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Reliability of crowdsourced data 
and patient‑reported outcome 
measures in cough‑based 
COVID‑19 screening
Hao Xiong 1,4*, Shlomo Berkovsky 1,4, Mohamed Ali Kâafar 2, Adam Jaffe 3, Enrico Coiera 1 & 
Roneel V. Sharan 1

Mass community testing is a critical means for monitoring the spread of the COVID-19 pandemic. 
Polymerase chain reaction (PCR) is the gold standard for detecting the causative coronavirus 2 
(SARS-CoV-2) but the test is invasive, test centers may not be readily available, and the wait for 
laboratory results can take several days. Various machine learning based alternatives to PCR screening 
for SARS-CoV-2 have been proposed, including cough sound analysis. Cough classification models 
appear to be a robust means to predict infective status, but collecting reliable PCR confirmed data 
for their development is challenging and recent work using unverified crowdsourced data is seen 
as a viable alternative. In this study, we report experiments that assess cough classification models 
trained (i) using data from PCR-confirmed COVID subjects and (ii) using data of individuals self-
reporting their infective status. We compare performance using PCR-confirmed data. Models trained 
on PCR-confirmed data perform better than those trained on patient-reported data. Models using 
PCR-confirmed data also exploit more stable predictive features and converge faster. Crowd-sourced 
cough data is less reliable than PCR-confirmed data for developing predictive models for COVID-19, 
and raises concerns about the utility of patient reported outcome data in developing other clinical 
predictive models when better gold-standard data are available.

COVID-19 disease (hereafter, COVID) is a respiratory disease caused by the severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2)1. COVID was declared a pandemic in March 20202 and, as of September 2022, 
there have been more than 600 million confirmed cases of COVID worldwide, with more than 6.5 million deaths 
attributed to the disease3. Mass testing, combined with isolation and contact tracing, are pivotal for mitigating the 
spread of the pandemic4–8. Reverse transcription polymerase chain reaction (PCR) is the common gold standard 
for testing SARS-CoV-29. SARS-CoV-2 tests can be grouped into molecular, antigen, and antibody tests10,11. 
Molecular tests detect the genetic material of the virus and antigen tests detect the virus proteins. Antibody 
tests, such as serology, look for antibodies created by the immune system in response to the virus. PCR tests are 
invasive, and require body samples such as throat swabs or blood samples. However, supply chain issues and 
limited capacity of testing facilities may extend the waiting time and render testing cumbersome12,13.

Cough is a common symptom of various respiratory infections, including COVID. Respiratory tract infections 
can produce unique cough and breathing sounds, such as barking cough in croup14, hacking cough and whoops 
in pertussis15, or crackles in pneumonia16. While the cough and breathing sounds of COVID are not well studied 
yet, an early report observed dry cough in about two-thirds of confirmed cases17. Although not distinguishable by 
clinicians, it has been hypothesised that recent developments in sound processing and machine learning warrant 
the development of computational methods for detection of COVID cough18,19.

Several cough-based predictive algorithms for rapid screening of COVID have been recently developed 
using crowdsourced data for training10,20. Due to data access constraints, these models are mostly developed 
using patient-reported data which are seen as a promising alternative to PCR confirmed data. For example, 
Brown et al. deployed a combination of handcrafted and transfer learning-based features for detecting subjects 
with COVID21. The cough recordings were crowdsourced using smartphone apps and the Web. Laguarta et al. 
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also crowdsourced the data collection and employed deep learning methods for classification22. Crowdsourced 
datasets are also exploited in other studies23–26.

While promising results have been achieved, we question the validity of results achieved using such crowd-
sourced patient-reported training data, stemming from the unreliable nature of the data. Patient-reported status 
is substantially easier to obtain than the PCR-confirmed one; however, it is prone to noise and confounding 
associated with, e.g., inconsistency in recording device positioning, differences in the sound processing tech-
nologies, background noises, disease symptoms and co-morbidities, and disease progression variabilities. Also, 
patient-reported COVID status used as the training labels can be unreliable due to subjects misinterpreting 
symptoms or incorrectly estimating their infective status.

To the best of our knowledge, Bagad et al. is the only work where COVID status was confirmed using PCR 
at testing facilities and isolation wards rather than was patient-reported27. They used various datasets for train-
ing their cough-based COVID detection model, achieving a substantially lower accuracy than studies using 
patient-reported COVID status as the data labels21,22. This suggests a disparity in the performance of machine 
learning based COVID classification models using cough data of subjects using PCR confirmed and self-reported 
infective status.

