
Chapter 9
Tracking and Personalization

Rahat Masood, Shlomo Berkovsky, and Mohamed Ali Kaafar

Abstract This chapter studies the relationship between two important, often
conflicting paradigms of online services: personalization and tracking. The chapter
initially focuses on the categories and levels of online personalization, briefly
overviewing algorithmic methods applied to achieve these. Then, the chapter turns
to online tracking specific to mobile and web technologies, as well as the more
advanced behavioral tracking. Following this, the chapter ties the streams of person-
alization and tracking together and discusses various aspects of their relationships,
including the currently deployed tracking methods for personalization. Privacy
implications of personalization via online tracking, highlighted by organizations and
researchers, are also illustrated. Lastly, this chapter discusses the ways to balance
personalization benefits and privacy concerns. This includes the state-of-the-art
practices, current challenges, and practical recommendations for system developers
willing to strike this balance.

9.1 Introduction

The ever-changing technological landscape, high user involvement, increased soci-
etal visibility, and amalgamation of services have made privacy challenging to
maintain in a digital world. In recent years, we have witnessed many privacy
violation incidents where tech-giant companies (e.g., Google, Facebook, LinkedIn)
were involved. For instance, at Princeton University, computer-science researchers
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confirmed that Google services on Android devices and iPhones store users’ location
data, even if users set their privacy settings to prevent Google from (geo)locating
a user [1]. Similarly, Facebook has often been involved in scandals such as
the Cambridge Analytica data harvesting [2], suspicions of Russian and Iranian
meddling in the US elections [3], and several data-exposing “bugs” [4]. According
to [5], roughly 17,000 Android apps collect identifying information about a user
by setting persistent identifiers on mobile phones. These identifiers are the unique
numbers that allow companies to learn about user’s activities on a mobile phone.
These examples indicate that a growing number of service providers use several
techniques to collect a wide variety of data about end-users, from basic socio-
demographic details to a complete history of a user’s searches, clicks, locations,
and details of the device used.

One apparent reason to collect such information is to create a personalized user
experience to increase revenue, but at the same time, this information may also be
used for different purposes, such as to build user profiles to strengthen user engage-
ment and loyalty. Moreover, in some cases, this information may be shared with
third parties to assist in various tasks such as sharing on social platforms, hosting and
maintenance, or customer care [6]. The plethora of cases where companies collect
as much information about end users as possible, sometimes unknowingly to them,
and then using it for personalization, has raised the awareness of various issues
associated with the need to preserve and maintain users’ privacy. This chapter details
the various aspects of the relationship between online tracking and personalization,
including the currently deployed tracking methods for personalization, and existing
solutions to balance personalization benefits and privacy concerns.

9.2 Aspects of Personalization

Personalized technologies are deployed nowadays by virtually every website and
mobile app. These technologies facilitate the “provision of content and services
tailored to individuals based on knowledge about their preferences and behav-
ior” [7]. While personalized services started two decades ago with use cases like
web content filtering and eCommerce recommendations, they have since spread
to applications like music, tourism, eHealth, and more [8]. In this subsection we
initially overview the goals and benefits of personalized technologies and then
discuss their applications in the web and mobile environments.

9.2.1 Goals of Personalization

Naturally, the tailoring of services offered by personalization can benefit both the
service provider and the end user. For the former, it allows to increase the quality
of the service, as it gets adjusted to the needs and preferences of the user. This can
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lead to tangible improvements in various metrics, such as user engagement, click-
through rate, returning users, positive feedback, and, in consequence, to increased
revenues for the service. Likewise, users also benefit from the personalization, as
the overall user experience is improved. For example, personalization can shorten
the discovery of a desired content or reduce the costs of buying a product.

Many algorithmic approaches for personalization have been developed, eval-
uated, and deployed. Some of them rely on statistical correlations of past user
behavior [9], while others capitalize on extensive domain knowledge [10]. Regard-
less of the underlying personalization algorithm, a necessary precondition for
personalized services is the availability of reliable and up-to-date representation of
the user, that is, their interests, preferences, and needs, as encapsulated by the user
model [11].

User models typically reflect the goals and domain of the personalized service.
For example, an email filtering plugin should be able to distinguish between genuine
senders and spammers, while a movie recommender should know what movie
genres are liked and disliked by the user. Thus, no one-size-fits-all representation
of the user model can be conceived, and the target data is learned implicitly from
observable user interactions with the system and other users.

Moreover, the information collected for personalizing the service is closely
related to the underlying personalization algorithm. For example, collaborative
methods rely on identifying similar users and deriving predictions for the target user
from the behavior of the identified similar users. As such, collaborative methods
naturally require knowledge about numerous users and the privacy concerns are
harder to enforce in this case [12]. On the contrary, content-based methods require
only the model of the target user and additional domain knowledge. The privacy of
the latter is easier to protect than in the collaborative case, as the domain knowledge
typically does not include any personal data [13].

9.2.2 Personalization Environments

The increasing use of mobile technologies has led to multi-modality (cross plat-
forms), which allows users to access content and services through the web as
well as through apps and mobile devices. In this section, we briefly describe these
modalities with respect to personalization technologies.

9.2.2.1 Web Personalization

User modeling for web personalization purposes typically involves making sense of
users’ past information access and their interactions with online systems and other
users. The facets of user data that can be modeled are diverse; for instance, they
may include users’ knowledge level, interests, goals and motivation, personality, and
language. Potential sources of such user modeling data include past visited pages,
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launched search queries, purchased products, played songs and video clips, friended
social network users, liked content, and more [11].

Note that, if accessible, these sources allow the personalized services not only
to populate the desired user model facets but also to derive additional sensitive
information that may undermine users’ privacy [14]. Depending on the richness
and reliability of the user models, the service can either be truly personalized or just
tailored, for example, according to the group to which the user belongs.

9.2.2.2 Mobile Personalization

The use case of mobile personalization adds another layer of information, often
referred to as the context. The most prominent example of the contextual user model
is users’ location. This can be leveraged for a range of location-aware personalized
services, such as recommendations of places of interest, weather and traffic alerts,
presence of other people nearby, and so on. Within such services, either the user
modeling data or the personalized options are preselected according to the user’s
current location [15].

Other available sources of mobile user modeling data are various sensors
deployed by the mobile device. These include accelerometers and gyroscopes that
track movement, biometric sensors that recognize faces as well as scan eye iris and
fingerprints, light sensors that detect the ambient illumination level, microphones
that can detect background noises, and more. Add to these the plethora of behavioral
and interaction data that can potentially be extracted from the installed mobile apps,
such as browsing logs, social media friends, physical activity data, commute and
driving patterns, and so forth. In combination, mobile phones can collect a large
variety of user data and allow constructing detailed user models [16].

