
Chapter 19
Privacy Aspects of Recommender Systems

Arik Friedman, Bart P. Knijnenburg, Kris Vanhecke, Luc Martens,
and Shlomo Berkovsky

19.1 Introduction

The deluge of online products, services, and information has made recommender
systems an inherent part of the Web realm. They are used in a variety of use cases
and applications: from eCommerce sites, through the Social Web, to health mobile
apps. The benefits of personalized recommendations, both for users and service
providers, are numerous. However, they also bring to the fore some risks that may
limit the uptake of recommenders, one of which is the risk of a privacy breach.

The privacy risk is mainly caused by the recommenders’ need to collect and store
personal information about their users. Indeed, in order to provide personalized
recommendations, a recommender needs to possess some information about its
users, encapsulated in user models. This information serves as the basis for gen-
erating the recommendations and, generally, the quality of the recommendations is
correlated with the amount, richness, and freshness of the underlying user modeling
data. On the other hand, the same factors drive the severity of the privacy risk and
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the damage that can be caused if the user modeling data is exposed to third parties.
This is referred to as the privacy-personalization trade-off [10, 24, 37, 87, 98, 156],
and it inevitably manifests once personalized recommendations are considered.

The privacy risks posed by personalization are aggravated when more sophis-
ticated recommendation scenarios are deployed. For example, consider a recom-
mender that, as part of the recommendation process, either augments its user
models by extracting new features and populating their data, or cross-links multiple
sources of user modeling data. In these scenarios, the recommender is likely to
uncover additional information that was not readily accessible in the original user
models, i.e., information that the users may not have consented to be released for
the recommendation purposes. Having this information exposed and accessed by
untrusted parties could lead to harmful consequences.

In this chapter we concentrate on the privacy challenge faced by recommender
systems. We survey related work on privacy-enhanced recommenders and partition
it into three broad categories. The first focuses on architectures that facilitate
more private recommendations. These entail various decentralized solutions that
eliminate a single repository of user modeling data, which would otherwise be the
target for attacks on the recommender. The second category refers to algorithmic
solutions, which either perturb the original user modeling data or apply formal
encryption methods. These assure that, even if accessed by an untrusted party, only
modified/encrypted user data would be exposed, rather than the original data. Lastly,
the category of policy driven solutions addresses directives and legislation initiatives
that limit the storage, transfer, and exploitation of personal user data. Clearly, these
solutions are not mutually exclusive, and a recommender may—and often will—
deploy solutions from multiple categories.

While these solutions may improve objective and measurable privacy aspects, an
important question pertains to the users of the recommenders. They may have their
own considerations regarding the sensitivity of their data, exposure/preservation of
some information, and measures they are willing to take to protect their privacy [21].
Hence, users’ perception of and reasoning about privacy deserves special attention.
Therefore, we also discuss users’ privacy attitudes and behaviors, as well as current
practices and recent advances to support the users’ privacy decision-making process.

This chapter is structured as follows. In Sect. 19.2 we give a broad definition of
privacy and discuss the privacy risks faced by the users of recommender systems.
In Sect. 19.3 we outline the three categories of solutions to these risks; namely,
the architectural (Sect. 19.3.1), algorithmic (Sect. 19.3.2), and policy solutions
(Sect. 19.3.3). We survey a number of papers implementing the solutions and
summarize each category. In Sect. 19.4 we switch to the human aspects, and discuss
users’ perception of and attitude towards privacy, as well as privacy-related decision
making. We conclude the chapter in Sect. 19.5, where we outline the achievements
and shortcomings of privacy-enhanced recommender systems and discuss future
research directions in light of emerging trends in recommendation technologies.
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19.2 Privacy Risks in Recommender Systems

Most scholars argue that in the modern information age people regard their personal
information as a commodity: they are willing to give up some personal information
in return for personal gains. Recommender systems are a perfect example of this
dynamic: They collect a wide variety of user data as input for their recommender
systems, and in return provide their users with better services and products [10, 37,
44, 87, 139]. The information collected might include users’ clicking or viewing
behavior; contextual information like the location or mood; social information like
user friends, family, or colleagues; as well as demographic parameters like age and
occupation [72]. To make sure that data collectors treat the collected information
responsibly, the OECD [114] has defined a set of Fair Information Practices (FIPS):

Collection Limitation Data should be collected within limits, by lawful and fair
means and with consent (where appropriate).

Data Quality Data should be relevant, accurate, complete and kept up-to-date.
Purpose Specification The purposes of collection should be specified at the time

of collection.
Use Limitation Data should not be used or disclosed for other purposes except

with consent or by the authority of law.
Security Safeguards Personal data should be protected against unauthorized

access, destruction, use, modification or disclosure.
Openness Users should be able to know what data is being collected, who

controls the data, and for what purposes they are used.
Individual Participation An individual should be allowed to inspect the

collected data about themselves, and have them erased, rectified, completed
or amended.

Accountability The collector of the data should be accountable for complying
with the above measures.

Generally speaking, privacy is breached when any of these principles are
violated. Given their need to collect large amounts of information and innate
capability to infer users’ personal tastes from this data, recommender systems run
a heightened risk to violate the Collection Limitation, Purpose Specification, Use
Limitation, and Security Safeguards principles. In this light, we categorize privacy
risks in Table 19.1 along two dimensions: whether the privacy breach is due to direct
access to existing data (a violation of the Collection and Use Limitation principles)
or due to inference of new data (a violation of the Purpose Specification principle),
and who the adversary trying to uncover user information is. We consider three
types of adversaries: (1) the recommender system interacts with the user, but it
might operate in a way that is incompatible with the user’s expectations of privacy
(a violation of the Collection and Use Limitation principles); (2) other users of the
system have no direct access to another user’s private data, but they might exploit the
outputs of the recommender to uncover the information of a target user (a violation
of the Security Safeguards principle); and finally, (3) external entities are not users



652 A. Friedman et al.

Table 19.1 Privacy risks in recommender systems

Adversary Direct access to existing data Inference of new data

Recommender Unsolicited data collection Exposure of sensitive information

system Sharing data with third parties Targeted advertising

Unsolicited access by employees Discrimination

Other users Leaks through shared device or service Inference from the recommender
output

External Lawful data disclosure

entities Hacking Exposure of sensitive information

Re-identification of anonymized data

of the recommender, but they may try to access the information retained by the
system or intervene in the interaction between the system and its users to get access
to such information (another violation of the Security Safeguards principle, but
regarding a different type of security safeguard). We next look in detail at the risks
imposed by each of these actors.

19.2.1 Risks Imposed by the Recommender System

19.2.1.1 Direct Access to Data

Recommender systems typically rely on a central entity, which accesses personal
user data for the purpose of personalizing a service. However, the availability of this
information, combined with commercial incentives, may result in this data being
used in a way that violates the end-users’ expectations of privacy, even when this
use is consistent with the provider’s privacy policy [46]. There are several ways in
which direct access to data could expose users to privacy risks, including:

Unsolicited data collection As storage capabilities are cheap, online services are
tempted to collect as much user data as possible, either because it might be useful
at some point in the future (e.g., Chap. 6 discusses the value of rich contextual
information), or because it can be monetized. However, collection of data that
is not deemed necessary to provide a service may break user expectations of
privacy. For example, in a survey that aimed to capture the expectations of what
sensitive resources mobile apps use [99], Pandora Internet Radio was one of the
apps singled out by the users for unexpected resource usage, since it accesses
the contact list on the mobile device. In general, users seem particularly wary of
“context tracking,” arguably because unwanted or unexpected inferences can be
made about such data [80].

Sharing data with third parties There are many scenarios in which recom-
mender systems have incentives to share raw user data with third parties. For
example:
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• Companies that have access to such information may wish to share it to
collaborate with the research community, as was the case when AOL released
anonymized user search queries [12] and in the Netflix Prize competition [20].

• Companies may need to share data with third parties to outsource parts of
their operation. Today, many companies offer so-called recommendations as
a service. The third party receives user profiles and interaction logs from a
website, processes them, generates recommendations, and sends them back
to the website. While the user profiles may have been anonymized before
transmission, a copy of the user profile now exists with the third party. Even
if the user were to delete their account, they could not verify the deletion of
their profile by the third party.

• Finally, service providers may be tempted to sell personal user data to data
brokers, as this was shown to be a lucrative business [17]. Data may also
change hands following acquisition of companies, or when liquidators sell off
databases of bankrupt companies.

Ackerman et al. [1] and Krishnamurthy and Willis [92] highlighted that propa-
gation to third parties and profile data that can be linked back to a user’s identity
are important concerns that users have when they consider releasing information
online. Although the data custodian may take precautions and anonymize the
data prior to release to safeguard user privacy, the released data may be subject
to de-anonymization attacks, as will be discussed later.

Unsolicited access by employees While the recommender system may take pre-
cautions to ensure user data is maintained under its control, it is possible that
employees, who need access to user data to fulfill their role, will abuse their
privileges to snoop for data of people they know. Employees may also be tempted
to steal the data of well-known people (celebrities) for curiosity or for money.
This risk exists in any system that retains user information, and can be mitigated
to some extent by ensuring appropriate access control and auditing mechanisms.

