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Clinical AI has made enormous progress recently with some algorithms performing compara-

bly to humans for a wide range of diagnostic and therapeutic applications [1,2]. Despite this

progress, evaluating AI performance until recently has typically focussed on perfecting the

accuracy of the AI. That is, developers and practitioners pay attention to computational met-

rics such as sensitivity, specificity, and AUC as the main performance indicators. In response,

there has been a push to shift the focus on more meaningful clinical outcomes, as excellent

technical performance on a task might not offer tangible real-world benefits.

Understanding how best to fit AI into clinical workflows and how humans and AI best

come together to deliver best clinical outcomes–without interfering with the clinicians’ work

[3], disrupting clinical protocols [4], or introducing new risks [5]–represents the next research

frontier. There is a chain of events that must occur between use of an AI and its real-world

impact [6]. We argue that user interaction is a critical missing links between computational

performance and clinical outcomes [7]. How often an AI is used and how well users can har-

ness its benefits are critical to converting the tremendous potential of AI into clinical reality.

User interaction in this context refers to the harmonious and complementing fit between a

human and AI, and the roles and tasks that each side takes [8]. In other words, our attention

shifts from the AI per se to its affordances to support a collaborative human-AI team. There is

no canonical design for such interaction, as the degree to which an AI is subordinate to

human decision-making, or is allowed to operate autonomously, is task- and context-depen-

dent [9]. An AI can take over mundane and labour-intensive tasks, such as image processing,

signal analysis, clinical text processing, or biomarker identification. On the other hand, the

interpretation of information surfaced by the AI, as well as diagnostic and therapeutic deci-

sions, will likely be left with a human clinician.

In this paper, we turn our attention to user interaction factors that may hinder the transla-

tion of clinical AI, no matter how accurate it is. For this, we treat AI as a black box, to focus

just on how human clinicians can best harness it. Thus, we leave explainablity beyond the scope

of discussion because it affects the design of AI. While a range of interaction factors could be

considered, the following three seem particularly important because of their potential to

improve the adoption and deployment of clinical AI and, consequently, improve clinical care.

1. Minimal-demand interaction. Cognitive load on clinicians is often high, partly due to the

limited usabilty of digital technologies like electronic records, which consume time and

attention that would otherwise be allocated to patients [10]. If not designed properly, we

can realistically expect clinician interaction with AI to further aggravate this problem.

Thus, clinical AI needs not just to be accurate, but also usable. Getting there will likely

require emphasis on features like intuitive and easy-to-learn interfaces, unambiguous
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information presentation, easy ways to navigate various interfaces and options, high user

satisfaction and experience, adaptability of the interface and service, etc. The lower the cog-

nitive resource required to interact with clinical AI, the higher the chance for its effective

use.

2. Innovative interaction paradigms. Stepping beyond keyboard-and-screen interaction, one

can imagine more convenient interaction paradigms with AI fuelled by sensing technolo-

gies and ambient computing. Natural interaction–for instance, using covert carefully

designed voice prompts, gestures, or gaze–may facilitate hands-free information access, not

disrupting the flow of patient conversation and treatment [11]. Gaze-driven interaction

seems particularly compelling, as this will pave the way for hand-free and seamless clinician

support. Combined with head-mounted displays, these are intriguing means to streamline

interaction and improve consultation. Many clinicians may prefer to access AI through

existing clinical system like electronic health records. Hence, better integration of such

innovative interaction paradigms into the current clinical protocols is an essential step

towards their adoption.

3. Intelligent interaction. Adding intelligence to human-AI interaction offers an alternative

path to enhance AI use. This may upgrade the current clinician-driven interaction into a

mixed-initiative interaction, where some AI tasks are performed proactively, without being

explicitly requested by the clinician [12]. Alerts are a common example and, in more

advanced scenarios, one can imagine adaptive information presentation, prioritisation of

electronic communication, contextual evidence search, or automated population of medical

records. If implemented gradually, in a way that keeps the clinician in control, such intelli-

gent interactions can reduce the time and effort required to navigate vast volumes of infor-

mation accessible to medical AI and streamline the use of the AI. The imperative for

rigorously evaluating such proactiveness is evident, and needs to happen not just at initial

certification, but also as systems are deployed.

We believe that getting the interaction between clinicians and AI right is the next challenge

for healthcare AI developers. There is a huge and rich literature to tap into, but the peculiarities

and complexities of the clinical workplace likely mean that there will be no one-size-fits-all

solution. Rather a principled and context sensitive approach, taking into consideration the

needs and view-points of various stakeholders, is needed. This has been done in a bottom-up

manner for some clinical tasks [13] and specialisations [14], while a holistic centralised attempt

for a systemic change may be more appropriate. Critically, we must recognise that beyond get-

ting the interaction right, our goal is not to do so at the expense of other tasks clinicians per-

form, so to maximise practical benefits of the AI and improve the quality of patient care.
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