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Personalized systems and recommender systems exploit implicitly and explicitly provided user information
to address the needs and requirements of those using their services. User preference information, often in
the form of interaction logs and ratings data, is used to identify similar users, whose opinions are lever-
aged to inform recommendations or to filter information. In this work we explore a different dimension of
information trends in user bias and reasoning learned from ratings provided by users to a recommender
system. Our work examines the characteristics of a dataset of 100,000 user ratings on a corpus of recipes,
which illustrates stable user bias towards certain features of the recipes (cuisine type, key ingredient, and
complexity). We exploit this knowledge to design and evaluate a personalized rating acquisition tool based
on active learning, which leverages user biases in order to obtain ratings bearing high-value information
and to reduce prediction errors with new users.
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1. INTRODUCTION

The success of a Web or mobile application is often dependent on early user satis-
faction, service expectation meeting, and general usability. Adaptive services, such as
recommender and personalized systems, have the added pressure of intelligent ser-
vice performance, which is particularly challenging when user information is scarce or
nonexistent. Practicality demands that functionality and performance must impress
users early, to secure loyalty and retain customers, but often this may be difficult due
to sparse user data [Rashid et al. 2002]. Thus, much work has been done on the “cold
start problem”, with some systems relying on domain dependent algorithms that con-
vert item ratings into domain preferences [Berkovsky et al. 2009]. Adaptive learning
systems [Rubens et al. 2011] are a typical example of this type of system. These learn-
ers aim to exploit trends in a dataset to maximise both the volume of information
gathered from a user by considering the user’s ability to provide ratings for requested
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items, and the value of the information provided by examining the rating patterns of
the community to identify controversial items or those with high rating diversity.

Our work combines these concepts and takes them beyond the state-of-the-art works
in the area. While focussing on a content based approach to recommendations, we ar-
gue that even scarce rating information provides insight into a user’s biases toward
certain characteristics of the items being rated. We propose that there is additional
value hidden in user ratings, which reaches beyond a user’s preference for an item
and the features of the item, and tells us about bias toward some characteristics of the
items, that is the human decision making process. Our work, applied to the domain
of food and recipes, shows that we can ascertain how important certain domain fea-
tures, for instance, ingredients, cuisine, or a cooking complexity, are to a user rating
recipes. For example, we show that ratings of some users are reflective of their reason-
ing behaviour when the cuisine type of the rated recipes is examined, but for others
the ratings may be reflective of reasoning when the ingredients, cuisine type, or com-
plexity are examined. Knowing what is important to the user and whether they are
deliberate in their rating provision, offers many opportunities for adaptive systems to
enhance their services. We illustrate a practical use of this knowledge in the design
of an active learning algorithm that analyses the input of users, determines how they
are reasoning, and responds by suggesting to rate items, which contribute high-value
information to the system.

The contributions of this work are twofold. First, we provide an in-depth analysis of
the bias or reasoning trends identified in our dataset of recipe ratings gathered from
the users of Amazon’s Mechanical Turk. We examine the stability, predictability, and
accuracy of these trends applied for prediction generation. We detail the groups of rea-
soners that our data points to, groups of users, who provide ratings on a small number
of domain characteristics, and those, whose biases are rooted in complex combinations
of features. Second, we detail the design and evaluation of a personalized active learn-
ing tool. This tool is used for new users of a system, to influence the items that they are
asked to rate according to their observed biases and the repository of items in ques-
tion. The tool aims to gather a rich data from a small number of ratings, to generate
accurate predictions for the user.

The article is structured as follows. Section 2 positions this work in relation to other
works in the field of human decisions, meal recommendation strategies, and active
learners in the recommender space. Section 3 provides an overview of the analysis un-
dertaken and the subsequent discovery of trends in user reasoning. Section 4 details
a personalized active learning tool, which seeks to exploit this information in the rat-
ing acquisition process. We conclude with a thorough discussion of our findings and
implications for other domains and contexts.

