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ABSTRACT
Although data quality has been recognized as an important factor
in the broad information systems research, it has received little at-
tention in recommender systems. Data quality matters are typically
addressed in recommenders by ad-hoc cleansing methods, which
prune noisy or unreliable records from the data. However, the set-
ting of the cleansing parameters is often done arbitrarily, without
thorough consideration of the data characteristics. In this work,
we turn to two central data quality problems in recommender sys-
tems: sparsity and redundancy. We devise models for setting data-
dependent thresholds and sampling levels, and evaluate these using
a collection of public and proprietary datasets. We observe that the
models accurately predict data cleansing parameters, while having
minor effect on the accuracy of the generated recommendations.

1. INTRODUCTION
Data quality is an important practical consideration in many in-

formation systems. It can have a strong effect on the performance
of the system and the level of user satisfaction. Data quality re-
ceived significant attention in the general context of information
systems, but it has yet to be thoroughly investigated through the
recommender systems’ prism. For instance, what dimensions of
data quality are particularly important for recommenders and what
methods can address these? Although there exists some evidence
that data quality issues do matter [2, 3, 8], little work has looked
into the application of data quality methods to recommenders. These
are typically addressed through an ad-hoc data cleansing, such as
“prune users with less than X ratings” or “consider data from the
recent period Y ”. But the setting of the data cleansing parameters
is often arbitrary and asks for more methodical solutions.

This work addresses two data quality problems in recommender
systems. The first refers to the well-established data sparsity prob-
lem. To this end, we devise a novel model for setting data-dependent
threshold for filtering of cold items or users, not having enough data
∗This paper is part of the author’s PhD thesis.
†Partially supported by ISF grant number 571/14.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
RecSys’15, September 16–20, 2015, Vienna, Austria.
c© 2015 ACM. ISBN 978-1-4503-3692-5/15/09 ...$15.00.

DOI: http://dx.doi.org//2792838.2799670.

to facilitate generation of reliable recommendations. The second
considers the data redundancy problem, which may lead to signif-
icant overheads at the recommendation model training stages. We
propose a method for adaptive sampling of users that can decrease
the model training overheads, while still facilitating the construc-
tion of accurate recommendation models. This paradigm is used
successfully by Azure Machine Learning recommendations [7].

We propose heuristic models for setting the item threshold and
user sampling rate, both without building the recommendation mod-
els. These heuristic models are evaluated using a large collection of
public and proprietary recommender system datasets from a range
of domains. We observe that the models accurately predict the data
cleansing parameters, while having only minor effect on the accu-
racy of the generated recommendations.

In summary, the contribution of our work is twofold. First, we
highlight and demonstrate the importance of data quality matters in
recommender systems. Second, we address two practical data qual-
ity issues of sparsity and redundancy, by proposing and validating
models for adaptive setting of the data cleansing parameters.

2. RELATED WORK
Wang and Strong developed a framework encapsulating the fun-

damental dimensions of data quality [10]. They derived more than
100 data quality attributes and split these into four dimensions. The
intrinsic quality dimension refers to the core data characteristics,
e.g., accuracy, objectivity, and reputation. Contextual quality con-
siders the data in the context of the task at hand and includes at-
tributes like relevancy, completeness, and timeliness. Representa-
tional quality refers to the format (representation and consistency)
and meaning (interpretability) of the data. Finally, the accessibility
dimension primarily considers data security. Pipino et al. turned to
the assessment and metrics of data quality [6]. With the attributes
proposed in [10] in mind, they presented a methodology for devel-
oping objective metrics communicating the fit of data regardless of
the application and task at hand.

