to identify parasites
(Manescu et al., 2020a; Mehanian et al., 2017a; Quinn et al., 2016; Yang
et al., 2020). For example, Petru et al. proposed a weakly supervised ap-
proach for malaria parasite detection (Manescu et al., 2020a). Instead
of labeling all the parasites, they only annotated each blood film as
malaria positive or negative. While this facilitated annotation, the la-
bels were weak annotations, rendering inferior performance compared
to fully supervised method. Besides that, Yang et al. proposed a fully su-
pervised method for malaria parasite detection Yang et al., 2020. They
preselected parasite candidates, which included many possible parasite
instances, and fed them into a convolutional neural network (CNN) to
classify true parasites and achieved promising results. They also demon-
strated that this model could be deployed on a mobile phone for effective
malaria parasites detection.

However, the above approaches largely ignore the fact that the ac-
quired images are potentially noisy, may introduce uncertainty into the
learned features, and make the model predictions less reliable. In this
work, we propose an uncertainty-guided attention learning based net-
work to address the feature uncertainty issue caused by the data noises.
To achieve this, we combine attention learning with a CNN-based net-
work under a unified Bayesian framework that introduces a Gaussian
distribution to the attention learning. The variance of this Gaussian dis-
tribution reflects channel-wise uncertainty (reliability) of features, and
is defined as a function of input data and network weights. By doing that,
we ensure that the uncertainty estimation is input-dependent, to miti-
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gate the data noises that may vary across the input instances. As a result,
the channel features with higher variance are considered less reliable
and are restrictively utilized by our model. Upon obtaining the variance,
we normalize it within the [0,1] range to represent the uncertainty in
a soft manner, such that channel features with higher uncertainty have
lower weights and contribute less, and vice versa. Based on the chan-
nel features with estimated uncertainty, we apply pixel attention to fur-
ther identify important pixel-wise information from the reliable channel
features by also treating different pixels in channel features in differ-
ent ways. As a result, the important pixel-wise information extracted
from reliable channel features effectively facilitate our task of para-
site identification. Experimental results on two publicly available CMM
and Thick Smear 150 malaria parasite detection datasets demonstrate
the superiority of the proposed approach over state-of-the-art baseline
methods.

It is worth to note that many recent attention-based approaches em-
phasize capturing attended features or extracting long range informa-
tion. Rather, our attention learning aims to identify input-level reliable
features. Here, our contributions can be summarized as follows:

e We propose a novel Bayesian framework that ensures input-level un-
certainty estimation to mitigate variable noises in the input data.
This is achieved by modelling the variance estimation as an input-
dependent function.

o To the best of our knowledge, our work is the first to estimate feature
uncertainties, exploiting the more reliable features with estimated
uncertainties for the malaria parasite detection task.

e Our work offers a promising alternative to the manual parasite
detection, which is particularly important in malaria-endemic ar-
eas, often suffering from a shortage of experienced parasitologists.
It also allows to estimate the malaria severity and prioritize pa-
tient treatment, which can help in under-developed malaria-endemic
areas.

2. Related work

In this section, we provide an overview of existing methods rele-
vant to our study. We first discuss traditional and deep learning based
methods used for malaria parasites detection, and then examine uncer-
tainty estimation in medical imaging, focusing on techniques designed
to quantify model confidence and enhance the reliability of deep learn-
ing models in clinical applications.

2.1. Traditional methods

Traditional parasite detection methods exploit segmentation tech-
niques to identify parasites. To achieve that, these works primarily rely
on setting thresholds and morphological operations. For instance, since
malaria parasites tend to have darker intensities, Hanif et al. (2011) em-
pirically set a threshold to filter out darker regions as parasites. To fur-
ther enhance the saliency of parasites and facilitate their identification,
they applied the intensity-stretching method which is a linear mapping
function commonly used to enhance the brightness and contrast level
of the image. It consists of two processes - dark stretching process and
bright compression process, for which the former stretches the range
of image values below a pre-set threshold, while the later compresses
the image values greater than that threshold. By doing so, the para-
site regions in the image become more distinguishable. Likewise, Dave
and Upla (2017) proposed a histogram-based adaptive thresholding to
detect malaria parasites in thin and thick blood smears. Chakrabortya
et al. (2015) incorporated color information into a morphological seg-
mentation method to identify malaria parasites. Unlike the above works,
Kaewkamnerd et al. (2011) proposed to identify malaria parasites in
HSV images. This is primarily because the V channel in HSV image ef-
ficiently represent the lightness (brightness) of image compared to the
RGB image, and can better separate parasites from background. Hence,
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they first converted RGB blood smear images into HSV images, and then
calculated the histogram of the V channel in the HSV image. Finally,
they used an adaptive threshold on the V-channel histogram to extract
parasites that normally have higher values in histogram. In addition
to these segmentation methods, there are other hand-crafted features
based approaches (Abdul Nasir et al., 2012; Elter et al., 2011b; Park
et al., 2016; Rosado et al., 2016a), for which hand-crafted features are
extracted from parasite candidates and then fed into classifiers, such
as support vector machine (SVM), linear regression (LR), K-means clus-
tering algorithm, to identify malaria parasites. However, it turns out
that both threshold based segmentation and hand-crafted features are
low-level image and morphological techniques that struggle to ensure
parasite detection accuracy.

2.2. Deep learning based methods

In recent years, deep learning has been successful in many scenarios
and applications. In malaria parasites detection, some works (Gopaku-
mar et al., 2018; Vijayalakshmi & Rajesh, 2020) utilized CNN models
to extract features which were shown to be more representative and in-
formative than the hand-crafted ones. Afterwards, these CNN extracted
features were fed into classical machine learning methods, such as SVM,
to allow an accurate parasite classification. By contrast, other methods
(Abdurahman et al., 2021; Doering et al., 2020; Lin et al., 2021; Loddo
et al., 2018; Mehanian et al., 2017b) developed end-to-end networks
to detect malaria parasites in thick blood smears. They considered im-
ages as input and produced the identified parasites directly. These works
exploited common state-of-the-arts methods; for example, Abdurahman
et al. (2021), Lin et al. (2021) were object detection based methods.
Due to the class imbalance between parasite infected cell and other
cells, the learned model may be biased to identify the cells that have
more training samples. Therefore, Lin et al. (2021) proposed to allevi-
ate the class imbalance issue by exploiting a relation module to learn
the relationships between the different cells. The work of Abdurahman
et al. (2021) was a Yolov4 based network that modified the traditional
object detection Yolov4 by extending feature scales and adding more
detection layers to extract better features. Other works Guemas et al.,
2024; Sukumarran et al., 2024a,b; Zhao et al., 2020 utilized thin blood
smear images to detect malaria-infected cells. For malaria-infected cells
detection, they exploited the commonly-used object detection methods
such as RT-DETR and YOLO. Notably, Sukumarran et al. (2024a) modi-
fied conventional YOLOv4 using direct layer pruning and backbone re-
placement, and in Sukumarran et al. (2024b) they further classified the
detected infected cells into four Plasmodium species. Other than thick
and thin blood smears, Dev et al. (2024), Madhu et al. (2023), Mujahid
et al. (2024) also explored deep learning based classification approach
to identify malaria parasites in the red blood cell image, for which the
image had only one red blood cell and the task was to classify it as in-
fected or not. For instance, in Dev et al. (2024), Madhu et al. (2023) the
authors applied existing CNN-RNN based and inception based networks,
while Mujahid et al. (2024) proposed a novel EfficientNet for parasite
cell classification.

