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An object can be consisting of various attributes, such as illuminance, appearance, shape, orientation, etc.
Separately extract these attributes has enormous value in visual effects modeling, attribute-specific
retrieval and recognition. Essentially, these attributes can be fairly abstract and thus need labels to
extract. However, sometimes the labels of these attributes may not be available with training data. A
solution to this problem is projecting the observed data into a lower dimension latent subspace, such that
each observed data can be represented by a latent variable. After that, the dimensions of a latent variable
can be segmented into different parts by weighting the kernel automatic relevance determination (ARD)
parameters. Consequently, the latent variable is segmented into different parts each of which corre-
sponds to the main attribute. In real life scenery, the attributes of an object may vary significantly from
case to case. For instance, a single face can probably be under different illuminance conditions. Taking
into account the diversity of these attribute variations, we propose the Diversified Shared Latent
Variable Model (DSLVM) to extract and manipulate object attributes in an unsupervised way. More
specifically, we initially set up two views that share the same latent variables. Then, two Diversity
Encouraging (DE) priors are applied to the inducing points of each model view. Here, the inducing points
are a small representative dataset that explains the observed data in its entirety. Meanwhile, the
exploited diversity encouraging priors are able to cover more diverse characteristics of the attributes.
The defined objective function is computed by variational inference. Extensive experiments on different
datasets demonstrate that our method can accurately deal with various object.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

Extracting and modeling objects’ characteristics separately is
vital in movie special effects, video games, augmented reality.
However, the labels of these characteristics for training the corre-
sponding model could be scarce or even not available. Therefore,
we propose the diversified shared latent variable model in an
unsupervised way to robustly extract the attributes without the
availability of labels.

Statistical methods, such as PCA based methods
[43,44,18,20,25,15,26], are often employed to project the observed
data into a lower dimensional space. Therefore, the latent space
captures the features of characteristics from the observed data.
The object can then be modeled by sampling on the projected
continuous latent space. In this scenario, the mapping between
the observed data and its subspace is linear, but the correlation
between the observed data and latent space is not always linear.
[27,45] proposed Gaussian process-based models to enable non-
linear processes using a kernel function. However, these methods
are still unable segmenting the latent space and thus differentiate
the characteristics of objects.

Meanwhile, some works [9,39,12] have attempted to learn a
shared latent variable to represent the observed data with multiple
views. However, most shared latent variable model based
approaches are not able to perform a discrete segmentation on
share latent variable. In contrast, Damianou et al. [9] proposed
Manifold Relevance Determination (MRD) to capture the structure
underlying the high-dimension face data by segmenting latent
space into shared and private subspaces, useful for separately
modeling appearance and illuminance from the face image. After
sampling from the shared subspace, a new face image is generated

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2020.09.035&domain=pdf
https://doi.org/10.1016/j.neucom.2020.09.035
mailto:hao.xiong@mq.edu.au
https://doi.org/10.1016/j.neucom.2020.09.035
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom


H. Xiong, Yuan Yan Tang, F. Murtagh et al. Neurocomputing 421 (2021) 244–259
under various illumination conditions while retaining an
unchanged facial appearance. Similarly, sampling the private sub-
space only changes the facial appearance.

However, [9] does not model shaded faces very well. Theoreti-
cally, when sampling the shared dimensions around the subspace
of a dark shadow, the model should also generate a new face with
dark shadows. However, MRD tends to generate a new face with-
out any shadows. Furthermore, by varying the private subspace,
MRD is also inclined to generate a suboptimal face that is blurred
or with an altered appearance. The root cause of these phenomena
is that the latent variables generated by MRD focus on face images
with salient features. That is to say, illuminated faces are more sali-
ent and featured than shaded faces. Thus, illuminated faces attract
more latent variables than shaded faces. As a consequence, the
trained latent subspace from MRD cannot account for all possible
illumination conditions and appearance variations.

To overcome the above issues of MRD method, we propose
DSLVM to robustly extract object characteristics by concurrently
exploiting multi-view learning and DE priors. Specifically, we con-
struct a diversified shared latent variable model associated with
two views under a Gaussian process framework. These two views
share the same latent variable but separately estimate two ARD
parameter vectors. Here, the effect of the ARD parameters is to
determine the shared and private latent spaces, where the shared
dimensions model the variations of a common attribute such as
illuminance, orientation. Likewise, private dimensions model pri-
vate attribute like object appearance. The main contributions of
our work are threefold:

� For each view, the newly designed DE prior is introduced to the
inducing points, which is a small representative set of a large
amount of observed data. As a consequence, the inducing points
become more diverse and hence capture more distinct features
of each attribute from observed data. For instance, the illumi-
nance conditions in a given face dataset are probably not evenly
distributed. As a result, the learned model is inclined to biased
without DE prior.

� The model is learned in an unsupervised way (no labels
required). The newly defined objective function of our model
is not solvable, so we apply the variational inference to approx-
imate the objective function with a lower bound; The solution is
then obtained by maximizing the lower bound.

� We experiment with three different databases including faces
under various lighting conditions and 3D chairs with various
orientations. The experimental results show that our method
outperforms the baselines. It further demonstrate the robust-
ness and effectiveness of our approach for image characteristics
extraction and modelling in an unsupervised way.

We first review existing works on latent variable models. Then,
we provide a brief introduction to MRD before demonstrating our
proposed DSLVM. Finally, we perform modeling experiments on
three representative databases.
2. Related work

Latent variable models are broadly classified into single latent
space based models, hierarchical latent variable models and shared
latent variable models. In this section, we review some previous
latent variable based approaches for both single view and multi-
view learning.

Gaussian process latent variable model (GP-LVM) [27] can be
considered as a classical latent variable model which is often used
in dimension reduction in high dimensional data. The latent vari-
ables are regarded as low dimensional features of data. The whole
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model is optimized rather than integrating out the latent variables.
Meanwhile, GPLVM can be seen as a nonlinear extension of the lin-
ear probabilistic PCA (PPCA)[32]. After that, a Bayesian Gaussian
process latent variable model [11] is proposed to variationally inte-
grate out the latent variables in the GPLVM. By exploiting Jensen’s
inequality and variational inference, the solution to the log mar-
ginal likelihood of data is tractable. In order to speed up computa-
tion, inducing points [8,35,7,4] are further exploited.

