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Abstract Trust plays an important role in various user-facing systems and applica-
tions. It is particularly important in the context of decision support systems, where
the system’s output serves as one of the inputs for the users’ decision making pro-
cesses. In this chapter, we study the dynamics of explicit and implicit user trust in a
simulated automated quality monitoring system, as a function of the system accuracy.
We establish that users correctly perceive the accuracy of the system and adjust their
trust accordingly. The results also show notable differences between two groups of
users and indicate a possible threshold in the acceptance of the system. This impor-
tant learning can be leveraged by designers of practical systems for sustaining the
desired level of user trust.
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12.1 Introduction

Trustis a critical factor that impacts interpersonal relationship, and it used to be estab-
lished via face-to-face communications between people until technologies made
human-machine communications possible. The extensive usage of internet every-
where in the world has boosted the information revolution, under which circumstance
the human alone is not capable of processing the vast amount of information which
is booming exponentially over time, so people may resort to computers for help
now and then. However, switching from a smiling colleague to a cold emotionless
machine, the human does need time and experience to build up trust with the new
partner, although it can conduct many tasks that are beyond the capability of a human.
In this context, it is particularly important for systems where users are required to
make decisions based, at least partially, on machine recommendations. For instance,
consider a medical decision support system or an e-commerce recommender system.
In both cases, a user decides on the course of actions — be it medical treatment for
a patient or product to purchase — in uncertain conditions and based (in part) on
the system’s suggestions. Since in both cases there is something at stake, i.e., there
are possible negative implications for incorrect decisions, the lack of user trust may
deter the user from following these suggestions and be detrimental to the uptake of
the system.

Trust in automation, and, in particular, in decision support information technolo-
gies, has been the focus of many studies over the last decades [5, 7]. It has mainly
been studied in the context of task automation and industrial machinery. In one of the
seminal works in this field, Muir et al. [13] found a positive correlation between the
level of user trust and the degree to which the user delegated control to the system.
Furthermore, McGuirl and Sarter [11] found similar responses specifically within
an automated decision support system. Note that both works highlighted the impact
of establishing and maintaining trust on user reliance on system suggestions, and,
indirectly, on the uptake of the system.

Although much work has been devoted to the impact of system performance [18]
and transparency [21] on user trust, less attention has been paid to the temporal
variations of trust, and to individual differences of such dynamic aspects. In this
chapter, we discuss our investigations on the fine-grained dynamics of trust in an
experiment that simulates an Automated Quality Monitoring (AQM) system that
alerts users to the existence of faulty items, in a fictional factory production line
scenario. In the experiment, every one of the 22 participants interacted with four
AQM systems each exhibiting a different level of accuracy. After each trial (30 per
AQM system), the users reported their perceived level of trust in the system, which
we refer to as explicit trust. In addition, we also measured implicit trust through
reliance, quantified through the proportion of times the user followed the AQM’s
suggestion. It should be noted that for any decision made by the user, reliance for a
single task is a binary feature, since it captures whether the user followed (or not)
the system’s advice.
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Three hypotheses guided our examinations:

e HIl: Learned trust, i.e. the trust gained after some experience and collaboration,
would stabilise over time to a level correlated with the systems’ accuracy;

e H2: Users would exhibit thresholds of acceptable accuracy for a system, under
which reliance would drop;

e H3: Differences would exist for acceptable accuracy in terms of trust and stereo-
typical user profiles will still be able to be constructed.

This chapter will address our work which experimentally validates these hypothe-
ses and draws practical conclusions that can help system designers maintain user trust
in systems. In the following sections, we first present related work on user-system
trust, followed by a detailed description of the experimental protocol. We then present
and discuss the results, and finally conclude with a discussion on practical steps that
might be taken to sustain user trust.

12.2 Background

Human-machine trust has generated an extensive body of literature since it was
originally investigated within the context of industrial automation systems in the
1990s. Although multiple definitions, frameworks and decompositions of trust exist,
there is convergent evidence about its central characteristics. We adopt the definition
proposed by Lee and See [8] where trust can be defined as the attitude that an agent
will help achieve an individual’s goals in a situation characterised by uncertainty
and vulnerability. This succinctly encapsulates the primary sources of variance (the
user, the system, the context) and identifies a key aspect of this relationship, that
of vulnerability. Similar definitions exist by Rousseau et al. [15], Mayer et al. [10]
and Hoff and Bashir [5]. Trust is a hypothesised variable that has been shown to
be a key mitigating factor in system use/disuse (reliance) [7, 20]. It can be inferred
from both self-report and behavioural measures [10], and importantly, is dynamic,
with acquisition and extinction curves, subject to the users’ experience of system
performance.