19.2.1.2 Inference from User Preference Data

Sophisticated manipulation of the data collected or processed by the recommender
system (see Chap. 7 for an overview of data mining methods) could lead to
additional privacy risks due to inference of new data, sometimes without the
awareness or consent of the user:

Exposure of sensitive information Several recent works [36, 91, 147] have
demonstrated the power of machine learning techniques in uncovering sensitive
and private personal information, including personality traits (see Chap. 21).
While such inferences are probabilistic in nature, they could be harmful even if
wrong, particularly when judgments are based on risk (e.g., insurance decisions)
or prejudice (e.g., workplace discrimination).

Targeted advertising In targeted advertising, the collected data is used to
learn user interests and select advertisements that are most likely to result
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in conversion. The targeted ads may expose sensitive or embarrassing
information—one prominent example is of a parent who learned that his teenager
daughter was pregnant after Target started sending her coupons for baby clothes
and cribs [47].

Discrimination Recent works [105, 106] have shown evidence of online price
discrimination facilitated by personal information. Individuals may perceive this
as a misuse of their information, and as overstepping the purposes specified for
data collection.

Inference attacks exploit various aspects of user data to derive sensitive and
private information. These attacks typically rely on correlations learned from other
users’ data, but can exploit them in various ways. For example, an adversary can rely
solely on information contributed by the system users [147], leverage semantic rela-
tions between different attributes [36], cross-link the data with additional sources to
extract more correlations [91], or exploit the structure of social links [157].

Weinsberg et al. [147] showed that demographic information such as age, gender,
ethnicity, or political orientation can be inferred from information disclosed to
recommender systems. Several classifiers were trained using the data contributed by
the users, and inferred with high accuracy the demographic information of users who
did not disclose similar data. Experiments conducted on the Flixster and Movielens
datasets demonstrated the effectiveness of the approach. In fact, the mere act of
watching a movie (regardless of the rating) conveys a lot of information, in the
sense that classifiers trained over binary data (i.e., movie watched or not) performed
only slightly worse than those trained on the complete rating data.

While Weinsberg et al. exploited structured data, Chaabane et al. [36] leveraged
the ontologized version of Wikipedia to identify semantic relations between unstruc-
tured user interests, and showed how seemingly harmless interests, such as music
interests, can leak sensitive information about users. They assigned the user interests
into higher-level interest topics, and the interests of each user were mapped to
these topics, allowing to identify users with similar tastes. Assuming that users with
similar tastes are similar in multiple aspects, it was then possible to guess a user’s
private attribute based on the public attributes of similar users. The authors crawled
public profiles from Facebook, and used the self-declared, publicly available music
interests of users to infer their gender, relationship, age, and country attributes.

Kosinski et al. [91] conducted a large-scale study that correlated the Face-
book ‘likes’ of users to a range of sensitive personal attributes, including sexual
orientation, ethnicity, religious and political views, and personality traits using
machine learning techniques. The authors generated predictors for these sensitive
attributes and achieved remarkable results. For example, the model could distinguish
between homosexual and heterosexual men in 88 % of cases, African Americans and
Caucasian Americans in 95 % of cases, and between Democrats and Republicans in
85 % of cases. While some ‘likes’ were related to the attribute in question (e.g.,
liking pages related to homosexuality), some of the discovered correlations had no
obvious connections.

The inference problem is exacerbated in online social networks, where friend-
ship links and group membership can be leveraged to infer private information.
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Zheleva and Getoor [157] considered the possibility that linked objects in a social
network are correlated, i.e., that online friends share common characteristics. They
proposed several inference attacks that exploit the structure of the network to predict
private attributes. Based on evaluation of such inference using data from Flickr,
Facebook, Dogster, and BibSonomy, the authors concluded that the performance
of the predictors was dataset-dependent. For example, link-based methods did not
perform well, since there was no strong correlation between the inferred attributes
and the friends. On the other hand, group membership improved the inference, and
some of the group memberships allowed to predict the user’s attributes with high
accuracy. Note that while users may have control over which attributes are made
public, in some social networks (e.g., Facebook and Flickr) the user has limited
control over the visibility of group membership information.

19.2.2 Risks Imposed by Other System Users

Since recommender systems leverage data collected from numerous users, they
allow users to learn personal information about each other, even when such
information is kept private. This problem is most evident when users share the
same account on a device or a service: the recommendations for this account would
be derived from the users’ combined activities, and therefore the recommendations
generated for one user provide insights on the activities of the other users. A similar
problem can occur in group recommender systems (see Chap. 22).

A harder problem is imposed when the outputs of a recommender system leak
private information of other unrelated users in the system. This problem is partic-
ular to collaborative filtering recommender systems (as opposed to content-based
recommenders), since inherently these recommenders adapt the recommendations
provided to each user based on data collected from other users. Ramakrishnan et al.
[124] showed how the recommendations and their explanations can expose informa-
tion of users who rate items across disparate domains. The recommendations allow
an adversary to deduce connections between items. For example, given a certain
item, an adversary can create a fake account and add item ratings to identify the
smallest set of items that would result in a recommendation of the target item. This
implies that there exists a set of users who rated both these items and the target
item. This set of users is likely to be small when the items belong to different
domains, making it easier to target these users in privacy attacks. For example, the
revealed connections can be combined with additional data sources to compromise
the identity of the users and uncover additional personal information.

A stronger attack that exploits the public outputs of item-to-item collaborative
filtering systems was put forward by Calandrino et al. [31]. Public outputs of
such recommenders typically contain item similarity lists or cross-item correla-
tions. For example, Amazon provides the “customers who bought this item also
bought. . . ” lists, Hunch provides the entire item-to-item covariance matrix, and
Last.fm provides an item similarity list. By passively observing the changes in
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these outputs over time, an attacker could infer private transactions of a target
user, given background knowledge on some items previously rated by the user.
In an item-to-item collaborative recommender, when a user makes a transaction
involving an item, this results in an increase of the similarity of the item to
other items in the user’s transaction history. Therefore, the attacker can track the
similarity lists of items known to be associated with the target user, and identify
new items in the lists. When the same item appears in a number of tracked lists, the
attacker can infer that the item was added to the target user’s record. The authors
successfully applied this approach to several real-world recommender systems,
including Hunch, LibraryThing, Last.fm and Amazon. The attack exhibits a trade-
off between the number of inferences and their accuracy (for example, inference
results on LibraryThing ranged from 58 inferences per user with 50 % accuracy
to six inferences per user with 90 % accuracy) and achieves the best results when
applied to small or new sites.

In addition to the passive attack that Calandrino et al. presented in [31], they
also described an active sybil attack that targets neighborhood-based collaborative
filtering. Given background knowledge on some items previously rated by a user,
the adversary creates fake users that are similar to the target user, and likely to
be identified as neighbors of that user and of each other. A neighborhood-based
recommender is therefore likely to provide to the fake users recommendations based
on the other fake users and the target user. This allows to isolate the target user’s
data, as any recommended item that does not appear in the fake profiles is likely to
originate from the target user.

19.2.3 Risks Imposed by External Entities

Data sharing and misuse are subject to the control of the recommender system,
and may therefore be mitigated through regulation, or be disclosed to obtain the
user’s consent. In contrast, some scenarios may lead to unintended data disclosure.
One risk is imposed by unlawful access to data by hackers (e.g., due to insufficient
security safeguards), resulting in data theft. Another risk is due to court subpoenas
and surveillance by law enforcement agencies. While such data access is lawful,
it is often conducted without user awareness, and, in some cases, even without the
service provider’s awareness.

Third parties may also obtain personal information gathered by recommender
systems after it was anonymized for privacy protection. However, even in the
anonymized form, this data poses a serious privacy risk due to the possibility
of de-anonymization. Narayanan and Shmatikov [108] demonstrated the difficulty
of guaranteeing anonymity in transaction and preference records common in
recommender systems. In general, the sparseness of large multi-dimensional data
collections ensures that a record will not have many other “similar” records
in the dataset, allowing to single it out and re-identify it with relatively little
background information. The attack can be carried out by an adversary who knows



19 Privacy Aspects of Recommender Systems 657

a (possibly imprecise) subset of the target user’s attributes, e.g., items that were
rated by the user, ratings that were assigned, or the time of the ratings. The de-
anonymization algorithms evaluate the similarity of each record in the anonymized
dataset to the background information. Due to the sparseness of transaction and
preference records, these algorithms are robust to imprecision and uncertainty in
the background knowledge, as well as to a moderate level of perturbation in the
published records. The authors conjectured that the amount of perturbation needed
to defeat this de-anonymization approach would destroy the utility for collaborative
filtering.

The effectiveness of this attack was demonstrated using the Netflix Prize dataset,
containing anonymized ratings of 500K Netflix subscribers. The authors found that
with background knowledge consisting of eight movie ratings (of which two may
be wrong) and rating dates known within a 14-day error, 99 % of records can be
uniquely re-identified in the dataset. Even without knowing the dates on which
the items were rated, information about a few rated items may be sufficient. For
example, 84 % of records can be uniquely re-identified if the adversary knows
six out of eight movies rated outside the 500 most frequently rated movies. This
background information may be relatively easy to obtain for most users, e.g.,
by observing their voluntary disclosure of information on social networks or on
IMDB. It can be argued that the anonymized records may not contain sensitive
data. However, even in these cases, re-identification carries a privacy risk: any
information that can be traced back to a person can be leveraged in subsequent
attacks, and provide additional hooks that the adversary could use to de-anonymize
further data releases. An aggregate of such releases could lead to a “database of
ruin” [115], which would tie together digital traces from different sources, exposing
an elaborate picture on individuals’ online and offline activities.