Specifically in recommender systems, it has been observed that
the rating data can be noisy, imprecise, or outdated [2, 8]. Ama-
triain et al. demonstrated that offering users to re-rate previously
rated items would lead to somewhat different ratings, which sub-
stantially change the accuracy of the generated recommendations
[2]. Marlin and Zemel questioned the assumption of uniformity
in user rating distribution, and showed that this assumption dete-
riorated the accuracy of collaborative recommendations [4]. Said
et al. evaluated the stability of user ratings over time and offered
users to re-rate already rated items [8]. It was found that this omni-
present white noise in user ratings poses “the magic barrier” to the
accuracy attainable by recommender systems.
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To the best of our knowledge, little work has studied the recom-
menders’ data sparsity and redundancy from the data quality per-
spective. In this work, we systematically address these two data
quality attributes and propose methods for dataset-dependent set-
ting of sparsity- and redundancy-related data cleansing parameters.

3. DATA SPARSITY

3.1 Threshold model
Most rating-based recommender system datasets contain a con-

siderable portion of cold users and items. The small number of rat-
ings for these is not sufficient to build a reliable recommendation
model, such that the common practice is to omit such items and
users outright, as part of the data cleansing process. The real prob-
lem, however, is to determine the appropriate cleansing thresholds
for a given dataset. A too-low threshold may result in noisy training
data and imprecise recommendation models, whereas a too-high
threshold may lead to overlooked rating patterns and preclude the
system from generating recommendations for these users/items.

A brute-force solution to determining the cleansing threshold
could be to exhaustively evaluate all the plausible combinations of
item and user thresholds. Even for a small dataset, the number of
such combinations is in the thousands, which rules the brute-force
solution out for practical business cases. Thus, our aim is to de-
velop a heuristic method that predicts the optimal thresholds for a
given user-item rating matrix, without building the model. In this
work we focus on the optimization of one – either item or user –
threshold, and leave the concurrent optimization of the two for the
future. Without the loss of generality, we discuss below the method
applied to the item threshold.

We assume that the target threshold value for items is correlated
with the average length of the item vectors in the dataset, ri, i.e., av-
erage number of ratings assigned to an item. However, this feature
alone is not sufficient for achieving accurate threshold predictions.
Hence, another feature we exploit stems from the parameterization
of the power-law distribution of ratings. Let H be the distribution
of the item vector lengths. We fit H to a power-law distribution
Ax−m, where x is the length of the item vector. Since, typically,
there is a small number of popular items with many ratings and a
large number of items with a few ratings, m is positive.

We model the item threshold value as a function of ri and m,
and assume positive correlation between ri and the item threshold.
This is explained by the more robust nature of longer item profiles.
Also, we assume negative correlation between the value of m and
the threshold. This is due to the observation that whenm increases,
the weight of the tail of the power-law distribution decreases and
there are fewer items with many ratings. Hence, for high m the
sparsity of the data is higher and the item threshold is lower. We
parameterize the model by a linear multiplier γ. In summary, we
model1 the item threshold ITd of a dataset d as

ITd = γ · log(ri)

m2
(1)

3.2 Evaluation
We use 24 public and proprietary datasets with either implicit

or explicit item ratings. Among the public datasets are Movielens,
Million Songs, Flixster, Moviepilot, Filmtipset, Yelp, Yahoo! Mu-
sic (broken down into albums, artists, and tracks), and BookCross-
ing. The 14 proprietary datasets (referred to as PD) were obtained

1We experimented with several other models of IT and the model
in Equation 1 yielded the most accurate performance.

Figure 1: Item threshold predictions of the 24 datasets.

from various companies and sites, and belong to application do-
mains of eCommerce, car sales, real estate, books, software pur-
chases, grocery shopping, app downloads, video games, and more.

Each dataset was partitioned into the training and test sets using
the 90-10 ratio. In order to assess the accuracy of the predictions,
we used the Precision@K metric [9]. Since the datasets are fairly
different, the value of K was set dynamically to 10% of the dataset
item set size. The split was repeated ten times, as per the N-fold
validation methodology, and the reported precision scores are the
averages computed across the ten splits.