With growing interest in harnessing crowdsourced health data, this present study sets out to investigate 
the reliability of using crowdsourced cough data for developing COVID screening algorithms. To this end, we 
experimentally compare the performance of several existing machine learning and deep learning models trained 
using cough sounds, where the subjects’ infective COVID status is either PCR-confirmed or patient-reported. 
We train two predictive models using a public cough dataset containing subjects with PCR- confirmed and 
patient-reported status. One model harnesses the data of PCR-confirmed subjects only, while the other - self-
reported data only. We evaluate the performance of the two models and we observe a consistent performance 
improvement when the model is trained with PCR-confirmed data. We analyse the accuracy of the model, the 
stability of features exploited by the classifiers, and the performance of the model with limited training data.

Our results (i) highlight the need for using reliable data when training and evaluating COVID screening mod-
els, and (ii) indicate the need for more rigorous crowdsourcing practices for health data used to train machine 
learning classification models.

Related work
Clinicians have been using sounds and acoustic data such as acoustic data to diagnose various conditions: voice 
pathologies, dry and wet cough, sleep disorders, and more28–34. Recently, several works also exploited sound 
data for large-scale COVID screening. In general, these utilised three types of sound data: cough, breathing, 
and speech.

Imran et al.35 implemented a COVID screening system that used the cough data recorded and transferred 
by a smartphone. Then, an AI model produced and returned the diagnostic prediction within two minutes. 
To attract researchers to work on COVID detection, Orlandic et al.36 created and shared a large COUGHVID 
dataset containing over 25,000 crowdsourced cough recordings. These covered a wide range of genders, ages, 
locations, and cough sounds. The work of Bader et al.37 proposed a model utilizing speech signal processing to 
screen COVID with cough data. Finally, Laguarta et al.22 proposed an AI model that allowed a large-scale pre-
screening of COVID subjects.

Another stream of work aimed to identify COVID by analysing breathing data. The work of Wang et al.38 
proposed a bidirectional neural network to achieve a large-scale screening of COVID subjects by analyzing 
breathing patterns. Similarly, Jiang et al.39 combined breathing data with thermal images to analyze the health 
status of individuals. However, this method required the subjects to wear a portable non-contact device includ-
ing a thermal imaging camera. Instead of using breathing data on its own, some works predicted COVID cases 
by jointly analyzing cough and breathing data using various deep learning methods, such as recurrent neural 
networks (RNN)40,41.

Speech is another sound modality that can help detect COVID. For instance, Ismail et al. proposed a dynamic 
model analysing the movement of the vocal folds based on the observation that many symptomatic COVID 
patients have respiratory function impairments42. They hypothesised that such impairments affect vocal fold 
oscillation, and these changes can be harnessed to detect COVID. Ritwik et al. extracted Mel filter bank features 
from speech data to train an SVM classifier and classify COVID cases43. Likewise, Quartieri et al. exploited speech 
data to identify COVID symptomatic subjects using speech modelling techniques44.

While the previous studies used a range of data collection methods, sound data modalities, signal process-
ing methodologies, and machine learning algorithms to train models and detect COVID subjects, the majority 
exploited data that was crowdsourced, meaning that the true infective status of patients is unclear. Second, the 
data collection settings (e.g., hardware and software in case of mobile apps) were likely to be diverse and not 
controlled. As has been shown for medical45 as well as broader machine learning models46, performance is sub-
stantially affected by the quality of the underlying data used to train them.

Methodology

We experimentally compare the performance of machine learning COVID cough classification models using 
either PCR-confirmed or patient-reported data. Hereafter, we refer to data provided by PCR-confirmed COVID 
subjects as verified data, while data provided by subjects with patient-reported infective status is referred to as 
unverified.
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Data.  We use a publicly available dataset of COVID and non-COVID cough recordings20. The data contain 
1322 cough recordings from as many subjects, collected by the MedInGroup primary health network. Two plat-
forms were deployed for the data collection: call centre and Telegram mobile app. To eliminate potential differ-
ences associated with data collection and audio processing methods, we use only the 698 call centre recordings 
and disregard the Telegram recordings. Of these, MedInGroup verified positive infective COVID status of 381 
subjects, which has been confirmed by a PCR test. The status of 114 COVID subjects was patient-reported, while 
all the 203 COVID negative subjects were patient-reported. Descriptive characterisation of the utilised data is 
provided in Table 1.