The possibility of re-identification of the Netflix dataset resulted in a lawsuit that
was settled out of court, and subsequent cancelation of the second Netflix challenge
[29]. To date, safe release of de-anonymized datasets for research purposes is still an
open problem. As stated in [108], in such scenarios “the purpose of the data release
is to foster computations on the data that have not even been foreseen at the time
of release, and are more sophisticated than the computations that we know how to
perform in a privacy-preserving manner.” Inferences on this data, thus, pose privacy
problems, because they almost definitely go beyond users’ initial expectations of
privacy.

19.2.4 Summary

Research conducted in recent years demonstrated the ability to infer highly sensitive
information from user interest data, even when they express seemingly innocent
information. Such information could be abused either by the systems that collect
the data (e.g., inferring users’ psychological traits and leveraging these for targeted
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advertising); by other users in the systems who may be exposed to the data (e.g., by
default, public “likes” on Facebook) or may analyze the output of the recommender;
or by external entities that access the user data.

These results stress that even privacy-conscious users who may withhold some
of their information, cannot guarantee their privacy, since the withheld information
could be inferred from other information disclosed to the recommender. Moreover,
the privacy of a user does not solely depend on the user’s personal choices and
privacy preferences, but is also influenced by the data made available by other users,
regardless of whether they are associated with the user. Therefore, the user may
only have limited control over the privacy risks resulting from using the system.
Instead, integrating privacy into the design of recommender systems may prove
more effective in safeguarding users’ privacy. In the next section we will discuss
approaches that can be taken to mitigate the identified privacy risks.

19.3 Privacy Solutions

The discussion about the risks of personal data leakage through recommender
systems naturally leads to the “defender” side, i.e., how can the recommender
protect user privacy without compromising the quality of the recommendations.
We consider three categories of approaches, which can address the privacy problem
in recommender systems:

• The first category refers to architectures, platforms, and standards that minimize
the data leakage threat. These include various protocols and certificates that guar-
antee to users that the recommendation provider adheres to privacy-preserving
practices and protects the users’ personal data with due diligence. This inherently
limits the ability of external entities to access user data or to infer new data,
other than the authorized and regulated data access methods. We classify into
this category also the distributed architectures, which eliminate the single point
of failure typical to centralized recommenders.

• The second deals with the algorithmic techniques for data protection. Here, we
distinguish between several types of approaches. Some of them involve data
modification approaches—either of user identities (identity anonymization or
abstraction to stereotypes) or of the rating data (substituting or adding noise
to true rating data). Others exploit provable privacy guarantees offered by the
differential privacy framework or apply cryptographic tools to protect the data.
The basic idea underpinning the algorithmic techniques is that even if the users’
personal data leaked to an adversary or untrusted party, they would possess only
modified or encrypted information, and would struggle to recover the original
data.

• The third category refers to “top-down” legislations, policies, and regulations,
which may be imposed on the recommendation services by their governments
and legislative bodies, or adopted as self-regulatory industry practices. They may
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preclude the services from manipulating, sharing, or trading the data. Although
this category of approaches addresses outright many of the above privacy risks,
the regulations vary significantly across countries and even states, and their
enforcement is hard to validate in practice.

The main rationale for this categorization lies in the grouping of these three
categories into technical and non-technical solutions. The former consist of the
architectural and algorithmic solutions, whereas the latter includes only the policy
solutions. The technical solutions either provide a general infrastructure that
supports privacy, or offer specific algorithms for data protection. On the other
hand, the non-technical solutions provide an umbrella that outlines the allowed
and the prohibited activities with regards to personal user data. Another important
observation stemming from this grouping is that although the three categories
seem independent, many recommender systems may (and actually should) apply
more than one approach to protect the privacy of their users. Hence, we propose
recommender system designers to consider all three categories of solutions when
devising their privacy-protection mechanisms.

For example, consider a use case of a large-scale eCommerce website providing
personalized recommendations to users. The site may apply architectural solutions
and distribute the data storage. At the same time, the site may exploit algorithmic
techniques and allow only cryptography-protected data access. In addition, the site
may want to increase user trust and declare that the collection and use of personal
user data is done in compliance with privacy regulations. Many of these details,
especially the architectural and the algorithmic solutions in place, are not disclosed
by practical websites. Nevertheless, we refer the reader to several publicly accessible
privacy policies (see those of eBay,1 Amazon,2 and Google.3)

We would like to revisit the access and inference risks outlined in Table 19.1,
and intersect these with the three categories of solutions. Clearly, the architectural
and policy solutions better address the direct data access risk, as private protocols,
distribution of the recommendation process, and data protecting regulations make
unauthorized access to the data harder. The application of algorithmic approaches
cannot eliminate this access, but reduces the value of the data if it gets accessed.
However, the algorithmic approaches substantially minimize the risk of inferring
new data, as the input to the inference attacks becomes unreliable. It should also be
mentioned that the policy solutions are likely to address the data inference risk, as
they often prohibit the use of the collected data for purposes that are beyond those
declared by the data collector.

In the following sections we elaborate on each of the categories and on specific
works that apply these approaches.

1http://pages.ebay.com/help/policies/privacy-policy.html.
2http://www.amazon.com/gp/help/customer/display.html?nodeId=468496.
3http://www.google.com/intl/en/policies/privacy/.

http://pages.ebay.com/help/policies/privacy-policy.html
http://www.amazon.com/gp/help/customer/display.html?nodeId=468496
http://www.google.com/intl/en/policies/privacy/
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19.3.1 Architecture and System Design Solutions

In this section, we consider how the architecture underlying the recommender
system can put hard limits on the disclosure, propagation and linkability [119] of
profile data. In Sect. 19.3.1.1, we introduce a trusted component that is guaranteed
to act in a certain way. Then, in Sect. 19.3.1.2, we look at an architecture for
social networking websites that gives the user control over their profile data through
standard technologies from the Semantic Web. Finally, in Sect. 19.3.1.3, we cover
approaches that shift some of the workload of the recommender system to the client-
side, thereby reducing the amount of user data that needs to be disclosed.

19.3.1.1 Trusted Software for Limiting Linkability and Propagation of
User Data

As we saw in Sect. 19.2, a recommender system may cross-link data from multiple
sources to create comprehensive user models. If the models are retained after the
recommendation process terminates, or even disclosed to untrusted parties, this
could pose a grave threat to the user’s privacy. The recommender could therefore
make certain claims regarding data storage, linkability, and disclosure, to put the
user’s mind at ease, e.g., “no disclosure of any profile data without explicit consent,”
“no linkability between individual user sessions,” “no linkability between partial
user profiles,” or “temporal limits on the storage of user data.”

But how can the user trust that the service actually complies with these
principles? In researching privacy-preserving recommendation solutions, Cissée and
Albayrak [39] identified three ways of establishing trust:

• Reputation [74]: Non-compliance would lead to negative user feedback and
sentiment, which discourages other users from using the service.

• Certification [136]: A trusted third party performs a detailed technical audit, e.g.,
by analyzing the source code and performing tests, to verify that the software has
all the qualities and properties that it claims to have.

• Trusted computing [56]: An application has the ability to verify that a system
consists of specific hardware and software, e.g., the ability to encrypt data in a
way that can only be decrypted in a particular configuration.

We will analyze two examples of trusted systems that restrict the linkability and
propagation of profile data: a privacy-preserving event planner proposed in [39] and
a privacy-friendly loyalty card and shopping assistant application for smartphones.

In [39], Cissée and Albayrak built a privacy-preserving event planner on top
of a FIPA-compliant [137] multi-agent system (MAS). The authors list various
properties of MAS entities that make them ideal for creating a privacy-preserving
recommender system, in which only trusted parties can temporarily cross-link user
profile data from multiple sources: entities are autonomous and can be deployed
dynamically in the MAS environment; each entity can perform a well-defined task;
entities can communicate with each other; and they can be tamper resistant.



19 Privacy Aspects of Recommender Systems 661

With regard to user privacy, the purpose of the system is to ensure that disclosed
user profile data is not stored permanently and cannot be linked to any particular
user. A temporary filter agent (TFE), responsible for generating recommendations,
is created, and a relay entity establishes control over the TFE’s communication abil-
ities on the user’s behalf. This way, it can be ensured that only the recommendations
will be propagated to other entities; user profile data will not be propagated because
the relay does not provide the TFE with the means of communicating it to other
parties. Controlling agents’ communication abilities is not part of the standard MAS
feature set, so the authors have implemented this aspect as trusted software. With
control established, the user provides profile data (made up of behavior information,
personal details and preferences) to the TFE and the service provider hands the
TFE a set of items to recommend from. The TFE uses all data at its disposal to
generate content-based recommendations for the user, which are then propagated to
the service provider for visualization. Finally, the TFE is terminated by the relay
entity, thereby destroying the linked dataset. The service provider can thus present
the user with personalized recommendations without gaining permanent access to
the profile data.