Having obtained and processed this information, various adaptive services and
suggestions can be tailored to the users’ preferences and interests. For example,
recommended retailers can be restricted to the user’s current location [17], screen
brightness can be adjusted to the ambient light intensity [18], timing and frequency
of reminders can be tuned according to interactions with similar reminders [19],
and driving route can be modified if traffic to the desired location is slow [20]. In
the next section, we focus on tracking techniques and discuss in detail the relevant
entities and mechanisms that facilitate personalization.

9.3 Online Tracking

Research has shown that desktops and mobile devices and associated web browsers
and mobile apps contain subtle information that allows them to be “fingerprinted or
tracked.” Online tracking has several meanings, but one of the most valid general
definition is “following the trails and movements of someone on the Internet
through means such as mobile phones, desktop, and smart devices, in order to gain
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unique information about them for incentives such as target advertising, profiling,
and data exchange” [21]. Online tracking has various types and extensions: from
detecting user interests when visiting a web page to recording various detailed
aspects about the user, including their location, social relations, health, and political
beliefs. A combination of such information increases the chances of identifying and
appropriately tracking a user online. In Fig. 9.1, we show the ecosystem of online
tracking. Additionally, the increasing use of IoT devices, such as SmartWatches,
Fitbits, and SmartShoes, has made online tracking more aggravated as these
devices collect, process, store, and disseminate sensitive users’ data, such as health
conditions, billing information, physical environment, and behavioral information.
In Chap. 11, privacy issues in IoT devices are discussed in detail.

9.3.1 Tracking Contexts

There are several ways to achieve online tracking. In general, we contextualize them
in four categories:

Web Tracking is one of the primary sources of the profiling that tracks users
across different visits or sites. There are various design, implementation, and
deployment methods that enable web tracking. For instance, for an externally hosted
website, a service provider can embed third-party content or incorporate dynamic
content like JavaScript snippets or libraries supplied by third party to implement the
tracking functionality. In fact, more than 90% of Alexa’s top-500 websites contain
third-party tracking content [22], and that 70% of the cookies recorded were third-
party cookies set by just 25 third-party domains [23]. That means the entities with
whom the user may or may not have chosen to interact on the web may be recording
their online behavior in unexpected ways.

Mobile Tracking identifies users through the devices equipped with sophis-
ticated sensors, such as microphones, GPS, accelerometers, and cameras. These
sensors generate highly sensitive data that can be used as unique fingerprints.1

Like web tracking, mobile devices contain various identifiers that can be used (in
isolation or in combination) to track or profile users. For example, researchers
demonstrated how the use of WiFi SSID (the Service Set IDentifier representing
the WiFi network devices connect to) in its active discovery mode could lead to
revealing the geographical location of users [24] or distinguishing WiFi-enabled
devices [25]. Others have shown how to infer the social relationship between mobile
device owners by tracking their WiFi fingerprints [26]. Others have used motion
sensor signals to identify devices or users [27–29]. The privacy concerns of mobile
tracking are different from web tracking because of the diverse range of data
available through sensors, apps, and mobile browsers. The high interconnectivity

1 In privacy terminology, a fingerprint refers to a trace of information, often an observable
characteristics of a device or a user, that is unique enough for identification or tracking purposes.
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and portability features of mobile devices have made them a perfect target for
tracking.

Cross-Device Tracking is performed by many organizations today and can
provide a more comprehensive view into users’ behavior. There are several reasons
to perform cross-device tracking. It allows consumers to log in to their email or
social media accounts from multiple devices to maintain a “state” so they can
pick up where they left off on a different device. It also facilitates companies to
prevent fraud; for instance, if there is an unrecognized device, a company can
take steps—such as sending an authentication code to an email address or phone
number—to ensure that the new device belongs to the consumer who is trying to
access an existing account. Companies also use cross-device tracking to improve
user experience by personalizing the content on a website or an app and to accurately
retarget a user on multiple devices by displaying relevant ads. Consider an example
where a user searches for a movie ticket on a web browser of his desktop. He later
used his mobile phone browser, which showed an advertisement of the same movie
running in nearby cinemas.

Cross-App Tracking can be considered a particular form of cross-device
tracking, where an app identifies other apps installed on the device and makes a
link to a user [30]. For example, it was shown that user traits and whether or not
the user is a parent of small children could be predicted from the installed mobile
apps [31]. Similarly, a search of a discounted movie ticket on a Groupon app may
result in ads for movies in theater on a Facebook app.

9.3.2 Tracking Entities

The abovementioned web and mobile tracking are used by first-party and third-party
tracking entities, respectively. These entities perform tracking for purposes ranging
from improved user experience to credit scoring or targeted political messages. We
explain these two types of tracking below.

9.3.2.1 First-Party Tracking

First-party tracking is performed by the service providers with which the user
interacts directly. This entity allows site owners to directly collect customer
analytics data, remember language settings, and carry out other useful functions
that help provide a good user experience. There are a variety of ways to perform
first-party tracking, for example, user accounts, first-party cookies or caches. In
first-party cookie tracking, site owners record user information such as username,
passwords, and items added to the cart by attaching a unique string to the user
browser. For example, Google tracks user interests via the search engine. When
a user enters a query in the search bar, Google keeps a record of this entry through
login credentials or information such as IP addresses, caches, or cookies. It then
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shows related links and advertisements in subsequent searches. A similar method
is adopted by social networks such as Facebook, where a user could be tracked via
interests shown through likes, comments, or posts. The user can control this tracking
through security and privacy settings offered by these service providers.

Akin to websites, mobile app developers can also be considered first-party
tracking entities as they have an ability to capture device data (e.g., sensors) and user
information or activities through their apps. To capture device data, developers make
API calls to multiple sensors like microphones, cameras, GPS, accelerometers, and
touch. Similarly, device information such as phone numbers, current location, or
unique phone ID number can also be extracted through APIs. However, in most
cases, users’ consent is required before extracting such information. The consent
can be acquired by displaying app permissions and policies and getting explicit
acknowledgment from a user.

First parties have several potential incentives to perform tracking. For instance,
a first party wants to personalize user experience across sessions, detect frauds, or
conform with law enforcement requiring websites to log user activities for fraud
prevention and anti-laundering. However, there are cases where first-party websites
voluntarily sell user identities. For example, Datalogix buys user information
from companies, compile user dossiers, and then use it to target advertising [32].
Sometimes, a first party can also act as a third party (discussed in Sect. 9.3.2.2); for
instance, logging in to a website using a third-party service such as Facebook or
Google allows the website to request your data from them.

