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ABSTRACT
Recommender systems are increasingly becoming an inte-
gral part of on-line services. As the recommendations rely
on personal user information, there is an inherent loss of pri-
vacy resulting from the use of such systems. While several
works studied privacy-enhanced neighborhood-based recom-
mendations, little attention has been paid to privacy pre-
serving latent factor models, like those represented by ma-
trix factorization techniques. In this paper, we address the
problem of privacy preserving matrix factorization by utiliz-
ing differential privacy, a rigorous and provable privacy pre-
serving method. We propose and study several approaches
for applying differential privacy to matrix factorization, and
evaluate the privacy-accuracy trade-offs offered by each ap-
proach. We show that input perturbation yields the best
recommendation accuracy, while guaranteeing a solid level
of privacy protection.
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1. INTRODUCTION
In the last decade, recommender systems have become

a fundamental tool in on-line services. One of the domi-
nant recommendation approaches is collaborative filtering
(CF), which can be partitioned into two families. Neighbor-
hood methods learn correlations between items or users [5]
and generate predictions based on their similarity. In con-
trast, latent factor models [12] derive models that charac-
terize users and items with respect to a set of latent factors.

Matrix factorization (MF) methods [12] have evolved as
the state-of-the-art latent factor technique. There, the rat-
ing matrix is decomposed into two low-dimensional matrices,
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capturing latent factors of users and items, respectively. MF
has been shown to provide a higher predictive accuracy than
the neighborhood methods, it is computationally cheaper,
and easier to extend, for example, to consider temporal ef-
fects or ratings with varying levels of confidence.

Recommender systems rely on personal user information
and raise privacy concerns related to the misuse of the col-
lected data for inferring personal information [10]. The
raw user ratings, even if anonymized, pose a privacy risk:
the data can be de-anonymized using information obtained
from other sources and then be used to infer sensitive in-
formation [18], e.g., gender, political views, or sexual ori-
entation. Moreover, it was shown that even without direct
access to user ratings, personal user information could be
inferred from recommendations provided by the system to
other users [2]. These inherent privacy risks of recommender
systems motivated research of privacy-preserving recommen-
ders [8, 10]. However, this body of research has mainly fo-
cused on neighborhood methods, with limited work on pri-
vacy preserving latent factor recommenders [14,15].

In this paper, we approach the problem of privacy pre-
serving MF by utilizing the concept of differential privacy
[7], a rigorous and provable approach to privacy in statis-
tical databases, previously applied to neighborhood based
CF [13, 14]. While differential privacy sets constraints on
privacy preserving computations, these computations can be
carried out in various ways, which result in different privacy-
accuracy trade-offs. We propose a number of approaches to
alter MF, such that it maintains differential privacy guaran-
tees. We study the privacy guarantees that can be achieved
by the following approaches: (i) obfuscating the input data
before applying the MF algorithm; (ii) adding noise within
a stochastic gradient descent solver of the MF problem; and
(iii) obfuscating the output of an alternating least squares
MF mechanism. For these approaches, we provide a theoret-
ical analysis of the (calibrated) noise level introduced in the
algorithms, and empirically evaluate the resulting privacy-
accuracy trade-offs by observing the effect of the noise on
the computed rating predictions.

The contributions of our work are three-fold. We provide
an analysis and evaluation of three differentially private
MF approaches. The evaluation demonstrates that the
best performing method, yielding the highest predictive ac-
curacy while still ensuring a solid level of privacy protection,
is input obfuscation. We further conduct an investigation of
the design choices that affect the privacy-accuracy trade-
off, showing the impact of the data pre-processing, the de-
pendencies between the characteristics of a dataset (size,
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density, number of user/item ratings) and the choice of the
algorithm, and the influence of the privacy constraints on pa-
rameter tuning. Finally, we compare the accuracy of the
predictions generated by differentially private MF with that
of privacy-preserving neighborhood based methods. Our
experiments demonstrate that neighborhood methods are
more resilient to the noise introduced by the differential
privacy constraints, and are more appropriate when high
levels of privacy protection are required. However, when
weaker privacy levels are acceptable, privacy preserving MF
techniques achieve higher levels of predictive accuracy than
neighborhood based methods.

2. RELATED WORK
Personalization and recommender systems inherently bring

to the fore the issue of privacy [8, 11]. Privacy hazards in
recommender systems are aggravated by the fact that gen-
eration of quality recommendations requires large amounts
of user data. For instance, the accuracy of CF recommen-
dations is correlated with both the number of users in the
system and the number of their ratings [5]. Hence, there is
a trade-off between the accuracy of recommendations pro-
vided to users and the degree of user privacy.