The MobCom project4 explored the possibility of implementing various identity-
based applications such as identity cards, membership cards, and customer loyalty
cards on a smartphone, in a way that protects the privacy of the user. Put et al. [123]
developed a shopping and loyalty card application that discloses only the minimal
amount of information required, with user consent. The smartphone serves as a self-
scanning device with secure local storage for the customer’s personal information,
shopping history, loyalty points and product vouchers. At the start of each shopping
session, a temporary shopping basket is created under a new pseudonym, so that
the store cannot track customer behavior across sessions. In exchange for disclosing
profile data, e.g., product preferences, the retail store offers a more personalized
service and additional loyalty points. This way, customers control their data and
can weigh the benefits of releasing profile data against the loss of privacy. In this
architecture, both the smartphone application and the in-store service are regarded
as trusted software. At the start of the shopping session, the smartphone and the
server can verify that each is running the trusted software and that it has not been
tampered with. The smartphone does not release any profile data without the user’s
explicit consent. The shopping basket contents and any disclosed profile data are
destroyed at the end of the session.

19.3.1.2 User-Managed Portable Profiles

Beyond the privacy risks originating from inference and profiling, which were
discussed in Sect. 19.2, social networking websites (see also Chap. 15) tend to
become data silos [27], with profile data either locked away or only partially

4http://www.mobcom.org.

http://www.mobcom.org
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accessible through proprietary APIs. If users were able to port profile data from
one platform to another, they could receive better recommendations and more
personalized service, alleviating the cold start issue when joining a new service.
They could also allow access to specific profile information on a case by case basis.
Currently, however, this scenario is not possible because users do not have such
level of control over their data.

We focus here on an alternative architecture proposed by Heitmann et al. [64],
which puts the user in charge of fully portable profile data through Semantic
Web technologies and an access control system. Using this architecture, profile
data can be shared between services and the users can decide what parts of their
profiles are disclosed to each provider. Building on earlier work of Hollenbach
et al. [66], Heitmann et al. base their architecture on three standards: (1) Friend-
of-a-Friend [26]: a data format suitable for storing generalized user profile data, as
well as social friendship relations; (2) WebID [32]: an SSL certificate that refers to
the URI where the profile data can be found; and (3) a Web Access Control [66]:
vocabulary for controlling access rights to resources. The authors also identify three
distinct roles for entities that wish to participate in the architecture:

• Profile stores are tasked with storing the user profiles and providing access to
data according to the access rules. They also allow users to manage these access
rules. Notably, the user can perform this role by hosting his own profile.

• Data consumers are third-party services that wish to access the user profile data.
Each time they request data from a profile store, data consumers authenticate
themselves with their own unique WebID.

• User agents are responsible for authenticating the user with profile stores and
data consumers through their WebIDs.

To summarize, users are able to port their profile data from one service to
another. By using Semantic Web technologies, entities that wish to perform any
of these roles, have an easy-to-use, stable, and non-proprietary interface to work
with. Users can selectively disclose parts of their profiles to data consumers of their
choice. Through the use of WebIDs, unlinkability of data is built-in: a user can have
multiple identities, each with its own WebID. Data consumers are thus unable to
link multiple WebIDs to a particular user and the framework assumes that the profile
stores can be trusted to not maintain or disclose links between the users’ multiple
identities. We refer to Chap. 4 for more on Semantic Web technologies.

19.3.1.3 Generating Recommendations on the Client

Shifting some of the recommender’s load to client devices allows to reduce the
amount of information accessed and retained by a recommendation service, thereby
mitigating any privacy risks that could result from the server’s exposure to user data.

Several works proposed to implement the recommendation process as a pure
peer-to-peer system, thereby eliminating the role of a centralized service [22, 94].
However, such systems could still expose user data to other users, who now interact
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directly with the user to generate the recommendations. Lathia et al. [94] addressed
this risk by proposing a privacy-friendly measure of similarity that relies on the
concordance between users, i.e., the proportion by which two user rating sets agree.
This measure has the property that it can be evaluated by comparing the two sets
of ratings to a third rating set, rather than directly to each other. Therefore, user
similarity can be evaluated without exchanging user profiles. Berkovsky et al. [22]
leveraged a hierarchical topology, in which peers are organized into peer-groups
managed by super-peers. A user who seeks recommendations interacts with the
super-peers. The super-peers select a random subset of the underlying peers,
aggregate the results obtained from them, and return them to the querying user,
who processes them to generate the recommendation.

In a hybrid approach proposed by Shokri et al. [131], each client interacts with
a centralized server to obtain recommendations, but can also exchange information
with other system users to enhance privacy. In this approach, each user maintains
two profiles: an offline profile stored locally at the client, which is updated contin-
uously, and an online profile at the server that is only synchronized occasionally.
Users contact each other and exchange items, so that their offline and consequently
the online profiles are a mix of each user’s original ratings and ratings provided
by other users. To maintain accurate recommendations, the exchange process favors
ratings conducted by similar users.

One of the challenges in distributed architectures is that many recommendation
algorithms are computationally intensive, and while mobile devices have recently
become powerful, they are still ill-suited for heavy computations. This limitation
gives rise to architectural approaches that divide work between a powerful back-
end and a weaker end-user device. Such approaches allow for recommendations
to be generated on the client, while disclosing less information to the centralized
recommender back-end than in a centralized recommendation scenario. These
approaches usually leverage the ability to break the recommendation generation into
two stages: (1) modeling, for which the entire dataset is typically required, and (2)
recommending, for which the models are used to compute the recommendations.
Given an established model, recommending can be a relatively light-weight task.

For example, consider item-based collaborative filtering, where all the available
user-item ratings are needed to construct the item-to-item similarity matrix. Rec-
ommendations are then generated by taking items that are similar to items that
the user has previously consumed. In PocketLens [107], Miller et al. set out to
build a portable collaborative filtering recommender system, where the similarity
computation is separated from the recommendation stage. Through homomorphic
encryption methods that are also applied in secure voting systems, the back-end
constructs an item-to-item similarity matrix based on co-occurrence, without having
to decrypt individual purchase records. A mobile client can retrieve this matrix
and generate recommendations locally. After implementing and evaluating several
architectures, the authors found that their best performing architecture could protect
the user’s privacy without compromising the recommendation accuracy.

The separation between the modeling and the recommendation stages is also
evident in matrix factorization. The modeling stage that consists of the derivation of
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the latent factors, requires access to all the ratings and is computationally expensive.
The recommendation generation then is realized as a product of two latent vectors
and can be performed on the client. Moreover, since matrix factorization separates
between the user and the item latent factors, the user data can be stored on the client
side. Vallet et al. [141] explored this possibility in a semi-decentralized setting,
in which the server maintains item factors, whereas user factors are stored and
maintained on the client-side. The authors developed a streaming model, which
performs incremental updates of the latent factors using only the data of the user
interacting with the system, and without any server-side retention of user data. The
predictive accuracy of this model was found comparable to that of a system that
retains user data.

Isaacman et al. [70] leverage the same matrix factorization property in the
context of a distributed system of content producers (e.g., bloggers) and consumers.
To maintain privacy, information is exchanged only between the content producer
and its subscribers, e.g., item ratings are shared only with the item’s producer. The
system computes the probability distribution of content ratings that is estimated
with a low-rank latent model constructed by solving the factorization problem.
Each producer maintains a factor vector that constitutes its “production profile.”
In addition, each consumer maintains for each possible rating value a factor vector,
and these factor vectors constitute its “consumption profile.” The client can compute
the product of these vectors to estimate the probability that the consumer would
provide a certain rating to any given producer’s content, without disclosing all of
the consumer’s ratings to that producer.

To summarize, architectures that shift computation to the client side are
particularly useful for mitigating privacy risks that follow from data retention
on a centralized server. However, user data may still be exposed during
the interaction with the server, or when interacting with other system users.
Cryptographic protocols allow to address this deficiency, and are discussed in
detail in Sect. 19.3.2.4.

19.3.2 Algorithmic Solutions

In this section, we discuss algorithmic solutions to recommender system privacy.
We split them into four categories: algorithms based on pseudonyms or user
anonymization, algorithms involving user data modification, differentially private
algorithms, and cryptography-based algorithms. Similarly to what was discussed
earlier, these categories are not mutually exclusive; a recommender may benefit
from employing multiple solutions that belong to different categories.
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19.3.2.1 Pseudonyms and Anonymization

Algorithmic approaches that mask the users of recommender systems through
pseudonyms and anonymization were not received well initially. In particular,
Schafer et al. [130] wrote in 2001 that “anonymizing techniques are disasters for
recommenders, because they make it impossible for the recommender to easily
recognize the customer, limiting the ability even to collect data, much less to make
accurate recommendations.” More than a decade later, the topic still remains largely
under-investigated and there are only several works in this direction.

An early proposal for a pseudonymity-based personalization framework was
developed by Arlein et al. [9] and drew on the notion of ‘personae.’ The framework
implied that users have in place a suite of abstractions of themselves, e.g., entertain-
ment, medical, and shopping, and use these abstract entities when interacting with
various websites and services. Each persona is linked across multiple services and
exposes only the activities carried out by this persona. The services access only one
user persona at a time and cannot link it to other personae, so they are unable to
uncover additional information, while the users manage their own personae and set
access rights for various services and abstractions.

Another pseudonimity framework for personalized systems was proposed by
Kobsa and Schreck [89]. The framework includes a suite of privacy-preserving
components: user anonymization, user data encryption, role-based access, and
selective access permissions. Each component is managed by a dedicated server and
the servers tune the overall level of user privacy to the user’s privacy settings and the
degree of cooperation between the services possessing the partial user models.

The approaches to user anonymization in recommender systems typically entail
simple de-identification solutions. For example, in the Netflix Prize data, the
identities of the users were replaced with random numbers. A major threat to this
anonymization method lies in the high dimensionality and sparsity of the data [108],
which is typical in recommender datasets. As discussed in Sect. 19.2.3, this sparsity
can be exploited to thwart anonymization and re-identify the records.