The hierarchical latent variable model refers to build up multi-
ple latent spaces which are hierarchically stacked. Neil et al. [28]
proposed a tree-like hierarchical latent variable model to express
conditional independencies in the data as well as the manifold
structure. Then, [10] imitated the concept of deep neural network
and built multiple latent spaces layer by layer to model complex
data. Meanwhile, recurrent neural networks (RNNs) [14,19,6,41]
can well process sequential data. As a consequence, the works
[36,33] proposed RNN-like hierarchical latent variable models for
dialogue generation and audio processing.

Shared latent variable model, in general, refers to the latent
variables that are shared by two or multiple views. In early
multi-view learning, canonical correlation analysis (CCA)
[16,42,46] draws considerable attention. In CCA, two projection
matrices are learned so that the two views can be projected into
a common subspace. Afterward, several variants of CCA were pro-
posed as the extensions. In [2], a sparsity prior was added into the
traditional CCA. Besides, the l1 loss and a Student-t [31] were
added to limit the influence of outliers and noise. Rather than
focusing on two views learning, the works [34,5] further extend
the aforementioned methods to multi-view learning. As a matter
of fact that these methods are based on linear projection function,
which can not be applicable to nonlinear input features. More
recently, multi-view learning were applied to recognition tasks
such as human action recognition [22], facial expression recogni-
tion [23,1,30] and object recognition [17]. For instance, Muham-
mad et al. [22] proposed to compute multi-view features from
horizontal and vertical gradients. Then, combined with features
extracted from pre-trained CNN network, a best feature set can
be selected and be fed into Naive Bayes classifier for human action
recognition.

Some methods aim to perform supervised multi-view analysis.
For instance, [21] proposed Multi-view Discriminative Analysis
(MvDA) which maximizes the between-class and minimizes the
within-class variations in a common subspace. Here, MvDA essen-
tially extends Linear Discriminant Analysis (LDA) [3] to multi-view
case. Besides, there are some Generalized Multiview Analysis
(GMA) [37] based methods proposed for multiview learning. A case
in point is the Generalized Multiview LDA (GMLDA). Likewise,
GMLDA tried to unite different views of the same class and sepa-
rate the content of different classes in a common subspace.
Another example of GMA is the GM Locality Preserving Projections
(GMLPP). Based on the work of LPP [32], it is able to find a discrim-
inative data manifold using labels. However, these supervised
learning based methods are not practical since the training labels
are not always available.

Guoli et al. [38] proposed multi-modal similarity Gaussian pro-
cess latent variable model (m-SimGP) to learn the nonlinear map-
ping functions between heterogeneous modalities and the shared
latent space. Based on m-SimGP, multi-modal regularized similar-
ity GPLVM (m-RSimGP) was further encouraging similar/dissimilar
shared latent variables to be similar/dissimilar. Later on, the same
authors [39] proposed multimodel distance-preserved similarity
GPLVM (m-DSimGP) to preserve the intra-modal global similarity
structure, and multimodel regularized similarity GPLVM (m-
RSimGP). Recently, Guoli et al. proposed the harmonized multi-
modal learning with Gaussian process latent variable models
[40], which developed a new learning scheme ‘‘Harmonization”
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so that the latent variables can be learned jointly from all modali-
ties by exploiting strong complementarity among different modal-
ities. By referring to the framework of autoencoder, [29]
introduced other nonlinear projections from observation to shared
latent space. Meanwhile, a discriminative prior was integrated to
encourage latent variables from same/ different classes to be
close/far. Besides, shared latent variable model can also be used
in face recognition tasks. In [13], Stefano et al. built a model that
learned a discriminative manifold shared by multiple views of
facial expression. Then, facial expression recognition was per-
formed in the expression manifold.

In general, the existing shared latent variable models focus on
the tasks such as image classification, audio-visual speech recogni-
tion, image captioning and cross modal retrieval. Therefore, they
are unable to synthesize images properly. Though methods with
a single or hierarchical latent space can synthesize images, they
are unable to segment the latent space and thus cannot extract
characteristics of images. To the best of our knowledge, MRD [9]
is the only shared latent variable model that is able to extract
and separate image characteristics by segmenting the latent space.
Therefore, we exploit MRD as a baseline in our experiment.

3. Manifold relevance determination

In MRD, Y 2 Rn�d (with columns y:;j
� �d

j¼1
) denotes one view of

the observed data, where n is the number of data points and d is
the dimensionality of each data point in Y. These data are associ-
ated with latent variables X 2 Rn�q for the sake of dimensionality
reduction. Then, the likelihood function is defined as:

p YjXð Þ ¼
Yd
j¼1

p y:;jjX
� �

; ð1Þ

where y:;j represents the jth column of Y and

p y:;jjX
� � ¼ N y:;jj0;Kff þ r�1In

� �
: ð2Þ

Kff is an n� n kernel matrix, and the kernel function is an expo-
nentiated quadratic (RBF):

k xi;:; xk;:
� � ¼ r2

f exp �1
2

Xq
j¼1

aj xi;j � xk;j
� �2 !

; ð3Þ

where each xi;: is the ith row of X, and Kff ¼ k xi;:; xk;:
� �

. The marginal
likelihood function is defined as:

p Yð Þ ¼
Z

p YjXð Þp Xð ÞdX: ð4Þ

Since Y is observed data which is supposed to be noisy, another
latent variable F is introduced that is considered as the unnoisy
version of Y, and

p YjFð Þ ¼
Yd
j¼1

N y:;jjf :;j;r�1In
� �

: ð5Þ

Here, f :;j is the jth column of variable F which is the same size as
Y. For the sake of dimensionality reduction, the conditional distri-
bution in Eq. (1) becomes

p FjXð Þ ¼ odd
j¼1N f :;jj0;Kff

� �
: ð6Þ

The latent variables are i.i.d. and the prior distribution p(X) is
obtained by selecting a fully factorized latent space prior:

p Xð Þ ¼
Yq
j¼1

N x:;jj0; Iq
� �

; ð7Þ

where x:;j refers to jth column of X.
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In MRD, another view Z 2 Rn�dZ of the observed data will be
incorporated into the same model. However, it still assumes a sin-
gle latent variable X shared by the two views Y and Z. Likewise, the
nonlinear mapping from latent variable X to observations Y and Z is
the same.