The performance of machine learning models is typically evaluated by partitioning the data into training and 
test sets. In our case, there are two training sets: PCR-confirmed COVID positive subjects and COVID negative 
subjects represent the training set with the verified data, and patient-reported and COVID negative subjects 
are another training set with the unverified data. However, we hold out a single test set, which contains only the 
PCR-confirmed COVID and non-COVID data.

The detailed steps of generating the training and test sets for evaluation purposes are as follows: 

1.	 For the 203 non-COVID subjects, 160 are randomly selected for training and the remaining 43 – for testing.
2.	 For the 381 verified subjects, 114 are randomly selected for training and 20 randomly – for testing.
3.	 For the unverified data, all 114 patient-reported subjects are used for training.

In this way, the size of the verified and unverified training sets is identical. Each contains 274 subjects: 114 
COVID subjects (PCR-confirmed or patient-reported) and 160 non-COVID subjects. The test set contains 63 
subjects: 20 PCR-confirmed COVID subjects and 43 non-COVID subjects. To obtain solid empirical evidence, 
randomisation and partitioning of subjects was repeated five times and the results averaged.

COVID Cough Classification.  A schematic overview of our method is shown in Fig. 1. We develop two 
classification frameworks, each using verified or unverified cough recording data. While the nature of the 
recordings is similar, the infective status label that accomppanies each recording is either PCR-confirmed or 
self-reported. The former is naturally more reliable than the latter. The subsequent classification framework is 
identical: each extracts informative features from the preprocessed recordings, performs feature selection to 
detect a subset of more predictive features, and classifies the recordings using a machine learning classifier, and 
evaluates the performance of the classifier. Since the two frameworks are identical, any performance differences 
observed should be attributed to differences in the input recording data.

Preprocessing and Feature Extraction.  We first extract features from the recordings using an open-source 
openSMILE library47. openSMILE processes the input audio data in real-time. The recordings are converted 
into the WAV format for feature extraction with openSMILE. As a result, 6373 features are populated from each 
recording. To populate features, openSMILE extracts low-level descriptors (LLDs), which are combined with 
various filters and functionals. openSMILE offers various options for LLDs, including Waveform, FFT spectrum, 
and Mel/Bark spectrum. Upon the LLD extraction, the filters are utilised to smooth the feature contours. Since 
the length of the recordings varies, polynomial regression, and transformations are applied to standardize the 
feature length.

Feature Selection.  Due to the high dimensionality of features produced by openSMILE, some features may 
contain redundant and noisy data, which is likely to degrade the accuracy of the classifiers. To minimize the risks 
of overfitting, we use ElasticNet48 for feature selection to identify data features that are predictive of infectious 
status, whilst noisy and redundant ones are discarded. The parameterization of ElasticNet is based on offline 
experiments that are not reported.

Classification Models.  Once the predictive features are selected, we feed these into classifiers to predict the sub-
jects’ COVID status. To ensure our results are generalizable to a broad variety of machine learning approaches, 
we tested a portfolio of seven binary classifiers that belong to three families: two statistical classifiers (Logistic 
Regression (LR)49 and Linear Discriminative Analysis (LDA)50,51), two ensemble-based classifiers (Random For-
est (RF)52 and Gradient Boosting Classifier (XGB)53), and three deep learning classifiers (Deep Neural Network 
(DNN)54, CNN-RNN55 and Contextual Attention CNN (CA-CNN)56). LR and LDA exploit statistical inference 
to produce the probability of an instance being a member of each class. RF and XGB represent ensembles of 
predictive models, where each model classifies independently and the predictions of the models are integrated. 
DNN is a deep network with three hidden layers between the input and output layers. The sizes of the hidden lay-

Table 1.   Characterisation of the dataset.

Group (source) Subjects/recordings Duration (sec) Coughs per subject

COVID (PCR-confirmed) 381 1.88 2.72

COVID (patient-reported) 114 1.84 2.37

Non-COVID (patient-reported) 203 3.07 3.79
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ers are 3000, 1000 and 200, respectively. To avoid over-fitting, and for efficient gradient propagation, we include 
dropout and ReLU after each layer. CNN-RNN and CA-CNN are modern deep learning methods, exploiting 
hybrid networks and attention mechanism for cough data classification. We run CNN-RNN and CA-CNN on 
one Telsla T4 GPU, while the other classifiers were trained and evaluated on CPUs.