19.3.2.2 Obfuscation

Application of data perturbation (or obfuscation) techniques to recommender
systems was inspired by earlier works outside the field of recommender systems
[7]. The basic idea underpinning this body of work is that modifying a certain
number of data points in the user profiles, e.g., by adding noise to the real data,
will have a limited effect on the recommendation accuracy. However, if adversaries
or an untrusted party accessed the user profiles, they would only obtain the disguised
profiles. This allows for “plausible deniability” [61, 142]: the adversary cannot
prove whether a certain profile entry is accurate.

To the best of our knowledge, this idea was first proposed for recommender
systems by Polat and Du [120]. They used a randomized data perturbation technique
to mask ratings stored in the user profiles. The data is modified by adding random
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noise to the ratings, such that no certain information about the ratings can be
derived. Since the recommendations are generated by aggregating user ratings, the
overall impact of data perturbation on the recommendations is assumed to be minor.
The authors compared the recommendations generated using the masked data with
those using the original data, and showed that perturbed profiles could still generate
reasonably accurate recommendations. The accuracy of the recommendations is
inversely correlated with the magnitude of the noise, but the impact of noise
decreases with the number of users and items accessible by the recommender.

Another variant of data perturbation was presented by Parameswaran and Bloug
[118]. They proposed to mask auxiliary data pertaining either to users (e.g.,
demographic data) or to items (e.g., domain metadata), which are exploited by the
similarity computation mechanism of collaborative filtering. The evaluation showed
that the impact of masking auxiliary data on the accuracy of the recommendations is
minor, although the direct contribution of this perturbation to user privacy was not
explored.

Unfortunately, data perturbation through the addition of noise is inapplicable
to binary data, which is prevalent in recommenders, as the systems increasingly
rely on binary behavior logs (browsing logs, purchase data, listened songs, etc.).
In this case, the addition of noise distorts the logs and can be easily identified. In
[122], Polat and Du applied a different technique, called a randomized response, to
the binary user profiles. This technique randomly chooses which bits of the binary
profile are preserved and which are flipped. Two variants of randomized responses
were evaluated and, as before, the accuracy was found to be correlated with the
volume of training data.

The application of random perturbation has gone beyond the canonic col-
laborative filtering. Yakut and Polat [153] applied data perturbation also to the
Eigenstate-based variant of CF that reduces the dimensionality of the rating matrix
through Principal Component Analysis. Two distributions for generating the noise
factors and several variants of privacy-enhanced Eigenstate CF were proposed and
evaluated. Also, Kaleli and Polat [76] applied randomized response to a Naïve Bayes
Classifier implementation of CF. That work primarily focused on tweaking the noise
parameters for the purpose of maintaining reasonable levels of user privacy and
recommendation accuracy at the same time.

Basu et al. [14] applied data perturbation to the Slope-One recommender [96],
a highly scalable version of item-based collaborative filtering. It was found that
Slope-One is robust to the noise and capable of delivering reasonable accurate
recommendations despite the masking of user data. Polat and Du [121] applied data
perturbation to an SVD-based CF recommender, which decomposes the masked
ratings matrix into a product of three latent matrices. SVD recommendations were
also found to be reasonably robust to random perturbation.

More recently, data perturbation was applied by Renckes et al. [126] to a hybrid
graph-based recommender representing users as nodes and their similarity through
the edges. The paper reaffirmed the findings of Polat and Du [120] relating to
the impact of data availability on the accuracy of private recommendations, and
practically demonstrated the privacy-accuracy trade-off. In a nutshell, privacy loss
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decreased with the level of perturbation, but the accuracy of the recommendations
deteriorated too, such that privacy and accuracy conflicted with each other. To
allow users more control over the privacy-accuracy trade-off, Kandappu et al. [77]
have proposed an interactive obfuscation mechanism. The obfuscation is applied to
ratings before they are shared with the system (input perturbation). Before sharing
new ratings, the mechanism probes the recommender to obtain rating predictions
over a hold-out set of items, which were rated by the user but were not disclosed
to the recommender. The magnitude of obfuscation is then calibrated based on the
accuracy of those predictions, such that privacy protection is maximized within the
constraints of a target accuracy level.

Berkovsky et al. [23, 24] focused on the application of data perturbation
to various ratings in collaborative profiles. They compared the impact of five
data masking policies applied to both moderate (close to average) and extreme
(positive or negative) ratings on the accuracy of the generated recommendations.
Perturbation of the latter was found to have a higher impact on the accuracy of the
recommendations than of the former. That is, extreme ratings bear more information
than moderate ratings, and adding noise to these ratings deteriorates the accuracy of
the recommendations. However, extreme ratings were perceived as more sensitive
by the users. This gives a different perspective on the privacy-accuracy trade-off, as
masking the sensitive ratings damages the recommendation accuracy.

Aside from a potential decrease in recommendation accuracy, data perturbation
can also be problematic for legal and psychological reasons. A perturbed profile is
essentially “incorrect data,” which violates the Data Quality principle of the FIPS
(see Sect. 19.2) as well as several European privacy laws that require data collectors
to pursue the correctness of the collected data. Psychologically speaking, users may
fear that this incorrect data may result in incorrect inferences (which is possible
in specific instances even when the overall accuracy of the recommender does not
decrease due to perturbation). Even worse, if users’ data gets subpoenaed or stolen
and published, they may have a hard time defending the claim that some of the data
in their profile is incorrect. So while obfuscated data may afford users “plausible
deniability,” it does not offer them what we would like to call “deniable plausibility”
(i.e., the ability to prove that certain items were in fact fabricated by the obfuscation
mechanism). Indeed, a study by Chen et al. [38] on the application of obfuscation
techniques in online social networks has indicated that users care about the impact
of obfuscation on their visible profile, and suggested to incorporate such preferences
into the obfuscation algorithms.

We summarize the surveyed works that apply data obfuscation techniques in
Table 19.2. These are split into the basic Collaborative Filtering (based on either
user-to-user or item-to-item similarity) and other CF algorithms.

19.3.2.3 Differential Privacy

Differential privacy [48] is a privacy model based on the principle that the output
of a computation should not allow inference about any record in the input.
This is achieved by requiring that the probability distribution over the possible
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Table 19.2 Privacy-preserving recommendation algorithms with data obfuscation

Similarity-based collaborative filtering (CF) User-to-user similarity [24, 120]

Item-to-item similarity [118, 122]

Other CF algorithms Eigenstate-based CF [153]

Naïve Bayes CF [76]

Slope-one [14]

SVD-based CF [121]

Graph-based recommender [126]

outcomes does not change significantly when any particular record is added to
or removed from the input. Therefore, differential privacy provides the means to
mitigate inference of private user data from the output of the recommender system.
One of the commonly used approaches to obtain differential privacy is through the
Laplace mechanism, in which carefully calibrated noise sampled from the Laplace
distribution is added to a computation. The noise masks the influence that any
difference in a particular record could have on the outcome of the computation.

McSherry and Mironov were the first to study the application of differential
privacy to recommender systems, and in particular to collaborative filtering [103].
They used the Laplace mechanism to derive noisy counts and sums over the
input ratings, and to compute a differentially-private variant of the item-to-item
covariance matrix. The noisy covariance matrix could then be used to generate
differentially-private k-Nearest Neighbors and SVD recommendations.

Zhu et al. [158] took a different approach to differentially private neighborhood-
based collaborative recommendations, aiming specifically at the sybil attack
presented by Calandrino et al. [31] (see Sect. 19.2.2). They considered a
differentially-private k-nearest neighbors algorithm that operates in two steps:
selection of the neighbors, and rating prediction based on the neighbors. They relied
on the smooth sensitivity [112] of the similarity function, allowing to introduce
lower levels of noise than those required by the Laplace mechanism. They also
introduced randomness to the k nearest neighbors selection, while ensuring that,
with high probability, the selected neighbors have high similarity scores.

Machanavajjhala et al. [101] studied privacy-preserving social recommendations
on the basis of a graph linking users and items. Given the graph, they derived
utility vectors that capture the utility of items for users, with the goal of inducing a
probability distribution that maximizes the user’s utility while keeping the utility
vector private. The authors provided a theoretical analysis of the problem and
concluded that good recommendations were achievable only under weak privacy
parameters, or only for a small fraction of users, highlighting that the privacy-
accuracy trade-off also exists in differential privacy based methods.

Riboni and Bettini [127] investigated the application of differential privacy to
context-aware recommendations, and specifically to recommendations of Points of
Interest (POI), where the spatial context is taken into account. The spatial domain
of the service is partitioned into non-overlapping regions, and each POI belongs to a
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single region. In addition, each user belongs to a given stereotype, which represents
semantic abstraction of profile data. The Laplace mechanism is used to capture
the distribution of POI preferences for each stereotype. Consequently, when a user
queries a region, the POIs best matching the user stereotype are recommended.

The research of differentially private recommender systems shows that while in
some settings (e.g., social recommendations) it may be impossible to obtain privacy
and accuracy guarantees simultaneously, in other cases privacy-preserving recom-
mender systems can achieve reasonable accuracy. However, the works conducted
so far assume a one-off computation, whereas re-calculation of recommendations
when additional data becomes available may introduce additional privacy leaks.
Therefore, maintaining privacy over multiple computations or data releases requires
an increase in the amount of introduced noise, and leads to deterioration in accuracy.
While there is a line of work studying efficient differential privacy in continual
settings [49, 57], this has not been studied yet in recommender systems.