The success of deep learning methods largely relies on their represen-
tation of the extracted features. However, none of the above methods
considers feature uncertainty introduced by potential data noises that
may cause performance degradation in parasites detection.

2.3. Uncertainty estimation in medical imaging

Existing uncertainty studies of medical imaging mainly focus on
quantifying the uncertainty of predictions, such that the predicted out-
put is associated with uncertainty estimation to provide a confidence
evaluation of the prediction. As a result, the model with uncertainty es-
timation becomes more reliable and trustworthy to allow better clinical
decisions.
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A simple approach to generate uncertainty is exploiting the deter-
ministic network, such as the evidential deep learning methods (Amini
et al., 2020; Sensoy et al., 2018), to output both the predictions and un-
certainty scores. Based on deterministic uncertainty estimation, Amers-
foort et al. (2020) proposed a radial basis function based network for
medical image segmentation. In Huang et al. (2022), Huang et al. de-
veloped a belief function at each modality voxel to model uncertainty,
and then harnessed Dempster’s rule for multi-modal medical image seg-
mentation. Meanwhile, ensemble methods (Ashukha et al., 2019; Lak-
shminarayanan et al., 2017; Shen & Cremers, 2022) are alternative ap-
proaches, which aggregate the predictions of multiple models with the
variance of each prediction to estimate uncertainty. For instance, Cao
et al. (2020) designed an adaptive ensembling momentum map based
on ensemble learning and proposed an uncertainty aware unsupervised
loss for breast mass segmentation. Likewise, Mehrtash et al. (2020) pro-
posed the multi-FCNs ensembling network to estimate uncertainty for
medical image segmentation.

In addition to deterministic and ensemble methods, most existing
medical imaging tasks rely on Bayesian neural networks to estimate un-
certainty. For example, Leibig et al. (2017) detected diabetic retinopathy
from fundus image using dropout based Bayesian uncertainty to pro-
vide confidence of the diagnosis. For skin lesion analysis, Molle et al.
(2019) quantified the uncertainty of skin lesion classification using a
novel Bayesian measure based on overlap of output distributions. An-
other work (Abdar et al., 2021) classifying skin cancer images intro-
duced three uncertainty quantification methods, including Monte Carlo
(MC) Dropout, ensemble MC and deep ensemble, into a novel hybrid dy-
namic Bayesian deep learning model based on a three branch decision
theory.

In the field of Magnetic Resonance Image (MRI), Narnhofer et al.
(2022) exploited the total deep variation regularizer for single and
multi-coil undersampled MRI reconstruction, and quantified the un-
certainty with a proposed Bayesian framework. Besides, Herzog et al.
(2020) detected stroke lesion on 2D MR images by proposing a Bayesian
convolutional neural network that can also generated an uncertainty
estimation to facilitate the reliability of prediction. Similarly, Prince
et al. (2023) quantified uncertainty for classification of Adamantino-
matous Craniopharyngioma from preoperative MRI by exploiting the
Variational Inference with elliptical slice sampling.

Other works also applied uncertainty estimations in the medical im-
age segmentation, since in medical images some particular regions of
the tissue may not be clear. For example, Kohl et al. (2018) proposed
a probabilistic U-Net exploiting conditional variational autoencoder to
learn a distribution over the output segmentation map. Consequently,
their method was able to generate an unlimited number of hypotheses of
segmentation maps on the lung abnormalities segmentation task. Based
on probabilistic U-Net, subsequent works (Baumgartner et al., 2019;
Gantenbein et al., 2020; Hu et al., 2019) further improved model effi-
ciency and introduced epistemic uncertainty, and applied their methods
in segmentation tasks on general medical images. Rather than generat-
ing multiple segmentation maps, Sedai et al. (2018) estimated a pixel-
wise uncertainty map along with the retinal layer segmentation. Here,
the uncertainty map was utilized to identify erroneously segmented re-
gions and thus facilitated downstream tasks. Besides, Tang et al. (2022)
proposed an UG-Net that first generated a coarse segmentation map and
a pixel-wise uncertainty map of the segmentation. The uncertainty map
was utilized to refine the coarse segmentation map in an end-to-end
manner.

The aforementioned methods tend to estimate uncertainty and quan-
tify the reliability of predictions, such that subsequent clinical decisions
can benefit from it. Unlike our method, none of these approaches, partic-
ularly in malaria parasite detection, focuses on learning the uncertainty
of features and then utilizes the estimated uncertainty to mitigate the
effects of unreliable features. To our knowledge, we are the first to esti-
mate the uncertainty of the learned features, for which we harness the
reliable features for subsequent detection of malaria parasites.
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3. Method
3.1. Overview

The overall framework of our method is shown in Fig. 2. By using
the iterative global minimum screening (IGMS) (Yang et al., 2020), we
first select a large number of parasite candidates which are small im-
age patches containing both parasites and distractors. We then recog-
nize the true parasites out of these selected image patches using our
proposed parasite classification network that includes two key comple-
mentary attention modules: (1) Bayesian Channel Attention that esti-
mates uncertainty of feature channels, and (2) Uncertainty-Guided Pixel
Attention that extracts important pixel-wise information from reliable
channel features identified by (1). In the subsequent sections, we use
X =[x, ...,xM] e R¥*P to denote N input image patches, each hav-
ing P pixels. Their labels Y = [y(),...,y™] € RV*! indicate whether
the image patch contains a parasite or not.

3.2. Parasites candidates preselection

The parasite candidates preselection aims to select a subset of most
likely parasite candidates such that reducing the initial search space for
parasite identification.

The candidates are selected based on the observation that the par-
asite pixels normally have lower intensities in a blood smear image.
However, the WBCs appear to have darker intensities in addition to the
parasites (as shown in Fig. 1). Therefore, the first step is to eliminate
the distraction of WBCs before extracting parasite candidates. Here, we
follow the methodology proposed by Yang et al. (2020), for which it
consists of two main steps: WBC detection to remove WBCs and parasite
candidate generation to localize regions of interest using lowest intensi-
ties. First, thick blood smear images are converted into grayscale images
and then the Otsu’s method (Otsu, 1979) is applied to obtain the binary
mask of WBC, and subsequently WBC areas become easy to identify and
remove.