Trust has been proposed to be a multi-dimensional construct with a number of
models existing in the current literature, each with slightly different proposed com-
ponent subscales. We have adopted Hoff and Bashir’s model [2], which he based on
an empirical research overview of existing literature in the area. This model is also
nicely applicable to our research focus in that it includes variables important to HCI
contexts such as ‘design features’ as well as encompassing a number of important
situational factors and individual differences such as culture, age, gender and per-
sonality. Hoff and Bashir also base their work on the Lee and See’s definition of trust
as mentioned above.

In specific, this model proposes that three conceptual types of factors influence
user-system trust. Dispositional trust reflects the user’s natural tendency to trust
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machines and encompasses cultural, demographic, and personality factors. Situa-
tional trust refers, to more specific factors, such as the task to be performed, the
complexity and type of system, user’s workload, perceived risks and benefits, and
even mood. Lastly, learned trust encapsulates the experiential aspects of the construct
which are directly related to the system itself. This variable is further decomposed
into two components. One is initial learned trust, which consists of any knowledge
of the system acquired before interaction, such as reputation or brand awareness.
This initial state of learnt trust is then also affected by dynamic learned trust which
develops as the user interacts with the system and begins to develop experiential
knowledge of its performance characteristics such as reliability, predictability, and
usefulness. The relationships and interaction between these different factors influ-
encing trust are complicated and subject to much discussion within the literature. In
our work we focus on how trust changes through human-machine interaction and
therefore seek to manipulate experimental variables thought to influence dynamic
learned trust, whilst keeping situational (and initial learned) variables static, and
allowing for variation in individual differences via factors affecting dispositional
trust.

Individual differences in trust response are a key focus of our research. In the orig-
inal body of work on human-human trust, Rotter [14] established that trust (human-
human) was a stable character trait and developed an instrument that detected varia-
tions in propensity to trust between people. Extending this, Scott [16] demonstrated
that trust was composed of at least two factors, one being situational, and the other
being a stable, trait based factor (equivalent to Hoff’s dispositional trust). When
extending the original human constructs into the realm of humans and machines,
Singh et al. [17] operationalised the construct of ‘complacency’ in automation,
which included a subscale on ‘trust’ and found reliable, and stable variations between
people. Lee and Moray [7] found differences between people’s likelihood in using
automation when error rates are held constant.

When comparing human-human to human-machine trust, Madhavan and Wieg-
mann’s [9] review outlines a number of important differences. Jian et al. [6] found
that people’s ratings are less extreme towards other humans than towards machines.
Earley [4] found that people evaluated system estimations as more trustworthy than
human equivalents, but in contrast, Dietvorst et al. [2] found that people were more
likely to under-rely on an automated aid in decision making even when shown that
the machine performed more accurately than their own efforts and even when there
was a financial stake involved. On the other hand, Dzindolet et al. [3] notes that
human machine trust sometimes begins at a higher level than human-human trust
and is characterised by more dramatic collapses when trust is proven to be mis-
placed. To explain this phenomena he suggested that some individuals harbour a
‘Perfect automation schema’ where expectations of system performance are unre-
alistically high. Such expectations result in differential reactions to system-failures,
where those who possess this schema exhibit higher loss of trust on system failure
than those who do not.

However, as Lee and See [8] and Hoff et al. [5] have claimed, individual differ-
ences are likely to be overcome by the experiential effects of steady state machine
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behaviour resulting in less variance between users after exposure to the machine.
The experiment we outline below contradicts this finding to some extent. We have
found that clustering users into two groups uncovers two patterns of trust behaviour
where one group exhibits greater variance in trust ratings than the other. We use this
finding to single out users, whose trust in the system may be at risk and take proactive
steps to sustain their trust.

12.3 Methodology

12.3.1 Context

The scenario of the experiment was a typical production factory quality control
task. This simulated task consisted of checking the quality of drinking glasses on a
production line, with the assistance of a decision support system called an Automatic
Quality Monitor (AQM). However, the AQM was not always correct, i.e., it would
occasionally exhibit false positives (suggesting failing a good glass) and misses
(suggesting passing a faulty glass).