9.3.2.2 Third-Party Tracking

Third-party tracking is performed by the entities that track users across different
services, for example, websites. It can also be an entity that provides resources while
a page is being displayed. Typical resources are the content embedded in the page or
external content accessed by a script running on the page. Third-party tracking offers
several benefits to service providers, such as better audience targeting, boosting
company recognition and reputation, or increasing its ROI. For instance, Google
Analytics is a third-party entity used by more the half of the websites to gain
aggregated statistics such as the business’s performance, user experiences, user
activities, and traffic records. This means that during any given browsing period,
it is likely that at least some of that user’s activity is being tracked by website
owners, which is sent to Google Analytics for further processing. The processed
data is then returned to the website owners to provide insights into their website
traffic (e.g., geographic region and what type of device is being used) and user
activity (e.g., page views and link clicks). Hence, aggregating data from various
sources (e.g., websites, surveys, or publicly available information) can provide rich
information in both breadth and depth. This allows a service provider to grow their
targeted audience’s size by including new prospects (e.g., who purchase similar or
complementary products or services from a direct competitor or partner company).
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Third parties have a range of motivations, which can be grouped into six main
reasons, mentioned below:

• Advertising is one of the most common reasons to track and identify users
online. In order to sell products, gain revenues, or increase product awareness,
businesses and companies build associations with ad networks. However, it is
essential to profile users and target the right ads on a website to be successful.
For example, a user interested in buying a pair of shoes of a specific brand should
be shown ads related to that brand.

• Third-party measurement and analytics services allow first-party websites to
better understand their users by getting statistical information on demographics,
content view distribution, and more. Third-party measurement services provide
such analysis either using a paid or free analytics model. In a paid model, an
analytics company takes precautions to silo data between clients, whereas in a
free analytics model (e.g., Google Analytics), aggregated traffic statistics are sent
to service providers to improve their content or enhance their services.

• User engagement can be increased via social networks, which allow service
providers to offer personalized content and single sign-on services to their
customers. These services either use cookies or require users to log in to their
social network accounts and thus inevitably track and identify users. Examples
include Facebook’s like and comment widget and Google’s like button. These
features are offered for free to increase user engagement and to conduct market
research. Moreover, there are social services that exist almost exclusively in
a third-party context [33]. For instance, Disqus is a worldwide blog comment
hosting service that offers features, such as social integration, social networking,
user profiles, spam and moderation tools, analytics, and email notifications, to
websites.

• Third-parties offer Customized Content such as video, maps, news, weather,
stocks, and other media for embedding into websites. YouTube, for example,
offers third-party widgets to generate revenue through in-widget advertising.
Many others, such as the Associated Press, also charge for their content.

• Content distribution is yet another motivation for a third party to track and
identify users. Content distribution networks, such as Akamai, help service
providers distribute customized content to users based on their interests and
profile.

There are potentially more intricate privacy issues with third-party tracking
than with first-party tracking. For instance, users sometimes provide personal
information such as contact details, email addresses, and billing information to a
first party, which is sent to third parties for processing and detailed analysis. Hence,
working across first-party providers, this third party then also has the ability to
identify users across multiple website domains, thus providing much information
about users, something they may be neither aware of nor comfortable with.



180 R. Masood et al.

9.3.3 Tracking Techniques

In recent years, online tracking techniques have been extensively studied in
academia. In contrast, only a few of them have been deployed online. We classify
these tracking techniques into two categories: (i) deployed tracking techniques and
(ii) potential tracking techniques. The deployed tracking techniques are widely
used for online tracking and have been employed at a large scale in the mobile
and web industries. On the other hand, potential tracking refers to the (advanced)
mechanisms proposed by researchers in academia in an attempt to identify privacy
leakages in mobile and web platforms.

9.3.3.1 Deployed Tracking Techniques

Deployed tracking techniques use IP addresses, cookies, Javascript, cache, and more
for user identification purposes. In general, these tracking techniques operate as
follows:

• Cookies are texts stored by a user’s web browser and transmitted as part of an
HTTP request. Cookies are essential to managing long user sessions, and they
can be used to identify a user’s browser uniquely. Service providers can use
cookies to collect users’ web activity. An example is Analytics Cookies (_utma,
_ga, _utmb) that identify users or sessions and are used by website publishers
to understand how people are using their website. Another particular form of
cookie is a persistent cookie, which stores identifying information, such as user
preferences, for an extended period. Similarly, third-party cookies are set while
fetching website content, such as images, frames, and Javascript. Cookie syncing
is another type of cookie where unique identifiers are correlated to identify a
user in an external database for purposes discussed above. All these types of
cookies are distributed and retrieved across multiple website domains allowing
companies to build detailed profiles of users’ interests, for example, spending
history or frequently visited places such as restaurants. Intimate knowledge of
users’ personal preferences and private activities might eventually be used to
brand them as members of a particular group, which could have serious privacy
implications.

• Javascript codes can be loaded both from first- and third-party domains. They
are widely used by ad networks, content distribution networks (CDNs), tracking
services, analytics platforms, and online social networks [34]. They can track
information about browsers such as cached objects, history of visited links, user-
agent strings, or language preferences. In addition, they can read from and write
to a cookie database or reconstruct user identifiers. Such information enables
servers and third-party domains to track users using HTTP requests regularly.
The dynamic nature of Javascript also allows service providers to construct a
behavioral profile of a user. For example, through Javascript event handlers, it is
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possible to obtain information about a user’s mouse clicks and movements, and
scrolls [35].

• Caching stores the content of webpages and other information in the browser
to minimize latency and redundant network activity. This technique improves
performance, as it becomes possible for a server to associate a unique tracking
identifier with each client requesting content for the first time. A server can then
use Javascript and standardized messages to check if the content is cached or not,
to identify a user. This technique can be implemented for resources like images
or fonts and is difficult to avoid unless the cached content is regularly cleared,
for example, when closing the browser. For instance, Acar et al. [36] showed
that 146 websites from Alexa’s top 10,000 websites track users through fonts.
Google was one of the domains that used fonts to track users to ensure quality
and improve Google products and services [37].

• Supercookies also known as unique identifier headers inject user information
into packets, which are then sent from a user device to a server. Some prominent
supercookie types are Flash Cookie and EverCookies, where the former is
maintained by the Adobe Flash plugin, and the latter is a combination of
various tracking mechanisms. Local Shared Objects (LSOs) are supported by
browser plugins, which can track users using unique identifiers. These objects are
invisible to the browser, and therefore, it is impossible to examine their content.
LSOs are retained in the browser even when the user deletes cookies and browser
storage. For this reason, LSOs are used to store copies of browser cookies or
other unique identifiers. All these types of supercookies contain unique identifiers
allowing trackers to link records in their data to track browsing history and
browsing behavior (e.g., visited websites including the length of stay). In 2014,
Verizon and AT&T were found to be quietly tracking the Internet activity of
more than 100 million cellular customers with “supercookies,” which allowed
the companies to monitor which sites their customers visit, cataloging their
tastes and interests [38]. In other words, network providers (who are supposed to
provide a content-agnostic service) were inspecting the contents of users’ Internet
traffic without their knowledge. Such tracking aimed to facilitate advertisers to
display ads based on individual Internet behavior, however, considered against
the GDPR.

