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Abstract. Collaborative Filtering (CF) is considered one of the popular and 
most widely used recommendation techniques. It is aimed at generating person-
alized item recommendations for the users based on the assumption that similar 
users have similar preferences and like similar items. One of the major draw-
backs of the CF is its limited scalability, as the CF computational effort in-
creases linearly with the number of users and items. This work presents a novel 
variant of the CF, employed over a content-addressable space. This heuristically 
decreases the computational effort required by the CF by restricting the nearest 
neighbors search applied by the CF to a set potentially highly similar users. Ex-
perimental evaluation demonstrates that the proposed approach is capable of 
generating accurate recommendations, while significantly improving the per-
formance in comparison with the traditional implementation of the CF. 

1   Introduction 

Recommender Systems [16] are one of the commonly used approaches to address the 
Information Overloading problem. They systems assist a user in selecting a suitable 
item among a set of potentially selectable items by predicting the user's opinion on the 
items [19]. Currently, Recommender Systems are used in a variety of application 
domains, such as movies [7], jokes [6], and music [1], and they exploit several rec-
ommendation techniques, such as Collaborative [9] and Content-Based Filtering [12], 
Case-Based Reasoning [17] and many hybrid techniques [4]. 

Collaborative Filtering (CF) is probably the most familiar and one of the most 
widely-used techniques to generate predictions in Recommender Systems. It relies on 
the assumption that people who agreed in the past will also agree in the future [21]. 
The input for the CF algorithm is a matrix of users' ratings on a set of items, where 
each row represents the ratings provided by a single user and each column represents 
the ratings provided by different users on a single item. CF aggregates the ratings to 
recognize similarities between users and generates the prediction for an item by 
weighting the ratings of similar users on this item.   

The CF algorithm is typically partitioned to three generic stages: (1) Similarity 
Computation: weighting all the users with respect to their similarity with the active 
user (i.e., the user, whose ratings are being predicted), (2) Neighborhood Formation: 
selecting the most similar users for the prediction generation, and (3) Prediction Gen-
eration: computing the prediction by weighting the ratings of the selected users. 
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One of the major drawbacks of the CF is its limited scalability. The stages of Simi-
larity Computation and Neighborhood Formation require comparing the active users 
with all the other users over all the available ratings. Hence, the computational effort 
required by the CF grows linearly with the number of users and the number of items 
in the ratings matrix. Thus, for a matrix containing ratings of M users on N items, the 
required computational effort is O(MN). This poses a problem in systems, where the 
predictions are generated using millions of ratings on thousands of items, e.g., in 
Web-based Recommender Systems. Previous studies, (e.g., [3], [6], [5], and others) 
tackle the issue of reducing the computational effort required by the CF either by pre-
processing of the ratings matrix or by distributing the computational stages. Nonethe-
less it remains one of the most important issues in the CF research community.  

In this work we develop a fast heuristic variant of the CF algorithm that decreases 
the computational effort required by the Similarity Computation and the Neighbor-
hood Formation stages. The basic assumption of the proposed heuristic algorithm is 
that losing general completeness of the exhaustive search (1) has a minor negative 
effect on the accuracy of the predictions, but (2) significantly decreases the required 
computational effort. Thus it provides a scalable approach, applicable to real-life 
scenarios with a high number of users and items, such as in Web-based systems. 

The proposed heuristic approach is based on a notion of content-addressable data 
management [15] that provides an adaptive topology for mapping of users' profiles to 
a multi-dimensional space. This mapping implicitly clusters similar users and limits 
the Similarity Computation and the Neighborhood Formation stages to a heuristic 
search among the users that are potentially highly similar to the active user.  

Experimental evaluation of the proposed approach demonstrates both high efficiency 
and good accuracy of the proposed algorithm in comparison with the traditional (ex-
haustive) K-Nearest Neighbors (KNN) search of the Neighborhood Formation stage. 
The evaluation also demonstrates that the algorithm is highly scalable with the number 
of nearest neighbors to be retrieved. 

The rest of the paper is organized as follows. Section 2 describes the CF personal-
ization technique and surveys the studies on the required computational effort reduc-
tion. Section 3 describes the CAN, a Peer-to-Peer content-addressable platform for 
decentralized data management. Section 4 describes the decentralized storage of users' 
profiles over the CAN platform and elaborates on the proposed heuristic variant of the 
CF over CAN. Section 5 presents and analyzes the experimental results. Finally, 
section 6 lists our conclusions and presents some open questions for future research. 

2   Collaborative Filtering 

Collaborative Filtering (CF) is probably one of the most familiar and widely-used 
recommendation techniques. An input for the CF is the so-called ratings matrix, 
where each user is represented by a set of explicit ratings given on various items, and 
each item is represented by a set of ratings given by the users. CF requires a similarity 
metric between users to be explicitly defined. The state-of-the-art CF systems exploit 
three similarity metrics: Cosine Similarity [7], Mean Squared Difference (MSD) [13], 
and Pearson correlation [19]. This work focuses on the MSD, computing the degree of 
similarity between users x and y by: 
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where |x∩y| denotes the number of items rated by both users (typically, above some 
minimal threshold), and Rx,i denotes the rating of user x on item i. In some sense, 
simx,y can be considered as the dissimilarity of the users, as the lower the result of the 
MSD computation, the greater is the real similarity between the users. Prediction Pa,j 
for the rating of the user a on item j is computed as a weighted average of the ratings 
of his/her K most similar users, i.e., K nearest neighbors, by: 

'
, ,' 1

,

,1

( )

| |

K

k j k a kk
a j a K

a kk

R R sim
P R

sim
=

=

− ⋅
= +∑

∑
 

where Rx,y denotes the rating of user x on item y, Rz' denotes the average rating of user 
z, and simv,u denotes the level of similarity between users v and u. 