After removing WBC regions, we apply parasite candidate genera-
tion using the iterative global minimum screening (IGMS) algorithm as
described in Yang et al. (2020). Briefly, the parasites have low inten-
sities; thus, the pixels having minimum intensity values are identified
as parasite candidates. Once a pixel is identified as parasite candidate,
a region centred at this pixel location with radius 22 is cropped. It is

Parasite Candidate Screening Parasite Classification Network

Remove Search Pixel with
WBC Minimum Intensity o
4 otsu’s o]
Method [CMS a
=
>

[ Convert to ] {Crop Patch
Greyscale Image) | around Pixel
Selected Parasite Candidates

HEE-L

G R .

Fig. 2. The flowchart of our parasite identification pipeline. First, a blood thick
smear image is processed by Parasite Candidates Screening to select a large
number of image patches as parasite candidates. Then, our proposed Parasite
Classification Network will identify true parasites from these candidates. The
above blood thick smear images are from the dataset Thick Smears 150 collected
by Yang et al. (2020).

Blood Thick Smear Image
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noteworthy that the cropped image becomes circular with area outside
circular region set to be black (shown as Selected Parasite Candidates
in Fig. 2). In line with Yang et al. (2020), 500 image patches of size
44 x 44 x 3 are iteratively selected as parasite candidates. More details
of the above procedures can be found in Yang et al. (2020).

3.3. Proposed parasite classification network

We propose a parasite classification network to classify the extracted
parasite candidates either as parasites or distractors. We exploit the CNN
network originally proposed by the malaria parasite detection method
(Yang et al., 2020) as our backbone. The network of Yang et al. (2020) is
derived from VGG19 (Simonyan & Zisserman, 2015) and consists of two
key parts: feature extraction and classification. The feature extraction
part generates features that are utilized by the subsequent classification
part for parasite identification. In this work, we aim to identify and
exploit the reliable feature channels from the feature extraction part for
more accurate parasite classification.

As illustrated in Fig. 3, our approach can be broken down into two
stages: the first is uncertainty estimation that identifies reliable channel
features, while the second exploits pixel attention to extract important
pixel-wise information from the identified reliable channel features, in
order to achieve more accurate and reliable parasite identification.

The output of feature extraction (from the 7th convolutional layer
in Fig. 3) is of size 5 x 5 x 64, where 64 refers to the number of chan-
nels. The output is considered as the final set of features fed into the
subsequent fully-connected layers for classification. At the first stage,
we perform channel-wise uncertainty estimation on each of these 64
channels. Consequently, the channel features with higher uncertainty
are expected to contribute less to the final classification and vice versa.
At the second stage, we substitute the Bayesian channel attention with
uncertainty-guided pixel attention. Likewise, we insert pixel attention
after the same feature map with 64 channels from last convolutional
layer. With estimated channel-wise uncertainty of channel features, we
limit the information from unreliable channels propagate into pixel at-
tention learning. As a result, the informative pixel-wise features iden-
tified by our pixel attention are based on reliable channel features and
is able to further improve the classification of parasites. It is also worth
noting that pixel attention is able to estimate pixel-wise importance of
the feature map and thus being more flexible and effective than channel
attention.

3.4. Bayesian channel attention

In a deep learning network, each channel in the feature map can-
not be treated equally. Unlike conventional channel attention mech-
anisms such as Dai et al. (2021), which assign each channel a single
scalar weight to indicate its importance, our design explicitly captures
the confidence level of these importance estimates, offering robustness
in the presence of noisy or redundant features.

Channel attention estimates an attention weight for each feature
channel indicating how important this channel is. However, it does not
provide further information on the reliability of these features with the
estimated attention weights. We assume that the collected data are in-
herently noisy. Hence, the feature map generated by the neural net-
work from such data are noisy as well, and thus all the feature chan-
nels cannot be treated equally reliable. In addition, different input data
have different noises, and are supposed to generate features with varied
levels of reliability. Therefore, feature reliability should be dependent
on the level of input noises. Here, we consider input-adaptive uncer-
tainties when estimating the weights of channel features. Specifically,
the channel features with less uncertainty are regarded as more reli-
able to be utilized for subsequent tasks and vice versa. We reformulate
traditional channel attention as Bayesian channel attention to estimate
channel-wise uncertainty. In next sections, we first introduce traditional
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Fig. 3. Our method consists of two stages. Initially, Bayesian channel attention estimates the channel-wise uncertainty of the feature map (size 5 X 5 x 64) produced
by the last convolutional layer of Feature Extraction. Then, with the identified reliable channel features, we substitute Bayesian channel attention with uncertainty-
guided pixel attention to extract informative pixel-wise features for the parasite identification.

channel attention and then illustrate how to incorporate it with uncer-
tainty estimation.

3.4.1. Channel attention

In our network, the feature map F € RE#*W extracted by the last
convolutional layer is utilized for parasite classification. We therefore
study the uncertainties of its channels in the following sections. Here,
C =064, H=5 and W =5 denote the number of channels, height and
width, respectively. In channel attention (Dai et al., 2021), we have:

| H W
g = THxWw Z ch(iaj), (€9)

i=1 j=

where F. (i, j) denotes the value of ¢ channel F, at position (i, j), and
Eq. 1 is the global pooling function that change the shape of feature map
F from 64 x5 x5 to 64 x 1x 1.

Then, g, will pass through two convolutional layers, and sigmoid,
ReLU activation functions to obtain the attention weights of each chan-
nel:

a, = o(Conv(6(Conv(g,)))), (2

where ¢ and § are the sigmoid function and ReLU function, respectively.
Besides, a, refers to a vector of length C = 64 containing the attention
weights for all channels in F. With the sigmoid function o, the values of
a, is normalized between 0 and 1.

Finally, we element-wise multiply the input F and the attention
weights a,, and add them back to the input F, generating ¥ utilized
for downstream tasks:

F=F+a,®F. 3

3.4.2. Uncertainty via Gaussian distribution

To consider uncertainty estimation into channel attention, we first
introduce the variable z as attention score. In our case, z follows the
Gaussian distribution which is simple and efficient to model uncertainty
using variance.

p|x, ®) = N (u(x, ), diag(c>(x, ))), @

where p(w) = N'(0,77'T), and @ refers to the neural network weights and
has zero-mean isotropic Gaussian prior with precision r. Meanwhile, (.)

and ¢2(.) are the mean and variance of the Gaussian distribution. It is
worth noting that the variance ¢%(x,®) is dependent of input data x
and thus can better express the amount of uncertainty from data. With
attention score z, the attention weights a, can be obtained via:

a, =o(z). 5)

As can be seen, the attention score z containing uncertainty passes
through the sigmoid function, ensuring the generated attention weights
a, are within the range between 0 and 1. The detailed structure of our
Bayesian channel attention is shown in Fig. 4 (a).