We divide prior works on privacy enhanced recommender
systems into two categories: distributed recommenders and
data modification techniques. In the distributed group, user
profiles are stored across several repositories. Canny pro-
posed a decentralized storage of user profiles, which requires
the adversary to compromise multiple systems when attack-
ing a distributed recommender [3]. Vallet et al. [17] have
shown how MF techniques can be leveraged to allow a cen-
tral server to provide accurate recommendations without re-
tention of user data, storing it on the client side instead.

Data modification techniques include approaches such as
encryption [15], obfuscation [1], and randomization [16]. Po-
lat and Du proposed to add uncertainty to user ratings
through randomized data perturbation [16]: users substitute
ratings in their profiles with modified ratings, resembling
the real ones. Hence, if user data is exposed to an adver-
sary, only the modified ratings will leak. Nikolaenko et al.
showed how secure multiparty computation could be utilized
in MF [15], so that the recommender learns only the item
profiles, but not the user ratings. Such techniques, however,
do not prevent the inference of user ratings from the output
of MF, and are orthogonal to the techniques studied in this
paper, as they address a different threat model.

Calandrino et al. [2] studied the privacy risks imposed by
recommenders, such as Hunch, Last.fm, and Amazon. In
item-to-item CF, when a user makes a transaction involving
an item, this results in an increase of the similarity of the
item to other items in the user’s transaction history. There-
fore, the attacker can track the similarity lists of items asso-
ciated with a target user, and identify new items in the lists.
When the same item appears in a number of tracked lists,
the attacker can infer that the item was added to the target
user’s record. The authors pointed to differential privacy as
a possible solution to this problem.

Differential privacy has drawn much research attention;
it makes no assumptions about the adversary’s background
knowledge and computation power, and provides formally
provable privacy guarantees [7]. To the best of our knowl-
edge, only two works have investigated the application of

differential privacy to recommender systems, although not
in the immediate context of MF.

Machanavajjhala et al. studied the problem of privacy-
preserving social recommendations on the basis of a graph
linking between users and items, e.g., items purchased by
users [13]. A utility vector derived from the graph captures
the utility of each item for the target user, and the goal is to
induce a probability distribution over the items, such as to
maximize the user’s utility, while keeping the vector private.
It was found that good recommendations were achievable
only under weak privacy parameters, or only for a small
fraction of users.

McSherry and Mironov applied differential privacy to CF
[14]. They used the Laplace mechanism to compute a differen-
tially-private item-to-item covariance matrix, which was used
to find neighbors and compute SVD recommendations. Their
solution involved breaking the recommendation process into
a learning phase, in which the private covariance matrix was
derived, and a recommendation phase, in which the pre-
dictions were computed. In contrast, we consider direct
privacy-preserving derivation of the latent factor models.
Overall, our work explores additional approaches beyond
those investigated in [14], and compares their performance.

3. PRELIMINARIES

3.1 MF Recommendations
The input to MF is typically a sparse rating matrix Rn×m,

containing the ratings of n users for m items. Each matrix
element rui reflects the rating of user u for item i. MF fac-
torizes Rn×m into two latent matrices of a lower dimension
d: user-factor matrix Pn×d and item-factor matrix Qm×d.
The factorization is done such that R is approximated as a
product of P and Q, i.e., each known rating rui is approxi-
mated by r̂ui = pu · qᵀi . To obtain P and Q, MF minimizes
the regularized squared error:

min
P,Q

∑
rui∈R

[
(rui − puqᵀi )2 + λ(||pu||2 + ||qi||2)

]
, (1)

where λ regularizes the factors and prevents overfitting.
Two common ways to solve the resulting non-convex op-

timization problem are stochastic gradient descent (SGD)
and alternating least squares (ALS). In SGD, the factors are
learned by iteratively evaluating the error eui = rui − puqᵀi
for each rating rui, and updating the user and item vectors
by taking a step in the direction opposite to the gradient of
the regularized loss function:

pu ← pu + γ(euiqi − λpu) , (2)

qi ← qi + γ(euipu − λqi) .

The constant γ determines the rate of minimizing the error
and is often referred to as the learning rate.

In ALS, the optimization problem is solved iteratively. In
each iteration, one latent matrix (say, P ) is fixed, resulting
in a convex optimization problem, where the solution (for Q)
can be found efficiently. Then, the other matrix (Q) is fixed,
and the optimization problem is solved again (this time for
P ). These steps are repeated until convergence.