12.3.2 Trials

Each trial required the participant to make a decision about whether to pass or fail
a glass, with no other information about the glass other than the AQM’s suggestion.
Trials were presented sequentially, providing a time-based history of interaction with
a given AQM. At each trial, the participant could trust the AQM or override it and
make their own decision. A simple graphical user interface coded in Python and
running on a 64-bit Windows operating system was used, as shown in Fig. 12.1.

Each trial starts with the AQM providing a suggestion for a new glass, by illu-
minating a red warning light-bulb if it predicts the glass to be faulty. Otherwise the
warning light remains off. It should be noted that the status of the AQM light and
the possible quality of the glass are both binary features to help generalise results,
as mentioned above.

The participant must then decide whether to pass the glass by clicking the Pass
button, or conversely to fail the glass by clicking the Examine button. The actual
glass is then displayed, so the participant receives direct feedback on their decision,
as shown in Figs. 12.2 and 12.3. Furthermore, we gamified the experiment in an
attempt to increase motivation and attention: each time the participant made a cor-
rect decision, i.e., examined a faulty glass or passed a good glass, they earned a
fictional $100 reward. However, each incorrect decision cost them a fictional $100
loss. The total earnings were updated after each decision and displayed within the user
interface. The rewards and the fines were used for gamification purposes only, and no
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Fig. 12.1 The trial starts with an AQM recommendation, with two buttons (examine/pass) for users

to make a decision

- it

Examine Pass

Please rate your trust on the AQM system.

Distrust .y ©2 -3 o4 5 -6

7 Trust | Codem |

Fig. 12.2 Upon decision from the participant, the actual glass is shown and score updated
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Fig. 12.3 A wrong decision leads to decreased score, and red text indicating the outcome of a glass

actual remuneration was offered to the participants. Exemplary interfaces showing
that the user has made correct and incorrect decisions are shown in Figs. 12.2 and
12.3 respectively.

We operationalised a binary decision making task in our experiment for two rea-
sons. Firstly, any complex decision process can be arguably decomposed into a series
of binary decisions. The decision-trust relationship thus can be easily generalised to
complicated decision-making problems. Secondly, the simplified decision making
protocol we implemented, similar in effect to the ‘micro-worlds’ discussed by Lee
and See [8], makes it convenient to map trust levels to decisions without the inter-
ference of other parameters [19].

12.3.3 AQM Accuracy and Blocks

The experiment session was separated into four blocks, and participants were
instructed that a different AQM was used for each block. The accuracy of each
of the four AQMs presented was manipulated by varying the average rate of false
positives and false negatives exhibited by each system. These errors were presented
in a randomised order within the 30 trials presented for each participants and each
AQM.
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Table 12.1 AQM accuracies

AQM accuracy (%) False positives + negatives (%)
100 0

90 10

80 20

70 30

We used four different AQM accuracies, as shown in Table 12.1. In order to capture
a trust baseline for each participant, each experiment session systematically started
with the 100% accuracy AQM, followed by the other three AQMS in random order.
Each block consisted of one AQM that was used for 30 task trials. The AQM made
errors randomly over the trials, but in a way that the mean AQM accuracy over the
block was as defined for that AQM. For instance, the 80% AQM would make, on
average, 6 errors over the 30 trials (on average, 3 false positives and 3 false negatives).

12.3.4 Participants

Twenty-two participants took part in the 45 minute experiment. Twenty of the par-
ticipants were university students and the remaining two were IT professionals. No
specific background or requirements were required to complete the task. Recruitment
and participation were conducted in accordance with the University-approved ethics
plan for this study. No reward or compensation was offered for taking part in the
experiment.

12.3.5 Information logging

For each trial, we collected:

The participant’s binary decision (pass or examine);

The AQM suggestion (light on or light off);

The actual glass condition (good or faulty);

The time required to make the decision, i.e., the time elapsed between the AQM
light being presented to the participant and the Pass/Examine button being clicked;
The subjective trust rating, collected after the actual state of the glass is revealed.
This rating is collected using a 7-point Likert scale ranging from 1: distrust to 7:
trust. In the instructions issued at the outset of the experiment we explained that a
rating of 4 meant neutral, or no disposition in either direction.
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One of the participants consistently rated the trust at extreme levels (either 1 or 7)
of the 7-point scale across the four sessions, and hence his data was excluded from the
examination. Considering the individual differences, the trust data was normalised
to the range of 0—1 on an individual basis, for all the trials conducted on the four
AQMs. The binary decision of the participants was further quantified in terms of a
reliance score Ry, i.e. the ratio between the number of decisions consistent with the
AQM recommendation and the total decisions for a set number of consecutive trials,
and thus the value of the reliance score falls between 0 and 1.