Now, suppose we have N input images X € RNV*P) let Z =
[z, .,2(M] be the corresponding attention scores. Since we have N in-
put images, there are N corresponding attention scores. Then, in the
learning stage, the objective is to optimize the log-likelihood function:

log p(Y|X) =log [ [ p(Y|Z, X, ®)p(Z|X, ®)p(@)dZd . (6)

3.5. Variational inference

The log-likelihood in Eq. 6 is intractable due to the non-linearity of
the network. As per Gal and Ghahramani (2016), we obtain the evi-
dence lower bound (ELBO) of log p(Y|X) such that we are able to train
the model on ELBO rather than on log p(Y|X) due to its intractability.
To obtain the ELBO of log p(Y|X), we apply variational inference by in-
troducing the following variational distributions:

4(Z,0|D) = q(Z|®, D)q(®|D), 7
where D = {X, Y}. After introducing variational distribution ¢(Z, ®|D),
we have:

p(Y|X)
9(Z,0|D)’

By applying Jensen’s inequality, we obtain the ELBO of p(Y|X):

p(YIX)
1Z.oD) 2 ©

We further factorize the ELBO in Eq. 9 as following:
log p(YIX)
> [ [ q(Z|o, D)g(@|D)log p(Y|Z,X, 0)dZdw
- KLI[g(Z|®, D)||p(Z|X, ®)] = KL[g(@|D)||p(@)].

log p(Y|X) = log q(Z, ®|D) (€)]

log p(YIX) 2 [ [ a(Z,|D)log

10
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Fig. 4. The proposed attention mechanisms: (a) Bayesian Channel Attention -
estimating the uncertainties of channels in the feature map to identify relia-
bility of channel features. (b) Uncertainty-Guided Pixel Attention - exploiting
the estimated uncertainties to filter out unreliable channel features which have
larger uncertainty, making the network focused on the pixel-wise informative
features from reliable channel features to facilitate more accurate classification
of parasites.

Here, KL[-] denotes the KL-divergence between two distributions.
The first KL term vanishes as two distributions are equivalent, and the
second KL term becomes the 7, regularization of variational parameters
in variational distribution ¢(Z,®|D). In Eq. 10, the expectation is ap-
proximated using Monte Carlo sampling. First, we sample the weights
@ ~ q(w, D) via Dropout as Bayesian Approximation (Gal & Ghahramani,
2016) with dropout masks. With sampled &, the attention score z is sub-
sequently sampled via reparameterization trick:

Z=pu+oee~N(OI). an

Here, 7 refers to the sampled attention score. Then, Eq. 10 becomes:

N
log p(YIX) > 3 log p(y, |2, %,.®) ~ [1QII* = o] [*. a2
n=1
Here, Q is the variational parameter of ¢(Z|®, D) defined in Eq. 7. The
KL-divergence becomes the ¢, regularization for the variational param-
eters. With sampled Z, and &, Eq. 12 refers to the standard network
training shown in Fig. 2.

3.6. Uncertainty-guided pixel attention

With estimated channel-wise uncertainty, we introduce the
uncertainty-guided pixel attention. Traditional pixel attention (Qin
et al., 2020) aims to extract important pixel-wise information from the
feature map to facilitate downstream tasks. Unlike traditional pixel at-
tention, our pixel attention learning leverages reliability weights esti-
mated at the Bayesian channel attention stage to suppress unreliable
channels. That is, important pixel-wise information is mainly extracted
from reliable channel features that have a lower uncertainty.

For each channel, we assign it a weight that is determined by esti-
mated uncertainty (variance o2). The weight indicates the reliability of
its associated channel feature. Its value is normalized between 0 and 1
by applying exponential function to variance ¢

W, = exp(—fo?), 13)

where w, is the reliability weight of size 64 x 1, and it is also visual-
ized in Fig. 5. Besides, # is a hyperparameter with positive value to
ensure w, is within [0, 1]. Then, we multiply feature F by w,, such that
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Fig. 5. Visualization of reliability weight w,. Left column: input image patches
randomly selected from the Thick Smear 150 dataset. The top one is the positive
sample containing malaria, while the bottom two patches are negative samples.
Middle column: their corresponding reliability weights w, that appear as 64 bits,
for which each bit indicates the uncertainty of one channel feature. Right col-
umn: color map of weight w, in which darker color indicates higher uncertainty,
while the yellow one shows more reliability with less uncertainty. The channel
features are generally reliable except for several channels with high uncertain-
ties. We also observe that the estimated feature reliabilities are input-dependent
due to varying input data noise levels.

F=FQ® w,. As a result, for a given channel from F, if its correspond-
ing value in w, is closer to 1, then the information from that chan-
nel will be maximally utilized in our pixel attention learning and vice
versa.

With more reliable feature F, we apply pixel attention to further
extract effective pixel-wise information from it.

a, = o(Conv(5(Conv(F)))), as

where a,, is the pixel-wise attention weights of size H x W indicating
pixel-wise importance on feature F. Next, we apply element-wise mul-
tiplication for F and a,, and add back the multiplication output to F to
generate the F for our classification task.

F=F+a,@F. (15)

The derived feature F contains important pixel-wise information that
are more reliable with less uncertainty. As a result, it is able to further
enhance the parasite classification accuracy of our model.

4. Experiments
4.1. Datasets and evaluation

To validate the robustness and generalizability of our method, we
evaluated on two publicly available datasets that were independently
collected by different medical centers. These datasets differ in terms of
imaging equipment, sample preparation protocols, and staining condi-
tions, which makes them suitable for a thorough performance evalua-
tion.

4.1.1. Clinical malaria microscopy (CMM)

Thick blood films of 13 patients stained with Giemsa were collected
by the University College Hospital (UCH) in Ibadan, Nigeria. Manescu
et al. (2020b) UCH microscopists manually identified the malaria par-
asites in 100x magnification thick blood films, for which 2986 para-
sites were identified with an average size of 42 x 44 pixels. These thick
blood films were then digitized to create 239 RGB images of resolution
2560 x 2160 for training and evaluation.

4.1.2. Thick smears 150

This dataset includes 150 patients, whose Giemsa-stained thick blood
smear slides were photographed with 100x magnification at Chittagong
Medical College Hospital, Bangladesh, using a smartphone camera from
the different microscopic field of views. Yang et al. (2020) 1819 RGB im-
ages with the 3024 x 4032 resolution were generated. An expert reader
from the Mahidol-Oxford Tropical Medicine Research Unit at Bangkok,
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Table 1
Statistics of the Clinical Malaria Microscopy (CMM) and Thick Smears
150 datasets.