Metrics.  The performance of classification models was evaluated using the accuracy (Acc) metric, e.g. the frac-
tion of COVID and non-COVID subjects that are correctly classified. As shown in Table 1, the datasets are often 
imbalanced with respect to the number of COVID and non-COVID subjects. To obtain reliable performance 
metrics, we also compute the area under the receiver operating characteristic curve (AUC). These metrics are 
averaged across five runs for five data partitions.

Results
COVID vs non‑COVID classification.  The classification models were trained independently on the two 
input datasets and their ability to predict COVID infective status using the test set is reported in Table 2. The 
accuracy (Acc) and AUC of each classifier is given for each of the five runs alongside with the averaged perfor-
mance. The highest accuracy and AUC scores are highlighted in bold.

It can be seen that for all classifiers, the average accuracy and AUC scores of the models trained using the 
verified data are superior or equal to those of the models using unverified data. The differences between the 
classifiers trained using the two source of data – average accuracy difference up to 0.06 and AUC difference in 
the 0.02-0.10 range – are consistent across the classifiers. Overall, the highest AUC=0.83 is achieved by RF and 
the highest Acc=0.78 is achieved by CA-CNN.

As the number of COVID and non-COVID subjects was imbalanced, the AUC metric more reliably represents 
classification performance than the average accuracy. Considering the AUC scores, we observe the deep learn-
ing methods, CA-CNN and CNN-RNN, do not perform better than statistical methods. This can potentially be 
explained by the scarce training data, not allowing to train accurate deep networks. Likewise, a simple method 
like LR expectedly does not exhibit a strong performance. The ensemble methods, RF and XGB, outperform 
other methods, due to their reliance on multiple classifiers, which makes the prediction more stable and robust.

Effects of Training Data Size.  In this experiment, we study the impact of the volume of the available 
training data on the accuracy of the verified and unverified classifiers using RF, which was the best performing 
of the classifiers. We vary the percentage of training data in each run to 20%, 40%, 60%, and 80% of the original 
training data. The accuracy and AUC scores of each increment in size are shown in Fig. 2.

Figure 1.   Methodology overview. (a) We utilize the cough sounds recorded by smartphones, where the 
infective status is either validated by a PCR test (PCR-confirmed) or reported by patients (self-reported). (b) We 
then compare the performance of identical classification frameworks harnessing these two types of sound. The 
frameworks include feature extraction, machine learning classifiers, and controlled evaluation setting.
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As one would expect, the performance of the classifier generally improves as more training data becomes 
available. Focusing on the comparison between verified and unverified models, we note that their performance 
is comparable with 20% and 40% of the training data. However, both the Acc and AUC of the verified model are 
better than those of the unverified model when 60%, 80%, and 100% of data is exploited. This indicates that the 
unverified models do not benefit from the additional training data as much as the verified ones and likely need 
more data to improve their performance.

Stability of Features.  Next, we analyze the top-200 features produced by the RF classifier, in the verified 
and unverified models. For this, we define the notion of stable features as the subset of features present in top-k 
features across all the five runs and compute the ratio of stable features by dividing the number of stable features 
by k. We increase k from 25 to 200, compute for each k the ratio of stable features, and plot this in Fig. 3. As can 
be seen, the ratio of stable features for the verified models is consistently higher than for the unverified ones and 
the difference between the two is more prominent for low values of k. This shows that the verified data allows 
training more stable models, potentially offering a better generalisability.

This trend is further supported in Fig. 4 where we plot the weights (a) and cumulative distribution of the 
weights (b) of top-200 features for the verified and unverified models. As expected, the weights exhibit a long-tail 
distribution, with a few features dominating the predictions. Out of the 6373 features extracted by openSMILE 
in the verified model, top-25 features account for as much as 15% of the overall weight and top-200 features 
account for 38%. Additionally, it is evident that the 60 heaviest features of the verified model have consistently 
higher weights than the corresponding 60 features of the unverified model. Hence, the former are likely to be 
seen as more informative and predictive than the latter.

Distinguishing PCR‑confirmed vs patient‑reported COVID classification.  Finally, we set out to 
see if any of the hypothesized differences between PCR-confirmed and self-reported data could be detected. 

Table 2.   Accuracy and AUC for COVID vs non-COVID classification. Best results are indicated in boldface.