4. Diversified shared latent variable model

In this section, we explain our diversified shared latent variable
model by extracting the characteristics of illuminance and appear-
ance from faces. Initially, we build up two views. The first view
Y 2 Rn�p contains n face images, each of which has p pixels. These
face images consist of several distinct individuals captured under
various possible lighting conditions. Likewise, an analogous view
Z 2 Rn�p is set up and defined. This provides two variations in the
views Y and Z, which are the illuminance conditions and the sub-
ject’s appearance, respectively.

4.1. The model

Our model contains only a single latent variable X 2 Rn�q. With

the mappings f Yd
n op

d¼1
: X # Y and f Zd

n op

d¼1
: X # Z, the shared

latent variable X provides a low dimensional representation of
either Y or Z. Following [11], we assume that the data are corrupted

by additive Gaussian noise � Y;Zf g � N 0;r Y ;Zf g
� I

� �
,

ynd ¼ f Yd xnð Þ þ �Ynd;

znd ¼ f Zd xnð Þ þ �Znd;
ð8Þ

where y; zf gnd denotes the dimension d of point n in Y and Z.

Moreover, our latent functions f Yd and f Zd are selected to be inde-
pendent draws of a zero-mean GP with an ARD covariance function
of the form:

kY xi;:; xk;:
� � ¼ rY

f

� �2
exp � 1

2

Xq
j¼1

aY
j xi;j � xk;j
� �2 !

;

kZ xi;:; xk;:
� � ¼ rZ

f

� �2
exp � 1

2

Xq
j¼1

aZ
j xi;j � xk;j
� �2 !

:

ð9Þ

In the GPLVM framework, each generative mapping is modeled
as a product of an independent GP that is parameterized by a

covariance matrix K Y ;Zf g
ff evaluated over the latent variable X, so

that

p FY jX; hY
� �

¼
Yp
j¼1

N f Y:;jj0;KY
ff

� �
;

p FZ jX; hZ
� �

¼
Yp
j¼1

N f Z:;jj0;KZ
ff

� �
;

ð10Þ

where FY ¼ f Y:;j
n op

j¼1
; FZ ¼ f Z:;j

n op

j¼1
, and hY ;Z collectively denote the

parameters of covariance matrices K Y ;Zf g
ff and the noise variances

�Y;Z . Besides, each element in covariance matrices K Y ;Zf g
ff is computed

by covariance function (Eq. 9).
This leads to a likelihood function under the model:

p Y ; ZjX; hð Þ ¼
Y

j¼ Y;Zf g

Z
p jjFjð Þp FjjX; hjð ÞdFj: ð11Þ
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Then, the joint marginal likelihood requires integration over the
latent variable X in Eq. (11) and is:

p Y; Zjhð Þ ¼
Z

p Y ; ZjX; hð Þp Xð ÞdX: ð12Þ

Since X appears non-linearly in the inverse of the covariance
matrices KY

ff and KZ
ff , the integration over the latent variable X is

intractable. To overcome this problem, we derive an approximate
Bayesian training and inference procedure by variationally
marginalizing out X.

To facilitate the variational inference (explained below), likeli-

hoods p FY jX; hY
� �

and p FZ jX; hZ
� �

are augmented with m inducing

points UY and UZ , then p Y ; ZjX; hð Þ is augmented as:

p Y; ZjU Y ;Zf g;X; h
� �

¼
Y

j¼ Y ;Zf g

R
p jjFjð Þp FjjUj;X; hjð ÞdFj: ð13Þ

Here, the inducing points UY ;UZ 2 Rm�p are evaluated at the
pseudo-inputs XY ;XZ 2 Rm�q, respectively. The marginal GP priors
over the inducing points UY and UZ are:

p U Y ;Zf gjX Y ;Zf g
� �

¼
Yq
j¼1

p u Y ;Zf g
:;j jX Y ;Zf g

� �
ð14Þ

¼
Yq
j¼1

N u Y ;Zf g
:;j j0;K Y ;Zf g

uu

� �
; ð15Þ

where K Y ;Zf g
uu ¼ k X Y ;Zf g

j;: ;X Y ;Zf g
k;:

� �
.

Since the pseudo-inputs X Y;Zf g are variational parameters, they
can be dropped from the expressions. Then, the joint marginal dis-
tribution p Y; Zð Þ is:

p Y; Zð Þ ¼Y
j¼ Y ;Zf g

R
p jjFjð Þp FjjUj;Xð Þp Ujð ÞdUjdFjp Xð ÞdX: ð16Þ
4.1.1. Diversity encouraging prior
However, it transpires that the latent variables X are highly

likely to be similar after training. Hence, we introduce a DE prior
with respect to the latent variable repulsion property due to the
fact that real-world attributes may be much more diverse, e.g var-
ious illuminance conditions, different human ethnicities, than
expected.

In our model, a kernel-based diversity prior K/ is defined as
follows:

K /i;/j;q
� � ¼ Z

v
f xj/ið Þqf xj/j

� �qdx; ð17Þ

Here, a probability product kernel is constructed to define the
repulsion. Therefore, every kernel element is expressed as the
inner product of probability distributions. Besides, the latent vari-
ables follow the variational distribution:

q Xð Þ ¼
Yn
i¼1

N xi;:jui;:; Si
� �

; ð18Þ

in which Si are diagonal matrices. Note that the variational distribu-
tions q Xð Þ will be explained in the next section. Then, a diversity
prior K /i;/j;q

� �
can be applied to the variational distributions

q Xð Þ to allow for repulsion. For simplicity, let q ¼ 1:

K q xi;:
� �

; q xj;:
� �

;1
� � ¼ 2pð Þ�D

2
YD
d¼1

1
SidþSjd

 !1
2

exp ð� 1
2

XD
d¼1

uid�ujdð Þ
SidþSjd

!
;

ð19Þ
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where D refers to the dimensionality of one latent variable and Sid is
the dth element on the diagonal of the covariance matrix Si. The
latent variables selected with respect to such prior are supposed
to cover multiple distinct aspects of attributes instead of focusing
on the most salient ones.