CMM Thick Smears 150
# of Subjects 13 150
# of Images 239 1,819
# of Parasites 2,986 84,961
Image Resolution 2560 % 2160 3024 x 4032
Avg Parasite Size 42x 44 44
(in Pixels) (Width x Height) (Radius)

Thailand manually identified in these 84,961 malaria parasites (average
radius of 22 pixels).
In Table 1, it shows a brief summary of above two datasets.

4.1.3. Evaluation metrics
We utilize the metrics of Precision, Recall, F1 score and average pre-
cision (AP):

... TP _ TP
Precision = —TP+FP,Recall = TPiEN’ a6
Fl=2. Precision - Recall p= /r1=0 p(rydr,

Precision + Recall’

where TP, FP and F N refer to the True Positive and False Positive de-
tected parasites, and False Negative ground truth parasites, respectively.
Meanwhile, AP refers to the area under the Precision Recall curve (PR
curve). In a PR curve, given the recall score r, p(r) is its corresponding
precision score.

4.2. Implementation details

We implemented our model using PyTorch 1.7.1 on a computer with
CUDA 11.1, one GPU device Tesla T4 with 15.109GB memory, 30GB
RAM and 8 Intel (R) Xeon (R) Platinum 8259CL CPUs. The input to
our model was image patches (parasite candidates) of size 44 x 44, and
the batch size used was 2000. We evaluate each dataset using a 5-fold
cross validation, with each fold including 4/5 and 1/5 of patients as the
training and test sets, respectively. Out of the training set, 0.5 % of the
data were utilized as the validation set. Accordingly, the model with
best performance on validation set was used to evaluate on the test set.

As introduced in Section 3, the optimization is executed in two stages
that contain two networks. The first exploits Bayesian channel attention
to estimate channel-wise feature map uncertainty, then the second uti-
lizes the estimated uncertainties to guide the pixel attention learning.

Table 2
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To train both networks, we deployed stochastic gradient descent (SGD)
with the learning rate of 0.0005 and momentum of 0.9. The total num-
ber of training epochs was 200 for both datasets. In the inference, we
only utilized the second network for malaria parasites classification.

As per Yang et al. (2020), we select the parasite candidates before
training our model. In our experiments, we selected 300 and 500 para-
site candidates per image for the CMM and Thick Smears 150 datasets,
respectively. Then, we generated 71,700 and 909,500 image patches
as candidates for CMM and Thick Smears 150. Out of these, CMM had
94.52% of true positive parasites successfully identified, while for Thick
Smears 150 we correctly detected 97.29% of parasites. Since CMM is
much smaller than Thick Smears 150, it has fewer parasites than Thick
Smears 150. Thus, we selected 300 candidates instead of 500, to reduce
the number of potentially detected false positive parasites, which may
degrade the model’s performance.

4.3. Comparison with state-of-the-Art methods

We compare our method with six state-of-the-art baselines: Para-
site Detection ConvNet (PDNet) (Yang et al., 2020), Modified Yolov4
(Yolov4-Mod) (Abdurahman et al., 2021), Yolov5 (Jocher, 2020),
Yolov5opt (Sukumarran et al., 2024b), NesT (Zhang et al., 2022), Re-
gionViT (Chen et al., 2022), and TransMIL (Shao et al., 2021). PDNet
identifies parasites by performing image classification of the parasite
candidates extracted from a blood smear image. Yolov5, Yolov5opt and
Yolov4-Mod are object detection based methods, where Yolov5 detects
more general objects in an image, Yolov5 is optimized as Yolov5opt by
fine-tuning its training parameters to localize malaria-infected cells in
thin blood smear images and Yolov4-Mod identifies malaria cells in a
blood smear image by extending feature scales of Yolov4 and adding
more detection layers to enhance its capability to detect small objects.
Nest, RegionViT and TransMIL are transformer-based image classifica-
tion methods. RegionViT aims to extract both global information and
locally attended features, while Nest and TranMIL focus on long range
information only.

We perform both parasite-level and patient-level evaluations. The
former measures the performance on all the parasites in the entire
dataset, while the latter evaluates the accuracy for each patient individ-
ually and averages the accuracy values across all the patients, to show
the mean accuracy value with its standard deviation. As reported in
Table 2, our method outperforms the baseline methods on both the CMM
and Thick Smears 150 datasets. For CMM, the proposed method achieves
the highest accuracy with respect to most metrics but has slightly infe-
rior recall than that of Yang et al. (2020) for patient-level evaluation.

Quantitative evaluation of our method and state-of-the-art methods on CMM and Thick Smear 150. We evaluate the parasite detection performance at both the
parasite and patient levels. For patient-level evaluation, we utilize mean value + standard deviation to show variance across patients. The best result is highlighted

in boldface.

Methods Dataset Parasite-Level Evaluation Patient-Level Evaluation
Precision Recall F1 Score AP Precision Recall F1 Score AP

Yolov5 (Jocher, 2020) CMM 49.07 63.44 55.34 37.48 23.51£27.23 42.61£32.12 27.45+26.05 25.66+21.97

Yolov5opt (Sukumarran et al., 2024b) CMM 29.67 68.59 41.42 23.52 16.50+18.74 37.08+28.95 20.85+20.93 15.16+14.99

Yolov4-Mod (Abdurahman et al., 2021) CMM 45.72 48.36 47.00 25.86 24.92+25.09 39.03+36.36 26.40+24.57 21.48+20.02

PDNet (Yang et al., 2020) CMM 46.18 67.85 54.96 30.31 29.88+17.40 58.34+33.46  34.21%19.39 33.04+18.13

NesT (Zhang et al., 2022) CMM 41.03 21.70 28.39 16.56 34.61+18.98 22.57+22.97 22.49+13.37 16.90+12.05

RegionViT (Chen et al., 2022) CMM 43.44 22.18 29.36 14.72 30.33+15.41 25.34+23.60 23.49+13.96 12.73+11.39

TransMIL (Shao et al., 2021) CMM 32.30 22.92 26.81 11.94 31.61£16.97 53.62+25.95 33.38+17.51 23.16x15.41

ours CMM 51.39 71.96 59.96 40.73 35.22+18.26  56.62+33.86 37.40+20.24  36.39+20.81
Yolov5 (Jocher, 2020) Thick Smear 150 78.99 83.52 81.19 73.83 69.24+20.32 72.78+19.00 69.46+18.84 61.26+19.83

Yolov5opt (Sukumarran et al., 2024b) Thick Smear 150  75.84 67.41 71.38 51.67 64.74+20.31 61.56+15.67 61.64+16.98 46.49+17.29

Yolov4-Mod (Abdurahman et al., 2021) Thick Smear 150 77.99 81.27 79.60 72.22 69.26+18.72 71.98+19.12 68.77+17.75 60.50+19.69