Run

Training data LR RF XGB DNN LDA CA-CNN CNN-RNN

Acc AUC​ Acc AUC​ Acc AUC​ Acc AUC​ Acc AUC​ Acc AUC​ Acc AUC​

1
Verified 0.77 0.81 0.82 0.85 0.80 0.80 0.65 0.70 0.75 0.82 0.75 0.77 0.77 0.76

Unverified 0.67 0.60 0.75 0.79 0.73 0.72 0.45 0.68 0.75 0.75 0.57 0.58 0.60 0.51

2
Verified 0.65 0.68 0.58 0.69 0.67 0.68 0.72 0.74 0.68 0.72 0.8 0.81 0.73 0.80

Unverified 0.63 0.65 0.70 0.73 0.73 0.70 0.68 0.75 0.77 0.84 0.43 0.34 0.63 0.58

3
Verified 0.75 0.83 0.87 0.94 0.80 0.90 0.67 0.69 0.80 0.91 0.78 0.82 0.75 0.86

Unverified 0.70 0.74 0.83 0.91 0.70 0.77 0.48 0.55 0.80 0.86 0.67 0.60 0.37 0.59

4
Verified 0.58 0.52 0.83 0.90 0.77 0.79 0.67 0.73 0.77 0.84 0.78 0.78 0.75 0.87

Unverified 0.62 0.56 0.73 0.81 0.68 0.56 0.68 0.75 0.70 0.76 0.40 0.33 0.32 0.32

5
Verified 0.62 0.67 0.62 0.76 0.73 0.80 0.63 0.66 0.63 0.72 0.78 0.82 0.68 0.69

Unverified 0.65 0.73 0.67 0.71 0.70 0.68 0.73 0.66 0.63 0.70 0.43 0.51 0.60 0.54

Average
Verified 0.67 0.70 0.74 0.83 0.75 0.79 0.67 0.70 0.73 0.80 0.78 0.80 0.74 0.80

Unverified 0.65 0.66 0.74 0.79 0.71 0.69 0.61 0.68 0.73 0.78 0.50 0.47 0.50 0.51

Figure 2.   Impact of the volume of verified and unverified training data on (a) accuracy and (b) AUC of the RF 
classifier
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To this end, we trained an RF classifier using the 114 PCR-confirmed subjects and 114 self-reported positive 
subjects. We measured the ability of the RF classifier to detect whether a subject was from the PCR-confirmed or 
self-reported group in a 5-fold cross validation experiment.

As reported in Table 3, the accuracy and AUC of RF for each fold are relatively high, reaching AUC as high 
as 0.91. Overall, RF achieves mean Acc=0.73 and mean AUC=0.8 across the five folds. These results indicate that 
RF can accurately distinguish between the two inputs, even though contributed by seemingly COVID positive 
subjects. Hence, we posit that the cough recording of PCR-confirmed COVID subjects may differ from those of 
subjects with patient-reported infective status, as the classifier successfully differentiates between them.

Figure 3.   Ratio of stable features among the features selected by models trained on verified and unverified data.

Figure 4.   (a) Weights and (b) cumulative distribution of the weights of top-200 features

Table 3.   Verified versus unverified COVID subject classification.

Run RF-Acc RF-AUC​

1 0.75 0.82

2 0.68 0.72

3 0.80 0.91

4 0.77 0.84

5 0.63 0.72

Average 0.73 0.80
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Discussion
In this work, we set out to assess the value of using reliable training data for machine learning based COVID-19 
screening using cough data. We hypothesized that the less certain infective status of subjects providing patient-
reported COVID status with no PCR test could degrade the performance of the predictive models and its ability 
to accurately screen COVID subjects. Hence, we compared the accuracy and AUC achieved by classification 
models trained using cough sounds provided by subjects with PCR-confirmed infective COVID status to the 
models built using self-reported data.

We report several experiments, which compare the performance of identical classification models trained on 
either data provided by PCR-confirmed or self-reported subjects data, from several perspectives. These dem-
onstrate that models trained with the more reliable PCR-confirmed data achieve a higher accuracy than those 
trained with patient-reported data. This finding holds for all the classifiers we experimented with. Moreover, 
classifier trained on the PCR-confirmed data is found to require less data than the one trained on patient-reported 
data. The performance of the former stabilises at 60%-80% of the available training data, while the latter remains 
data-hungry and not as accurate. Notably, we observe that the classifier using PCR-confirmed data rely on a 
smaller set of more stable predictive features.