• Stateless tracking allows websites to track users based on information such as
user agent, fonts, screen resolution, and more. Standard techniques for stateless
tracking are as follows: (i) canvas fingerprinting detects minor differences in
display hardware by reading back rendered text from a storage area mapped to
the display, (ii) font/plugin fingerprinting involves detection of fonts or plugins
supported by a browser, (iii) MediaStream Fingerprinting is performed through
Media Capture and Streams API that generates a unique stream identifier, (iv)
WebRTC determines local IP address behind any firewall and can generate a
unique tracking identifier, and (v) user agents/IP address in combination can be
used to identify the user behind a browser. Although some of these techniques
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individually produce medium-entropy identifiers, it has been shown that a
combination of these is unique enough to generate a high-entropy identifier.2

We refer interested readers to [32], for a survey and in-depth study of online
tracking mechanisms.

9.3.3.2 Potential Tracking Techniques

The abovementioned deployed tracking techniques have been extended by
researchers either by using additional identifiers or by using advanced classification
technologies, such as machine learning. The pioneering work in the threat of
tracking dates back to Sweeney, who showed for the first time that coarse-grained
information such as birthday, gender, and ZIP code could uniquely identify a
person [39]. This work was followed by several studies that provided measurement
insights into web and device tracking. The success of such methods is a clear
indication that anonymization techniques to protect the privacy of individuals
may fail if the collected data contains unique combinations of attributes relating to
specific individuals. This section presents the online tracking technologies proposed
by researchers and categorizes them based on the tracking medium: web browser,
mobile phones, or other devices.

Web Browser-Based Tracking Techniques
In the past decade, several studies measured and analyzed web tracking. The authors
of [40] provided an early insight into web tracking, followed by a continual increase
in third-party tracking techniques. Also, [41] quantified the uniqueness of web
browsers based on user agent and/or the browser configuration (plugins, fonts,
cookies, screen resolution) and showed that 90% of browsers could be uniquely
identified by the user agent, cookies, time zone, plugins, and fonts. The algorithm
was able to detect returning browsers, even if some features changed over time.

Following this, [42] quantified the amount of information revealed by host
identifiers, including IP addresses, cookies, and user login IDs. Authors used month-
long datasets of a web-mail service and a search engine for the analyses. Further,
they discussed the implications of cookie-churn on privacy and security, along with
the utilization of host fingerprinting for improving security. An extended approach
presented in [43] showed that cross-browser fingerprinting could achieve high
uniqueness if the operating system collected enough data.

The authors of [44] performed a large-scale analysis of web browsing histories
to track users. They were able to detect 97% of browsers by inspecting only four
web pages in the browser history. Akin to this, [45] explored browser fingerprints

2 Medium-entropy identifiers refer to the attributes/features that give limited information about a
device or a user, that is, low information gain to the trackers. On the other hand, high-entropy
identifiers refer to the attributes/features that contain rich information about users or devices, that
is, high information gain.
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validity by collecting more than 100K fingerprints composed of 17 attributes. Their
results showed that HTML5 and Canvas API offer highly distinguishable features.
A fingerprint technique based on the measurement of on-screen dimensions of font
glyphs is proposed in [46].

A crawler-based measurement study of online tracking at 1M websites was
reported in [47]. The analysis was based on stateful (cookies) and stateless
(fingerprinting) tracking, the effect of browser privacy tools, and data exchange
between different sites (cookie syncing). The authors developed an open-source
privacy measurement tool, which simplifies data collection for privacy studies on
a scale of millions of websites. Similarly, [48] studied the effect of third-party
HTTP requests on the top 1M websites and showed that Google could track across
80% of websites through third-party domains. It has been shown that 80–90% of
browsers can be uniquely identified. Besides HTTP cookies, other entities such as
Flash cookies, WebGL, and HTML5 were also used as a tracking medium [22, 49].

It is important to mention that several side-channel and timing attacks have
been launched on web browsers to leak the browser histories and cache informa-
tion [50, 51]. These attacks can de-anonymize users in social networks, uncover
user data, or reveal data to service providers or ad networks. Two different
studies, [52] and [53], showed that usernames and online social profiles could
uniquely identify user profiles and link users across different social platforms. In
these works, fingerprinting was based on device configuration, device settings, and
device hardware.

We summarize popular web-based tracking techniques as follows.

• Web Tracking Measurement Studies crawled data using Firefox extension
and plugins [22, 40, 54] or open-source tools such as Open WPM [47, 55] and
webXray [48, 56]. These mechanisms crawled attributes mainly including first-
and third-party cookies, JavaScripts, canvas font, audio, JSON, PHP and CGI
scripts, tracker-owned cookies, site-owned cookies, and HTML5 Local storage.

• Web Browser Fingerprinting Techniques used information gain, entropy, and
k-anonymity to fingerprint the browsers [41, 45, 46, 49]. The attributes which
contributed toward fingerprints mainly include user agent, cookies, timezone,
screen resolution, MIME types, system fonts, WebGL, and HTTP headers.

• Cross Browser Web Fingerprinting used anonymity sets, entropy, and correla-
tion as fingerprinting metrics [43]. The features used are user agent, OS, screen
resolution, basic fonts, and timestamp.

• Web-Based Device Fingerprinting used host tracking graphs, entropy, and
battery-reading techniques for fingerprinting [42, 44]. These techniques used
attributes such as user agent, IP address, browser cookies, battery level, readouts,
and charge/discharge time.

• Online User Profiling used information surprisal, entropy, and Markov chain as
fingerprinting mechanisms [52, 53]. The information used for profiling includes
gender, age, usernames, city and status.
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Mobile-Based Tracking Techniques
Mobile device fingerprinting is a recent technique used by companies to profile
device data or user interests. In general, the techniques mentioned above for browser
fingerprinting can also be used for mobile tracking. However, studies revealed that
mobile browsers do not have such distinguishable features as plugins and fonts;
thus, requiring fingerprinting methods that are specifically designed for mobile
devices or browsers [41]. Thus, several studies proposed alternative methods to
fingerprint mobile devices. These techniques utilize different physical characteris-
tics of a mobile device, for example, camera, sensors, microphones, and speakers.
For instance, a study in [28] used the vibration motor to develop accelerometer
fingerprints and then applied machine learning to extract the frequency and time-
domain features. These features were able to distinguish mobile devices with 99%
of accuracy.

Authors in [57] proposed a fingerprint mechanism to uniquely identify smart-
phones based on motion sensors (accelerometer and gyroscope) and inaudible audio
stimulation, along with a mechanism to obfuscate the fingerprints by calibrat-
ing sensors. Noise-based sensor fingerprinting for mobile devices has also been
discussed in [58–60], which focused on acoustic components such as speakers,
microphones, or cameras. These techniques require access to the microphone, which
needs separate permission. Authors in [61] utilized the noisy nature of hardware
sensors such as accelerometer and microphones. Similarly, images taken by a mobile
phone camera can derive a noise pattern that is considered to be different in each
device sensor [62, 63].