2. RELATED WORK

The area of content based recommender systems is well studied and documented [Lops
et al. 2011]. The primary goal of the approaches is to identify items or content that
users are likely to be interested in, based on the characteristics of items that they have
been interested in previously. This process involves matching the attributes stored in
a user profile to the attributes of the candidate items for recommendation. In some
cases, this involves mining the content of previously viewed web pages, translating
rating information to classifications or features of the rated items, or asking users ex-
plicitly for interest areas or indicators. The creation of a user profile in a content based
recommender is the job of the profile learner. Typically, a supervised machine learning
algorithm is employed to judge positive and negative feedback from users in order to
ascertain their preferences in relation to a new or previously unrated item [Pazzani
and Billsus 2007]. A drawback of using content based algorithms is that in domains,
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where there is ample information on which to build the user and item attribute pro-
files, additional domain and expert knowledge is often required by the profile learner.
The work presented here is unusual in that our profile learner relies only on the avail-
able features of the items rather than on additional domain knowledge.

It is well accepted that in most adaptive systems the opportunities to gather input
from users are scarce and that users are typically reluctant to provide high volumes
of input. It is, thus, a priority to design interfaces that seek out feedback of high qual-
ity or value when appropriate, and develop algorithms that accurately process this
feedback. Much research has been done into the impact of context on user feedback
[Adomavicius and Tuzhilin 2011; Adomavicius et al. 2011; Baltrunas et al. 2012]. It
has been shown that user feedback is strongly affected by contextual parameters. Some
of them, for instance, time and weather, are extrinsic to the user; some are intrinsic,
for instance, mood; while others can be categorised as social parameters, for instance,
presence of other users. An important factor that was discovered to affect user feed-
back is the exact way the questions are asked. To name a few, these factors include the
ordering/grouping of items [Amatriain et al. 2009], rating scale [Kuflik et al. 2012],
and the availability of explanations [Tintarev and Masthoff 2011]. Thus, factoring out
the impact of those factors and interpreting the captured feedback in order to create
an accurate and up-to-date user profile is a challenging task.

More insights into interpreting user feedback and understanding their preferences
when interacting with computer systems come from the decision making research [de
Gemmis et al. 2012; Jameson 2011, 2012]. Specifically, Jameson identifies seven influ-
ential aspects pertaining to preferential choice and decision making [Jameson 2012]:
(1) goal/value, the goal driving the decision making process or the outcome that can
be obtained by making the choice; (2) situation, presentation of the scenario/setting
and the available options; (3) consequences, future implications of the possible op-
tions; (4) temporal dimension, short vs. long term benefit and impact of the decisions;
(5) reuse, tendency to select options similar to the previously selected ones; (6) social,
examples, norms, and expectations set by others, and (7) learning, new experience that
can be obtained through the available options. Although not all of these factors are ap-
plicable to the feedback provision scenario, some of them can underpin user reasoning
processes when rating items. In our discussion we will address these factors.

An alternative approach to capturing informative user feedback comes from the area
of Active Learning, where the profile learners that model the users in recommender
systems adapt to the domain and community by identifying high-value items which
should be rated by users so that informative user models can be constructed [Chen
and Pu 2004; Elahi et al. 2011; Golbandi et al. 2010; Rashid et al. 2008; Rubens et al.
2011]. These learners rank items using various parameters, such the likelihood of a
user providing a rating is maximised (thus, maximising the number of ratings in a
profile). Other approaches, in particular those exploiting neighbourhood formation in
their recommendation process, often focus on items of high entropy (diverse ratings
from users, but lower chances of users being able to rate the items) in order to max-
imise the differentiators in a user’s profile.