PDNet (Yang et al., 2020) Thick Smear 150 82.19 82.74 82.46 76.63 69.21+24.86 79.51+15.21 70.91+20.07 67.82+18.75

NesT (Zhang et al., 2022) Thick Smear 150 76.82 80.27 78.51 75.99 65.71+28.04 76.75+17.21 66.76+22.99 63.97+20.73

RegionViT (Chen et al., 2022) Thick Smear 150  78.31 81.40 79.82 75.92 64.48+26.28 79.98+15.26 67.57+21.65 66.53£19.76

TransMIL (Shao et al., 2021) Thick Smear 150 80.64 82.17 81.66 76.26 66.38+25.46 79.57+15.49 69.03+20.63 66.59+19.28

ours Thick Smear 150 83.15 85.13 84.13 77.77 69.35+23.73 81.58+14.34 72.31+19.02 69.65+17.83
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Fig. 6. Malaria parasites detection examples in CMM. 1st and 3rd rows show the raw thick blood smears with the detected parasites, while 2nd and 4th rows — the
associated regions of interest (ROI) within the green bounding boxes. Boxes marked ‘gt’ and ‘detected’ denote the ground truth and detected parasites, and we show

the F1 score for each example.

For Thick Smear 150, our method clearly outperforms all baselines. Be-
sides that, the performance of all the methods on the CMM dataset is
inferior to that on Thick Smears 150. This is presumably due to the fact
that the former offers fewer training samples than the latter.

It is also worth noting that the classification based methods, such as
Yang et al. (2020) and ours, are generally better than the object detec-
tion based methods. This is primarily due to the fact that the parasites
are tiny objects in high resolution thick blood smear images, which ren-
ders the object detection methods harder to identify them. By contrast,
our method pre-selects a large number of parasite candidates that in-
clude most parasites and then classifies these candidates as parasites
or non-parasites. Another reason is that more training samples helps to
enhance the model performance. Specifically, object detection methods
treat individual images as training samples, while our method utilizes
the pre-selected image patches (parasite candidates) for training. That
said, our method has more training samples than the baselines, espe-
cially for a small scale dataset such as CMM. By further estimating the
channel-wise uncertainties caused by data noises, our method is able to
make predictions relying on reliable features and thus achieves the best
performance. In Figs. 6 and 7, we demonstrate the visual comparisons
between all methods on malaria parasite detection. Since the detected

parasites are small objects in thick blood smears, we also show a cropped
ROI area from the original output.

In Table 2 we also observe that modern transformer-based methods
do not demonstrate superior performance, and their accuracy is in gen-
eral lower than that of CNN-based methods such as PDNet and ours.
This can presumably be attributed to overfitting that occurs when train-
ing on these datasets. Normally, advanced transformers involve a very
large number of parameters that are learned from large datasets. How-
ever, the available blood smear datasets of malaria parasites are scarce,
as the data is hard to collect. Hence, the number of training samples in
our case cannot sufficiently optimize the transformers with many param-
eters. It can be seen that transformers trained on the CMM dataset (con-
tains 239 images) achieve substantially lower accuracy levels than those
trained on Thick Smear 150 (1819 images). Another thing to highlight is
that our input images preselected for parasite classification are cropped
as size 44 x 44, which is likely to also cause transformers overfit when
training on such small sized images. In fact, CNN-based networks with
several convolutions would be sufficient for extraction of long range in-
formation on such small sized images. Additionally, we also attempted
several object detection based transformers to detect parasites directly
from the whole blood smear image. However, we failed to train these
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Fig. 7. Malaria parasites detection examples of ground truth and comparison methods on Thick Smear 150 dataset. Note that 1st and 3rd rows show the raw thick
blood smears with the detected parasites and the remaining rows — the associated regions of interest (ROI) within green bounding boxes. Here, the bounding box
marked ‘gt’ and ‘detected’ refers to the ground truths and detected parasites, and we also show the F1 score for each example.

transformers successfully. The available training samples were insuffi-
cient to train the transformer models, especially the models having a
large number of parameters to optimize. Also, the parasites are tiny ob-
jects that makes them more difficult to detect in high-resolution blood
smears.

4.4. Computational analysis

To evaluate the practicality of our proposed two-stage framework
in real-world applications, we conduct a comprehensive computational
analysis and compare it against aforementioned baselines.

As shown in Table 4, our method exhibits competitive efficiency in
terms of both computational load and inference time. Specifically, the
overall number of parameters is only 1.0M. In terms of FLOPs, we ob-
serve that our model respectively requires 6.2G for CMM and 10.5G
for thick smear 150. These values are substantially lower than those of
many other methods. It is worth noting that the FLOPs of detection-
based models such as YOLOv4-Mod, YOLOV5, and YOLOv5opt remain

identical across the two datasets (CMM and Thick Smear 150). This is
because these models operate on standard resized inputs (640 x 640),
leading to a constant computational load regardless of dataset-level vari-
ations. In contrast, classification-based frameworks, including ours and
other patch-level models such as PDNet, show different FLOPs across the
two datasets. This is due to the fact that these models perform classifi-
cation on candidate patches, and the number of selected patches differs
across datasets. In our pipeline, each candidate patch is processed inde-
pendently through the classification network, so the total FLOPs scale
linearly with the number of patches. For example, the average num-
ber of candidate patches is 300 per image in the CMM dataset, and
500 in Thick Smear 150. As a result, although the network architec-
ture remains unchanged, the total FLOPs increase with the number of
patches.

In addition, our inference time remains 0.821s for CMM and 2.146s
for Thick Smear 150, indicating that our method is deployable in
high-throughput screening settings for large-scale parasite detection.
Although our approach operates in a two-stage manner, it includes
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Table 3
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Effectiveness of applying different attention mechanisms for parasite detection in the CMM and Thick Smear 150 datasets. For patient-level evaluation, we utilize
mean value + standard deviation to show variance across patients. The best result is highlighted in boldface.