A study conducted in [64] focused on mobile users’ identification and tracking
based on touch-based gestures. Their fingerprinting mechanism extracted statistical
features from swipe, keystrokes, taps, and handwriting gestures and showed a true
positive rate of 93% to detect returning users. Some studies have also focused
on privacy-preserving online behavioral targeting for various purposes, including
advertising, spamming, and political interests [65, 66]. Another work [67] analyzed
59 mobile device fingerprints and concluded that “the fingerprints taken from mobile
devices are far from unique and targeting.” However, they did not consider the
canvas test for fingerprinting. Authors in [68] presented a new side-channel attack
against smartphone keyboards that support gesture typing. They identified returning
users with 97% accuracy using a set of 35 sentences, and the system also correctly
predicted sentences.

A number of studies have focused on identifying mobile user traits and charac-
teristics using the information provided by mobile SDKs to third-party apps, such
as the running apps, device model, and operating system [31]. A study in [69]
showed that mobile devices can be tracked through personalized configurations
(e.g., installed apps, top 50 songs, device, WiFi name) without involving hardware
identifiers such as Unique Device Identifier (UDID), International Mobile Station
Equipment Identity (IMEI), and others. A work in [70] showed the existence of
a diverse set of mobile users using clustering and feature ranking. Their results
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identified 382 categories of users based on their app usage patterns. We summarize
popular mobile tracking techniques below:

• Mobile Tracking based on Motion Sensors used techniques such as bagged
decision trees, machine learning classifiers, Gaussian mixture models, and k-
nn classifier with common features such as spectral centroid, spectral skewness,
spectral flatness, and average deviation [28, 57, 59, 71–73].

• Mobile Tracking based on Audio Sensors used Euclidean distance and L2
distance with main features such as sensitivity parameters, vector aptitude,
feedback ratio of different frequencies and harmonics [60, 61].

• Mobile Tracking based on Camera Sensors used SVM, Photo-Response
Non-Uniformity (PRNU), and Pearson correlation mechanisms [62, 63]. The
techniques used 81 features (i.e., 3 RGB channel * 3 wavelet components * 9
central moments).

• Mobile Tracking based on Touch Sensors used cosine similarity, entropy,
information gain, and recurrent neural network mechanism [64, 68]. Authors
used 50 extracted touch features such as x-coordinate, y-coordinate, finger
pressure, and finger area.

• Mobile Tracking based on Mobile Browsers used Open AM algorithm with
features such as screen dimensions, color depth, installed plugins, user agents,
and timezones [67].

• Mobile Tracking based on Personalized Configurations used Jaccard similar-
ity coefficient, k-means clustering, entropy, and SVM as main mechanisms [31,
69, 70]. Features mainly include device model, device ID, username, installed
apps, etc.

Device Tracking Based on Network Properties: Some of the fingerprinting
techniques have also used properties, such as network configuration or traffic
records, for a device or host tracking. One of the prominent works on remote
device fingerprinting was presented in [74] that proposed a method to measure
device clock skew using ICMP and TCP traffic. Some works also deal with
wireless traffic; for example, radiometric analysis of 802.11 transmitters [75], signal
phase identification of Bluetooth transmitters [76], or timing analysis of 802.11
probe request frames [25]. For example, [75] utilized manufacturing defects in
hardware to identify the device and, by association, the end-user. Many efforts
on tracking wireless devices focused on other hardware characteristics, such as
radio frequency and drivers [77, 78]. While these techniques can also be used to
identify smartphones, these calculations are also resource intensive and require user
cooperation. In addition, identifiers such as network names and IP addresses also
help in host fingerprinting [75].
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9.3.4 Behavioral Tracking: State of the Art

Behavioral-based tracking refers to constructing user profiles and uniquely identify-
ing the users through their gestures to perform certain activities [79]. Such gestures
are collected via many modalities such as touch, motion, GPS, camera, mouse,
search queries, writing pattern, and more. Examples of such information include
the location of a user at a particular time, user-touchscreen interaction, duration
of the calls, and dialed numbers. Such profiling could be used by data custodians,
receivers, or consumers, in order to provide personalized services to their customers
with the goal of increasing revenues. For instance, advertising companies use user
behavior profiles, user interests, characteristics, or activities to display relevant
advertisements to the user [80].

The ability to distinguish behavioral biometrics is a new form of tracking.
Behavior-based tracking has the ability to continuously and surreptitiously track
users while they are interacting with their devices. As opposed to “regular” tracking
mechanisms based on cookies, browser fingerprints, logins, and similar, which track
virtual identities or browser profiles, this type of tracking is subtle. First, while
regular tracking deals with virtual identities and online profiles, behavior-based
tracking has the potential to track and identify the actual (physical) person operating
the device. It can track multiple users accessing the same device by profiling user
behavioral activities such as touch gestures [81]. Second, behavior-based tracking
has the ability to track users continuously. Third, it also leads to cross-device
tracking, where the same user can be tracked on multiple devices, and user data
can be collated and used to build more encompassing user profiles. However,
implementing such tracking requires a more generalized approach, requiring, for
example, to validate the stability of features across devices [64]. On the other hand,
the ubiquity of smart devices and the fact that any web service can extract data from
touch and motion sensors make behavioral-based tracking quite achievable. This not
only represents a valuable source of information for analytics and ad services but
also for app developers who can use the information to track individuals on a single
device or across devices. Table 9.1 summarizes the distinction between behavioral
tracking and other tracking methods.

Nevertheless, behavioral-based tracking is equally beneficial to users and ser-
vice providers. Some argue the benefits of behavior-based tracking as a way of
receiving useful information, for example, relevant ads or health monitoring. For
instance, monitoring a phone’s motion might reveal changes in gait, which could be
indicators of ailments or depression [82]. Another benefit of behavioral tracking
is continuous or implicit authentication of users on mobile and web platforms.
Implicit authentication is a mechanism to continuously authenticate users while
they perform activities on mobile or web platforms. This type of authentication
continuously monitors users through behavioral biometrics such as touch swipes,
taps, keystrokes, or stylometric features, to verify a user’s legitimacy with high
accuracy. The usability and deployability of implicit authentication schemes without
compromising security have made them an attractive alternative to legacy password
systems [82].
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Table 9.1 Behavioral-based tracking versus other tracking methods

Behavioral-based tracking Other tracking methods

Aims to identify or track user or his activities Aims to identify devices or browsers

Constructs user profiles based on their
gestures to perform certain activities

Constructs profiles based on device or browser
configuration, specifications, or settings

Has a potential to track the physical identity of
users

Has a potential to identify virtual identities of
users

Continuously track users through their
behavioral actions

Track device or browser only when a certain
action is performed, for example, when a
website is visited

Is ideal for cross-device or cross-system
tracking

Is less suitable for cross-device or
cross-system tracking

9.4 Personalization via Online Tracking

As mentioned earlier, Internet users are increasingly being tracked, and their
personal data are extensively used in exchange for services. In the current era,
when people use real identities to communicate on the Web, maintaining privacy
has become a complicated challenge. Service providers are using a variety of
personal information to personalize their content and services. The privacy chal-
lenge becomes more critical with the dissemination of smart phones and devices
offering new possibilities for personalization. On the other hand, personalization
algorithms and technologies are steadily improving, making behavioral profiling
more powerful, yet raising a multitude of privacy challenges.