The Similarity Computation stage of the CF requires comparing the active user 
with every other user in the system. For a ratings matrix storing the ratings of M users 
on N items, the computational complexity of the Similarity Computation stage is 
O(MN). This indicates poor scalability of the Similarity Computation, as the complex-
ity grows linearly with both the number of users and the number of items in the ma-
trix. Many prior works have dealt with decreasing the computational effort required 
by the CF. In general, it is achieved either by preprocessing the ratings matrix, or by 
distributing the computationally intensive stages of the CF among multiple machines. 

Various pre-processing techniques for decreasing the computational effort required 
by the CF (e.g., correlation coefficients, vector-based similarity, and statistical Bayes-
ian methods) are discussed and analyzed in [3]. Another technique, exploiting 
pre-clustering of the ratings matrix, is discussed in [6]. There, principal component 
analysis is used to identify two discriminative dimensions of the ratings matrix and all 
the vectors are projected onto the resulting plane. This inherently partitions the users 
to clusters or neighborhoods, which are further used to generate the predictions. In 
[5], the authors use a tree-like data structure and apply a divide-and-conquer approach 
using an iterative K-means clustering to group the users. This leads to smaller and 
more homogeneous clustering of users for the following Predictions Generation stage. 

An alternative approach is to distribute the CF computational effort among the us-
ers, such that every user independently computes its similarity with the active user. 
This approach was initially proposed in [22] and elaborated on in [20]. The latter also 
developed a detailed taxonomy of the CF distribution approaches and presented im-
plementation frameworks for different application domains. The PocketLens project 
[11] compared five decentralized distributed architectures for the CF. They showed 
that the performance of the decentralized mechanism is similar to the performance of 
the centralized CF while providing increased robustness and security. Further im-
provements to the decentralized CF were discussed in [8], which proposes the exploi-
tation of Peer-to-Peer platform for a decentralized management of users' profiles. 
However, this approach approximates the set of the most similar users identified by 
the Neighborhood Formation stage of the CF, and as a result, the accuracy of the 
generated predictions is reduced. 
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This paper is loosely based on the ideas of CAN [15], a content-addressable Peer-
to-Peer platform. We implement a fast heuristic variant of the CF, using a CAN-like 
multi-dimensional space for maintaining a connected structure of users. This allows to 
significantly decrease the computational effort required by the Similarity Computa-
tion and Neighborhood Formation stages by limiting the search process to a search 
among potentially similar users located in close vicinity to the active user. 

3   Content-Addressable Data Management 

This section presents the general architecture of CAN [15], a scalable decentralized 
data management platform. In CAN, the users are represented in a one-to-one manner 
by the nodes of a virtual N-dimensional coordinate space such that the location of the 
user's node is denoted by a vector (v1,v2,…,vN), where vi represents the numeric coor-
dinate of the node within a dimension number i. In addition to the node, each user 
continuously manages an N-dimensional subspace, called a zone. For example, con-
sider a 2-dimensional space partitioned to 3 zones, managed by users A, B, and C 
(figure 1-left). Note that the figure shows only the zones managed by the users, 
whereas the nodes themselves are not shown. 

 

Fig. 1. Example of a 2-Dimensional CAN space 

In CAN space, two nodes (and zones) are called neighbors if their coordinate spans 
overlap along N-1 dimensions and adjoin along one dimension. For example, consider 
the neighbor zones A and C in figure 1-left, whose coordinates partially overlap across 
the horizontal dimension and adjoin along the vertical. To maintain connectivity in 
CAN space, each node stores a list of pointers to a set of other nodes, managing the 
neighbor zones. For example, node A stores pointers to the nodes managing zones B and 
C (as, respectively, horizontal and vertical neighbors) in its list of pointers.  

Routing of messages in CAN space is based on the Plaxton routing algorithm [14]. 
This routing iteratively forwards the messages to the nodes that are closer to the target 
node than the current node using a greedy forwarding. The metric for evaluating the 
distance between two nodes in the address space is the L1 metric, i.e., the Manhattan 
Distance. This metric was chosen due to the fact that CAN space inherently supports 
it, as every node stores a list of pointers to the nodes, managing the neighbor zones. 
For example, the distance between the nodes (1,2,3) and (6,5,4) in 3-dimensional 
CAN space is (6-1)+(5-2)+(4-3)=9. Thus, in N-dimensional CAN space a message is 
routed between an arbitrary pair of nodes in O(N) routing steps. 

In addition, CAN provides a connectivity maintenance algorithm, stable to spo-
radic joins and departures of new users. When a new user is inserted, it is assigned its 
own node and the respective zone. This is done by splitting a zone (determined by the 
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content provided by the recently inserted user) of one of the existing neighbors ac-
cording to the following steps: (1) the new user identifies an existing network node, 
(2) the new user is routed to the target zone that will be split, and (3) the target zone is 
split and the neighbors of the new zone are updated to maintain connectivity and 
facilitate future routings. As a result, only a subset of immediate neighbor zones of 
the zone that was split is actually affected by the insertion of a new node. 