3.2 Differential Privacy
Differential privacy is based on the principle that the out-

put of a computation should not allow inference about any
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particular record in the input [7]. This is achieved by re-
quiring that the probability of any computation outcome is
insensitive to small input changes. We denote two datasets
A and B as adjacent, A ≈ B, if they are identical in all
records but one. Formally, there exist a user u and an item
i such that A = B \ {rui} ∪ {r′ui}, where r′ui and rui are the
ratings that u assigned to i in A and B, respectively. The
guaranteed privacy level is measured by a parameter ε. For-
mally, a randomized computation K maintains ε-differential
privacy if for any two datasets A ≈ B, and any subset S of
possible outcomes in Range(K),

Pr[K(A) ∈ S] ≤ exp(ε)× Pr[K(B) ∈ S] , (3)

where the probability is over the randomness of K. Low
values of ε correspond to a high degree of privacy. Setting
the bounds for the acceptable value of ε is an open question.
In the literature, privacy settings of ε = ln 2 or ε = ln 3
are considered as providing acceptable levels of privacy, al-
though Dwork suggested that in some cases much higher
values of ε could provide meaningful guarantees [6].

A common way to obtain differential privacy is by ap-
plying random noise to the measurement. The amount of
noise added depends on the L1-sensitivity of the evaluated
function, which is the largest possible change in the mea-
surement given a change in a single record in the dataset.
In general, the Lk-sensitivity of a function g is given by:

Sk(g) = max
A≈B

||g(A)− g(B)||k , (4)

where || · ||k denotes the Lk-norm.
The Laplace mechanism [7] obtains ε-differential privacy

by adding noise sampled from Laplace distribution, with
a calibrated scale b. The probability density function of
Laplace distribution with mean 0 and scale b (x ∼ Laplace(b))
is fb(x) = 1

2b
exp(− |x|

b
). Given a function g : D → Rd, the

following computation maintains ε-differential privacy [7]:

K(x) = g(x) + (Laplace(S1(g)/ε))d . (5)

For example, consider the function COUNTc(A), which
counts the number of records in dataset A that satisfy condi-
tion c. It has sensitivity 1, since changing a single record af-
fects the count by at most 1. Hence, K(A) = COUNTc(A)+
Laplace(1/ε) maintains ε-differential privacy. Consider also
the function SUM(A), where ai ∈ [0,Λ]. It has sensitivity
Λ, which is the maximal change in the sum by changing
one element of A. Hence, K(A) = SUM(A) + Laplace(Λ/ε)
maintains ε-differential privacy.

We also rely in this work on the K-norm mechanism [9],
which allows to calibrate noise to the L2-sensitivity of the
evaluated function. Given a function g : D → Rd, the com-
putation K(x) = g(x) + rα maintains ε-differential privacy,
where r is a d-dimensional vector uniformly sampled from a
d-dimensional sphere with radius 1, and α ∼ Γ(d, S2(g)/ε).

4. DIFFERENTIALLY PRIVATE MF
Differential privacy sets the conditions that should be

maintained to preserve privacy, but within these constraints
it is often possible to implement various mechanisms that
evaluate the same computation, resulting in different privacy-
accuracy trade-offs. Considering the stages of the MF pro-
cess, we highlight a number of possible approaches for adding
differentially private noise, as shown in Figure 1.

SGD	  MF	  Solver:	  
for	  each	  rui,	  if	  	  rui	  >0	  compute	  

	  eui	  	  =	  	  rui	  –	  (qT	  pu)	  
and	  update	  factors:	  

	  pu	  =	  	  pu	  +	  γ	  (eui	  qi	  -‐	  λ	  pu)	  
qi	  	  =	  	  qi+	  γ	  (eui	  pu	  –	  λ	  qi)	  

	  	  
User	  
matrix	  

Item	  
matrix	  

Ra@ng	  
matrix	  rui	  

Predic@on:	  
qiT	  pu	  

Output	  
perturba@on	  

Gradient	  
perturba@on	  

Input	  
perturba@on	  

ALS	  with	  
output	  

perturba@on	  

Recommendation 

Matrix Factorization 

User input data 

ALS	  MF	  Solver:	  
Fix	  P:	  Least	  square	  
op@miza@on	  of	  Q	  
Fix	  Q:	  Least	  square	  
op@miza@on	  of	  P	  

Figure 1: Various noise application points in regards to the
input, output and the solver within the MF mechanism

Input Perturbation. The original MF input ratings are
perturbed with a calibrated noise, and then the algorithm
is trained using the noisy input ratings. Since input per-
turbation is performed before training the recommender, it
can be followed by any recommendation algorithm, and in
particular by (any variant of) MF.

In-process Mechanisms. In this approach, the algo-
rithms used to decompose the rating matrix R into the la-
tent matrices P and Q are adapted to maintain differential
privacy. We focus in this work on two MF algorithms, and
propose their differentially private variants:

SGD. In the training process of MF with SGD, in each
iteration, the gradient of the regularized loss function deter-
mines the direction of the update and its magnitude. In the
gradient perturbation approach the gradient is perturbed
with noise in each iteration.

ALS with Output Perturbation. In each step of ALS, two
optimization problems are solved to update the matrices P
and Q. These empirical risk minimization problems can be
solved in a differentially-private manner using the techniques
proposed in [4]. In particular, we apply the output pertur-
bation approach to obtain noisy versions of P and Q.