In the area of food recommendations, wide and varied approaches to making rec-
ommendations have been undertaken. Early efforts resulted in systems, such as Chef
[Hammond 1986] and Julia [Hinrichs 1989], which rely heavily on domain knowledge
for recommendations. More recently, works concentrating on social navigation, ingre-
dient representation and recipe modeling have come to the fore. A recipe recommender
system based on user browsing patterns is presented by Svensson et al. [2001]. They
use social navigation techniques and apply collaborative filtering to predict ratings.
While users reported liking the system, formal analysis of its predictive power is not
reported.
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Zhang et al. [2008] also make use of an ingredient representation but, in contrast,
distinguish between three levels of ingredient importance, which are manually as-
signed. Using this mechanism, ingredients that are considered to be more important,
have the largest contribution to the similarity score. Once again, a level of domain
expertise is required for this process. We would argue that the importance of an in-
gredient in a recipe is likely to be user dependent rather than generic. Van Pinxteren
et al. do take a user-centred approach to recipe modeling, rather than make a priori
assumptions about the characteristics that determine the perceived similarity, such as
ingredients or directions [van Pinxteren et al. 2011]. They derive a measure, which
models the perceived similarity between recipes by identifying and extracting impor-
tant features from the recipe text. Based on these features, a weighted similarity mea-
sure between recipes is determined.

Common to all of these approaches is a requirement for domain knowledge and in-
put, a factor which we would ideally avoid in order for our meal planning technique to
be applied to large repositories of recipes and user contributed content, which have be-
come more and more common since the arrival of the Social Web. Thus, our algorithms
focus on exploiting the information that is already contained in a recipe or that can
be generated from the characteristics of the recipe content (complexity, the number of
ingredients/steps, etc).

3. UNCOVERING PATTERNS IN USER PREFERENCE DATA

3.1. Identifying Predictive Features

Our previous work focussed on the exploration algorithms for accurate recommenda-
tions in the food domain [Freyne and Berkovsky 2010a, 2010b; Freyne et al. 2011a,
2011b]. We have analysed and compared several algorithms, such as collaborative
filtering, content based filtering, and a variety of hybridizations, in an effort to un-
derstand the strengths of these techniques when applied for recipe recommendation
generation. We have assessed these approaches in terms of their prediction accuracy,
classification accuracy, and coverage [Herlocker et al. 2004].

An analysis of the use of the M5P algorithm [Quinlan 1992; Wang and Witten 1996]
that generates a pruned logistical decision tree based on the features of a recipe and
the scores provided, has led us to investigate potential reasoning patterns of users pro-
viding our data. The M5P algorithm generates a binary tree classifier, where where
each leaf predicts a numeric quantity using linear regression, and then computes the
scores based on the recipe content and the metadata associated with a recipe. Each
data instance is a set of features {a1, . . . , aN+1}, where each feature may be numeric
or nominal, but aN+1 is the class label and must be numeric. M5P exploits a feature
selection algorithm to prescribe the features on which the algorithm runs by identify-
ing the best features for a given user profile. We employed a correlation-based feature
selection algorithm (CFS) to compute a heuristic measure of the merit of the selected
features from pair-wise feature correlations. The merit is quantified by

MS = krcS√
k + k(k − 1)rS

, (1)

where k is the number of features in the selected set S, rcS is the mean feature-class
correlation over class c and set of features S, and rS is the average feature-feature
inter-correlation over S. The correlation is calculated using symmetrical uncertainty:

u(X, Y) = 2
[

g(X, Y)

h(Y) + h(X)

]
, (2)
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Fig. 1. Ratings solicitation interface displayed to Mechanical Turk users.

where h is entropy of a feature and g is information gain of a class given a feature [Hall
1999]. We examined the use of other feature selection algorithms that produced similar
patterns, but for reasons of brevity we supply the details of only the CFS algorithm in
this article.