N,

Ry= —"—
N, + N,

(12.1)

where N, and N, refer to the number of decisions consistent and inconsistent with
the AQM recommendation respectively for all the previous trials on it.

12.4 Results

In this section we present and discuss the results of our user study in the light of our
hypotheses.

12.4.1 Trust Correlation to System Accuracy

We start with the investigation of acquisition and extinction of trust, as observed
over the course of user interactions with the AQMs. The level of trust is measured
subjectively after each trial, as described earlier. Since the AQM errors were ran-
domised over the 30 trials for each AQM, and given the number of participants, trust
variations for each trial exhibit a number of local variations. We address this issue by
applying a simple low-pass filter, specifically a 5-trial sliding window, reducing our
data to 25 points per AQM. That is, 7}, the level of trust after trial n, was computed
as the average trust across the last 5 trials (n-4—n). Figure 12.4 shows the aggregated
normalised trust for all 21 participants, for all four AQM:s.

Z?:o In—i

T, =
5

(12.2)
where ¢, is the trust rating for trial 7.

At first, trust in all AQMs seems uniform as would be expected since participants
know that each new AQM is different from the others they may have encountered,
and the order is randomised. Trust in the 100% AQM appears to be above the other
AQMs.
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Fig. 12.4 Mean trust for all 1 y —
participants, all AQMs
08
_ 061,
w
2
= 04/ s _
v S
90%
0.2 80%
70%
5 10 15 20 25 30

Trials

An analysis of variance showed that the effect of the AQM accuracy on the first
trust point (trust mean over the first five trials) was significant for all participants,
F(3,80) = 6.463, p < 0.001. Post hoc Tuckey tests showed there was a significant
difference between the 100% AQM and both the 80 and 70% AQMs. We think this
may be linked to two possible factors. Firstly, since we use a sliding window to
capture trust, the participants will have started to form a preliminary trust judgement
on each AQM by the time of the first trust point (recall that the first point is actually
after 5 trials). Secondly, it is possible that individual differences between participants
combine in a way that creates such a wide initial variation in trust. We investigate
this second possibility in later sections of this chapter, by grouping participants and
then revisiting their initial trust assessment.

As a side note, the test of homogeneity (Levene’s) for the first reliance point was
significant, hence violating ANOVA’s assumption of equal variances. However, the
sample sizes being equal, this statistic should be robust. Hence, we accept the results.

Looking at the temporal fluctuations of the trust values, we observe that these
stabilise with important differences between the AQMs. As expected, trust in the
100% AQM stabilises at 1 after only 13 trials. Also the 90% AQM converges to
reasonably high levels of trust from trial 19. The 80% AQM is initially stable but
exhibits a slight increase in trust starting from trial 15, while the trust in the 70%
AQM steadily declines after fewer than 10 trials and eventually drops as low as 0.33.

An analysis of variance showed that the effect of the AQM accuracy on the last
trust point (trust mean over the last five trials) was significant for all the participants,
F(3,80) = 27.03, p < 0.001. Post hoc Tuckey tests show there is a significant dif-
ference between the 100% AQM and both the 80 and 70% AQMs, as well as between
the 90% AQM and the 70% AQM, and again between the 80% AQM and the 70%
AQM.

It should be noted that the final order of the trust ratings corresponds to that of
the AQM accuracies. That is, the 100% AQM stabilises at the highest trust level,
followed by the 90, 80, and 70% AQM, in this order. This finding supports our H1
hypothesis that learned trust would stabilise over time to a level correlated with the
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systems’ accuracy. However, we will later examine what role individual differences
may play in this process.