Output Perturbation. In this approach, a non-private
MF algorithm is executed, and then the resulting latent fac-
tors are perturbed to maintain differential privacy. Unfortu-
nately, the optimization problem in MF is non-convex, and a
small change in the input could lead to a large change in the
factors. Consequently, the sensitivity of the optimization
problem would require introducing large noise, potentially
resulting in poor utility.

Hence, in this work we restrict the evaluation to three vari-
ants of differentially private MF—input perturbation, SGD
perturbation, and ALS with output perturbation—and do
not consider the output perturbation approach, where noise
is added to the latent factors, after a non-private MF. We
first outline the data pre-processing steps that were taken
before applying these approaches. For the pre-processing,
we utilize the private versions of the following aggregate val-
ues, based on the training dataset (will be described in detail
in Section 5.1): global average GAvg(R) – average of all the
ratings for all items; item average IAvg(i) – average rat-
ing for item i; and user average UAvg(u) – average rating
of user u. We will now describe the three aforementioned
differentially private MF approaches.

4.1 Private Preprocessing and Global Effects
Prior to applying differential privacy to MF, we prepro-

cess the inputs as in [14]. A notable exception is that we
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Algorithm 1: Evaluation of item averages

Input:
R = {rui} – ratings of n users for m items,
βi – stabilization parameter,
ε1 – global average privacy parameter,
ε2 – item average privacy parameter

Output:
Item averages IAvg(i)

1: GAvg =
(
∑

R rui)+Laplace(∆r/ε1)

|R|
2: for j = 1 to m do
3: Let Rj = {rui ∈ R|i = j}

4: IAvg(j) =
(
∑

Rj
rui)+βi·GAvg+Laplace(∆r/ε2)

|Rj |+βi
5: Clamp IAvg(j) to [rmin, rmax].

Algorithm 2: Evaluation of users effects

Input:
R = {rui} – ratings of n users for m items,
βu – stabilization parameter,
ε1 – global average privacy parameter,
ε2 – user average privacy parameter

Output:
User averages UAvg(u)

1: Let R′ = {rui − IAvg(i)|rui ∈ R}
2: GAvg′ =

(
∑

R′ r′ui)+Laplace(∆r/ε1)

|R′|
3: for v = 1 to n do
4: Let Rv = {r′ui ∈ R′|u = v}
5: UAvg(v) =

(
∑

Rv
r′ui)+βu·GAvg′+Laplace(∆r/ε2)

|Rv|+βu
6: Clamp UAvg(v) to [−2, 2]

incorporate the user averages in rating predictions, as this
allows to derive more accurate predictions when using MF.
The preprocessing consists of the following three steps.

Firstly, we compute the (differentially-private) average item
ratings according to the process described in Algorithm 1.
We add a number of fictitious ratings βi with the global av-
erage GAvg to stabilize the item averages—this limits the
effect of noise for items with few ratings, while only slightly
affecting the average for items with many ratings. If the
added noise causes an item average to go beyond the range
of ratings [rmin, rmax], the average is clamped to fit the range.
Differential privacy is guaranteed by adding noise calibrated
to the L1-sensitivity of ratings, given by ∆r = rmax − rmin.

Secondly, we follow the same technique to compute the
user averages, as outlined in Algorithm 2. The basis for the
user averages is the ratings after the item average discount-
ing. We stabilize the user effects with the addition of βu
fictitious ratings with the newly computed global average.
The user averages are also clamped to a bounded range (in
the experiments1 we used [−2, 2] for user averages).

Finally, the item and user averages are discounted from
the rating matrix R, and the resulting ratings are clamped.
The clamping reduces the L1-sensitivity of the computa-
tions conducted during the MF process, and results in a

1In the evaluation we used the MovieLens dataset with the
rating scale of 1 to 5 stars.

Algorithm 3: Differentially Private Input Perturbation

Input:
R = {rui} – preprocessed user ratings,
d – number of factors,
λ – regularization parameter,
B – clamping parameter,
ε – privacy parameter

Output:
Latent factor matrices Pn×d and Qm×d

1: Let R′ = {rui + Laplace( ∆r
ε

)|rui ∈ R}
2: Clamp the ratings in R′ to the range [−B,B]

3: (P,Q) = min
P,Q

∑
R′

[(r′u,i − puqᵀi )2 + λ(‖qi‖2 + ‖pu‖2)]

4: return P and Q

lower magnitude of noise being introduced in the differen-
tially private computation. We denote the clamping param-
eter B (set to 1 in the experiments), i.e., rui ∈ [−B,B].
The pre-processed matrix R is passed to the MF algorithm
to derive the matrices P and Q. Predicted ratings are then
obtained through r̂ui = IAvg(i) + UAvg(u) + puq

ᵀ
i .