Therefore, the new objective function is:

G hð Þ ¼ log p Y ; Zjhð ÞjK/jk
� �

; ð20Þ

where h refers to the hyperparameters in our proposed model. Fur-
thermore, k > 0 is used to balance the weights between likelihood
measurements and the DE prior.

4.2. Variational inference

The full training process maximizes the objective function G hð Þ.
Since the maximization of G hð Þ is intractable, a variational lower
bound Fv qð Þ is applied and maximized to approximate the true
marginal likelihood. This can be achieved with the aid of a varia-
tional distribution that factorizes as q Hð Þq Xð Þ, where
q Xð Þ � N l; Sð Þ.

For simplicity, we drop the hyperparameters h from the expres-
sions. By applying Jensen’s inequality, the variational bound

Fv qð Þ 6 log p Y ; Zð ÞjK/jk
� �

is derived:

Fv qð Þ ¼

R
q Hð Þq Xð Þ log

Y
j¼ Y ;Zf g

p jjFjð Þp Fj jUj ;Xð Þp Ujð Þ
q Hð Þ

0BB@
1CCA

dFdUdX þ R q Xð Þ log p Xð Þ
q Xð Þ dX þ k log jK/j:

ð21Þ

Here, q Hð Þ is further factorized as q HY
� �

q HZ
� �

, which means

we have a variational distribution q Hj� �
j¼Y ;Zf g for each view Y

and Z. After inserting q Hð Þ back into Fv qð Þ, we have:

Fv qð Þ ¼ LY þ LZ � KL q Xð Þjjp Xð Þ½ � þ k log jK/j: ð22Þ
Now, Fv qð Þ contains the terms: LY ; LZ , a KL term, and the DE

prior. Here, the KL term is first introduced and the variational dis-
tribution q Xð Þ in it follows:

q Xð Þ ¼
Yn
i¼1

N xi;:jli;:; Si
� �

; ð23Þ

where each covariance matrix Si is diagonal.
Since both q Xð Þ and p Xð Þ are Gaussian distributions, the KL term

can be easily calculated:

KL q Xð Þjjp Xð Þ½ � ¼ 1
2

Xn
i¼1

tr li;:l
T
i;: þ Si � log Si

� �
� nq

2
: ð24Þ

We then compute the terms LY and LZ , which have similar
expressions, so only the exact expression of LY is given here:

LY ¼ R
q HY
� �

q Xð Þ log p Y jFYð Þp FY jUY ;Xð Þp UYð Þ
q HYð Þ

� 	
dFdUdX;

ð25Þ

We next present the details to compute LY , and the approach to
compute LZ is exactly the same.

Meanwhile, the variational distribution q HY
� �

is of the form:

q HY
� �

¼ q UY
� �

p FY jUY ;X
� �

; ð26Þ
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Fig. 1. The ARD parameter values. The dimensionality of the latent variable is 14,
and two sets of ARD parameters are estimated. The blue and red bars refer to values

H. Xiong, Yuan Yan Tang, F. Murtagh et al. Neurocomputing 421 (2021) 244–259
where q UY
� �

is a free-form distribution. After putting q HY
� �

back

into LY , we have:

LY ¼ R
p FY jUY ;X
� �

q UY
� �

q Xð Þ log p YjFYð Þp UYð Þ
q UYð Þ

� 	
dFdUdX:

ð27Þ

Here, Eq. 27 can be decomposed as:

LY ¼ R
p FY jUY ;X
� �

q UY
� �

q Xð Þ logp YjFY
� �

dFdUdX

þ R q UY
� �

log
p UYð Þ
q UYð Þ dU:

ð28Þ

Remember that the variables yY:;j; f
Y
:;j and uY

:;j are independent.
Therefore, LY can be further factorised as:

LY ¼ R Yq
j¼1

p f Y:;jjuY
:;j;X

� �
q uY

:;j

� �
q Xð Þ

Xq
j¼1

logp yY:;jjf Y:;j
� �

dFdUdX þ R Yq
j¼1

q uY
:;j

� �Xq
j¼1

log
p uY

:;j

� �
q uY

:;j

� � dU: ð29Þ

Now, some items can be integrated out and LY is further simpli-
fied as:

LY ¼ R
p f Y:;jjuY

:;j;X
� �

q uY
:;j

� �
q Xð Þ

Xq
j¼1

logp yY:;jjf Y:;j
� �

df Y:;jdu
Y
:;jdX þ R q uY

:;j

� �Xq
j¼1

log
p uY

:;j

� �
q uY

:;j

� � duY
:;j:

ð30Þ

For further simplification and ease of reading, let �ip
D

be short-

hand for the expectation with respect to the distribution p. Then, LY
is re-expressed as:

LY ¼
Xq
j¼1

R
q uY

:;j

� �
q Xð Þ log p yY:;jjf Y:;j

� �
i
p f Y:;j juY:;j ;X
� �dXduY

:;j

*0@
þ log

p uY
:;j

� �
q uY

:;j

� � i
q uY

:;j

� �* 1A: ð31Þ

Clearly, the essential part of LY is behind the sum operator.
Instead of the whole LY , we focus on this part only. Assume
LY ¼Pq

j¼1L
Y
j , then we have:

LYj ¼
R
q uY

:;j

� �
q Xð Þ logp yY:;jjf Y:;j

� �
i
p f Y:;j juY:;j ;X
� �dXduY

:;j

*

þ log
p uY

:;j

� �
q uY

:;j

� �i
q uY

:;j

� �: ð32Þ
*

Now, LYj contains an integration operation and a KL term. Evi-

dently, logp y:;ijf :;j
� �ip f :;j ju:;j ;Xð Þ

D
is the difficult part in computing LYj ,

so this essential term is computed first as:
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logp y:;ijf :;j
� �ip f :;j ju:;j ;Xð Þ ¼ logN y:;j jaYj ; rY

�

� �2In� �
iq Xð Þ

DD
� 1

2 rY
�

� �2 tr KY þ KY
uu

� ��1
KY

uf K
Y
fu

� 	
; ð33Þ

where aY
j ¼ KY

fu KY
uu

� ��1
KY

uf .