In addition, since we only selected a small set of discrete accuracies for our AQMs,
it can be interesting to analyse our results from the perspective of a rank-ordering
problem. Indeed, this would provide an indication of whether the reported trust rank-
ing aligns to such discrete accuracy levels. A Friedman’s test shows significant dif-
ferences between the trust levels (Friedman’s x2(20, 3) = 45.31, p < 0.001), with
mean ranks of 3.8, 2.9, 2.0 and 1.3 for AQMs of accuracy 100, 90, 80 and 70%
respectively. These statistics suggest that trust ratings correlate with increased levels
of AQM accuracy, when considered as discrete values (here 10% increments), again
supporting our HI hypothesis.

12.4.2 Acceptable Accuracy and Reliance

We now examine the dynamics of reliance, which we regard as an objective measure
of trust. Recall that reliance is measured implicitly during each trial, as described
earlier. Again, we apply a simple low-pass filter, but this time we use a 10-trial sliding
window, reducing our data to 20 points per AQM. The reason for this larger window
is mainly because reliance is a binary feature (at every trial the participant either did
or did not follow the system suggestion). Hence, local variations tend to add weight
to the reading for a small window size. Figure 12.5 shows the aggregated reliance
for all the 21 participants and all four AQMs.

We observe that despite the larger sliding window of 10 interactions, the reliance
curves are less stable than the trust curves. We believe that the reason for this obser-
vation is two-fold. Firstly, the effect of a binary feature on smoothing is strong and
could require a wider sliding window size, but this would mean losing temporal accu-
racy in our analysis of reliance dynamics. Secondly, we think that while participants
exhibit relatively uniform trust trends, they have different strategies to deal with it,
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as per our H3 hypothesis of individual differences. We will explore this aspect in the
next sections.

Qualitatively, the AQMs exhibit different reliance patterns. These differences are
not linked to the order in which AQMs are presented to the participant, because
it is randomised. It is possible that, by way of randomisation, the AQMs in each
subset behaved similarly over the first few trials, which would then be picked up
as different levels by the sliding window. However, this explanation seems unlikely
given the number of participants.

All curves, except for the 70% AQM, demonstrate slight (and often unstable)
increases and their final levels are in the range of 0.95-0.98. The 100 and 90%
AQMs seem to converge strongly, while the 70% AQM exhibits a steady decline
in reliance. The 80% AQM seems close to the 100% AQM baseline. This could
indicate that the acceptable level of accuracy for a system is around 80%, possibly a
bit above since the AQM 80% is slightly lower. An analysis of variance showed that
the effect of the AQM accuracy on the first reliance point was not significant for all
participants, F(3, 80) = 1.597, p = 0.197 n.s. That is, the apparent reliance pairs
observed are not significant in view of the variance, further demonstrated by Fig. 12.6.
This means that the participants interacted with all four AQMs with a comparable
level of dispositional trust, as comes through the implicit reliance measure.

Focussing on the last reliance observed after 30 trials, an analysis of variance
showed that the effect of the AQM accuracy on the last reliance point was signif-
icant for all participants, F(3, 80) = 4.182, p = 0.008. The test of homogeneity
(Levene’s) was significant, but again the sample sizes are equal. Due to the binary
notion of reliance, we can test our hypothesis of acceptable level of accuracy by
comparing all the AQMs to the 100% AQM baseline, in order to determine where
the threshold for accuracy may lay. To do so, we applied a simple contrast in the
ANOVA for the last reliance point, and obtained significance only for the pair 100%
AQM versus 70% AQM. This means that the 80% AQM, while being visually apart
from the 100 and 90% AQMs, is actually not significantly different. However, the
AQM 70% is significantly different from the other three AQMs. These results support
our hypothesis H2 that users have thresholds of acceptable accuracy for a system,
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under which the reliance drops. Since there is no significant difference between the
AQMs in terms of the initial reliance levels, participants start interacting with the
AQMs free of pre-disposition. But later on we observe a specific behaviour only
for the 70% AQM, whereby the reliance of the participants on that AQM declines
significantly compared to other AQMs. This indicates that a threshold of acceptable
accuracy in our AQM for the cohort of our participants lies somewhere between
70 and 80%. Having said that, the high values and narrow range of reliance values
should be highlighted. Over the course of the whole experiment, reliance curves of all
the four AQMs remain fairly compact and above the 0.9 mark. This behaviour is not
surprising, however, and can be explained by the relatively high accuracies chosen
for all the AQMs. Even the poorest AQM operating at 70% accuracy can correctly
classify a glass 7 times out of 10, which is well above chance. We believe that the
participants rightfully perceived this benefit of the AQM over pure random choice.
Hence they decided to follow the AQM’s suggestions, leading to very high levels
of reliance. However, examining individual differences and grouping users can help
understand the substantial reliance drop observed for the 70% AQM.