The selection of a feature as a predictor depends on the extent to which it predicts
classes in areas of the instance space not yet predicted by other features. The output of
this process is a set of predictive features and the merit associated with each grouping.
Thus, for each user and their ratings, we can ascertain the features that are predictive
of their provided ratings. The CFS algorithm identifies the features or characteristics
of recipes, on which the M5P algorithm is basing its predictions from our set of pos-
sible features (ingredients, broad category, cuisine general, cuisine specific, number of
ingredients, and number of steps). It identifies input patterns across the various val-
ues of features for each individual rater in our dataset, the number of and the set of
features on which patterns of ratings can be found. We hypothesise that these patterns
reflect user decision processes involved in providing ratings, in this case on recipes, as
detailed in the next section.

3.2. Dataset

When investigating the development of a food recommender, we gathered a corpus of
recipes and solicited ratings on these recipes, to allow us to find suitable algorithms to
generate recommendations. The recipe corpus consisted of 343 recipes obtained from
the CSIRO Total Wellbeing Diet books [Noakes and Clifton 2005, 2006] and from the
meal planning website Mealopedia.1 Online surveys, each containing 35 randomly se-
lected recipes, were posted to Mechanical Turk, Amazon’s online task facilitator.2 Re-
sponses for each of the 35 recipes displayed were required and users could answer as
many of the published surveys as they wished. Each question asked users to report
how much a recipe appealed to them on a 5-Likert scale, spanning from “not at all” to
“a lot,” as shown in Figure 1. Sometimes, a user might not be familiar with an ingredi-
ent or method of cooking included in a recipe, but we assume that in most cases they
could provide an answer based on their background knowledge.

1http://www.mealopedia.com
2http://www.mturk.com
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Table I. Rating Spread

not at all not really neutral a little a lot

count 15191 14425 19840 25593 26508
percentage 15% 14% 20% 25% 26%

Table II. Metadata Features and Values

General Cuisine Specific Cuisine Category
African, American, African, Australian, Chinese, Eastern beef, pork, lamb,
Asian, European, European, French, German, Greek, chicken, veal,
International, Indian, International, Italian, Japanese, fish, vegetables,
Oceania Mexican, Middle Eastern, South East fruit

Asian, Southern, Spanish, UK&Ireland

Much discussion has been seen in the literature on the appropriateness, quality and
accuracy of the use of crowd-sourced data through Mechanical Turk [Buhrmester et al.
2011; Kittur et al. 2008; Paolacci et al. 2010]. Many strategies for quality control have
been experimented with, including using minimum task duration thresholds, compari-
son of answers to expert users, etc. In our work, there are no correct or wrong answers,
as we are seeking Turkers’ feedback and opinion. Thus, it is inappropriate to com-
pare the ratings given by Turkers to domain experts or apply similar strategies. We
are nonetheless interested in quality control, as we aim to bootstrap future systems
with the data gathered as well as to run our analyses. Our first check verified that the
responses to a series of questions relating to the size of the household in which the
Turker lived is consistent. It compared the total number of residents stated to the sum
of the residents in certain age brackets. We further employed two strategies for the ex-
clusion of data from the rating dataset. We set a minimum task duration threshold, a
period of time deemed suitable to rate, with thought, the 35 recipes required per task.
If a user completed the survey in a time under this threshold, their data was excluded.
If all the ratings from a user had the same score, their data was excluded.

In total, we gathered 101,557 ratings of 917 users, such that the density of the ob-
tained ratings matrix was about 33%. The distribution of ratings across the rating
scale is presented in Table I. On average, each recipe was made up of 9.52 ingredients
(stdev = 2.63) and the average number of recipes that each ingredient was found in
was 8.03 (stdev = 19.8). On average, each user rated 109 recipes (stdev = 81.9), with
the minimum number of user ratings being 35 and the maximum being 336.

Each recipe has a fixed structure that includes a title, ingredient list, instructions,
and image that was shown to the raters. We automatically extracted two additional
indicators of recipe complexity: the number of ingredients and the number of steps
required to complete the recipe. In addition, we manually annotated each recipe with
simple domain knowledge in the form of a general cuisine type, a specific cuisine type,
and a broad category, containing options traditionally used to classify food. The options
for cuisine types and categories are shown in Table II.