The issue of splitting the target zone (i.e., how to split the existing zone, where the 
contents of the recently inserted node are mapped?) is one of the important issues 
affecting the performance of CAN. A number of splitting policies are proposed, ana-
lyzed and compared in [15]. The simplest policy for the zones splitting is so-called 
ordered splitting. According to this policy, the number of dimension, across which a 
zone is split, iteratively increases from 1 to N. For example, consider user D joining 
CAN 2-dimensional space (figure 1-middle). Assuming that the content provided by 
D should be located in the right part of the zone managed by node C and this is the 
zone that will be split, user D is routed to C using the Plaxton routing, and zone C is 
split across the horizontal dimension (assuming that the previous split of C was, and 
the following split of both C and D will be performed across the vertical dimension). 
Finally, the recently inserted node, managing the zone D notifies its neighbors (i.e., 
the users managing zones B and C) about the insertion of a new node, and also their 
neighbors' lists are updated. Note that only the zone managed by user C, which was 
split and a subset of its neighbor zones (actually, only one zone managed by user B), 
are affected by the insertion of a new user D, whereas other zones are not affected. 

Disconnections of the users are handled in a similar manner. The disconnecting 
user identifies one of the neighbor nodes that will takeover managing its zone, and 
updates other neighbor zones about the departure and the management takeover. For 
example, consider the user managing zone B disconnecting from CAN space 
(figure 1-right). As a result of the disconnection, the user managing zone D takeovers 
the management the zone previously managed by user B. 

Thus, CAN provides a decentralized platform, supporting (1) dynamic space parti-
tioning and zones allocation, (2) efficient routing algorithm, and (3) connectivity 
maintenance algorithm over virtual N-dimensional coordinate space. Note that the 
distributed structure of CAN is not robust against sudden departures of users, as fault-
tolerance is not one of the main goals of the platform. However, CAN facilitates a 
decentralized self-manageable platform for content-addressable data management in a 
distributed environment. 

4   CF over Content-Addressable Space 

This work proposes a heuristic variant of the CF. It uses a content-addressable archi-
tecture for the purposes of optimizing traditional exhaustive K-Nearest Neighbors 
(KNN) search to a search among potentially similar users only. Although our algo-
rithm is a heuristic one by nature, experimental results demonstrate that it facilitates 
efficient search process without hampering the accuracy of the generated predictions.  
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4.1   Mapping User Profiles to Content-Addressable Space 

The input for the CF algorithm is a matrix of users' ratings on items, where each row 
(ratings vector) represents the ratings of a single user and each column represents the 
ratings on a single item. The total number of items (N) defines an N-dimensional 
space, where the coordinates range in each dimension corresponds to the range of 
ratings on the respective item. To handle the ratings matrix in a content-addressable 
manner, we map it to a CAN-like multi-dimensional space. Each rating is projected 
using a uniform injective (one-to-one) mapping onto the appropriate dimension, such 
that the whole vector of length N is mapped to a single point in an N-dimensional 
space. For example, consider a system storing the ratings of users on three different 
items. In such a system, the evolving CAN-like space will be a 3-dimensional cube, 
where the range of coordinates within every dimension corresponds to the range of 
possible ratings on the respective item.  

As already mentioned, each user is represented in a CAN-like space by a single 
node whose location corresponds to the set of user's ratings and by the respective zone 
For example, consider a user U that rated all three items in the above 3-dimensional 
cube: item i1 was rated as r1, item i2 as r2, and i3 as r3. U will be mapped to a location 
(r1,r2,r3) of the space and will have exactly two neighbors in each dimension. For 
example, in the dimension corresponding to item i1, U will have two neighbors, 
N1=(r1-x,r2,r3) and N2=(r1+y,r2,r3), such that both N1 and N2 rated i2 as r2 and i3 as r3, 
N1 rated i1 below r1, and N2 rated it above r1, and there is no other user that rated i1 as 
r', where r1-x<r'<r1 or r1<r'<r1+y. Similarly, U will have two neighbors in the di-
mension corresponding to item i2 and to item i3. If there is no user that provided the 
required combination of ratings, CAN space will maintain connectivity by connecting 
user U to a further node, which will serve as its virtual immediate. 

Note that in the evolving CAN space, the users can be dynamically inserted and 
removed not only during the initialization, but also during the life cycle of the system. 
This is explained by the observation that the above connectivity maintenance algo-
rithm guarantees that the structure remains connected regardless of the sudden joins 
and disconnections of the nodes. Nevertheless, CAN spaces can barely manage inser-
tions of new items, as the dimension of the space should remain fixed. Thus, the 
proposed heuristic search (that will be discussed in the following sub-section) is ap-
plicable only over a stable matrix of users' ratings, where no new items are inserted. 

Deciding on the zones split policy affects the evolving structure of the ratings vec-
tors. In our implementation, we used the above mentioned ordered splitting policy. 
This policy may be sub-optimal in terms of the number of neighbor zones, resulting in 
a less efficient algorithm, i.e., more comparisons or retrieving less similar neighbors. 
However, our experiments demonstrate that even this simple policy considerably 
increases the efficiency of the proposed K-Nearest Neighbors (KNN) search, in com-
parison with the traditional exhaustive search. Evaluating other splitting policies is 
beyond the scope of this work. 

In addition to the guaranteed connectivity, content-addressable space inherently 
clusters similar users, such that the distance between two similar users (in our case, 
according to the MSD similarity metric) is lower than the distance between two arbi-
trary users. This is achieved due to the use of an injective mapping of the ratings vec-
tor to the multi-dimensional CAN-like space, which preserves the users' similarity 
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while mapping the ratings vectors to the numeric coordinates in the space. The fol-
lowing subsection shows a use of the above inherent clustering property for the pur-
poses of developing fast heuristic variant of the KNN search. 