We first exhaustively found the optimal item threshold IT opt
d for

each dataset d. For this, we gradually increased the value of the
item threshold IT , filtered from the data items having less than
IT ratings, trained the Matrix Factorization (MF) recommendation
model [5, 7] on the cleansed data, and measured the precision score
obtained for a fixed test set. The threshold, for which the highest
precision was obtained, is referred to as IT opt

d , while the corre-
sponding precision score is P opt

d .
Then, we applied the threshold model in Equation 1 to com-

pute the predicted item threshold IT pred
d . This was done using

leave-one-out cross-validation. That is, one dataset d was with-
held, the threshold model was trained on the other 23 datasets, and
we applied the model to predict the IT pred

d threshold for d. Having
set the item threshold to IT pred

d , we trained the recommendation
model on the data, with items having less than IT pred

d ratings being
filtered out. Given this model, we computed the precision P pred

d of
the predictions generated by the model for the fixed test set.

This allows us to derive two performance metrics of the threshold
predictions. The first, referred to as the normalized threshold error
(NTE), is computed by NTEd = |IT opt

d − IT pred
d |/IT opt

d , and
communicates the error of the item threshold predictions. The sec-
ond quantifies the impact ofNTE on the predictions of the recom-
mendation model for the test set. This is referred to as the accuracy
ratio (AR) and is computed by ARd = P pred

d /P opt
d . Note that al-

though the threshold model is trained to predict the item threshold
IT pred

d , our objective is to cleanse the data in a way that maximizes
AR, i.e.,

∑
d(P pred

d /P opt
d ), across the 24 datasets.

We present in Figure 1 the individual NTE and AR scores ob-
tained for the 24 datasets. Each dataset is represented by two bars:
the left represents NTEd and the right – ARd. The datasets are
sorted in an increasing order ofNTEd. As can be seen, the first 14
datasets achieve NTEd ≤ 0.4, whereas the next 8 achieve 0.5 ≤
NTEd ≤ 1, and for the last 2 datasets we observe NTEd ≥ 2
(these bars are truncated). Overall, the average NTE score across
the 24 datasets is 0.632.
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Figure 2: Fixed item threshold experiment.

However, of a greater interest is the impact of NTE on AR. All
the datasets demonstrate ARd ≥ 0.8, whereas 19 out of the 24
datasets achieve remarkably high ARd ≥ 0.95. The overall av-
erage AR value across all the datasets is 0.966. Thus, despite the
observed threshold prediction errors, the recommendation models
built using the cleansed data generate predictions comparable to
those of the models using the optimal threshold values. We ob-
serve correlation of -0.540 between the values ofNTEd andARd.
This aligns with the intuition that lower errors in the item threshold
predictions yield more accurate recommendation models.

To better understand the setting of the item threshold, we carry
out another experiment, in which we fix the item threshold IT for
all the datasets. We compute the AR, averaged for various values
of IT across the 24 datasets. The average AR is compared to three
baseline AR using the following IT setting: (i) computed by the
model in Equation 1; (ii) computed by a model using only the av-
erage item length ri; and (iii) computed by a model using only the
exponent m of the item length distribution. The results are shown
in Figure 2, where the horizontal axis stands for the value of the IT
threshold and vertical – for the average AR across the 24 datasets.

As expected, the three baselines are independent of IT and their
AR scores are constant. We observe that the model in Equation 1
outperforms the individual models using either ri or m by 13.4%
and 14.4%, respectively. The fixed threshold model demonstrates
an inverse-curve behavior: for low IT the data is noisy, while for
high IT too much data is filtered, such that in both cases the predic-
tions are inaccurate. The highest AR is achieved for IT = 17, but
this is still 1.5% lower than that of the model in Equation 1. Con-
sider also that such a-priori parameterization may not be feasible
for recommenders with dynamic user/item sets and the superiority
of our parameter-free model becomes evident.