Now, inserting Eq. 33 back into Eq. 32, the expression of LYj (Eq.
32) becomes:

LYj ¼
Z

q uY
:;j

� �
log

e
logN y:;j jaYj ; rY

�ð Þ2 In
� �D E

q Xð Þp uY
:;j

� �
q uY

:;j

� � duY
:;j|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Term 1½Errormml:mo�ðKL-like quantity½Errormml:mo�Þ

� 1

2 rY
�ð Þ2 tr KY

ff

D E
q Xð Þ

þ KY
uu

� ��1
KY

uf K
Y
fu

D E
q Xð Þ

� 	
:

ð34Þ

Here, Eq. 34 contains a Kullback–Leibler (KL) like quantity that

involves the variational distribution q uY
:;j

� �
. Its term 1 is a Kull-

back–Leibler (KL) like quantity which is constantly smaller or equal

to 0. When variational distribution q uY
:;j

� �
equals to its numerator

in term 1, term 1 becomes 0 thus maximizing Eq. (34). So, optimal

q uY
:;j

� �
is:

q uY
:;j

� �
¼ e

logN y:;j jaYj ; rY
�ð Þ2Ip

� �D E
q Xð Þ p uY

:;j

� �
: ð35Þ

With the optimal variational distribution q uY
:;j

� �
in hand, LYj can

be upper bounded by bLYj by applying reversing Jensen’s inequality
[24]:

bLYj ¼ log
R
e
<logN y:;j jaYj ; rY

�ð Þ2 Ip
� �

>q Xð Þp uY
:;j

� �
duY

:;j

� 1

2 rY
�ð Þ2 tr KY

ff iq Xð Þ þ KY
uu

� ��1
KY

uf K
Y
fu

D E
q Xð Þ

� 	
:

�
ð36Þ

Now, q uY
:;j

� �
is optimally eliminated and the whole objective

function is tractable. A brief summary of the proposed algorithm
is shown in Algorithm 1.
of ARD parameters for view 1 and view 2, respectively. Here, the shared dimensions
are 1, 2, 3, 6, while the private dimensions are the remaining.
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Algorithm 1. Diversified Shared Latent Variable Model
g. 2. The effects of diversity-encouraging priors (DE priors). (a), (c) By s
iors are illustrated to capture more lighting conditions including darke
iginal lighting condition unchanged. However, the illumination of sample
rner of either (b) or (d) is the face for which the private dimensions are
Input: observed data Y (view 1) and Z (view 2)

Output: optimised model parameters h

1: Definition:

define kernel-based diversity prior K/ (Eq. 17).

2: Define Objective Function:� �

G hð Þ ¼ log p Y ; Zjhð ÞjK/jk Eq. (20)
3: Variational Inference:

introduce variational distributions q Hð Þ and q Xð Þ

4: Variational Bound:

obtain variational bound Fv qð Þ (Eq. 21) of G hð Þ using

variational distributions q Hð Þ and q Xð Þ

5: compute varitional bound Fv qð Þ using Eq. 22–36 to

optimize model parameters h for image
characteristics extraction and modelling.
ampling and p
r illumination
d faces in (b)
altered.
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4.3. Characteristics extraction and modelling

For ease of explanation, we use face images for illustration. Ini-
tially, we build two corresponding views with the same illumina-
tion conditions but different subject appearances. Either view has
two variations, which are the illumination condition and facial
appearance. Based on our model, shared latent variables with
two sets of ARD weights wY ¼ wY

d

� �q
d¼1 and wZ ¼ wZ

d

� �q
d¼1 are

learned (shown in Fig. 1). Note that the dimension of the shared
latent variable is 14 (q = 14).

The ARD weights play a pivotal role in determining the respon-
sibility of each dimension from the latent variable. We can seg-

ment the latent variable X into XY ;Xs;XZ
� �

, in which Xs 2 Rn�qs is

the shared subspace that models the face illuminance conditions.
For wY

d ;w
Z
d > d, the dimensions of shared subspace Xs can be

selected when wY
d and wZ

d are highly similar. Here, d is any number

greater than zero. In contrast, XY and XZ are the two private spaces
rojecting the shared dimensions 1;2f g, the shared dimensions generated with DE
s. (b), (d) Sampling private dimensions should alter face appearance but keep the
has been changed compared to those in (d). Note that the org face in the bottom left



Fig. 3. The effects of adjusting shared and private dimensions. Note that modeling the face illumination with the shared dimensions does not alter the facial appearance and
the face morphing is similar.

Fig. 4. Illustration of differences before and after exploiting the DE prior. Top row:
ground truth. Middle row: our approach. Bottom row: MRD. It is clear that the face
images generated by our method (middle row) are closer to the ground truth.

1 http://vision.ucsd.edu/content/yale-face-database
2 http://www.multipie.org/
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to model the face appearances in each view. Thus, it can be seen
from Fig. 1 that the dimensions 1;2;3f g are supposed to model
the face illumination variations. Likewise, the dimensions 8;10f g
or 5;14f g comprise the private dimensions that control the face
appearance for face morphing.

Here, the latent subspace is continuous. By sampling the
shared dimensions in the latent subspace and mapping them
back to the observed data space, we can create a new face with
a certain illumination condition. An example of illumination
variation modeling is illustrated in Fig. 3(a). Here, the mapping
from latent space to observed data space is namely the infer-
ence stage described in [9]. Note that the lighting effects vary
along the x-axis (top row) and y-axis (bottom row). By chang-
ing the shared dimensions, the face illumination is altered. Like-
wise, the private dimensions are sampled to show the face
morphing effects (Fig. 3(b)).