To understand the personalization system, Fig. 9.2 shows an exemplary working
diagram of an advertisement network system. There are three main entities in an
advertisement network system: the publisher, the advertiser, and the ad network.
The publisher is an entity that owns a website or service; the advertiser is an entity
that wants to advertise to users; and the ad network collects advertisements from an
advertiser, displays them on a publisher’s website, and connects advertisers to users
with relevant demographics. If a user clicks on an advertisement, the ad network
collects money from an advertiser and pays part of it to the publisher. It is thus
important for the ad network to generate accurate and complete profiles of users, in
order to increase the click chances and maximize the revenues. These three entities
also exist in a mobile environment, where a mobile app developer acts as a publisher,
while the roles of an advertiser and ad networks remain unchanged.

It should also be noted that, while the above example is tailored to the
advertisement context, it is similarly applicable to other applications. Consider other
scenarios, such as multimedia content consumption on YouTube or Spotify, a news
dissemination platform, or even a student eLearning environment. In all of them, the
three entities—content provider, content consumer, and the intermediate network—
can be easily identified and the need for accurate user profiles for an enjoyable and
engaging service is evident.
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Fig. 9.2 Ecosystem of advertisement network

9.4.1 Relationship

Personalization is hard to achieve without losing privacy since a service provider
needs users’ personal information to tailor or customize services. Research has
shown that users are willing to share their personal interests or information in
exchange for the apparent benefits of using personalized products or services [83,
84]. To build trust, some service providers promise to ensure the anonymity of
their customers for the usage of their services, and in some cases, the anonymity
is guaranteed for a lifetime. On the contrary, research shows that it is difficult to
guarantee anonymity as linking anonymized data to other databases with personally
identifiable information leads to the (re)identification of a user [85]. Therefore,
privacy risks are not just limited to a particular service provider, rather these risks
are pervasive concerns where personal information provided by users to different
services could be linked together to track/identify them ubiquitously. Authors
of [14] discussed the risks associated with recommender systems. The authors argue
that privacy breaches are either due to direct data access or due to data sharing
with third parties. In both cases, the effects of privacy breaches can be significant,
such as exposure of sensitive information, reidentification of anonymized data, leaks
through the shared device, or service inference by the recommender.

In [86], authors link privacy to three different personalization categories: social,
behavior, and mobile.

• In a social-based personalization, providing privacy is a major concern because
of three main reasons: (i) users are willing to reveal more information, (ii)
social networks compromise not only a single user’s privacy but also their
friends’ privacy, and (iii) social networks can reveal potentially embarrassing
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information. There have been several cases where an employee’s misuse of
social media has led to their dismissal. For example, various incidents resulted
in employee termination from firms based on their post or comments on social
media [87, 88]. According to one survey, 17% of companies with 1000 or more
employees report issues with employees’ use of social media, whereas 8% of
those companies fired employees because of information released on social
networks [89].

• Behavior-based personalization, where information about observable user
activity is longitudinally collected and harnessed for personalization purposes,
poses several privacy risks. These include unsolicited marketing, personal infor-
mation being shared with third-party providers without users’ consent or knowl-
edge, and in some cases, being inadvertently revealed to other users of the same
device. For instance, users who share a computer and or a Web browser may
view each other’s ads if cookies are used by websites to identify users. Another
risk involves linking behavioral profiles to server-side user accounts so that
advertisers can target users across different devices.

• Mobile-based personalization has increased with the spread of smartphones and
phone sensors. With this, the ability of service providers to continuously track
users has also grown. Sensor data has been used in various ways for personal-
ization. One way is the improvement of search results, such that search results
displayed on a smartphone are tuned according to the user’s location, highlighting
nearby venues and services. Similarly, the installation of various apps on mobile
phones conveys user interests, helping app developers to show targeted ads.
Authors in [90] performed a measurement study of in-app advertisement and
showed that GoogleAdMob has a higher proportion of targeted than generic ads.
Privacy leakages in mobile-based personalization are more significant, mainly
because mobile devices are carried around all the time and are increasingly
being used for sensitive operations like personal communications, dating, and
banking. Therefore, privacy concerns regarding what information is collected for
ad personalization are rather serious.

9.4.2 Privacy Implications of Personalization

Although personalization via online tracking has been performed for a number of
reasons that bring tremendous value, it also raises serious privacy concerns having
subtle and far-reaching consequences. Researchers, civil organizations, and policy-
makers have identified several ways tracking can cause privacy leaks.

Global surveillance, performed by the government for security reasons or by
companies for commercial benefits, is one such privacy risk. Between January
and June 2014, the US government made 12,539 requests for 21,576 persons’
information from Google, including search history, and Google complied with
84% of them [91]. According to the internal National Security Agency (NSA)
presentations [92], the American NSA and British GCHQ use cookies (one of them
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being Google PREFIDs) to investigate the online activity of users. The government
agents are first granted access to Internet links, and then they use cookies to
differentiate flows generated by different users within the same Internet connection.
These cookies help them track user locations and denounce users who have
unauthorized access to the network. The presentation also revealed that some NSA
divisions engage with private companies and Internet service providers to collect
data, which are later used for hacking into people. Another presentation revealed
that the NSA uses DoubleClick cookies to identify TOR users [92]. A program
named HAPPYFOOT by the NSA was designed to map users’ Internet addresses to
their physical locations. By capturing the Internet traffic, the NSA gathers almost
five billion records a day on the locations of cellphones around the world. That also
allows the NSA to track how particular people travel and gain knowledge about
their mutual relations by revealing co-travelers [93]. Such surveillance is a threat to
privacy, but there may be chances that collected information is distorted and leads
to incorrect decisions. The potential dangers could be an error, abuse, and lack of
transparency and accountability [32].

Unwanted profiling, performed by service providers to personalize content for
users, is another risk. A news site may display news matching users’ previous items,
a merchant may propose products based on users’ previous shopping, or a search
engine may refine results based on users’ previous queries. Often, such profiling
may seriously impact users. For example, it was shown that a person discovered his
teenage daughter was pregnant when she received advertisements for baby food. The
teenager was profiled as pregnant based on her shopping behavior [94]. Similarly,
Gmail was shown to use words from the sent and received emails to target ads. The
emails were scanned without a user’s explicit permission and used to identify the
themes and trends for ad targeting [32]. The Facebook Beacon advertising program
faced a federal class-action lawsuit because users were automatically opted into
having purchases disclosed to friends and networks [95].