Methods Dataset Parasite-Level Evaluation Patient-Level Evaluation

Precision Recall F1 Score AP Precision Recall F1 Score AP
self attn CMM 45.01 65.73 53.43 28.74 23.70+23.75 53.19+31.02 29.43+16.49 22.80+13.82
Bayes ch attn CMM 49.06 65.12 55.96 35.87 33.94+19.23 53.03+33.34 34.90+20.14 30.56x17.61
ch attn CMM 49.46 68.42 57.42 33.34 38.70+19.61 54.67+33.53 38.64+19.87 32.37+18.11
pxl attn CMM 51.06 71.55 59.60 39.98 34.75+18.20 56.57+33.83 37.03+20.19 35.39+21.03
multi-head attn CMM
— 1-head 48.55 67.65 56.53 36.07 35.97+19.28 53.45+30.44 37.12+20.24 34.64+18.35
— 2-head 43.78 64.86 52.27 33.13 31.49+19.76 55.59+31.64 34.96+21.19 31.86+16.08
- 4-head 41.80 56.04 47.88 28.40 28.96+17.93 55.12+33.54 32.81+20.20 31.60+£19.43
ours CMM 51.39 71.96 59.96 40.73 35.22+18.26 56.62+33.86 37.40+20.24 36.39+20.81
self attn Thick Smear 150 81.05 81.57 81.31 76.51 68.08+23.99 79.41+£19.79 69.36+20.43 68.63+19.97
Bayes ch attn Thick Smear 150 82.50 83.71 83.10 76.56 68.61+24.05 80.91+13.87 71.38+19.24 69.13+18.21
ch attn Thick Smear 150 81.90 84.54 83.20 76.28 67.88+24.76 81.07+14.51 70.95+19.83 68.96+18.57
pxl attn Thick Smear 150 82.60 83.94 83.26 76.49 68.47+24.30 80.75+14.22 71.18+19.31 68.74+18.31
multi-head attn Thick Smear 150
— 1-head 82.43 83.47 82.95 76.65 68.55+24.44 80.16+15.13 70.87+19.72 68.30+18.67
— 2-head 79.67 83.26 81.43 74.89 66.20+25.18 78.97+18.43 67.95+20.95 66.11+20.52
- 4-head 77.75 84.28 80.88 74.96 63.13+25.50 81.32+14.56 67.71+21.09 67.07+£19.54
ours Thick Smear 150 83.15 85.13 84.13 77.77 69.35+23.73 81.58+14.34 72.31+19.02 69.65+17.83

Table 4

Comparison of computational cost across different baseline methods. We illustrate the number of parameters (in millions), FLOPs

(in Giga), and inference time (in seconds per image) across both CMM and thick smear 150 datasets.

Methods Params (M) FLOPs (G) Inference Time (s)
CMM Thick Smear 150 CMM Thick Smear 150

Yolov5 (Jocher, 2020) 9.1 12.1 12.1 0.007 0.007
Yolov5opt (Sukumarran et al., 2024b) 25.1 32.3 32.3 0.014 0.014
Yolov4-Mod (Abdurahman et al., 2021) 46.4 74.4 74.4 0.022 0.022
PDNet (Yang et al., 2020) 0.9 6.2 10.4 0.818 2.148
NesT (Zhang et al., 2022) 16.1 8.1 13.5 0.818 2.158
RegionViT (Chen et al., 2022) 12.5 36.6 61.1 0.819 2.171
TransMIL (Shao et al., 2021) 2.1 1.2 2.1 0.818 2.068
Ours 1.0 6.2 10.5 0.821 2.146

the lightweight backbone specifically tailored for the small patch size
(44 x 44) and effectively reduces the computation required during clas-
sification, providing rapid inference while maintaining strong classifica-
tion performance. We also observe that object detection methods such
as YOLOvV5 have faster inference time than classification based meth-

1.0 -

0.8 -

0.6 -

0.4~

True Positive Rate

0.2 -

ROC Curves for CMM

'
0.4

self attn (auc = 0.7079)
Bayes ch attn (auc = 0.7509)
ch attn (auc = 0.7530)

pxl attn (auc = 0.7824)
1-head attn (auc = 0.7484)
2-head attn (auc = 0.7080)
4-head attn (auc = 0.6789)
ours (auc = 0.7862)

I i
0.6 0.8

False Positive Rate

1.0

ods like ours. This is primarily because the inference time of classifi-
cation based methods also involves parasites candidates preselection.
Therefore, these results demonstrate that our model achieves a favor-
able trade-off between accuracy and efficiency, validating its suitability

for practical deployment in malaria parasite screening.
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Fig. 8. ROC curves of different attention mechanisms for true and false parasites classification of pre-selected candidates in the CMM and Thick Smear 150 datasets.
Here, the multi-head attention with 1 head, 2 heads and 4 heads are respectively denoted as 1-head attn, 2-head attn and 4-head attn.
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Table 5
Sensitivity of hyperprameter f on CMM and Thick Smear 150. We set
B = 10 as the optimal value and the best result is highlighted in boldface.

Hyperparameter Dataset F1 Score AP

p=1 CMM 59.82 39.80
p =10 CMM 59.96 40.73
p =20 CMM 59.87 40.56
p = 100 CMM 57.98 37.40
p=1 Thick Smear 150 83.09 76.59
B =10 Thick Smear 150 84.13 77.77
p =20 Thick Smear 150 82.51 77.03
p = 100 Thick Smear 150 81.22 68.20

4.5. Ablation study

Note that our method exploits (Yang et al., 2020) as the backbone,
integrated with the uncertainty-guided attention learning. As shown in
Table 2, our method outperforms the baseline (Yang et al., 2020) on
both the datasets. Hence, we investigate in this ablation study how dif-
ferent attention mechanisms affect the parasite detection performance.
We evaluate five typical attention mechanisms: (i) self attention (self
attn) (Wang et al., 2018), (ii) channel attention (ch attn) (Dai et al.,
2021), (iii) Bayesian channel attention (Bayes ch attn), (iv) pixel atten-
tion (pxl attn) Qin et al. (2020), and (v) multi-head attention (multi-
head attn) (Vaswani et al., 2017). Self attention is extensively used to
extract global information within the feature map. Channel attention
estimates the importance of feature map channels, such that channels
with higher estimated importance are utilized for downstream tasks.
Bayesian channel attention is introduced in section 3.4, and it is utilized
to estimate uncertainty for channels of the feature map. Pixel attention
implies that different pixels in the feature map may have different in-
formation and assigns higher attention weights to the important pixels.
Lastly, the multi-head attention jointly attends to information from dif-
ferent representation subspaces at different positions.

We illustrate the comparison of parasite prediction accuracy in Ta-
ble 3. It is clear that our uncertainty-guided pixel attention outperforms
the other methods. This can be attributed to the following reasons: 1)
our attention mechanism involves channel-wise uncertainty estimation
helping to identify more reliable channel features for subsequent tasks;
2) since pixel-wise features are inherently more flexible and effective
than channel-wise features, we further extract important pixel-wise fea-
tures based on these identified reliable channel features.

Recall that our method identifies parasites from a large number of
pre-selected candidates. As the candidates may include false parasites,
this may affect the performance of identifying true parasites. Hence, we
evaluate the capability of our model to classify true parasites and false
parasites within pre-selected candidates when equipped with the various
attention mechanisms. We show the obtained ROC curves in Fig. 8 and
the AUC of the proposed attention is the highest.