To demonstrate the necessity for the DE prior, we compare
the face illumination modeling effects before and after apply-
ing the DE prior. Instead of sampling the latent subspace arbi-
trarily, we only sample the trained latent variables and then
map them back to the observed data space. This is because
each trained latent variable corresponds to an observed face,
which serves as the ground truth for ease of comparison. As
shown in Fig. 2,3, the shared dimensions 1;2f g and private
dimensions 8;10f g of the latent dimensions are much more
diverse after applying the DE prior. Without the DE prior,
the illuminance modeling in Fig. 2(a) fails to model shaded
faces. The reason for is that these shaded faces do not have
much saliency or many features to capture. Therefore, the
introduced DE prior enables all possible illumination conditions
to be covered (shown in Fig. 2(c)). Also, the facial appearance
of the org face in Fig. 2(b) is modeled by altering private
dimensions. However, it turns out that such modeling not only
changes the face appearance but also alters its illumination. It
is clear that the illumination after appearance modeling in
Fig. 2(b) is darker than the org face. In contrast, the face
appearance modeling with the diversity constraint shown in
Fig. 2(d) maintains the same illumination conditions while
changing the appearance. Further examples of face illumina-
tions are shown in Fig. 4.
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5. Experimental results

5.1. Yale and Multi-PIE face datasets

We performed illumination variation modeling and face morph-
ing experiments using the Yale1 and Multi-PIE2 face databases. The
Yale dataset includes 30 subjects, each of which is associated with 64
illumination conditions, i.e., 1920 test faces in total. The Multi-PIE
face database contains a number of faces from which we randomly
selected 48 different faces for testing, each of which was illuminated
from 20 different viewpoints (960 test faces in total). Note that the
only variations in these datasets are the lighting directions and face
appearances. Since our model enables high-dimensional data pro-
cessing, no feature extraction is required and the raw face data can
be accepted directly. The number of pixels in each raw dataset is
32256 and 133563 for Yale and Multi-PIE, respectively.

http://vision.ucsd.edu/content/yale-face-database
http://www.multipie.org/


Fig. 5. Face illumination modeling effects. Six modeling examples from the Yale dataset are shown, and every example consists of two rows for demonstration purposes. For
each example, its initial status without illumination effects is displayed in the top row (denoted as Init). The illumination modeling result is shown in the bottom row
(denoted as Res). The illumination modeling effects of our method in the bottom rows are very close to the ground truth.
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At the training stage, taking the Yale face database as an exam-
ple, we simultaneously build two views Y and Z, where both Y and
Z include 3 subjects. Now, each view is composed of 192 images
that correspond to 3 distinct faces under 64 various illumination

conditions. Here, Y; Z 2 Rn�d, where n ¼ 192 and d ¼ 32256. There-
fore, the 30 subjects in the Yale face dataset are divided into 5
groups. Then, the images in the Y view are reordered so that every
image yn from the view Y randomly correspond to each zn in Z
under the same illumination conditions. As a result, the images
are only matched between two views in terms of the illumination
condition rather than subject appearance. The model is then forced
to learn the correspondence between face illumination variations.
Likewise, the 48 subjects from the Multi-PIE database are parti-
tioned into 4 groups, in which every group has 12 subjects. As a
251
consequence, the Y and Z views in each group respectively contain
120 face images composed of 6 subjects associated with 20 lighting
conditions.

After optimization, the latent variables X 2 R192�14 are automat-
ically segmented into shared and private parts based on the
derived ARD weights wY ;wZ

� �
. Here, the shared dimensions of

the latent variable model face illumination variations, while the
private part controls face appearance and, accordingly, achieves
morphing. In our experiments on the Yale database, the shared
part of the latent variable generally consists of the dimensions
1;2;3f g, whilst the private part tends to be the dimensions
8;10f g or {5,14}. However, this is not always the case, and these
may vary depending on the specific datasets. As explained in Sec-
tion 3, the ARD weights directly determine the shared and private



Fig. 6. Face illumination modeling effects. Six modeling examples from the Multi-PIE dataset are shown, and every example consists of two rows for demonstration purposes.
For each example, its initial status without illumination effects is displayed in the top row (denoted as Init). The illumination modeling result is shown in the bottom row
(denoted as Res). The illumination modeling effects of our method in the bottom rows are very close to the ground truth.
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dimension selections. The scalar d introduced in Section 3 is empir-
ically set at 0.005. This ensures that only the private dimensions
with higher ARD weights are selected, while the other insignificant
private dimensions are neglected. Similarly, the above procedure is
also applicable to the Multi-PIE face database.

First, illumination modeling of the Yale and Multi-PIE databases
was performed using five different methods: Manifold Relevance
Determination (MRD) [9], Gaussian Process Latent Variable Model
(GPLVM) [27], Bayesian Gaussian Process Latent Variable Model
(BGPLVM) [45], Deep Gaussian Process (DeepGP) [10] and Harmo-
nized Multimodal Learning With Gaussian Process Latent Variable
Models (hmGPLVM) [40]. MRD is mentioned above, and GPLVM
aims to project the high dimensional data into low-dimensional
latent variables. After obtaining the latent variables, the face image
illumination can be modeled by sampling certain dimensions in
the latent subspace and mapping them back to the observed face
data space. A fully Bayesian model was then proposed based on
GPLVM, namely BGPLVM. Since BGPLVM contains non linear terms
that render the integration over latent variables intractable, the
252
variational inference was adopted here to compute the objective
function. DeepGP built up multiple latent spaces hierarchically.
hmGPLVM developed a novel learning scheme called Harmoniza-
tion to learn the latent variables shared by two views. Note that
GPLVM, BGPLVM and DeepGP are single view-based modeling
methods and are unable to obtain the dimensions that depict the
illumination alone. For GPLVM, BGPLVM and DeepGP, we alter
the same dimensions on latent variables as the shared subspace
obtained by our proposed model. Meanwhile, hmGPLVM was
exploited for cross-modal retrieval task but we used it to synthe-
size images by projecting the latent variables back to observed data
space.