4. DATA REDUNDANCY

4.1 Model
Another important data quality problem is to identify cases, where

some data available in the dataset is redundant, and the recommen-
dation model can be built using a sample of the data. Focusing on
random sampling, our target is to pick the lowest sampling rate that
will still result in the recommendation model as close as possible
to the model that would have been built using the complete data.
This is particularly important for practical recommenders and very
large scale datasets, where building the complete model may be
costly and time consuming. Again, the challenge is to predict the
sampling rate, without building the recommendation model.

Unlike in the item cleansing threshold case, there is no optimal
sampling rate, because the recommendation model built using the
complete data is always superior to, i.e., more accurate than, the
one built using the sampled data. Hence, we define the target sam-
pling rate SR as the lowest rate, for which the similarity between
the complete recommendation model and the sampled model is
greater than a pre-determined parameter ∆. The similarity of the
two models is established by comparing the predictions generated
by the models for a fixed test set.

In more detail, let us denote by Ud, Id, and Rd the number of
users, items, and ratings, respectively, in a dataset d. We first build
the recommendation model using the complete d. As usual in rec-
ommender systems, we sample the users in d [1]. Given a sampling
rate SR, we retain in the dataset SR · Ud randomly chosen users.
Then, we build the recommendation model using the sampled data
and generate predictions for a fixed test set. Given a performance
metric, we can finally compare the predictions generated by the
recommendation model using the sampled data with the ones gen-
erated by the model using the complete data.

Since the sampling is done on the users, we assume the level of
redundancy to be positively correlated with Ud. We also assume
positive correlation with the density of the rating matrix, computed
by Rd

Ud·Id
. We also incorporate another feature characterising the

data, which we denote by V-structure. Intuitively, V-structure is
the relative increase in the similarity of two users given that they
have at least one commonly rated item. We compute V-structure
as the ratio between the average pair-wise similarity of users hav-
ing at least one jointly rated item and the overall average pair-wise
user similarity. Since high V-structure of a dataset reflects a greater
amount of common rating patterns observed, we posit that the re-
dundancy is positively correlated with V-structure.

We model the redundancy level of a dataset d as a combination of
three parameters: number of users, density, and V-structure. Note
that the redundancy is inversely correlated with the sampling rate.
That is, when the data is redundant, we sample a small portion of
users to build a reliable recommendation model. Also, we need
to clamp the sampling rate to the [0, 1] range and keep the func-
tion monotonic increasing. We use the hyperbolic tangent function
for normalization purposes. In summary, we model2 the minimal
sampling rate SRd of a dataset d as

SRd = tanh

(
1

V-structured ·
√
Ud · Rd

Ud·Id

)
(2)

4.2 Evaluation
For the evaluation of the sampled models, we used 19 propri-

etary datasets with implicit and explicit ratings. Each dataset d was
partitioned again into the training and test sets using the 90-10 ra-
tio. Also in this experiment the split was repeated ten times and the
reported performance was averaged across the ten splits.

We exhaustively found the optimal sampling rate SRopt
d for each

dataset d. For this, we first trained MF recommendation model [5,
7] using the complete training dataset and applied this model to
generate predictions for a fixed test set. We denote these predic-
tions generated by the model using the complete data as complete
predictions. Then, we gradually decreased SR by steps of 0.1.3

For each value of SR we randomly sampled the training data, built
the recommendation model using the sampled data, and generated
predictions for the same fixed test set.

2Here, we also experimented with several other models of SR, and
the best performance was achieved by the model in Equation 2.
3More fine-grained steps of SR were not sufficiently sensitive.
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Figure 3: Sampling rate predictions of the 19 datasets.