12.4.3 Clustering of Participants

While individual user profiles can be appealing for high-precision applications, it may
not be justifiable in the context of trust, which as a construct has broadly defined
metrics. In addition, the number of participants in our experiment would not allow us
to generate fine grain profiles, if they were to exist. So, we endeavoured to partition
the participants into two groups using clustering.

The participants were clustered using the reported trust for the last five trials of
each AQM, with a K-means method. The trust ratings for the last five trials of each
AQM were used because most participants approached stable trust during these trials.
We clustered the participants into two groups due to the limited number of participants
involved in this study, and ended up with Group 1 including 13 participants and Group
2 with the remaining 8 participants.

Initially, we set out to examine the stability of the clusters. For this, we considered
the final clustering produced after the 30 trials as the ground truth and evaluated the
relative accuracy of the clusters as they could have been generated at earlier stages of
interaction. That is, we executed the above clustering method after a smaller number
of trials, say 20, and measured the proportion of users that are correctly mapped to
their ground truth cluster. The results of this analysis are shown in Fig. 12.7. Since
the clustering is based on the trust levels calculated with a 5-trial sliding window, no
clustering can be done for the first 5 trials. The relative accuracy of the clustering
increases between trials 5 and 11, as more user information becomes available, and
stabilises thereafter above the 0.9 mark. That is, the clusters become stable after 11
trials, after which less than 10% of users are incorrectly mapped to the other cluster.

The curves marked Group1 or Group?2 error provide details about users mapped to
the incorrect cluster. We observe that the majority of these come from Group 2 users
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Fig.12.7 Clustering performance. The Group?2 error indicates the participants that belong to Group
1 but are incorrectly clustered to Group 2, and the Group|1 error indicates the participants that belong
to Group 2 but are incorrectly clustered to Group 1. The clustering accuracy indicates the overall
rate of participants correctly assigned to the final two groups

mistakenly mapped to Group 1. Beyond several initial incorrect mappings, Group 1
users were reliably identified and mapped to the right cluster.

Having clustered the participants, we repeated the above analyses of trust and
reliance dynamics, but this time for each group separately. The trust curves for the
four AQMs observed for Group 1 and Group 2 are shown in Figs. 12.8 and 12.9
respectively. Since clustering was based on trust levels, we expect to find differences
in trust between the two groups. Notably, the curves for the 100% AQM are similar
in both groups, which can be expected based on H2, since a 100% accuracy AQM
is very likely to be acceptable to all users, regardless of their sensitivity. Therefore,
we focus the rest of the analysis on differences between groups with regards to the
other three AQMs.

Qualitatively, the Group 1 curves are much more spread out than those of Group
2. The initial trust levels of the 90, 80, and 70% AQM in Group 1 are in the range
of 0.5-0.63, whereas in Group 2 they are in the range of 0.55-0.77. Despite this, the
range of final trust is fairly different: it ranges 0.08-0.73 for Group 1 versus 0.70-
0.94 for Group 2. It should also be highlighted that the three trust curves are clearly
separable for Group 1, while the differences are less pronounced for Group 2. Also
note that the order of the curves for Group 2 does not correspond to the accuracy
levels of the AQMs.

An analysis of variance showed that the effect of the AQM accuracy on the
first trust point was significant for Group 1, (3, 48) = 7.267, p < 0.001. Post hoc
Tuckey tests have identified the significant difference between Group 1’s trust on
the 100% AQM and all the remaining AQMs. For Group 2, no significant difference
has been found for the first trust point F(3,28)= 0.820, p = 0.494. The test of
homogeneity (Levene’s) for the two groups’ first reliance point was not significant.

Examining the last trust point now, an analysis of variance showed that the
effect of the AQM accuracy on the last trust point was significant for Group 1,
F(3,48) =48.51, p < 0.001 and also for Group 2, F(3,28) = 7.510, p < 0.001.
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In terms of pairwise post hoc comparison, Group 1 showed significantly different
trust for any pair of AQMs, while for Group 2, significant difference was observed
between three pairs of AQMs, i.e. 100 and 80%, 100 and 70%, 90 and 80%. The test
of homogeneity (Levene’s) for both groups last reliance point was significant, but
can be ignored because of the equal sample sizes.