Differential privacy maintains the composability property:
if each computation in a series of computations is εi-differen-
tially private, then the overall algorithm is

∑
i εi = ε-differen-

tially private. Accordingly, the overall privacy budget ε is
divided between the computation of global averages, item
effects, user effects, and, lastly, MF. Note that it is possi-
ble to predict ratings using only the user and item averages,
r̂ui = IAvg(i) + UAvg(u), which is referred to as Global Ef-
fects (see Comparison Baselines in Section 5.1). This leads
to its differentially-private counterpart, as described in the
above three pre-processing steps. In this case, as MF is not
applied, the privacy budget is divided between three com-
putations: global averages, item averages and user averages.
We refer to this technique as Private Global Effects.

4.2 Private Input Perturbation
In input perturbation the Laplace mechanism is applied

directly to each input rating. Following data pre-processing,
the sensitivity of the inputs is ∆r = rmax − rmin = 2B, and
perturbing each rating with noise sampled from the distribu-
tion Laplace(∆r/ε) ensures ε-differential privacy.2 The noisy
ratings can then be clamped again, to limit the influence of
excessive noise. Algorithm 3 summarizes this process.

4.3 Private SGD
The gradient perturbation approach, outlined in Algo-

rithm 4, guarantees privacy throughout the MF process by
introducing noise in the SGD step in each iteration of the
algorithm. The error calculation conducted in each step is
carried out with the Laplace mechanism to maintain differ-
ential privacy, and consequently the SGD step maintains dif-
ferential privacy. Optionally, the noisy error can be clamped
to constrain the effect of noise (in our experiments we used
emax = 2). The number of iterations k should be known
in advance, so the noise introduced in each iteration is cal-
ibrated to maintain ε/k-differential privacy. Composability
ensures that the k iterations maintain the overall bound of
ε-differential privacy.

2Proofs of the differential privacy properties of algorithms
in Sections 4.2-4.4 are omitted due to space limitations.
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Algorithm 4: Differentially Private SGD

Input:
R = {rui} – preprocessed user ratings,
d – number of factors,
γ – learning rate parameter,
λ – regularization parameter,
k – number of gradient descent iterations,
emax – upper bound on per-rating error,
ε – privacy parameter

Output:
Latent factor matrices Pn×d and Qm×d

1: Initialize random factor matrices P and Q.
2: for k iterations do
3: for each rui ∈ R do
4: e′ui = rui − puqᵀi + Laplace(k∆r/ε)
5: Clamp e′ui to [−emax, emax]
6: qi ← qi + γ(e′ui · pᵀu − λ · qi)
7: pu ← pu + γ(e′ui · qᵀi − λ · pu)

8: return P and Q.

4.4 Private ALS with Output Perturbation
The basic idea of ALS is to alternately fix one of the la-

tent matrices P and Q, and optimize the regularized loss
function for the other matrix. Once one matrix is fixed, the
optimization problem becomes convex and can be solved an-
alytically. For example, once Q is fixed, the overall regular-
ized loss function can be minimized by considering for each
user u the following loss function defined over the subset of
ratings Ru = {rvi ∈ R|v = u}:

JQ(pu, R) =
[∑
Ru

(rui − puqᵀi )2
]

+ nuλ‖pu‖2 , (6)

where nu = |Ru|. Each user vector pu is then obtained by
solving the risk minimization problem

pu(R,Q) = arg min
pu

JQ(pu, R) . (7)

The problem of differentially private empirical risk min-
imization (ERM) was studied by Chaudhuri et al. [4]. An
adaptation of their techniques shows that the L2-sensitivity
of pu(R,Q) in Equation 7, is ∆pu = qmax∆r

nuλ
, where qmax is

the upper bound on the L2-norm of each row qi in Q. Simi-
larly, when fixing P and optimizing Q based on the regular-
ized loss function JP (qi, R) = [

∑
Ri

(rui−puqᵀi )2]+niλ‖qi‖2,

the L2-sensitivity of each row qi is pmax·∆r
λni

. For the pre-

processed ratings, we have ∆r = 2B, where B is the clamp-
ing parameter. Since we calculated the L2-sensitivity of the
user-vector pu and item-vector qi, the noise added to these
vectors is taken from the Gamma distribution.

Following the above analysis, Algorithm 5 outlines a dif-
ferentially-private ALS algorithm with output perturbation.
Similarly to the SGD approach, we calibrate the noise so
that each optimization problem is ε/2k-differentially private
and the overall ALS computation is ε-differentially private
due to composability.

5. EVALUATION
In this section, we present the results of the evaluation of

the proposed differentially private MF approaches.