Analyzing the nuanced selection of training data harnessed by the classifiers (see the Data sub-section of the 
Methodology section), comparable characteristics of the training datasets (see Table 1), and rigorous evaluation 
methodology (see the stable results across the runs in Table 2), we question the inherent reliability of the two 
input datasets, as the only evident point of differentiation between the classifiers. Considering all the above, we 
posit that the better performance of models harnessing the verified data of PCR-confirmed subjects should be 
attributed to the more reliable nature of such data. Hence, we believe that the observed differences are caused 
by a smaller number of mis-labelled subjects in the verified data. Used as the more reliable training data labels, 
they allow the classifier to more accurately learn the features characterising COVID cough sounds and achieve 
more accurate predictions for the test data.

While this noise manifests in our experiments only in COVID cough sounds and infective status, our find-
ings raise important questions around the use of patient-reported data for training clinical decision-support. It is 
evident that collecting abundant and reliable data often requires expensive clinician examination or confirmatory 
molecular tests as gold standard. Collecting such a data at scale and feeding it into machine learning models 
may raise patient data privacy concerns and entail data linkage considerations57. Moreover, the data may just 
not be readily available for rare conditions. Relying on data voluntarily contributed by patients may allay these 
concerns and offer an appealing alternative. However, as our experiments demonstrate, such data is prone to 
noises, which may yield sub-standard performance and unreliable decision-support.

To illustrate the differences between the data provided by PCR-confirmed and self-reported subjects, in the 
last experiment we trained the RF classifier to distinguish between the two. Notably, the classifier successfully 
learned the differences, achieving mean AUC of 0.8. This indicates that the data of the two cohorts of subjects is 
far from being identical. Hence, we emphasize that although patient-reported COVID status is naturally easier 
to obtain, special caution is required when using this information as a proxy for the actual infective status. 
Acknowledging that the majority of prior works on machine learning based methods for COVID cough clas-
sification utilized crowdsourced data and patient-reported infective status to train the developed algorithms, we 
note that the validity of results obtained in these works remains unclear.

Our work is not without limitations. First, the infective status of non-COVID subjects was patient-reported 
and not verified by PCR. It is possible that some of them were either asymptomatic or had recovered from COVID 
before the data collection. Despite not having symptoms at the data collection time, their respiratory system 
might have been affected by COVID, which could bias the classifier. In order to obtain more sound evidence, 
we would like to partition the non-COVID class into PCR-confirmed and patient-reported subjects, similarly 
to the COVID class and then revisit the validity of our findings.

Second, the experiments involved a relatively small cohort of approximately 700 subjects. While collecting 
audio recordings is fairly straightforward with the ubiquity of smartphones, obtaining reliable PCR-confirmed 
status of COVID subjects is encumbered by privacy and confidentiality issues. Hence, it is unclear whether our 
findings will generalise for a larger and more diverse population. To address this, we propose to integrate audio 
data collection into the PCR testing procedures, following explicit consent of the patients and deployment of 
appropriate privacy-preserving technologies. This would facilitate future larger-scale replication studies.

Third, the utilized dataset included no medical information beyond COVID status. In particular, no informa-
tion about the stage of COVID, period of time since the positive PCR test, or severity of the disease was available. 
Each of these is a factor that can potentially affect the respiratory system, cough recordings, and, in turn, the 
performance of the classifier. Likewise, no information about co-morbidities of the subjects, which could have 
affected their health status was available. Hence, we could not control for any of these factors, although they 
potentially further biased the classifier. We posit that collecting and harnessing this information will diminish 
the dependence of the classifier on the cough recordings and potentially unreliable infective status.

Conclusion
In this work, we investigated the reliability of patient-reported data utilized for the purposes of screening 
COVID-19 subjects. While our results supported previous works that demonstrated high predictive accuracy, 
we observed that the reliability of data used to train the machine learning based models plays a crucial role, 
with the models trained on patient-reported data demonstrating inferior performance to those trained with the 
more reliable PCR-confirmed data.

Whilst verified clinical data are harder to obtain, often require clinician involvement or pathology tests, and 
may entail privacy and confidentiality considerations, it practically improves the performance of the machine 
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learning models. This emphasises that reliable outcome measures are imperative for the accuracy of COVID 
detection technologies and clinical decision-support more generally.

Data availability
All experimental data can be found at https://​github.​com/​covid​19-​cough/​datas​et.
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