In order to address hypotheses H2 and H3 of acceptable levels of accuracy, it is
necessary to compare all the AQMs to the baseline 100% AQM. To do so, we applied
a simple contrast in the ANOVA for the last trust point for Group 1, and obtained
significance only for the pair 100% AQM versus 70% AQM. This finding means that
the 80% AQM, while being slightly apart is not significantly different. However, the
70% AQM was indeed found to be significantly different from the other AQMs, and
we argue that this AQM falls below the threshold of acceptable accuracy postulated
in our hypothesis.

These results support the hypothesis H3 that individual differences exist for
acceptable accuracy, but typical user groups may be constructed, where Group 1
demonstrates significant difference in terms of trust on different AQMs, however
Group 2 doesn’t show significant trust difference.
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As observed earlier, the differences between the AQMs in terms of reliance level
are less clear than the differences in trust. The reliance curves of the four AQMs
observed for Group 1 and Group 2 are shown in Figs. 12.10 and 12.11 respectively.

Qualitatively, the two groups exhibit distinct patterns. Group 1 starts with a fairly
uniform level of reliance across the AQMs, which can be expected, since the accuracy
of each AQM is not known to the participants at the start. Conversely, the reliance
in Group 2 is initially split into two ranges: the 90 and 70% AQMs hover above
the 0.95 mark, while the 100 and 80% are much closer to 0.9. This result is in line
with our earlier observations of reliance using all the participants. An analysis of
variance showed that the effect of the AQM accuracy on the first reliance point was
not significant for Group 1, F(3,48) = 0.441, p = 0.725 n.s. and also not significant
for Group 2, F(3,28) = 1.584, p = 0.215 n.s. This means that the apparent subsets
observed for Group 2 are not significant in view of the variance, as demonstrated by
Fig. 12.12.

Examining the last reliance point, we observe that the reliance levels in Group 1
correctly reflect the order of the AQM accuracies. Also note that the curves of the
100, 90, and 80% AQM obtain high reliance scores of almost 0.95 or greater than
this, while the 70% AQM is clearly placed below the others. This indicates that in
Group 1 the acceptable level of accuracy for a system is around 80% (possibly a bit
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above that), since the reliance on the 80% AQM is slightly lower than on the 100 and
90% AQM. For Group 2, all the curves converge around the 0.95 mark, although the
70% AQM is slightly lower than the others. An analysis of variance showed that the
effect of the AQM accuracy on the last reliance point was significant for Group 1,
F(3, 48) = 4.532, p = 0.007 and not significant for Group 2, F(3, 28) = 0.153,
p = 0.927,n.s. The test of homogeneity (Levene’s) for the last reliance point in Group
1 was significant, but the variances were equal for all the other analyses above.

Again, we applied a simple contrast in the ANOVA for the last reliance point for
Group 1, and obtained significance only for the pair 100% AQM versus 70% AQM.
Just as for trust in Group 1, this means that the 80% AQM while being slightly
apart is not significantly different from the 100 and 90% AQMs. However, the 70%
AQM is significantly different from the other levels, arguably because it is under the
threshold of acceptable accuracy postulated in our hypothesis. Similarly to subjective
trust, these results support our hypothesis H3 that Individual differences exist for
acceptable accuracy, but typical user profiles may be constructed. Both groups start
interacting with the AQMs free of pre-disposition, but Group 1 later on exhibits a
threshold of acceptable accuracy in the range of 70-80%. Group 2 again seems to
be more resilient or have a lower threshold of acceptable accuracy.

Seen from a rational behaviour perspective, the behaviour of Group 1 is not
optimal, since adhering to the AQM’s recommendations would provide a 20% better
than chance outcome. We conjecture that one possible explanation for this may
be that the AQM accuracy perceived by the participants is lower than the actual
AQM accuracy, i.e., participants in Group 1 may perceive the 70% AQM as being
worse than chance. It should be noted, however, that our experiment does not allow
us to establish the exact cause of the observed behaviour, as this would require a
substantially different experimental set-up.
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12.5 Discussion

In this chapter we discussed the fine-grained dynamics of user-system trust, an impor-
tant construct of human interaction with a decision support system. We specifically
focused on an automated quality monitoring (AQM) simulation, which provided
indication of faulty glasses being produced. In our study, each user interacted with
four AQMs and out of these interactions we populated the explicit trust and implicit
reliance scores.