Reidentification of anonymized public data is required in several business
applications and research studies to improve the provided services by utilizing the
available information and rich user data. However, studies have shown that users
could be identified even from anonymized datasets through inference analysis by
an eavesdropper. A few examples involving such threats are the reidentification
of users in the anonymized AOL search histories, Netflix training data that was
attacked, and Massachusetts hospital discharge data [96–98]. For instance, in an
open competition for the best collaborative filtering algorithm in 2009, Netflix
disclosed data records of 480,000 customers “anonymously” in an attempt to create
a smarter recommendation algorithm. The data contained subscribers’ information,
including gender, zip code, age, unique subscriber ID, the movie title, year of
release, and the date on which the subscriber rated it. Despite being anonymous,
researchers were able to reidentify sensitive information about people, as in the case
of a closeted lesbian mother who sued Netflix for disclosing her sexuality to the
public through rented movies such as Brokeback Mountain or Passion of the Christ.
Similarly, when AOL released anonymized search queries of its customers, a 62-
year-old widow was identified living in LilBurn GA, Georgia, United States. The
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lady frequently searched for her friend’s medical ailment and loved her three dogs.
These examples show that it is possible to violate the users’ privacy by tracking
their activities, thereby inferring their personal profiles. Thus, users’ privacy is at
risk when their data can be distinguished from other users and linked with high
confidence based on the user’s previous history.

Personalized search, which offers the benefit of presenting information that
the user wants to see based on their queries, is another reason to track. However,
it has been shown in [85] that even anonymized search queries could lead to
the identification of users and their interests. The ability for a search company
to efficiently track and record users’ search habits and tie them directly to their
identity has profound privacy implications. For instance, search engines may know
the current situation of a user (e.g., illness, depression, studying, startup business,
or looking for jobs) through their searches and show them results related to
their situation (e.g., recruitment websites, training workshops, discounted medicine
prices).

Lastly, tracking was found to be the reason for price discrimination based on
geographical location, affluence of the user, and the referrer. Examples include
credit card interest rates, hotel bookings, and insurance coverage. In [32], authors
provided a detailed overview of how such implications occur. For instance, Capital
One Financial Corporation differentiates car loans’ interests based on the browser
used by the prospective customer (3.5% for Firefox, 2.7% for Safari, 2.3% for
Chrome, and 3.1% for Opera). Similarly, Orbitz Worldwide Inc. differently sorts out
the hotel advertisements depending on the type of computer used by the customer.
Orbitz found that Mac users tend to spend around 30% more on hotel bookings than
PC users. Using this fact, more expensive hotels are advertised to Mac users, while
the cheaper ones to the PC users.

9.4.3 Balancing Privacy and Personalization

It is reasonable to expect that users would be more inclined to share their data with
service providers and use personalized services if the user information is collected
and treated fairly. However, striking a balance between privacy and personalization
is quite a challenge. Researchers, businesses, and nonprofit organizations have made
a continuous effort to provide efficient solutions to overcome user privacy/tracking
issues. Some of these efforts have resulted in privacy design principles, privacy
tools, and features. In this section, we discuss the technological measures that could
be taken to minimize tracking via personalization.

9.4.3.1 Privacy-by-Design

Privacy-by-Design is deemed an essential step toward better privacy protection. It
is based on the idea that privacy requirements should be taken into account while
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designing a system. As with any process, privacy by design should have well-defined
objectives, methodologies, and evaluation metrics.

Consent-Based Mechanisms Consent-based mechanisms are one way to obtain
privacy-by-design. These mechanisms inform and obtain users’ consent before
collecting and processing the data. According to General Data Protection Regulation
(GDPR), a consent is “any freely given, specific, informed and unambiguous
indication of the data subject’s wishes by which he or she, by a statement or by
a clear affirmative action, signifies agreement to the processing of personal data
relating to him or her” [21]. Therefore, it is necessary for a user to know which
data is collected and for what purpose. The most widespread mechanism for user
consent on the web is probably the cookie header banner, which is displayed on all
web pages and invites user to make a choice of accepting or refusing cookies.

Another widespread mechanism is to take consent through browser settings
which offer four options, that is, accept all cookies of a websites, accept cookies
set or accessed by first party, accept cookies set by first party only, or accept no
cookies. A “tag manager” is also a technical implementation of the cookie consent
that could block third-party scripts if consent has not been obtained. One key issue
with consent-based mechanisms is that the entity that informs users is often not
the only entity to track users. For instance, third-party trackers also collect and
share information about users, which the first party may be not be aware of. In
this situation, some methods that are less often employed are first- and third-party
consent tools, which are used to make an agreement between parties, explicitly
stating what user data will be obtained and for what purpose.

Obfuscation Methods Several obfuscation methods have been proposed as the
means to maintain user privacy in recommender systems. These mainly include
distribution, aggregation, anonymization, identity management systems, privacy
proxies, encryption mechanisms, and differential privacy. One strategy is to dis-
tribute user data across a set of machines; however, this solution aggravates
personalization based on data of other users [99]. Another strategy is to use the
encrypted aggregation of user data [100, 101]. Privacy-preserving approaches like
differential privacy and k-anonymity are the widely used privacy-preserving solu-
tions. Differential privacy mathematically guarantees that anyone seeing the result
of a differentially private analysis will essentially make the same inference about any
individual’s private information, whether or not that individual’s private information
is included in the input to the analysis [102]. It provides a mathematically provable
guarantee of privacy protection against a wide range of privacy attacks mainly
including differencing attacks, linkage attacks, and reconstruction attacks [103].
Similar to DP, k-anonymity also guarantees privacy by holding a property that a
released dataset is k-anonymous if the information for each person contained in the
dataset cannot be distinguished from at least k − 1 individuals whose information
also appear in the dataset [104].

A study in [105] investigated the effectiveness of different obfuscation strategies
and policies for online social networks and proposed a novel obfuscation strategy
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that does not require knowledge about the adversary classifier. Authors of [106]
and [107] proposed methodologies that prevent inference attacks by distorting data
before making it publicly available. In [108], authors proposed a utility-aware
obfuscation framework that limits the risk of disclosing sensitive information from
sensors data. Similarly, work proposed in [109, 110], and [111] tried to protect user
location data by generating fake privacy-preserved location traces. In another recent
paper [112], author proposed an obfuscation scheme [27] to defeat fingerprinting
based on motion sensors.

Pseudonymous personalization is a basic yet common approach to hide true
user identity. It allows people to use the same pseudonym across different sessions
and to create or maintain more than one pseudonym. This helps users separate
different aspects of their online activity and control which service provider can
access their persona [113, 114]. However, anonymity is difficult to maintain when
payments or nonelectronic services are involved. It has also been shown that hiding
explicit identities like usernames and emails are not sufficient to prevent tracking.
There are cases where users have been identified through their anonymized data,
hence revealing personal/sensitive information about them [85].