4.2   Heuristic Nearest-Neighbors Search 

The Neighborhood Formation stage of the CF over the evolving N-dimensional space 
can be schematically described as a heuristically expanding breadth-first search. The 
algorithm for retrieving K-Nearest Neighbors of a user x is briefly explained by the 
following pseudo-code. The code uses two lists of size K: (1) CANDIDATES – list of 
candidates for being one of the K-nearest neighbors, and (2) NEIGHBORS – list of 
real K-nearest neighbors. In principle, the algorithm needs the CANDIDATES list 
only, as the NEIGHBORS list only increases during the execution of the algorithm 
until it reaches its maximal length and contains the real K-nearest neighbors. For the 
sake of clarity, we show an algorithm that uses two lists instead of only one.  

K_Nearest_Neighbors (user x) 
(1) let NEIGHBORS and CANDIDATES be empty lists, each of size K 
(2) let Z be the zone, where x would be mapped in the CAN space 
(3) foreach u∈(Z h neighbors(Z))  
(4)   compute distance(x,u) 
(5)   insert u into CANDIDATES, s.t. CANDIDATES is sorted 
      according to the values of distances(x,u) 
(6) for i=1 to K 
(7)  choose v with smallest distance(x,v) from CANDIDATES  
(8)  for each w∈neighbors(v) with unknown distance(x,w)  
(9)   compute distance(x,w) 
(10) insert w into CANDIDATES, s.t. it remains sorted 

according  to distance(x,v) 
(11)  move v from CANDIDATES to NEIGHBORS 
(12) return NEIGHBORS 

Initially, the algorithm pretends to map the active user x to its location in the N-
dimensional space (step 2). Next, the algorithm identifies the zone x is mapped to, and 
its neighbors, i.e., users managing the neighbor zones (step 3). For each of these 
zones, the degree of similarity, i.e., the distance between x and the relevant user, is 
computed (step 4). Then, the neighbor users are inserted into the CANDIDATES list 
such that the whole list of candidates users is sorted according to the distances of the 
users from the active user x (steps 4 and 5). Afterwards, the algorithm iteratively (1) 
selects v, the nearest neighbor stored in the CANDIDATES list (step 7), (2) identifies 
the neighbors of v that are not in the CANDIDATES list yet, computes their distances 
from x, and inserts them into the CANDIDATES, while keeping the list sorted (steps 8, 
9, and 10), and (3) removes v from the CANDIDATES list and inserts it into the 
NEIGHBORS list. Finally, the algorithm returns the NEIGHBORS list (step 12). 

Consider an example execution of the KNN search as illustrated in figure 2. The ini-
tial structure of 2-dimensional space is depicted in figure 2a. Nine users, from a to i, are 
inserted into the space and manage the respective zones. Note that also this figure shows 
only the zones managed by the users, whereas the nodes representing the users are not 
shown. Assume that the active user is mapped to the zone managed by user e. Thus, e 
and its neighbors, i.e., users managing zones c, d, f, and i, are the first candidates for 
being the nearest neighbors and they are inserted into the CANDIDATES list. Assume 
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that the user managing zone e is the closest one. It is moved from the CANDIDATES list 
to the NEIGHBORS list (figure 2a). Since all the neighbors of e are already known, the 
next closest neighbor is chosen among its neighbors. Assume that the next closest 
neighbor is the user managing zone f. It is moved from the CANDIDATES list to the 
NEIGHBORS list, and its only new neighbor, the user managing zone g, is inserted into 
the CANDIDATES list (figure 2b). The next closest neighbor is the user managing zone 
c, inserting the user managing zone b into the CANDIDATES list (figure 2c). Assume 
that the next closest neighbor is the user managing zone g (not an immediate neighbor 
of e). As a result, the user managing zone h is inserted into the CANDIDATES list 
(figure 2d). This process is repeated until the NEIGHBORS list contains K-Nearest 
Neighbors. 

 

Fig. 2. Stages of the KNN search over 2-Dimensional CAN space (zones managed by users 
from the CANDIDATES are in a light and from the NEIGHBORS – in a dark gray) 

The proposed algorithm reduces the computational effort required by the Similarity 
Computation and the Neighborhood Formation stages, in comparison with the tradi-
tional CF algorithm, where an active user is compared with all the available users. 
Conversely, the proposed heuristic algorithm compares the active users with poten-
tially similar users only, located in close vicinity to the active user. Since every user 
in the N-dimensional space continuously maintains an updated list of its immediate 
neighbors, any neighbor of a given user is accessed through a single network hop. 
This is true regardless of the physical (geographical) and logical (similarity) distances 
between the neighbors. Thus, the algorithm will also work in sparse spaces, where the 
distance between neighbors in the underlying network might be very high.  

4.3   Heuristic Completions of User Profiles 

In the former sections, we assumed that the user's ratings were represented as a com-
plete vector, i.e., explicit ratings on all the items are available. Thus the mapping of 
the user's ratings vectors to the underlying content-addressable space is straight-
forward. However, this assumption is unachievable in most real-life applications and 
scenarios, where an average user rates only a portion of the available items. This 
raises a need for developing a mapping mechanism capable of mapping incomplete 
vectors, where a subset of the ratings is missing, to the content-addressable space. In 
this sub-section we propose three mappings to handle this task.  However, instead of 
developing a new mapping of incomplete vectors to the content-addressable space, we 
propose to convert the incomplete vectors to complete ones by heuristically filling-in 
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the missing ratings in the incomplete vectors [2]. Thus, the proposed completion heu-
ristics are designed to re-use the above injective mapping of complete vectors, while 
employing it on the modified vectors with heuristically filled-in ratings. 