Algorithm 5: Differentially Private ALS with Output
Perturbation

Input:
R = {rui} – preprocessed user ratings,
d – number of factors,
λ – regularization parameter,
k – number of ALS iterations,
ε – privacy parameter,
pmax – upper bound on ||pu||2,
qmax – upper bound on ||qi||2

Output:
Latent factor matrices Pn×d and Qm×d

1: Initialize random factor matrices P and Q.
2: for k iterations do
3: for each user u, given Q do
4: Sample noise vector b with pdf

f(b) ∝ exp
(
− ε·‖b‖2

2k
· nuλ
pmax·∆r

)
5: pu ← arg minpu JQ(pu, Ru) + b
6: if ||pu||2 > pmax then pu ← pu · pmax

||pu||2

7: for each item i, given P do
8: Sample noise vector b with pdf

f(b) ∝ exp
(
− ε·‖b‖2

2k
· niλ
qmax·∆r

)
9: qi ← arg minqi JP (qi, Ri) + b

10: if ||qi||2 > qmax then qi ← qi · qmax
||qi||2

11: return P and Q.

ML-100K ML-1M ML-10M
Users 943 6040 71567
Movies 1682 3952 65133
Density 6.3% 4.19% 0.21%
Average rating 3.5299 3.5816 3.5124
Variance of ratings 1.2671 1.2479 1.1245
Avg. ratings per user 106 165.6 139.7
Avg. ratings per item 59.4 253 153.5

Table 1: Statistical properties of the MovieLens datasets

5.1 Experimental Setting
We use in the evaluation the 100K, 1M and 10M Movie-

Lens datasets. Table 1 summarizes selected statistical prop-
erties of the datasets.

We use 10-fold cross validation3 to train and evaluate
the recommender system. We measure the accuracy of the
predicted ratings r̂ui using the Root Mean Square Error
(RMSE) metric (averaged over all the ratings), computed by

RMSE =
(∑

R(rui − r̂ui
)2
/|R|)

1
2 . Due to the possible dis-

crepancies in the introduction of noise, the reported RMSE
is averaged across multiple runs.

We compare the performance of the privacy-preserving
MF approaches against the following baselines:

Global average: the average rating is computed over the
entire training set, and used as the prediction for all the
ratings in the test set, i.e., r̂ui = GAvg(R). We treat the
global average RMSE as the upper bound for error.

Item average: the average rating for each item is com-
puted over all the available training item ratings, and used
as the prediction for all the ratings for that item in the test

3We used Matlab and, specifically, crossvalind.
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ML-100K ML-1M ML-10M
Parameter settings

Number of factors 3 5 7
Regularizer 0.06 0.045 0.03

Baseline RMSE
Global average 1.1256 1.1171 1.0604
Item average (IA) 1.0278 0.9795 0.9436
Global effects (GE) 0.9571 0.9161 0.8738
ALS 0.9198 0.8604 0.8013

Private Global Effects
IA ε-crossing 0.5 0.2 0.18

Input Perturbation (ISGD)
IA ε-crossing 2 0.9 0.7
GE ε-crossing 5 2.7 2.1

Stochastic Gradient Perturbation (PSGD)
IA ε-crossing 2 0.8 0.6
GE ε-crossing 20 8 5.5

ALS with Output Perturbation (PALS)
IA ε-crossing 2 0.8 0.6
GE ε-crossing 19 8 6

Table 2: Summary of the experimental settings and results.

set, i.e., r̂ui = IAvg(i). This baseline reflects the RMSE
score attainable without personalization.

Global effects: the average ratings IAvg(i) for each item i
and UAvg(u) for each user u are computed over the entire
training set. The item and user biases are both used when
predicting the test ratings, r̂ui = IAvg(i) + UAvg(u). We
treat this baseline as the most simple way to obtain person-
alization, and we consider RMSE scores below this baseline
to represent effective personalization.

Clean MF: ALS is executed to solve the MF problem with-
out any noise. These RMSE scores reflect the lower bound
for error attainable with no privacy constraints.

We use the item average and global effects baselines to
assess the privacy-accuracy trade-off offered by the private
approaches. To this end, we measure the values of the pri-
vacy parameter ε for which the RMSE scores attained by
each algorithm cross the RMSE scores of these baselines,
where low values of ε indicate that the algorithm can pro-
vide the same level of accuracy as the baseline with a low
cost in privacy. Thus, the focus is on the privacy-accuracy
trade-offs of the approaches, rather than on evaluating their
performance for certain values of ε. Also, we investigate
several factors that may affect the system performance.

5.2 Comparison of MF Approaches
In each experiment, given the overall ε-differential pri-

vacy constraint, we allocated 0.3ε to pre-processing. Out of
this, 0.02ε was used to compute the global averages (split
between the user and item average calculations), whereas
the user and item averages were computed with 0.14ε each.
The remaining privacy budget of 0.7ε was allocated to MF.
This distribution of the privacy budget is based on an offline
optimization, which is beyond the scope of the paper.