The effects of illumination variation modeling by altering
shared dimensions are illustrated in Fig. 5 and Fig. 6. hmGPLVM
clearly perform worst because it was originally developed for
cross-modal retrieval task. Meanwhile, GPLVM, BGPLVM and
DeepGP exploit single-view training. Hence, the information about
the latent variable dimensions is unlikely to be automatically seg-
mented and will be blended. When the face image variations



Fig. 7. Face morphing effects. Examples of face morphing from Yale dataset are illustrated. To achieve the morphing effect, only the private dimensions of shared latent
variables are changed from target to reference faces. Our method is clearly capable of performing face morphing.
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include subject appearance and illumination conditions, these
methods fail to capture the illumination characteristic alone. Fur-
thermore, it can be seen that MRD cannot model the faces under
dark illumination conditions. In comparison with lit faces, the
shaded faces do not have many features or saliency. Accordingly,
the latent subspace generated by MRD cannot cover the informa-
tion of these shaded faces. Instead, by employing the DE prior
and performing training from multiple views, our method robustly
models more face illumination conditions.

We next demonstrate face morphing using our proposed model
(Fig. 7 and Fig. 8). It can be seen that changing the values of the
selected private latent subspace only alters the face appearance.
Given two faces, the indices of dimensions from their private space
are supposed to be the same. Therefore, by gradually altering the
values on private dimensions from the target face to the reference
face, face morphing is achieved. Our proposed model clearly per-
forms well on both color and black-and-white face images. Fur-
thermore, our method is capable of performing face morphing
between distinct ethnic backgrounds. In contrast, the other meth-
ods have the following limitations: 1) the face appearance is
blurred, and 2) the final face appearance created by face morphing
does not look like the ground truth. The root cause of these out-
comes is that the existing methods are unable to thoroughly and
completely model the face appearance, especially for the dataset
containing a large variety of ethnicities. Our approach overcomes
these limitations by exploiting the DE prior. see Table 1.
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We exploit structural similarity (SSIM) and peak signal-to-
noise ratio (PSNR) for quantitative evaluations with the other
three methods. Here, PSNR and SSIM respectively measure the
quality of modeled faces, and the similarity between modeled
faces and their ground truth. In the Yale database, there are
30 subjects, and each Y and Z view contains 15 subjects. Since
the view Y is intended to help view Z segment the latent space,
we only perform evaluations on the 15 subjects in the view Z.
In illumination modeling, each subject in the view Z has 64
illumination conditions, from which we select the fully lit face
as the initial starting face for modeling. Then, there should be
63 SSIM and PSNR values for a single subject. We average all
63 SSIM and PSNR values to use a single average SSIM and
PSNR value for a subject, giving rise to 15 SSIM and PSNR val-
ues for the illumination modeling results for the Yale database.
Likewise, for the face morphing evaluation, we take two consec-
utive subjects in the Yale face database each time from view Z.
For two consecutive subjects, we perform face morphing on
every two faces with the same illumination conditions. Hence,
we have 64 face morphing results for a pair of subjects. Simi-
larly, the SSIM and PSNR evaluations are performed as for the
illumination modeling evaluation. The same process is then
repeated for the evaluation of the Multi-PIE database. As shown
in Fig. 9, Fig. 10 and Table 2, our proposed method significantly
outperforms the others on both the Yale and Multi-PIE
databases.



Fig. 8. Face morphing effects. Examples of face morphing fromMulti-PIE database are illustrated. To achieve the morphing effect, only the private dimensions of shared latent
variables are changed from target to reference faces. Our method is clearly capable of performing face morphing.

Table 1
A summary of symbols in Section 4.

Y 2 Rn�p Observed data of first view y:;j is the jth column of Y (n rows and p columns)

Z 2 Rn�p Observed data of an analogous view z:;j is the jth column of Z
j ¼ Y; Zf g Two views Denote observed data Y ; Z as a whole
X 2 Rn�q Shared latent variables of observed data Y; Z xi;: is the ith row of X (n rows and q columns)

F Y ;Zf g 2 Rn�p Unnoisy version of Y ; Z f :;j is the jth column of F

U Y ;Zf g 2 Rm�p Inducing points Reduce model training time

A small representative subset of Y ; Z u:;j is the jth column of U

X Y ;Zf g 2 Rm�q Pseudo-inputs Latent variables of inducing points U

X Y ;Zf g
i;: is the ith row of pseudo-inputs X

K Y ;Zf g
ff

Covariance matrices its element is computed by covariance function (Eq. 9)

K Y ;Zf g
uu

Covariance matrix Computed using pseudo-inputs X Y;Zf g
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5.2. 3D chairs dataset

The 3D chair dataset 3 contains 1393 3D CAD models of different
chairs. Meanwhile, each chair has 62 different viewpoints. For exper-
imental validation, we randomly select 20 different chairs from the
dataset. Since each chair has 62 viewpoints, we have 1240 images
in total for evaluation. Moreover, the 20 sets of chairs were divided
into 5 groups each of which contains 4 chairs. Then, each view of our
method DSLVM has 2 chairs. By doing this, our method is able to sep-
arately extract chair viewpoint and appearance in an unsupervised
manner. Here, the dimension of latent variables is set as 7.
3 https://www.di.ens.fr/willow/research/seeing3Dchairs/
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In Fig. 11, an initial chair image is given. Then, a number of chair
images with different viewpoints are used to provide viewpoint
information for new 3D chair synthesis. More specifically, given a
query chair with a certain viewpoint, the proposed model is sup-
posed to extract its viewpoint information and thus generate a
new chair of initial chair image with the same viewpoint as query
chair, but does not change its appearance. It is clear that our pro-
posed method DSLVM outperformed the others due to the
exploitation of diversity encouraging prior.