As the completion heuristics are not the main focus of the current work, we suffice 
with three relatively simple heuristics that demonstrate the applicability of the pro-
posed vectors' completion. The heuristics are as follows: 

• User-average – the missing rating on an item in the user's vector is substituted 
with the average of the real ratings, explicitly provided by this user.  

• Item-average – the missing rating on an item in the user's vector is substituted with 
the average of the real ratings, explicitly provided by the other users on this item.  

• Conditional – integrates both the user-average and the item-average heuristics 
and decides in a run-time regarding the specific completion heuristic to be used 
according to a certain predefined condition. 

Clearly, the user-average heuristic can be considered as an accurate personalized 
completion heuristic, as the missing ratings are substituted with a value, produced by 
the real ratings of the given user. Thus, it reflects the real preferences and tendencies 
of the user, such as over- or under-rating of items, natural intensity of expressions and 
so forth. Conversely, the item-average heuristic can be considered as the most accu-
rate non-personalized completion heuristic, as the missing ratings are substituted with 
a value, produced by numerous real ratings on the given item. As such, it reflects a 
general (and relatively reliable) opinion of many other users on the item. We conjec-
ture that the user-average heuristic is preferable when the knowledge about the user's 
preferences is reliable, i.e., the number of ratings explicitly provided by the user is 
relatively high. On the other hand, when the number of user's explicit ratings is low, 
the item-average heuristic will exploit other users' ratings for filling-in the missing 
rating and it should be preferred. Based on these considerations, we defined another 
conditional heuristic, which will autonomously decide which of the above completion 
heuristics should be exploited for filling-in the missing ratings of every user.  

In summary, each of these heuristics allows the filling-in of the missing ratings, 
converting the incomplete vectors to the complete ones, and then mapping them to the 
content-addressable space using the above mentioned injective mapping mechanism.  

5   Experimental Evaluation 

In the experimental part of our work we used the Jester dataset of jokes' ratings [6]. 
Jester is a Web-based joke Recommender System, containing 4.1 millions of ratings 
(on a continuous scale from –10.00 to +10.00) of 73,421 users on 100 jokes. A sig-
nificant portion of the users rated all the jokes, so the Jester dataset is relatively dense. 
Overall, approximately 56% of all the possible ratings in the matrix are present. For 
the complete vectors experiments, we selected a subset of 14,192 users that rated all 
100 jokes, producing a matrix, where every value corresponds to a real rating, explic-
itly provided by a user. The average rating of a joke is 0.807, and the standard devia-
tion of the ratings in the matrix is 4.267. We implemented a centralized simulation of 
a 100-dimensional CAN space and inserted the above 14,192 users into the space. 
Insertions of the users into the space were done using the ordered splitting policy. 
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5.1   Scalability of the Search 

These experiments were designed to evaluate the scalability of the proposed heuristic 
variant of the KNN search. The efficiency of CAN-based KNN is measured by the 
number of comparisons performed by the Neighborhood Formation stage of the CF.  

In this experiment we measured number of comparisons during the Neighborhood 
Formation stage. For this, we gradually increased the number of users inserted into the 
system from M=1,000 to M=14,000. For each M, we computed the number of compari-
sons performed in the traditional exhaustive KNN search and in CAN-based heuristic 
variant of KNN. Both searches were aimed at retrieving K=5 nearest neighbors. For 
each value of M, the experiments were repeated 1,000 times for different active users. 
The results are shown on Figure 3. The horizontal axis stands for M, the number of 
users inserted into the system, and the vertical axis reflects the average number of com-
parisons during a single KNN search, for both exhaustive and heuristic searches.  
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As expected, the number of comparisons in CAN-based KNN is significantly lower 
than in traditional KNN and it grows at a logarithmic-like manner with the number of 
users. This is explained by the fact that in CAN-based KNN the active user is com-
pared only with a subset of highly similar users (located in close vicinity in a content-
addressable space), whereas in traditional KNN it is exhaustively compared with all 
the available users. To better understand the scalability of the proposed approach, we 
computed the ratio between the number of comparisons in CAN-based KNN and the 
number of comparisons in the exhaustive KNN. This ratio was computed for different 
values of M and the results are shown on Figure 4. It can be seen that the ratio steadily 
decreases with M. This allows us to conclude that the proposed algorithm is applica-
ble in large-scale systems with high number of users and items, e.g., on the Web.  

The second experiment was designed to evaluate the scalability of CAN-based 
KNN with the number of nearest neighbors (K) to be retrieved. We gradually in-
creased the value of K from K=1 to K=50. For each value of K, we measured the 
number of comparisons needed to retrieve K nearest neighbors for M=1,000, 2,000, 
4,000, 8,000, and 14,000 users. For each value of M and K, the experiments were 
repeated 1,000 times for different active users. The number of comparisons as a func-
tion of K for the above values of M is shown on Figure 5. The horizontal axis stands 
for K, the number of nearest neighbors to be retrieved, whereas the vertical reflects 
the average number of comparisons during the KNN search. 
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Fig. 5. Average number of comparisons vs. the number of retrieved neighbors 

As can be seen, the number of comparisons in CAN-based KNN remains roughly 
unchanged when K increases. This is explained by the observation that most of the 
KNN users are located in close vicinity to the active user. Thus, the similar users are 
discovered in the early stages of the KNN search, while further expansions contribute 
very few new similar users. Both experiments show good scalability of CAN-based 
KNN with K. This means, that practical Recommender Systems can use higher values 
of K, to form moderately larger and more reliable neighborhoods, and generate more 
accurate predictions with only a very minor computational overhead. 
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5.2   Accuracy of the Search 

The following experiments were designed to evaluate the accuracy of the results ob-
tained by the proposed heuristic variant of KNN search. In the first experiment we 
compared the sets of users, i.e., the neighborhoods, retrieved by the traditional (ex-
haustive) KNN and by the CAN-based variant of KNN.  