19.3.2.4 Cryptographic Solutions

Cryptographic solutions mitigate privacy risks triggered by the exposure of user
data, like intentional misuse (e.g., sharing data with third parties or inferring
sensitive information), as well as unintentional disclosure (e.g., data theft). Secure
multi-party computation protocols allow to accurately compute recommendations,
while keeping user input confidential. Unlike data obfuscation or differential
privacy, secure computations produce the same recommendations as non-private
protocols, but this comes at the cost of computational overhead, making these
protocols suitable mainly for off-line recommendations.

The majority of the work in this area relies on additive homomorphic encryp-
tion schemes, such as the Paillier public-key cryptosystem [116]. Essentially,
in such encryption schemes, any linear function of the inputs can be evaluated
by manipulating their encryptions. This property has been leveraged in several
recommendation algorithms and architectures, listed in Table 19.3. Below, we
elaborate on the proposed architectures and provide examples of homomorphic
encryption applications.

Distributed settings As detailed in Sect. 19.3.1.3, distributed architectures mit-
igate privacy risks by keeping the data on the client side. To the best of our
knowledge, the protocol proposed by Canny [32] was the first application of
secure multi-party computations to recommender systems. A partial singular
value decomposition of the ratings data can be reduced to a series of additions of
user inputs and carried out over encrypted inputs using an additive homomorphic
encryption. Based on this, Canny proposed a peer-to-peer system, consisting
of two types of nodes: “clients” who provide in each iteration their encrypted
contribution to the gradient, and “talliers” who manipulate and aggregate these
inputs to derive an encrypted total gradient. The encryption key is shared between
the clients, and each client applies its share of the key to decrypt the total.
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Table 19.3 Privacy-preserving recommendation algorithms with homo-
morphic encryption

Distributed Weighted slope-one [13]

Neighborhood-based [51]

Trust networks [65]

Partial SVD [32]

Factor analysis model [33]

Cross-system collaboration User-to-user similarity [71]

Item-to-item similarity [154]

Client-server Weighted slope-one in cloud setting [15]

Privacy service provider General framework [8]

Neighborhood-based [53]

Trust networks [52]

If enough clients provide decryptions with their share of the key, then the talliers
can reconstruct the new gradient. The result of the computation is guaranteed
to be correct, even in the presence of malicious parties, as long as a sufficient
portion of the nodes are trustworthy and follow the protocol.

Cross-system collaboration Distributed algorithms can also be carried out
between service providers, allowing cross-system collaboration without
disclosing clients’ information to other systems, and thereby mitigating privacy
risks due to sharing data with third parties. For example, Jeckmans et al. [71]
studied how a company can generate recommendations based on its own
customer data and data from other companies, while keeping customer data
confidential. They relied on additive homomorphic encryption, as well as secure
comparison, absolute value, and division protocols. The proposed two-party
protocol, executed between a pair of servers, allows to generate predictions
based on user-to-user similarity, which is evaluated using the ratings that the
users have on both sites.

Client-server settings Encryption can keep user ratings confidential when the
user interacts with the server in the prediction stage, as demonstrated in a
Slope-One recommender that Basu et al. [15] studied. In a Slope-One predictor,
predictions are based on the average deviations of item ratings, which are
linear combinations of user ratings, making it suitable for secure evaluation
with additive homomorphic encryption. In the learning phase, the users send
their (obfuscated or anonymized) inputs to the cloud in the clear, and the cloud
application produces the deviation matrix and the cardinality matrix for the
Slope-One predictor. In the prediction stage, the target user sends a rating vector
encrypted with a public key, which the cloud application manipulates with
additive homomorphic encryption to produce an encrypted prediction vector.
Finally, the user decrypts the vector to retrieve the prediction.

Privacy service provider Several works addressed the privacy risks in the client-
server interaction by introducing a third party acting as a privacy service provider.
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These solutions rely on the “division of trust” principle [8], i.e., no entity in the
system holds the complete information. Aïmeur et al. [8] proposed a framework
for privacy preserving recommenders based on this principle. Each merchant in
the system is assigned to an agent that mediates the interaction with the clients.
The client profiles are encrypted with the agent’s public key, such that the agent
can access them but the merchant cannot. On the other hand, the items are
anonymized by a mapping known only to the merchant, so the agent cannot know
the actual products purchased or rated by the customer. The agent maintains
the list of products associated with a cluster of clients and a table of product
similarities, uses these to generate recommendations, and can update them based
on user inputs, but without knowing the actual products.

Homomorphic encryption is not the only approach to secure computation of
recommendations. Nikolaenko et al. [109] proposed a privacy-preserving matrix
factorization algorithm, in which the recommender profiles items without learning
the users’ ratings. In the proposed protocol, the recommender is assisted by a crypto-
service provider, who prepares a Yao garbled circuit [155] that evaluates the item
profiles given the encrypted rating inputs. The authors report a reasonably low
running time and, since the described operations are parallelizable, they suggest
that the algorithm may be suitable for batch processing of real large-scale datasets.

The extensive research on cryptographic solutions for privacy-preserving rec-
ommendations shows the feasibility of these solutions in diverse settings and with
different recommendation algorithms. However, these solutions entail significant
computational resources and time, as well as storage and communication overhead,
which still impose a hurdle for their application in online recommender systems.

19.3.3 Policy Solutions

As Kobsa points out [87], many countries and states actively regulate consumers’
privacy, and many industries adopt additional privacy guidelines. We refer to [144]
for an overview of the impact of privacy laws and regulations on personalized sys-
tems up to 2006. Two important proposals since then are the U.S. Consumer Privacy
Bill of Rights [67] and the 2012 revision of the European Privacy Directive [55].

Both of these proposals have a heavy emphasis on transparency and control. For
example, the U.S. Consumer Privacy Bill of Rights suggests that “companies should
offer consumers clear and simple choices [. . . ] about personal data collection,
use, and disclosure” and “companies should provide clear descriptions of [. . . ]
why they need the data, how they will use it” [67]. Under the European Privacy
Directive, “personal data should be processed on the basis of the consent of the
person concerned or some other legitimate basis” [55].

The U.S. privacy bill furthermore requires that consumers are able to access the
personal data that companies collect about them, and correct it if necessary. It also
requires that data collection is focused and limited to what is expected in the context
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in which the data was provided by the consumer. The European directive also
requires that people are able to access their personal data. It additionally requires
that they are allowed to transfer this data from one service to another, and that people
are able to delete their data should they so desire.

The 2002 version of the European Union Privacy directive severely limited
the use of non-essential cookies, often used for personalized advertising [54]. As
a result, online advertising could not be targeted and became far less effective
in the EU than in other countries [60]. The new directive requires websites to
explicitly ask their users to accept its non-essential cookies. The Netherlands and the
United Kingdom [69] have already implemented this directive as a national “cookie
consent” law. However, to comply with the rules without losing advertising money,
most sites give users only two options: leave the website or accept the cookies
and continue. The resulting sprawl of consent-requesting pop-ups has caused much
confusion among users, who typically accept the cookies without knowing what
they really consent to, which arguably only increases their privacy concerns [140].

An alternative to privacy legislation is self-regulation via trust seals like the
TRUSTe seal [19] or privacy standards like P3P [43]. Xu et al. [151] have shown that
TRUSTe seals can be an effective substitute to legislation when it comes to reducing
consumers’ privacy concerns. TRUSTe seals have been shown to reduce perceived
risk and increase trust, whereas P3P compliance increases trust but does not reduce
perceived risk [150]. Self-regulation is not without problems, though. Research has
shown that trust seals are only partially effective [50, 68, 128], and A/B tests on
eCommerce websites have demonstrated that seals may lead to significantly lower
conversion rates [30, 59]. This calls the benefits of “certification” (cf. [136]) into
question. P3P, on the other hand, suffers from poor observability and complex user
agents, which has led to a low level of adoption on the user-side [16].

In conclusion, privacy legislation and regulation has become more comprehen-
sive over the last few decades. However, as Compañò and Lusoli point out, “policy
makers need to take into account that citizens do not always behave rationally” [40],
a topic we will cover in much more detail in the next section.

19.4 Human Aspects and Perception of Privacy

While we have mainly discussed the technical solutions to privacy risks in recom-
mender systems, the concept of privacy is an inherently human attitude associated
with the collection, distribution and use of disclosed data, and this disclosure
is also a human behavior. Since recommenders critically rely on their users to
disclose information about themselves, recommender system developers are advised
to conduct user experiments to study users’ information disclosure behavior and
their privacy-related attitudes towards the recommender system (see Chap. 9).

This section discusses existing research concerning users’ privacy attitudes and
behaviors. The link between privacy attitudes and subsequent behaviors is not very
clear: while several studies find this link to be significant [80, 88, 132] others
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find that it is not, or at least not very strong [2, 4, 58]. Due to this divergence,
which Norberg et al. call the privacy paradox [113], developers of recommender
systems are advised to study users’ attitudes and behaviors regarding the privacy of
their systems. The privacy paradox is a symptom of the fact that users’ cognitive
resources are in most cases insufficient to effectively take control over their privacy.
The end of this section therefore discusses the importance of supporting users to
make better privacy decisions, as well as an interesting new venue for recommender
systems to provide such “privacy decision support.”