We analysed the temporal dynamics of both trust and reliance, as well as their
dependence on the accuracy exhibited by the AQM. It was found that the reported
trust levels aggregated across the entire cohort of users, stabilised over time and, at
large, corresponded to the accuracy of the AQMs. Somewhat surprisingly, we dis-
covered that the implicit reliance levels were very high and comparable across the
four AQMs. We attribute this finding to the relatively high accuracy of the AQMs in
our experiment. Following this, we conducted an additional analysis of individual
user differences in trust and reliance. For this, we split the users into two clusters
and compared the trust and reliance scores obtained in these clusters. This analy-
sis discovered differences in the dynamics of user trust in the two clusters and also
some differences in user reliance on the low-accuracy AQMs. Hence, the obtained
experimental results support the hypotheses raised at the beginning of this chapter.
Firstly, we observe that the learned user-system trust stabilised over time and gen-
erally correlated with the level of accuracy exhibited by the system. Secondly, our
findings indicate that at reasonably high levels of system accuracy, user reliance is
high, whereas once the system accuracy falls below an acceptance threshold, the
reliance may deteriorate as well. Thirdly, we show that these acceptance thresholds
are dynamic and user-dependent, and we successfully manage to separate users into
two groups with different trust profiles and reliance patterns.

These observations brought to the surface an important practical question referring
to the implications of our work on the sustainability of user-system trust. Due to the
low transparency but complex structure of most machine learning systems, users
are mostly unable to understand their internal working mechanism or parameters,
however there is a possibility to improve the users’ performance, based on their
interaction history. Once the system recognises that certain users are in the ‘risk
group’ and the performance exhibited by the system is not up to their expectations,
additional steps may need to be taken in order to sustain the trust of these users.
For instance, the system may show its historical performance to these users, thus
increasing the experience of these users, or revealing some details of the internal
machine algorithm which allows for further understanding of the users. Alternatively,
system designers may want to enrich the interactions of these users, e.g., through
additional explanations of the suggested actions or through implanting persuasive
messages strengthening user trust [1].

Another intriguing question refers to identifying the users at risk. In our study,
we conduct a posterior clustering of the participants and split them into two groups.
However, a more relevant task would be to identify the type of users and their system
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acceptance at the beginning of the interaction or, even, before the interaction. The
analysis of our clustering shows that the clusters were stable and little changes of
cluster were observed at late stages of interaction, possibly indicating stable accep-
tance preferences. One possible predictor of this preference could potentially be the
user’s personality or behavioural traits, which can be derived, for example, from the
user’s past interactions with other systems. Prior research shows that trust correlates
to some personality characteristics [12], and this information can be extracted and
leveraged in order to sustain user trust. This research is beyond the scope of our
work.

In addition, we should note that our findings are based on a fairly limited cohort
of participants, all of which had reasonably short interactions with the system. Val-
idating our findings with a larger set of users (and, possibly, with a different target
system) is a natural future extension of our work. Also, we would like to increase
the length of interactions on the account of reducing the frequency of users reporting
their explicit trust. For example, we could collect the explicit trust level every second
interaction, allowing us to double the length of interactions without over-burdening
the users. This would allow us to collect a more solid empirical evidence and better
support our hypotheses.

Finally, more work is needed to address the fine-grained dynamics of trust acqui-
sition and extinction. In our work, we assumed a stable level of accuracy of every
system. This, however, may vary over the course of user interaction. Hence, it is
important to validate the evolution of user trust as a function of the user’s initial trust
disposition, observed system performance, and temporal aspects of this performance
(e.g., initial failures vs. failures when the trust was already formed). We highlight
the importance of these research questions, but leave this work for the future.

12.6 Conclusion

This chapter examines the relationship between system performance, a user trust
and reliance on the system. We observe that users correctly perceive the accuracy
of the system and adjust their trust and reliance accordingly. We have successfully
segmented the users into two groups who showed different patterns in trust dynamics
and reliance with different AQM systems. This important learning can be leveraged
by designers of practical systems for group-focused interaction systems. Further-
more, we have established a possible threshold in the acceptance of the system.
These findings taken together, have dramatic implications for general system design
and implementation, by predicting how trust and reliance change as human-machine
interaction occurs, as well as providing new knowledge regarding system perfor-
mance that is necessary for maintaining a user’s trust.
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