Let us denote by KNNe the set of users retrieved by the traditional exhaustive KNN 
search and by KNNh the set of users retrieved by the CAN-based heuristic variant of 
KNN. Since the CAN-based KNN is a heuristic approach, a sub-optimal structure of 
zones may lead to a situation, where KNNe≠KNNh, i.e., the heuristic search retrieves 
only a subset of the real K nearest neighbors. As the collaborative predictions are 
generated by aggregating the ratings of similar users, identifying the set of most simi-
lar users is essential for generating accurate predictions.  

To evaluate the accuracy of the proposed heuristic KNN search, we adapt the tradi-
tional Information Retrieval metric of precision [18]. In fact, the computed accuracy 
metric is rather precision@K, since the overall search procedure is limited to K most 
similar users only. However, this metric also provides some indication about the re-
call of the search, as it can be considered as the recall of the search for a limited num-
ber of the most similar users to be retrieved. For the sake of clarity, this metric is 
referred to in the paper as precision. The precision is computed by: 

| | | |

| |
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KNN KNN KNN KNN
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KNN K
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The cardinality of the KNNe set was K=10, while the cardinality of the KNNh set 
was gradually increased from K'=1 to K'=100. The precision was computed for 
M=1,000, 2,000, 4,000, 8,000 and 14,000 users inserted into the system. For each 
value of M and K', the experiments were repeated 1,000 times for different active 
users. Figure 6 shows the precision as a function of K' for the above values of M. The 
horizontal axis stands for M, the number of users inserted into the system, whereas the 
vertical reflects the average precision of the heuristic KNN search. 
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Fig. 6. Precision of CAN-based KNN 
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As can be seen, the curves behave similarly and the accuracy increases with K', 
such that for K'>50 it is over 0.9 for all the given values of M. Previous experiments 
presented in previous sub-section show that the algorithm is highly scalable with K. 
Thus, retrieving a larger set of users (i.e., higher values of K') leads to a minor in-
crease in the computational overhead. Hence, it is feasible to moderately increase the 
number of neighbors retrieved by CAN-based search in order to achieve a higher 
accuracy and generate better predictions. 

Since the precision of the heuristic CAN-based KNN search may seem low for 
small values of K', we conducted another two experiments, aimed at evaluating the 
quality of the neighborhood retrieved by the heuristic search. In the first, this was 
done by computing the average similarity between the nearest neighbors retrieved by 
the heuristic search and the active user. The computed average similarity was com-
pared to the average similarity of neighborhood retrieved by the traditional search.  

In the experiment, we gradually increased the number of users inserted into the 
system from M=1,000 to M=14,000. For each value of M, we compared the average 
similarity of heuristically retrieved neighbors with the average similarity of exhaus-
tively retrieved neighbors for K=K'=10. For each value of M, the above experiments 
were repeated 1,000 times for different active users. The results of the experiment are 
shown on Figure 7 (discussed after Figure 8). The horizontal axis stands for the num-
ber of users inserted into the system, whereas the vertical reflects the average similar-
ity between the users in the KNN set and the active user for both searches.  
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Fig. 7. Average similarity vs. the number of users inserted 

The second experiment was designed to evaluate the quality of the heuristically re-
trieved neighborhood by comparing the accuracy of the generated predictions. The final 
goal of the KNN search is to retrieve a set of the most similar users, whose ratings will be 
aggregated when generating the predictions. Thus, we generated the predictions using both 
exhaustively and heuristically retrieved sets of K-Nearest Neighbors and evaluated the 
accuracy of the predictions using well-known Mean Average Error (MAE) metric [9]:  

1
| |
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where N is the number of predictions, pi and ri are the predicted and real ratings i. 
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Also in this experiment the number of users inserted into the system was gradually 
increased from M=1,000 to M=14,000. For each value of M, the experiment was 
repeated 1,000 times for various, randomly chosen active users. For each active user 
chosen, the following operations were conducted: (1) a single randomly selected rat-
ing in the user's profile was hidden and served as a rating to be predicted, while the 
remaining all-but-one ratings served as the user's profile, (2) basing on the all-but-one 
user's profile, the set of K=K'=10 nearest neighbors was retrieved using both tradi-
tional exhaustive and heuristic retrievals, (3) predictions were generated using both 
heuristically and exhaustively retrieved neighborhoods, and (4) the MAE error of the 
generated predictions relatively to the original hidden rating was computed. The aver-
age values of the MAE computed for certain values of M are shown on Figure 8. The 
horizontal axis stands for the number of users inserted into the system, whereas the 
vertical reflects the MAE values for both exhaustive and heuristic searches.  

The results show that the average similarity (which is actually the dissimilarity) 
and the MAE of the predictions decrease with M. This is explained by the observation 
that the probability of discovering a similar user increases with the number of users 
inserted into the system. Thus, the average dissimilarity of the retrieved K-Nearest 
Neighbors decreases with M, while the accuracy of the generated predictions in-
creases, and the MAE decreases as well. 