Privacy Attitudes In studying privacy attitudes, one can make a distinction
between privacy attitude as a personal trait or tendency, and as an attitude
directed towards a specific system. General privacy concern was first measured
by Westin and Harris and Associates, who classified people into three categories:
privacy fundamentalists, pragmatists, and unconcerned [63, 148]. Researchers
have since recognized that this personal trait consists of multiple dimensions. For
example, the Concern For Information Privacy scale consists of four correlated
factors: collection concerns, unauthorized access, fear of accidental errors,
and secondary use [133]. Similarly, Malhotra et al. provide an Internet Users
Information Privacy Concern scale measuring three factors: collection, control,
and awareness [102].
Several works have highlighted the importance of measuring privacy concerns
as a system/context-specific concept [6, 18, 132]. System-specific factors con-
sidered in previous work include “perceived privacy threats” [80, 88, 149],
“perceived protection” [88], and “trust in the company” [80, 104]. These system-
specific factors are usually better at predicting users’ disclosure behavior than
privacy concerns as a personal trait. Recommender system developers are thus
advised to measure users’ system-specific privacy attitudes. Moreover, they
should not just focus on protecting users’ privacy via the technical means
described earlier in this chapter, but also to reduce the potential privacy threats to
begin with (a philosophy called “privacy by design”, cf. [34]) or to increase the
reputation of their brand.

Privacy Behaviors Laufer and Wolfe were the first to argue that people trade off
the risks and benefits of disclosure [95], a process that Culnan and Bies have
called “privacy calculus” [45]. This term is commonly used to investigate infor-
mation disclosure [62, 97, 149], and has become a well-established concept in
privacy research [132]. In the field of recommender systems, several researchers
have demonstrated that users indeed make this trade-off when deciding what
information to disclose [10, 37, 58, 80, 85, 88, 90, 98]. The exact outcome of this
trade-off depends on the context of the decision [81, 110]. Particularly, if users
deem the requested information relevant to the purpose of the system, they will be
more likely to disclose it. For example, it is reasonable to expect that a system for
recommending nearby restaurants would collect street-level location information
from the user device, but a user may be surprised to learn about such data being
collected by a book recommender. This can be problematic for recommender
systems, since they often use data from diverse application domains.
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19.4.1 The Limits of Transparency and Control

Having a minimum level of control over one’s disclosure is a necessary prerequisite
for being able to engage in a privacy calculus. Moreover, people can only make an
informed trade-off between benefits and risks if they are given adequate information.
Based on this reasoning, advocates of transparency and control argue that they
empower users to regulate their privacy at the desired level [35, 138, 152]. This
advocacy for transparency and control has become a central part of the privacy
directives proposed in the European Union and the United States [55, 67].

The call for control suggests that recommender systems should provide users
advanced capabilities to manage their privacy. However, while users claim to want
full control over their data, they typically eschew the hassle of actually exploiting
this control [40]. While it is possible to overcome this control paradox [81], the
privacy controls of systems like Facebook are so complex that they are over-
whelming or confusing to most users [42]. As a result, Facebook users have severe
misconceptions about the implications of their selected privacy settings [100].

Similarly, the call for transparency suggests that recommender systems should be
forced to be open about their privacy practices, so that users can walk away if they
do not like them (cf. “reputation” [74]). However, Bakos et al. demonstrate that only
0.2 % of all users read boilerplate documents such as End User License Agreements
[11]. As noted earlier, “summarizing” this information with trust seals may actually
impede rather than increase system usage [30, 59].

This ironic effect of trust seals on privacy concerns extends to other privacy-
related situations as well. For example, John et al. demonstrate that even subtle
privacy-minded designs and information may trigger users’ privacy fears and reduce
disclosure and participation [73]. They found that a professional looking site garners
higher privacy concerns than an informal and unprofessional looking site, because
the former design reminds users of privacy. While it is arguably more risky to
entrust such an unprofessional-looking site with one’s information, its appearance
apparently downplays privacy concerns and increases disclosure.

Arguably, since even a professional looking site can instill privacy concerns, any
reference to privacy will inadvertently prime users with privacy fears. This high-
lights a fundamental problem of any privacy-preserving architecture or algorithm:
informing users about the superior privacy protection is likely to make them more
concerned about their privacy [78, 80]. In some cases, this fear stems from concerns
that the developers of these systems had not accounted for. For example, Kobsa et al.
show that while client-side recommendation algorithms prevent the disclosure of
personal information to third parties, users are concerned about their device getting
lost or stolen [88]. Their user profile could then not only fall in the hands of a third
party; they themselves would lose access to it. Users’ lack of familiarity with a
technology may exacerbate their privacy concerns. For example, Kobsa et al. show
that users are rather skeptical about cloud-based recommendation services [88] like
those proposed in [15].
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The proponents of increasing transparency and control in information disclosure
decisions assume that people are rational decision-makers who will use the provided
information and controls to their best advantage. However, our decisions often
do not follow rational economic principles [75] (see also Chap. 18), and this also
holds true for information disclosure decisions [4, 5]. In fact, information disclosure
decisions are among the hardest decisions to make, because they have delayed and
uncertain repercussions that are difficult to trade-off with the possibly immediate
gratification of disclosure [2, 5]. In this light, an abundance of information and
control may only aggravate this problem, because it can lead to choice overload or
information overload. Consequently, several researchers have recently questioned
the effectiveness of the “transparency and control” paradigm [111, 135].

19.4.2 Privacy Nudges

The first step in supporting users’ privacy decisions that does not require users to
be rational decision-makers is to nudge these decisions into the “right direction”
[3, 146] (see below for a discussion regarding what the “right direction” of privacy
nudges could be). A nudge is a subtle yet persuasive cue that makes people more
likely to decide in one direction or the other. Carefully designed nudges make it
easier for people to make the right choice, without limiting their ability to choose
freely. Broadly speaking, two types of nudges have been tried out in the field of
privacy decision-making: justifications and defaults.

Justifications Justifications make it easier to rationalize decisions, and to min-
imize the regret associated with choosing the wrong option. Different types of
justifications include providing a reason for requesting the information [41],
highlighting the benefits of disclosure [90, 143], and appealing to the social norm
[6, 25]. Justifications are especially useful in recommender systems, because
recommenders are able to extract valuable taste information from seemingly
irrelevant data. A good disclosure justification can nudge users to disclose these
data, which helps to build their user model and improve the accuracy of the
recommendations.
The effect of justifications seems to vary though. In a study by Kobsa
and Teltzrow, users were 8.3 % more likely to disclose information when they
knew the benefits of disclosure [90]. In a study by Acquisti et al. users were 27 %
more likely to do this when they learned that many others decided to disclose the
same information [6]. However, Besmer et al. found that social cues had barely
any effect on users’ Facebook privacy settings: only the small subset of users who
take the time to customize their settings may be influenced by strong negative
social cues [25]. Knijnenburg et al. tested a wide range of justifications in a
demographics- and context-based mobile app recommender [80, 84]. They also
found “fickleness” in the effects of justifications on users’ disclosure to—and
satisfaction with—the recommender. Users found these justifications helpful, but
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in contrast to some of the above findings, the justifications did not increase users’
disclosure, trust, or satisfaction with the system, but rather decreased them. In
line with Besmer et al. [25], Knijnenburg and Kobsa conclude in a follow-up
analysis that only a subset of users is amenable to justifications [79].

Defaults The other approach to nudging users’ privacy decisions is to ease
their burden of making information disclosure decisions by providing sensible
defaults (see Chap. 18). Providing a certain default option may nudge users in
the direction of that default. For example, John et al. [73] show that people are
more likely to admit to certain sensitive behaviors via an act of omission than
via an act of commission. Similarly, Lai and Hui [93] show that defaults have a
significant impact on user participation in an online newsletter. Recommender
systems can manage privacy perceptions by carefully setting the defaults of
optional features such as making one’s taste profile public, or social network
integration.
Another default that can be used to nudge privacy decisions is the order
of the disclosure requests. Acquisti et al. demonstrated that people disclose
less information when requests are made in increasing order of intrusiveness
compared to a random order [6]. This effect is particularly pronounced for more
intrusive questions: asking those questions upfront increases their likelihood
of being answered. Arguably, people become more wary of disclosing very
personal information as the disclosed information accumulates; the most relevant
information should thus be requested upfront. Similarly, Knijnenburg and Kobsa
manipulated the request order, and showed that any type of information enjoys
higher disclosure when requested first rather than last [80, 84]. Note though,
that although asking sensitive questions upfront increases disclosure in research
settings, it may scare away new users when done in commercial applications.
The order of disclosure requests arguably has a large impact in conversational
recommender systems, where quick convergence on an accurate user model
needs to be balanced with privacy concerns related to sensitive information
requests. Disclosure request order strategies are thus an important topic for future
research in recommender systems.