Where applicable, we bounded the L2-norm of the user
vectors to pmax = 0.4, and of the item vectors to qmax = 0.5.
In both the SGD and ALS experiments, we set the number
of iterations to k = 5. The number of iterations for input
perturbation was set to k = 20. Table 2 details several
other dataset specific parameters, which were set in an offline
optimization. We note that the selected number of factors
and the number of iterations were lower than typical for
these algorithms, to limit the amount of noise introduced by
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Figure 2: Differentially-private MF approaches

differential privacy. Table 2 shows also the baseline RMSE
scores measured for each dataset, and the values of ε for
which each approach crossed those baselines.

Figures 2a and 2b show the privacy-accuracy trade-offs
for all the approaches observed for the MovieLens-1M and
MovieLens-10M datasets, respectively.4 In addition to the
aforementioned baselines, the figures show the results for the
Input Perturbation approach followed by a non-private SGD
algorithm (ISGD), the Private SGD approach (PSGD), and
the Private ALS approach (PALS).

In general, the performance of all the approaches improves
with the size of the dataset. For example, ISGD crosses
the IA baseline for MovieLens-100K, MovieLens-1M, and
MovieLens-10M at ε = 2, ε = 0.9 and ε = 0.7, respectively.
This is not surprising; the larger the dataset, the more re-
silient it is to the noise introduced through differential pri-
vacy. Since the noise is calibrated to mask the effect of a
single rating, larger datasets provide a higher signal-to-noise
ratio, thereby allowing better performance with respect to
the baseline for any value of ε.

As expected, crossing of the IA is observed for lower val-
ues of ε than crossing of the GE baseline. This is explained
by the lower degree of personalization offered by IA, which is
achievable with higher levels of noise and, therefore, a higher
degree of privacy. For all the datasets, the IA crossing val-
ues of the approaches are similar, but there is a substantial
difference between the GE crossings. Specifically, the IA
crossings of PSGD and PALS are very close, and both are

4Results obtained for MovieLens-100K exhibit a similar
trend and are not shown, but are summarized in Table 2.
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Figure 4: The effect of factor vector L2-norm bounds

slightly lower than that of ISGD. However, the GE crossing
of ISGD is much lower than those of PSGD and PALS.

For example, consider the MovieLens-10M dataset. The
PSGD and PALS approaches both cross the IA baseline at
ε = 0.6, whereas ISGD crosses it at ε = 0.7. This is ex-
plained by the fact that the matrices P and Q in PALS and
PSGD are bounded with L2-norm bounds pmax and qmax.
Bounding the L2-norm provides a small improvement for
low values of ε and gives PALS and PSGD a slightly ear-
lier crossing. However, for higher ε, ISGD achieves a better
performance; it crosses the GE baseline at ε = 2.1, whereas
PSGD and PALS cross it at ε = 5.5 and ε = 6, respectively.
Similar trade-offs were observed also for other datasets.

5.2.1 Impact of pre-processing and L2-norm bounds
Figure 3 shows two variants of the PSGD approach, eval-

uated using the MovieLens-1M dataset: the RMSE curve
of PSGD extracted from Figure 2a and the curve of PSGD
with exactly the same parameters but with no data pre-
processing. Data pre-processing has a substantial effect on
the RMSE, as it reduces the sensitivity and the required lev-
els of noise—in particular for low ε, when the IA baseline
crossing is considered. Similar trends were observed also for
the PALS and ISGD approaches, and for other datasets.

We also demonstrate the effect of bounding qmax in PSGD.
Specifically, we set pmax to 80% of the qmax value, while
the regularizer λ and the number of factors d are fixed to
λ = 0.03 and d = 7. We conduct the experiment using three
values of qmax: qmax = 0.5, qmax = 1, and qmax = 2. Fig-
ure 4 shows the results obtained for MovieLens-10M. While
the value of qmax does not affect much the crossing of the
IA baseline, it changes the value of the GE crossings and
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Figure 5: Comparison of private MF and kNN algorithms

the accuracy achieved for higher values of ε. In PSGD, the
L2-norm bounds do not affect the noise added to P and Q
and are used only to control the L2-norm of the latent vec-
tors. For low ε, more noise is added and a small bound is
preferable over greater bounds, since it removes the noisy
elements. However, for higher values of ε, a small bound
prevents MF from fully realizing the potential of the seven
factors, and, therefore, a higher bound achieves a better pre-
dictive accuracy when less noise is added.

5.3 Comparison to other CF Approaches
In this experiment we compare the results of the privacy-

preserving MF approach to two other privacy preserving CF
algorithms: a private version of the GE baseline and private
k-Nearest Neighbors (kNN) algorithm [5].