Although both the similarity and the MAE of CAN-based heuristic search are higher 
(i.e., the retrieved neighbors are more dissimilar and the accuracy is actually lower), the 
curves are very close and the results are quite similar. Average deviation of the similari-
ties is 2.93% and of the MAEs is only 0.38%. Note that the average deviation of the 
MAE is significantly lower than the average deviation of the similarities, as the gener-
ated predictions are barely affected by the changes in the retrieved neighborhoods. 
These experiments allow us to conclude that the proposed heuristic algorithm succeeds 
in both retrieving similar neighborhoods and generating accurate predictions. 
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Fig. 8. Mean Average Error of the predictions vs. the number of users inserted 

5.3   Inherent Clustering 

One of the basic assumptions, that allows us to limit the heuristic search to users, 
located in close vicinity to the active user, is the inherent clustering. That means that 
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the distance between two similar users is lower than the distance between two arbi-
trary users. Thus, the following experiment was designed to verify the property of 
inherent clustering in the underlying content-addressable space.  

For this, we computed the average and the standard deviation of the similarity of 
the users located R=1, 2, and 3 routing hops from the active user. The experiments 
were conducted for M=1,000, 2,000, 4,000, 8,000 and 14,000 users inserted into the 
system. For each value of M, the experiments were repeated 1,000 times for different 
orders of inserting the users into the system and for different active users. Figure 9 
shows the average similarity and the standard deviation as a function of R for the 
above values of M. The horizontal axis stands for M, the number of users inserted into 
the system, whereas the vertical reflects the average and the standard deviation of the 
similarity of the retrieved users within a given number of hops from the active user. 

It can be seen that for any value of M the similarity increases with R. This means that 
the similarity of users, located close to the active user is higher than the similarity of 
those located far. Thus, this experiment verifies our assumption on the clustering in 
content-addressable space. For any R, the average similarity and the standard deviation 
steadily decrease with M. This is explained by the fact that higher number of users leads 
to a better organization of zones, where zones managed by more similar users block the 
zones managed by dissimilar users. Thus, the average similarity (and the standard devia-
tion) of users located within a given number of hops decreases with R. 

Moreover, this experiment demonstrates the stability of the proposed CAN-based 
structure of users. This experiment was repeated 1,000 times, for different random or-
ders of inserting the users into the system. Low values of the standard deviation, and the 
steady decrease of it with the number of users in the system, show that the inherent 
clustering holds regardless of the different types of organization of the CAN zones, 
imposed by the different orders of inserting the users. Thus, the proposed KNN search 
will succeed to retrieve accurate neighborhoods for various system usage scenarios. 
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Fig. 9. Average similarity vs. number of hops from the active user 

5.4   Completion Heuristics 

The following experiments were designed to evaluate the proposed completion heu-
ristics for filling-in the missing values in the incomplete ratings vectors. To run the 
experiment with incomplete vectors, we used the full Jester dataset [6]. In previous 
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experiments we used a partial dataset of complete vectors, built by 14,192 users that 
rated all 100 jokes. In addition, the full dataset also contains the ratings of 59,229 
users that rated on average 45.26 jokes. The full Jester dataset (containing both com-
plete and incomplete vectors) was used in the completion heuristics experiments.  

We implemented the user-average and the item-average completion heuristics. As 
for the conditional heuristic, the decision regarding the chosen completion heuristic 
was based on the number of rated items in user's ratings vector. Since in the full Jester 
dataset the average number of items rated by a user was 45.26, in our implementation 
of the conditional heuristic the threshold was set to 20 items. This means that if a user 
rated less than 20 items, her ratings vector is not considered reliable, and the item-
average heuristic is applied. Otherwise, the user-average heuristic is applied. 

To evaluate the accuracy of the proposed completion heuristics, we conducted two 
experiments. In the first, we compared the average similarity between the active user 
and the K-Nearest Neighbors retrieved by the heuristic search and by the traditional 
exhaustive search. The experiment was repeated three times, for the different comple-
tion heuristics exploited before inserting the completed vectors to the underlying 
content-addressable space. In the experiment, we gradually increased the number of 
users inserted into the system from M=5,000 to M=50,000. For each value of M, we 
compared the average similarity of the retrieved neighbors (using both exhaustive and 
heuristic retrieval techniques) for K=K'=10. For each value of M, the experiments 
were repeated 1,000 times for different active users. The results of the experiment are 
shown on Figure 10. The horizontal axis stands for M, the number of users inserted 
into the system, whereas the vertical reflects the average similarity between the users 
in KNN set and the active user for exhaustive and heuristic searches.  
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Fig. 10. Average similarity vs. the number of users inserted 

The curves show, that similarly to the accuracy results in previous sub-sections, the 
average similarity (i.e., dissimilarity) of the retrieved KNN users decreases with M, the 
number of users inserted into the system. Comparison of the proposed completion heu-
ristics yields that the personalized user-average heuristic outperforms the non-
personalized item-average heuristic. Average similarity deviation of the KNN set 
exploiting the user-average heuristic from the exhaustively retrieved KNN is 4.43%, 
while the similarity deviation of the item-average KNN set is 6.21%. Since the condi-
tional heuristic is a smarter combination of the above heuristics, it slightly outperforms 
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the user-average heuristic as well, and for it the average similarity deviation from the 
exhaustively retrieved KNN set is 4.11%. 

Since the goal of the Collaborative Filtering is to generate predictions, the second 
experiment was designed to evaluate the quality of the completion heuristics by com-
paring the accuracy of the generated predictions. Hence, we generated the predictions 
using both exhaustively and heuristically retrieved sets of K-Nearest Neighbors and 
evaluated the accuracy of the predictions using the MAE metric. In the experiment the 
number of users inserted into the system was gradually increased from M=5,000 to 
M=50,000. For each value of M, the experiment was repeated 1,000 times for various 
active users.  
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Fig. 11. Mean Average Error of the predictions vs. the number of users inserted 

The experimental setting was similar to the previous sub-sections: the sets of 
K=K'=10 nearest neighbors was retrieved using both exhaustive and heuristic retriev-
als, the predictions were generated using both neighborhoods, and the MAE of the 
generated predictions relatively to the original rating was computed. The average 
values of the MAE are shown on Figure 11. The horizontal axis stands for the number 
of users inserted into the system, while the vertical reflects the MAE values for both 
exhaustive and heuristic searches. Note that the heuristic retrieval was conducted 
three times, according to the completion heuristics being exploited. 