The problem with existing privacy nudging techniques is that they have to take an
implicit stance on whether the purpose of the nudge should be to increase disclosure,
or to decrease it. Recommender system developers may claim that it is in users’
best interest to provide more data to the recommender, as it will improve their
user model and, subsequently, the recommendations. They may thus argue to use
nudges to increase disclosure, but these nudges may cause the more privacy-minded
users to feel “tricked” into disclosing more information than they would like [28].
Others (e.g., privacy advocates, certain lawmakers) may instead believe that privacy
is an absolute right that needs to be defended at all costs. But if the protective nudges
they impose make it more difficult to disclose information, this would reduce the
overall benefit of a recommender system, especially for less privacy-minded users.
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19.4.3 Privacy Adaptation

Given these opposing forces, how can we nudge users in the “right direction?” This
is a difficult question, because human decisions are highly dependent on the personal
context in which they are made, and the same holds true for information disclosure
decisions [5, 73, 97, 110]. For example, the fact that one person has no problems
disclosing a certain item in a particular context does not mean that disclosure is
equally likely for a different person, a different item, or in a different context [82,
97]. Likewise, a convincing justification to disclose a certain item in a particular
context for a certain person, may be completely irrelevant for a different person,
a different item, or a different context [25, 79]. The “right direction” of a privacy
nudge thus depends on these contextual variables. This idea of context-dependent
privacy nudges leads to a new application domain for recommender systems: user-
tailored privacy decision support [86, 145]. Specifically, a recommender can be
used to predict users’ context-dependent privacy preferences based on their known
characteristics and behaviors, and then provide automatic “smart default” settings
[134] in line with their disclosure profiles. Below we outline the budding research
in this new field of “privacy adaptation.”

The first step towards privacy adaptation is to gain a deeper understanding of
people’s cognitive decision-making process: What kind of benefits and threats do
users consider when making disclosure decisions? What is the relative weight of
each of these aspects? Can the weights be influenced by a justification or a default,
and if so, in what context(s)?

Some of the work by Knijnenburg et al. tries to measure these cognitive
determinants and integrate them in behavioral models of information disclosure
decisions. For example, they demonstrate that:

• the effect of justifications on information disclosure decisions is mediated by the
user’s perceptions of help, trust and satisfaction [80];

• the effect of decision context in a location-sharing service depends on users’
perception of the privacy and benefits of the available options [83] (so-called
“context effects;” cf. Chap. 18);

• perceived risk and relevance mediate user evaluation of the purpose-specificity
of information disclosure requests [81].

The second step towards privacy adaptation is to determine how information
disclosure depends on the recipient, item and type of user. This would allow to train
a recommender that can tailor defaults and justifications to these contextual factors.
Work in this direction shows that even though privacy preferences vary considerably
across users, recommendation techniques can be used to predict these preferences
quite accurately. For example, Knijnenburg et al. identify distinct subgroups of users
with similar privacy preferences in many domains [82]. These subgroups can be
mapped to demographics and other behaviors, allowing a recommender to classify
users into a certain subgroup. Ravichandran et al. [125] apply k-means clustering
to users’ contextualized location sharing decisions to come up with a number of
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default policies. They show that a small number of default policies for the user to
choose from could accurately capture a large part of their location sharing decisions.
Sadeh et al. [129] apply a kNN algorithm and a random forest algorithm to learn
users’ privacy preferences in a location-sharing system. They show that the applied
recommendation techniques can help users in specifying more accurate disclosure
preferences. Pallapa et al. [117] propose context-aware approaches to privacy
preservation in wireless and mobile pervasive environments. One of their solutions
leverages the history of interaction between users to determine the level of privacy
required in new situations. They demonstrate that this solution efficiently supports
users in dealing with their privacy concerns. Finally, adaptive procedures also work
for justifications: although justifications generally do not increase disclosure or
satisfaction, Knijnenburg and Kobsa find that tailoring justifications to the user can
reduce this negative effect [79].

In sum, privacy adaptation strikes a balance between giving users no control
over, or information about, their privacy at all and giving them full control and
information. It solves the problem of finding the “right direction” for nudges by
using users’ own preferences as a yardstick. At the same time, it gives users the right
privacy-related information and the right amount of privacy control that is useful, but
not overwhelming. It thereby enables users to make privacy-related decisions within
the limits of their bounded rationality. In many systems, privacy concerns seem to
rise in concert with the complexity of users’ privacy decisions. “Privacy adaptation”
may thus present a unique opportunity for recommender systems to help solving
this problem.

19.5 Summary and Discussion

We conclude the chapter with a summary of the privacy-enhancing solutions that
were outlined, along with their current shortcomings. Next, we discuss current
and emerging trends in recommender systems and identify the key privacy issues
associated with them. Lastly, we suggest research tracks to better address the privacy
risks of today and those of the future.

In Sect. 19.2, we discussed various privacy risks originating from the recom-
mender system itself, from other system users, or from third parties. The risks
are highly diverse, but center around potential adversaries either directly accessing
the existing user data or inferring new information through cross-linking multiple
sources of user data. While they can be broadly categorized as either technical or
non-technical, the solutions that were proposed in Sect. 19.3 are even more diverse
than the challenges they seek to address.

The architectural solutions covered various protocols and certificates that guar-
antee that the recommender behaves in a way that preserves the users’ privacy.
Barriers are put up for untrusted parties that may want to access user profiles or
infer non-disclosed sensitive data. Then, we proceeded to algorithmic solutions,
which incorporate privacy into the recommendation generation process. Here, we
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partitioned prior works into four broad directions: to anonymize and/or abstract
individual users; to introduce noise into the original user data, making it hard to
uncover true user preferences; to use differential privacy, a widely-used model that
offers provable privacy guarantees; and to exploit cryptography-based approaches
to generate recommendations, while keeping user inputs confidential. Note that
these directions are by no means mutually exclusive—a recommender may deploy
algorithms from several groups to improve user privacy.

As discussed in Sect. 19.4, users have their own perceptions of privacy that do
not necessarily align with the privacy assurances provided by the above solutions.
Moreover, some of the proposed approaches may even have an opposite effect on
users’ behavior and their perception of privacy. We suggested that privacy solutions
should be tailored to users’ inherent privacy preferences. This results in a new
opportunity for recommender systems: providing privacy decision support.

The field of recommender systems is still largely evolving, and is gaining
emerging popularity in several relatively new use-cases and application domains.
Some of these applications pose a significant risk to user privacy, and, therefore,
the importance of privacy-preserving recommendations is paramount there. We will
briefly discuss some of these cases and highlight their privacy implications.

Recommenders on the Social Web. Online social networks are tremendously
popular these days. The social Web attracts billions of users, who not only expose
unprecedented volumes of personal information, but also voluntarily cross-link data
from a wide spectrum of sources. Various personalization and recommendation
technologies have been developed for the social Web (Chap. 15), and these highlight
the need for privacy-preserving solutions that will deliver user-tailored services
without compromising user privacy.

Cross-Domain Recommender Systems. The challenge of generating recommen-
dations by combining multiple sources of user modeling data, which potentially
span several recommender systems and application domains, has recently attracted
a lot of attention (Chap. 27). This poses a direct threat to privacy, as domain-specific
user profiles are inherently linked, and cross-domain recommenders already apply
the techniques mentioned in Sect. 19.2 for the inference of new undisclosed data.
Hence, cross-domain recommenders call for a special focus on the preservation of
user privacy.

Mobile and Context-Aware Recommendations. Users are increasingly surrounded
by sensors and smart environments, which interact directly with the users’ personal
devices. This facilitates the collection of rich user profiles and opens the opportunity
for the delivery of context-aware recommendations (Chaps. 6 and 14). Users have
little control over these pervasive data collection procedures. Users may wish to
control data access limitations and the invasiveness of the recommender, but since
these recommenders typically operate in the background, the act of control itself
may disrupt the users’ primary workflow. Control mechanisms should thus be very
lightweight, lest users simply ignore them.

Explanation of Recommendations. Recommendations are often accompanied by
a textual description explaining why the items were recommended to the user
(Chap. 10). Consider Amazon’s “you were recommended X because you bought
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Y” or the widely-used “people who examined X were also interested in Y.” While
this helps users to find related items and supports the vendors’ cross-selling,
these explanations can potentially compromise user privacy by leaking private
information and revealing information to others watching over the user’s shoulder.

Group Recommenders. Consumption of the recommended items is increasingly
used in a group setting, where users’ individual preferences are combined to provide
recommendations that fit the entire group (Chap. 22). In these settings, users may
infer the preferences of the members of their group from their combined recommen-
dations. Group recommender systems may thus need to perturb recommendations
in a way that allows users a certain level of “plausible deniability” regarding their
specific tastes and preferences.

This chapter has presented a patchwork of technical and non-technical solutions
that can each address specific privacy risks regarding current and future recom-
mender system scenarios. However, it should be highlighted that most of the existing
works in the recommender systems space are focused on a single solution and very
little has been done on developing a holistic and encompassing solution. Hence,
the challenge of integrating the diverse (and often conflicting) solutions from the
architectural and algorithmic realms, and developing a recommender that is privacy-
friendly at the core, user-friendly and maintainable from a development point of
view, and, not the least, complies with existing privacy policies, is still open.

At the same time, recommender system developers should not forget that
dealing with privacy extends beyond the technical aspects of their systems. The
privacy attitudes among recommender system users—the yardstick against which
privacy practices should be evaluated—vary considerably and evolve continuously.
Therefore, industry players have to engage in an active conversation with their
users about what are considered good privacy practices. As we ran a quick survey
among industry contacts to get a basic understanding of prevalent industry privacy
practices, it became painfully clear that companies do not feel comfortable to talk
about even their basic approach to privacy. Moving forward, though, we predict
that a more conscientious discussion about privacy in recommender systems will
emerge, and we conjecture that the key challenges presented above will be addressed
both by the research community and by industrial players concerned with improving
the privacy of their customers.
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