In addition to qualitative comparison, we also performed a
quantitative evaluation with SSIM and PSNR. Specifically, given a
chair image, we only altered its shared part of latent variables to
change its viewpoint. Since we have 62 viewpoints for each chair
image, there were 61 images (excluding initial one) synthesized

https://www.di.ens.fr/willow/research/seeing3Dchairs/


Fig. 9. Illustration of the quantitative evaluations on the Yale database. Top row: evaluations of face illumination modeling. Bottom row: evaluations of face morphing. The
evaluated results are displayed with PSNR and SSIM values. The red lines indicate the results of our proposed method, which indicate that our approach substantially
enhances the accuracy of illumination modeling and face morphing.
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after changing the shared parts. Then, we used these synthesized
images and their ground truth for SSIM and PSNR evaluations. Evi-
dently, our method outperformed others in terms of SSIM and
PSNR (as shown in Table 3).

6. Discussion

In the experiments, we test our method and baselines on three
datasets for face illumination modelling, face morphing and 3D
chair viewpoint modelling. Overall, our method performs best
qualitatively and quantitatively. Unsurprisingly, the single latent
space based models GPLVM, BGPLVM and DeepGP cannot segment
the latent variables at all so they are unable to extract the attri-
butes from image appropriately. Besides, the shared latent variable
models are usually exploited for image classification, audio-visual
speech recognition, image captioning and cross modal retrieval.
Here, the novel shared latent variable model hmGPLVM we used
is for cross model retrieval. Therefore, it can be seen that
hmGPLVM cannot synthesize images properly and accordingly fail
to extract attributes from images.
255
Our method, considering the diversity prior, can cover more
diversified attribute variations and discriminatively separate the
attributes. In contrast, MRD without the diversity prior generally
focuses on certain aspects of the attributes and thus ignores other
aspects. For example, the latent variables generated by MRD tend
to pay more attention to the facial appearance attribute rather than
to the facial illumination. As a result, some face images synthesized
by MRD in Figs. 4–6 have high contrast and look clearer (these are
more relevant to face appearance). However, compared with our
method, MRD falls short in separating the attributes and thus the
images synthesized by it are generally distinct from the ground
truth (as shown in Figs. 4, 5, 6, 7, 8 and 11).

Here, GPLVM, BGPLVM, MRD and our method primarily opti-
mized the latent variables, parameters of the kernel function and
variational distributions during the computation. Consequently,
the computational complexities of these four methods were simi-
lar. Although our method defined a new diversity prior, the param-
eters of this prior for optimization are limited. As a result, the
inclusion of the diversity prior did not significantly increase the
computation time. During the optimization, DeepGP and



Fig. 10. Illustration of the quantitative evaluations on the Multi-PIE database. Top row: evaluations of face illumination modeling. Bottom row: evaluations of face morphing.
The evaluated results are displayed with PSNR and SSIM values. The red lines indicate the results of our proposed method, which indicate that our approach substantially
enhances the accuracy of illumination modeling and face morphing.

Table 2
Comparison of face illumination modeling and face morphing performances on the Yale and Multi-PIE databases.

Face Illumination Modeling Face Morphing

Yale Face Multi-PIE Yale Face Multi-PIE

Avg SSIM Avg PSNR Avg SSIM Avg PSNR Avg SSIM Avg PSNR Avg SSIM Avg PSNR
(higher is better) (higher is better)

DSLVM 0.76 25.92 0.86 23.15 0.75 25.03 0.88 24.40
hmGPLVM 0.48 13.16 0.25 9.29 0.51 14.55 0.08 8.02
DeepGP 0.51 16.10 0.77 18.55 0.51 17.34 0.60 15.97
MRD 0.51 16.69 0.73 17.46 0.59 20.14 0.83 21.50
GPLVM 0.58 20.33 0.77 20.38 0.55 18.11 0.68 17.19
BGPLVM 0.61 20.57 0.76 20.29 0.56 18.21 0.69 17.39
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hmGPLVM have similar types of parameters as GPLVM, BGPLVM
and MRD. However, DeepGP exploited multi-layered latent spaces
to build up the model and hmGPLVM defined a new Harmonization
learning scheme, which substantially increased the number of
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parameters for computation. As a consequence, DeepGP and
hmGPLVM required a longer computation time.



Fig. 11. Synthesis of 3D chairs with reference to the query images of different viewpoints (a). The Initial Images were re-rendered respectively by methods (b) GPLVM, (c)
BGPLVM, (d) MRD and (e) DeepGP and (f) hmGPLVM and (g) DSLVM with reference to the viewpoints of the query images.
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Table 3
Evaluation on the chair images from 3D Chair dataset.

3D Chair Dataset

Avg SSIM Avg PSNR
(higher is better)

GPLVM 0.862 17.131
BGPLVM 0.866 17.379
MRD 0.893 20.161
DeepGP 0.894 18.518
hmGPLVM 0.014 0.437
DSLVM 0.947 28.634
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7. Conclusion

This paper investigates unsupervised characteristics extraction
and modelling by jointly exploiting multi-view learning and the
diversity property under the shared latent variable model frame-
work. Unlike traditional single view-based modeling, the intro-
duced multiple views can handle the variabilities that exist in
image attributes. Specifically, multi-view learning helps automati-
cally segment the latent space into the shared and private latent
subspaces, where the shared subspace refers to the dimensions
of the latent variable and aims to model variations of common
attributes. The private subspace is the remaining dimensions of
the latent variable that control the other attributes. Additionally,
a diversity encouraging prior is introduced to capture distinguish-
ing characteristics from the observed images. This renders our
approach superior for accurately modeling variations of object
attributes under more complex and varied circumstances.

Our model define a new objective function with diversity
encouraging priors. However, since the objective function is ini-
tially not tractable, the variational inference is employed to
approximate it by deriving a lower bound. Then, the solution is
obtained bymaximizing the derived lower bound. To test the effec-
tiveness and robustness of our proposed model, we perform exper-
iments on three different datasets: 3D Chair dataset with various
chairs from different viewpoints, Multi-PIE (color) and Yale
(black-and-white) face databases that capture individuals from dif-
ferent countries under a large range of lighting positions. The
experiments show that our model is applicable to extract charac-
teristics of a wide range of objects including chairs, faces, etc.
Despite the effectiveness and robustness of our approach for image
characteristics extraction, it is limited to separate and model two
attributes (such as face appearance, illumination) out of the image.
In the future, we aim to upgrade our model so that it can extract
multiple characteristics out of an image at the meantime.
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