Similarly to previous results, this experiment shows that the MAE of the prediction 
decreases with M, the number of users inserted into the system. Comparison of the 
proposed completion heuristics yields that the accuracy of the predictions using per-
sonalized user-average heuristic is better than of the non-personalized item-average 
heuristic. However, for both heuristics the increase of the MAE is minor: for the user-
average heuristic it is 0.69%, whereas for the item-average heuristic it is 1.37%. As 
can be seen, also in this experiment the conditional heuristic outperforms both of 
them, as for the conditional heuristic the increase of the MAE is 0.46%. Hence, out of 
the proposed completion heuristics, the conditional heuristic retrieves the most similar 
KNN set and generates the most accurate prediction. This allows us to conclude that 
this heuristic should be used for converting the incomplete vectors to complete ones, 
and leads to future research on developing more accurate completion heuristics. 
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6   Conclusions and Future Work 

One of the major drawbacks of the state-of-the-art CF implementations is their high 
computational complexity, which grows linearly both with the number of users and 
items in the system. In this work we proposed to heuristically decrease the required 
computational effort by implementing the CF over content-addressable CAN-like N-
dimensional space.  

Experiments conducted over the Jester dataset of joke ratings show that the pro-
posed heuristic algorithm outperforms the traditional exhaustive KNN search as the 
computational overheads are significantly decreased, while the accuracy remains 
similar. Our algorithm decreases the number of required comparisons, such that the 
ratio between the numbers of comparisons steadily decreases with the number of 
users. For example, for 14,000 users the number of comparisons was decreased by 
87%. Other experiment shows that the number of comparisons roughly remains un-
changed when K increases. This allows us to increase the number of nearest neighbors 
retrieved (and to improve the accuracy of the predictions) with a minor computational 
overhead.  

In the accuracy experiments we qualitatively compared the neighborhoods re-
trieved and the predictions generated by the CAN-based heuristic and by the tradi-
tional exhaustive KNN searches. The retrieved neighborhoods were similar and the 
predictions were close, which indicates a good accuracy of the proposed algorithm. In 
summary, comparing the proposed heuristic search with traditional exhaustive search 
shows that our algorithm achieves high accuracy, while significantly decreasing the 
required computational effort. Another experiment was aimed at validating the inher-
ent clustering property of content-addressable spaces. The results showed that this 
property holds in the CAN-like space, as the dissimilarity of users, located in a certain 
number of network hops from the active user increased with the number of network 
hops. The experiments also showed that the inherent clustering property holds regard-
less of the number of users inserted into the system and the order of their insertion.  

Finally, the last experiment was aimed at comparing three simple heuristic for con-
verting the incomplete vectors to complete ones by filling-in the missing ratings. The 
experimental results showed that the heuristic, which conditionally integrates two 
other heuristics, outperforms them both in terms of the retrieved neighborhoods' simi-
larity and of the generated predictions' accuracy. Comparing the MAE of the predic-
tions generated by the complete and heuristically completed vectors yields that the 
accuracy of the predictions generated by the complete vectors is slightly better. This 
conclusion is reasonable, since the proposed completion heuristics insert some extent 
of noise into the original ratings. However, the increase in the MAE is minor, allow-
ing us to conclude that the achieved computational optimization is preferential than 
the minor noises in the predictions caused by the artificial ratings inserted by the 
completion heuristics.  

In this work, we inherently assumed that the system assigns equal relative weights 
to the ratings on each item. However, this assumption is not true in many real-life 
personalization applications. For example, this assumption might be false in a situa-
tion, where different criteria affect differently on the similarity values, e.g., when the 
similarity values between the items are known. Developing a weighted prediction 
algorithm will result in a more accurate Recommender System. 
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Also, we assumed that either the user's ratings on the items are available or they 
can be easily filled-in using one of the proposed simple completion heuristics. How-
ever, some real-life scenarios, this completion is hard to achieve, since the matrix is 
very sparse (e.g., density of 2-3% in typical Collaborative Filtering datasets such as 
[9] and [10]) and the substitution of the missing values may require exploiting more 
intelligent techniques. In the future, we plan to study the use of various completion 
heuristics, exploiting statistical and Machine Learning techniques.  

In addition to decreasing the computational effort, the proposed algorithm can 
naturally be extended to distribute it among multiple users. In traditional centralized 
implementations of the CF, the Similarity Computation and the Neighborhood Forma-
tion stages are performed in a single central location. However, as the underlying 
CAN platform is originally distributed Peer-to-Peer platform, it inherently allows 
distributed and fully decentralized storage of the ratings matrix. In the future, we plan 
to implement a distributed variant of the algorithm and to investigate the distribution 
issues. 

The current work is limited to the Mean Squared Difference (MSD) similarity met-
ric, since the injective mapping to a multi-dimensional CAN-like space inherently 
supports it. However, for other metrics, such as Cosine Similarity or Pearson Correla-
tion, CAN space might be inappropriate and new types of topologies and respective 
mappings should be developed. We plan to study other metrics and to produce a gen-
eral framework for efficient heuristic Collaborative Filtering. 
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