Client-side personalization is another way to prevent online tracking. This
type of privacy preservation implies data storage and subsequent personalization
processes to take place on the client-side [115]. Since data collection and processing
occur at the client side rather than the server-side, users may perceive more control
over their data and lower privacy risks. However, the challenge with this approach
is that existing personalization algorithms need to be redesigned to fit the client-side
model [12].

User controls and feedback is another way to preserve privacy in personalized
systems. Studies conducted in [116, 117] suggested adding scrutability to user
modeling and personalized systems. The term “scrutability” signifies the users’
ability to understand and control what goes into their user models, what parts
from their models are available to various services, and how the model is managed
and maintained. This allows users to restrict service providers from accessing their
sensitive data. However, achieving such a level of balance is currently challenging
due to poor user understanding of these notions.

9.4.3.2 Privacy Tools

A number of browser tools and plugins have been developed to protect users from
tracking. These tools perform various functionalities such as detecting or blocking
lists of third-party trackers, informing users how much information is revealed to
trackers, allowing only executable content from trusted domains to run, detecting
flash cookies and deleting them, and more. ENISA provided a detailed analysis
of online privacy tools in [118]. The study analyzed several web portals that are
listing and/or recommending the use of specific online privacy tools (e.g., for secure
messaging, anti-tracking, and encryption). There is also a Tracking Protection List
(TPL) approach that contains addresses of misbehaving tracking sites published by



194 R. Masood et al.

various organizations. Other ways to protect information include tools like private
browsing modes of major browsers and anonymity networks.

Do Not Track (DNT) Major browsers implement the DNT (Do Not Track)
methodology to show websites that they are forbidden from tracking. DNT is a
technology and policy proposal that enables users to opt out of tracking by all third-
party websites they do not visit, including analytics services, advertising networks,
and social platforms [119]. Technically, the implementation of DNT is simple; a
browser sends a DNT header in every HTTP request to websites the users wish to
opt out of tracking. This includes web pages and all the objects/scripts embedded
within a page. However, it is up to the discretion of an advertiser to respect user
preferences.

Similar to DNT, some other tools have also been proposed to anonymize web
search queries. For example, TrackMeNot (TMN) [120] is proposed as a Firefox
plugin to randomly issue dummy queries from predefined Rich Site Summary
(RSS) feeds. GooPIR is a standalone application for noise addition to Google
queries [121], which modifies the user queries by adding dummy keywords, and
then the search results are re-ranked locally based on the original user queries. PRi-
vAcy model for the Web (PRAW) [122] is another technique, which continuously
generates fake queries in different topics of interest of the user. This is done by
generating user profiles from user queries and corresponding responses and thus the
fake queries added will be in the general area of interest of the user to make the
distinction between real and fake queries difficult.

Decentralized Ad Platforms A few behavioral advertising systems, like Adnostic,
PrivAd, and RePriv, consider privacy as a design requirement. The main objective
of these systems is to limit tracking, while still serving behavioral advertisements.
For instance, PrivAd preserves privacy by maintaining user profiles on the user’s
device, thus minimizing the information released to the ad network. A trusted third
party anonymizes the network addresses of clients whereas encryption prevents
the proxy from viewing client messages. As such, PrivAd offers privacy against
profiling, ad dissemination, auctions, click fraud, view and click reporting, and click
anonymization [65]. Similarly, in Adnostic, the browser continuously updates user
profiles [66], allowing the ad network to offer several ads to the browser, where
the browser picks the ad most relevant to the profile. In addition, the principle of
privacy-by- design has also been introduced by some web browsers such as Brave,
which is a free and open-source web browser that aims to block ads and website
trackers [123]. Brave also introduced the first advertising platform that puts the user
in control with privacy by design and does not leak the user’s personal data from
their device. The ad matching happens directly on the user’s device, such that the
user’s data is never sent to anyone.

User Agents User agents prevent tracking by providing users with relevant choices.
Most user agents include functionalities that allow users to examine cookies
associated with a domain or a web page, showing expiration date duration, their
contents, and the associated host domain [21]. Such information can be presented
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as user agent settings through a user interface to get valid consent from the user. This
has already been implemented by a browser extension that uses the DNT Consent
API to take consent from user before sending or receiving any data from the browser.
Similarly, the Content-Security-Policy API (CSP) is another tracking prevention
tool that prevents cross-site scripting, click-jacking, and other code injection attacks.
CSP provides a standard method for first-party services to declare specific types
of content that user agents should be allowed to load on that website—covered
types are JavaScript, CSS, HTML frames, web workers, fonts, images, embeddable
objects, etc. If any of these content types are provided in the source list within the
CSP header, then user agent will load only that content type in a browser and block
rest of the types. In this way, user agents can be told to block iframes from being
loaded when they have not been explicitly allowed by the site designers or which
refuse to respect the provided CSP. In general, user agents can prevent tracking at
various granularity levels. This includes (1) items the user wants to block or take
consent, like list of websites, tracking companies, (2) locations of blockage, (3)
types of data, or (4) purpose of data.

Opt-Out Cookies Some tracking companies allow users to set opt-out cookies. If
implemented properly, this option disables user tracking. However, opt-out cookies
are not considered reliable, as they are not supported by all ad networks and are easy
to interpret by those wishing to track users. Moreover, they have a limited lifetime,
so they must be periodically renewed. These cookies are lost when the user cleans
the cookies from their web browser.

Chapter 8 covers more details about privacy enhancing technologies, in a general
sense. We recommend interested readers to go through the chapter for more
information on privacy preserving solutions.

9.5 Conclusion

The ever-changing technological landscape, high user involvement, increased soci-
etal visibility, and amalgamation of services have made privacy difficult to maintain
in a digital world. Preserving user identity from being tracked is a significant
challenge nowadays and has become more complex with the advancement in
technologies that have an ability to cross-link data sources to infer more information.
Some examples aggravating the privacy concerns include location-based tracking,
mobile sensors to identify location, behavioral features, interactions and gestures,
and so on.

Moreover, the state-of-the-art data analysis methods and the exponentially grow-
ing computational resources available for data mining tasks are another potential
obstacle for balancing privacy and personalization. For example, cloud-based data
centers have the ability to process and compare user profiles among massive sets
of records, to identify relevant information and make sense of it. As the user
models and predictions become more accurate, and as the services increase their
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reliance on these predictions, user privacy concerns may further increase. The
propagation of online social network in our daily life also poses new challenges,
as personalization processes are targeting not only online user activities but also the
physical environment.

The proposed solutions to preserve privacy and prevent tracking have practical
limitations that often preclude their developers from striking the balance between
privacy and utility goals. Nevertheless, we would like to emphasize the need for
technically encompassing, while also user-friendly, policy-compliant, and transpar-
ent, solutions. We believe that tracking-related privacy concerns will take a more
prominent role and will attract research works and practical industry attention alike.
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