4.6. Hyperparameter sensitivity study

In our model, we exploit one hyperparameter f defined in Eq. 13.
In the experiments, we set f = 10 based on the parasite level F1 score
and AP. First, § is greater than or equal to O since the value of w, in
Eq. 13 should be between 0 and 1. When g = 0, the value of w, is 1,
which means that the effect of uncertainty is no longer considered. In
that case, our uncertainty-guided pixel attention is equivalent to the
traditional pixel attention. When § — +oo, the value of w, is close to
0, which limits the information propagation from all the channel fea-
tures to our attention learning and renders the learning ineffective. In
Fig. 9, we illustrate the effects of different g values on the generated
reliability weights. We present two example input patches in Fig. 9 (a)
and their channel-wise reliability weights produced by different g val-
ues (B = 1,10, 20, 100) are shown in Fig. 9 (b). As seen in Fig. 9 (b), when
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Fig. 9. Illustrations of the effects of different § values on generated reliability
weights. (a) Two example input patches. (b) Reliability weights visualized for
(a) under four different g values.

p = 1 (purple line) most reliability weights of these two examples are
above 0.85, which means these scores are unable to filter out unreli-
able features. In contrast, when § = 100 (yellow line), many reliability
weights are below 0.5, indicating that most features would be consid-
ered unreliable. These points are also illustrated in Table 5, where larger
values of § yield poorer results. This suggests that higher g values hin-
der information propagation and consequently our pixel attention does
not learn much. Likewise, a smaller § value like #=1 yields lower F1
and AP, since many unreliable features are not excluded. Due to the
high computational costs of training, we did not conduct an exhaustive
search over . Instead, we explored a reasonable range of w, and se-
lected [1, 10, 20, 100] to demonstrate the effect of g on the reliability
weights and model performance.

4.7. Effect of input patch size

In our work, we first identify a large number of parasite candidates
and then crop them into patches of size 44 x 44 x 3 for parasite de-
tection. As per Yang et al. (2020), the patch size is determined by the
average size of parasites within the dataset. In this section, we study
how different patch sizes affect parasite detection performance. Other
than the utilized size 44 x 44 x 3, we also evaluate other sizes, includ-
ing 36 x 36 x 3, 52 x 52 x 3 and 60 x 60 x 3, on both CMM and Thick
Smear 150 datasets.

In Fig. 10, we illustrate AUC score and both Parasite-Level
and Patient-Level evaluations of Precision, Recall, F1 Score, AP for
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Patch Size Study on CMM
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Patch Size Study on Thick Smear 150
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Fig. 10. The effects of different patch sizes on the CMM and Thick Smear 150 datasets. Out of all evaluation metrics, we indicate the best performance on top of red
bars (size 44 x 44 x 3). Clearly, the red bars with size 44 x 44x3 outperform the remaining bars with respect to most metrics.

comparisons among different patch sizes. To better distinguish our per-
formances from other patch sizes, we only present in Fig. 10 the scores
of our utilized patch size for those best-performing metrics. We can see
that the utilized size 44 x 44 x 3 achieves 6 highest scores out of 9
metrics on CMM dataset, and has 7 best-performing metrics on Thick
Smears 150 dataset. In general, the performance of patch size 44 x 44
X 3 surpasses the rest. This is presumably because the patch size 36 x
36 x 3 is too small to provide sufficient information for parasite detec-
tion, while the larger sizes 52 x 52 x 3 and 60 x 60 x 3 introduce more
background noises that disturb the identification of parasites.

5. Discussion and conclusion

In this work, we present an uncertainty-guided attention learning
for malaria parasites detection in thick blood smear images. By refor-
mulating traditional channel attention under the Bayesian framework,
we are able to estimate channel-wise uncertainty of the learned fea-
ture map. Subsequently, our model exploits pixel attention to extract
important and informative pixel-wise features to facilitate parasite clas-
sification. With the estimated uncertainties, our pixel attention is able
to extract pixel-wise information from more reliable channel features
that have less uncertainty. Experiments using two public datasets show
the effectiveness and superiority of our method over several state-of-
the-art malaria parasite detection methods. Thus, our work offers a
sound alternative to manual detection methods, allowing to estimate
the malaria severity and prioritize patient treatment, which can help in
under-developed malaria-endemic areas.

One of our work’s most notable strengths lies in its methodologi-
cal innovation. Unlike conventional attention mechanisms that focus on
global contextual features or treat channels equally, our method explic-
itly quantify channel-wise uncertainty using estimated variances under a
Bayesian formulation. This allows us to identify and emphasize reliable
features, while suppressing noisy or unreliable ones. Such a formula-
tion is particularly effective for tiny parasites in thick smear images, for
which these tiny parasites are often obscured by background artifacts or
staining irregularities. Moreover, our hybrid attention design, that com-
bines Bayesian uncertainty modeling with pixel-level attention, is novel
in the field, and has shown clear advantages in parasite classification.

Our method also provides interpretability that is particularly ben-
eficial for high-stakes medical applications. The estimated uncertainty
scores offer insight into the reliability of the input data. For instance,
input patches dominated by unreliable features can be flagged as low-
confidence predictions. This interpretability can assist healthcare pro-
fessionals in deciding when to rely on automated predictions and when
to need manual review.

In addition, our framework also exhibits strong potential for gen-
eralization. While this study focuses on malaria parasite detection in
small image patches (44 x 44), the core structure is a binary classifica-
tion network with explicit noise-handling capability. Since various types
of medical imaging data inevitably suffer from acquisition noise, back-
ground artifacts, or sensing errors, our framework could be adapted to
other classification tasks, such as histopathology or dermatology image
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analysis. Some architectural adjustments, such as increasing the number
of convolutional layers, may be required to accommodate larger images,
but the fundamental idea of uncertainty-aware feature selection remains
broadly applicable.

Another important strength of our method is its practical deployabil-
ity. Although our network operates in two stages, it remains lightweight
in terms of model size and FLOPs, with inference times under 2.2 sec-
onds per image. Given that malaria diagnosis is a non-real-time screen-
ing task where accuracy and reliability are prioritized over latency, our
model maintains an effective balance between performance and effi-
ciency, making it suitable for use in clinical decision support systems or
automated screening tools.

Despite that, our model has limitations. First, our performance par-
tially depends on the quality of the parasite candidate preselection stage.
If true parasites are not successfully selected in this stage, they cannot be
recovered in subsequent classification, potentially leading to false neg-
atives. Secondly, our method requires two-stage training, which may
complicates integration into fully end-to-end pipelines. Nevertheless,
our work introduces a robust and interpretable framework for malaria
parasite detection, which not only achieves state-of-the-art performance
but also offers practical value in clinical contexts. We hope future studies
will explore theoretical analyses of how uncertainty-guided feature se-
lection impacts model robustness and generalization, providing a more
principled understanding of its advantages. Meanwhile, we believe our
proposed idea that incorporating uncertainty modeling into attention
mechanisms can inspire future advancements in reliable and trustwor-
thy medical AI systems.
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