We used theNDCGmetric [9], where the gain of each item was
proportional to its rank in the complete predictions, to quantify the
predictions generated by the sampled models4. We considered the
complete model and the sampled model to be sufficiently similar,
as long as the NDCG computed by the sampled model for the
fixed test set was greater than ∆ = 0.95. Thus, we decreased the
sample rate SR by steps of 0.1 as long as we managed to obtaine
NDCG ≥ 0.95. The minimal SR, for which this NDCG had
been obtained, was considered the optimal sampling rate SRopt

d .
On top of this, we applied the model in Equation 2 to predict

the sampling rate SRpred
d for each d. Since the optimal sampling

rate SRopt
d was an approximation found by search with steps of

0.1, also SRpred
d was rounded to the closest 0.1 mark. Having set

the sampling rate of d to SRpred
d , we created the sampled dataset,

then built the sampled MF recommendation model, and generated
predictions for the fixed test set. Finally, we evaluated the perfor-
mance, NDCGpred

d , of the recommendation model built using the
predicted sampling rate SRpred

d .
Figure 3 presents the results of the sampling rate predictions for

the 19 datasets. Each dataset is represented by three bars: namely,
SRopt

d , SRpred
d , and NDCGpred

d . The datasets are sorted in a de-
creasing order of SRopt

d . As can be seen, the values of SRopt
d vary

across the datasets from 1 (no sampling is needed, all the users are
necessary) to 0.1 (only 10% of users are necessary). For 10 datasets
out of the 19 we observe SRopt

d = 1, which aligns with the estab-
lished sparsity problem in recommender systems. However, for 6
datasets we observe SRopt

d ≤ 0.2, indicating that some datasets
have high degree of redundancy in the data.

Overall, the predicted sampling rates produced by the model in
Equation 2 are close to the optimal ones. We observe that SRopt

d

and SRpred
d are identical for 10 datasets out of the 19 (note that for

7 datasets, we observe SRopt
d = SRpred

d = 1, i.e., no sampling
needed), for 6 datasets the difference is 0.1 (3 over-sampled and
3 under-sampled), and for 6 datasets the difference is 0.2 (SRpred

d

over-samples). The average difference between SRopt
d and SRpred

d

across the 19 datasets is 0.063. Note that when SRopt
d 6= SRpred

d ,
we prefer to over-sample, i.e., SRpred

d > SRopt
d , as in this case,

despite keeping unnecessary users, the recommendation model still
achieves the desired degree of similarity to the complete model.

We also observe highNDCGpred
d scores, such that for 15 datasets

we achieveNDCGpred
d ≥ 0.95. These include the 7 datasets with

SRopt
d = SRpred

d = 1, where no sampling is performed and we

4As NDCG combines ranking and predictive accuracy metrics,
we deem it to be a reliable model performance indicator.

obviously achieveNDCGpred
d = 1. The averageNDCGpred

d ob-
tained across the 19 datasets stands at 0.964. Finally, we observe
negative correlation of -0.382 between the obtained NDCGpred

d

scores and the absolute value of the difference between the pre-
dicted and optimal sampling rate, |SRopt

d − SRpred
d |. This result

is not surprising, since the accuracy of the recommendation mod-
els built using the sampled data deteriorates with the error in the
sampling rate predictions generated by the model in Equation 2.

5. CONCLUSIONS
Our work was driven by the need to instantiate data quality mod-

els for recommender systems. To this end, we addressed two prac-
tical considerations of large-scale recommenders: sparsity of user
ratings and redundancy of users in the datasets. We developed two
models for predicting the data cleansing parameters and demon-
strated their validity using a large collection of datasets. Notably,
these models capitalize only on the parameters of the datasets and
do not require the costly recommendation model building.

This work paves the way for future works on data quality in rec-
ommender systems. First, the proposed predictive models for data
cleansing parameters were evaluated using the MF recommenda-
tion model. However, our models should be evaluated with other
recommendation techniques, as, for instance, the item threshold
may depend on the underlying recommendation model. Second,
the impact of data cleansing on other performance metrics. The
filtering of cold users/items and the sampling of users can affect
the coverage and the diversity of the generated recommendations.
Hence, there is a need to strike the balance between data quality
assurance and these metrics. Third, we will consider the ways to
incorporate content features of the items and demographic features
of the users in the proposed predictive models.
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