For private GE, we used the following allocation for the
privacy budget: 0.02ε for the global average, 0.54ε for item
average and 0.44ε for user average. For the private kNN rec-
ommendation algorithm, we followed the approach of McSh-
erry and Mironov [14].5 We applied a different privacy bud-
get allocation: 0.9ε was allocated to data pre-processing,
out of which 0.02ε was used for the global average, while
the item and user averages were computed with 0.44ε each,
and the remaining 0.1ε was used for the identification of
nearest neighbors. It should be highlighted that kNN com-
bines the differentially private item-to-item covariance ma-
trix with the private user ratings, giving it an a-priori advan-
tage over the proposed differentially private MF algorithms.

Figure 5 shows the comparison of the private versions of
MF and kNN for the MovieLens-1M dataset.6 For low val-
ues of ε, computing only the private GE was more effective
than the MF approaches (both kNN and private GE cross
the IA baseline at ε = 0.18), since it makes the smallest
number of computations and introduces the lowest amount
of noise. However, this approach cannot outperform the GE
baseline, and therefore cannot take advantage of weaker pri-
vacy constraints, when available.

While latent factors models typically outperform neigh-
borhood based approaches in terms of predictive accuracy
[5, 12], surprisingly this is not the case in the presence of
privacy constraints. For lower values of ε, the improved ac-

5The differentially private implementation of kNN outlined
in [14] is not publicly available, such that we were not able
to reproduce the exact results reported therein.
6Due to memory limitations, kNN implementation for the
MovieLens-10M dataset was not feasible.
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curacy offered by MF in the non-private settings does not
compensate for the higher noise required to meet the pri-
vacy constraints. However, for higher ε and weaker privacy,
the predictive accuracy advantage of MF becomes apparent,
and it outperforms the private kNN algorithm.

We posit that the superiority of private neighborhood
based approaches over the MF approaches is explained by
their better resilience to the noise introduced by differential
privacy. Linking the average number of user ratings (Table
1) with the number of latent factors (Table 2), we observe
that each factor relies, on average, on a few dozens of rat-
ings. Hence, applying even moderate noise deteriorates the
signal-to-noise ratio and affects the predictions. In contrast,
the private item-to-item covariance matrix relies on thou-
sands of ratings and is more resilient to noise. Due to this,
kNN outperforms MF for lower values of ε (stringent privacy
constraints). However, higher values of ε (lenient privacy
constraints) allow decreasing the level of noise applied, such
that MF approaches outperform kNN.

6. DISCUSSION
To address privacy concerns of recommender systems, we

investigated the application of differential privacy to MF,
the state-of-the-art recommendation approach. Differential
privacy does not dictate a specific way to conduct a compu-
tation, but is rather a property that should be maintained.
Hence, it is possible to design various approaches that carry
out the same computation in a differentially private man-
ner, with different levels of effectiveness. We proposed and
evaluated three approaches reflecting the stages of MF: in-
put perturbation, and differentially private variants of ALS
and SGD. We also analyzed the sensitivity of the proposed
approaches and compared private MF to other privacy pre-
serving recommender approaches, namely, GE and kNN.

We showed that input perturbation yields the best perfor-
mance amongst the three evaluated private MF approaches.
However, when privacy is a priority and high degree of noise
is applied, private kNN outperforms MF. We believe this
observation is inherent to sparse datasets and stringent pri-
vacy requirements, as kNN is not as sensitive to noise as
MF. On the other hand, when weaker privacy settings are
acceptable, MF offers a better alternative: in that case, the
predictive accuracy of the private algorithms gets closer to
that of the respective non-private variants, and MF is shown
to outperform other private recommendation approaches.

Following our evaluation, we identified the following de-
sign choices that should be considered when applying differ-
ential privacy to recommender systems.

Contextual considerations. Data characteristics, such as
size, density and the distribution of ratings, may affect the
privacy-accuracy trade-offs of the approaches. Beyond these,
additional factors need to be considered. For example, the
scalability and flexibility of the model-based approaches may
outweigh the advantage of neighborhood methods in privacy
protection, making privacy-preserving MF algorithm a vi-
able option. Also, methods like input perturbation may be
more amenable to the processing of streaming data, since
each new rating can be perturbed independently, whereas
for other approaches further work is required to adapt in-
cremental learning models to the private setting.

Mind your parameters. Typically, MF parameters such
as the number of factors, the regularizer, and the learning
rate are tuned to increase prediction accuracy, while pre-

venting over-fitting and ensuring convergence. In the private
setting, these considerations should be augmented to incor-
porate their impact on the introduced noise. For example,
increasing the number of factors results in larger L2-norms
of the latent vectors, and requires larger magnitudes of noise
to obtain the same level of privacy. This noise abolishes the
increased accuracy driven by the additional factors, and pa-
rameter tuning is needed to balance these effects.
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