3.3. Predictive Feature Identification on Recipe Ratings

We began our analysis by contrasting the performance of two implementations of
the M5P algorithm on our dataset. In the first instance, we used the full dataset to
generate a model using the M5P algorithm, with no feature selection algorithm in
place. This resulted in a generic, one-size-fits-all model for our data. Running a 10-fold
cross validation analysis with 90% training and 10% test set yielded an Mean Average
Error (MAE) of 1.175. In the second instance, we generated an individual M5P model
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Table III. Distribution of Predictors

1 predictor 2 predictors 3 predictors 4 predictors

profiles 172 327 187 147
% of total 20.6% 39.2% 22.4% 17.7%

Table IV. Combinations and Dominance of Features when Two Predictive Features Exist

Predictive features (feat1,feat2) % of profiles most predictive most predictive
applicable feat1 feat2

(broad category, general cuisine) 48.62% 57.2% 42.8%
(broad category, specific cuisine) 37.31% 81.9% 18.1%
(broad category, number of ingredients ) 10.40% 26.4% 74.6%
other 5.37%

for each user using only their ratings, and then used the CFS feature selection
algorithm detailed above. Once again using a 10-fold validation, we obtained a lower
MAE of 0.977, showing that the individual models that exploit feature selection are
more accurate than a single global model.

We analyzed the set of predictive features selected for each user and noted signif-
icant differences in the number and variation of the predictive features identified by
the algorithm. 20.6% of users have one predictive feature, 39.2% have two, 22.4% have
three and 17.7% have four predictive features, as seen in Table III. We hypothesise
that the different number of predictors reflects different levels of reasoning and de-
cision making employed by users when rating recipes. Since we acquired this data
through Amazon’s Mechanical Turk, which rewards users financially for their ratings
and the ratings do not assist users in any way, we hypothesise that users could base
their opinions on various aspects of the recipes and that some users were more thor-
ough with the provided answers than others.

As mentioned, 20.6% of users have one predictive feature. For 93% of users in
this group, the feature identified was the broad category feature, that is, the pres-
ence of a certain ingredient. We assume that users in this group assigned ratings
to recipes based primarily on the main ingredient of the recipe. Simple rational fol-
lowing this reasoning is: “I like chicken recipes, I dislike fish recipes, and I love beef
recipes.”

39.2% of users have two predictive features selected and, we assume, were reasoning
on two levels. In 96% of these profiles, the broad category feature was again selected;
this time in conjunction with an additional feature. The additional feature selected
was the general cuisine in 48.6% of cases, the specific cuisine in 37.3% of cases, and
the number of ingredients in 10.4% of cases. Table IV shows how this breaks down
for the various combinations of features. The dominance of the broad category feature
varied, depending on its coupling with other features. For example, when coupled with
general cuisine, the broad category feature was most predictive in 57.2% of cases. So,
with respect to the broad category and general cuisine features, 57.2% of users were
rationalising according to statements like “I like beef and I love it when its included in
a Chinese style dish” and 42.8% of according to “I love Chinese dishes, especially ones
which contain beef.” When the specific cuisine feature was a predictor in conjunction
with the broad category, in 81.9% of cases the broad category was the most predictive
feature and only in 18.1% of cases the specific cuisine feature was most predictive. The
opposite is the case when the number of ingredients feature was present. It was the
dominant feature in 74.6% of cases, while the broad category was most predictive in
26.4% of cases.
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�

�

�

�

�

�

�

�

19:8 J. Freyne et al.

Table V. Combinations and Dominance of Features when Three Predictive Features Exist

Predictive features (feat1, feat2, feat3) % of profiles applicable
(number of ingredients, general cuisine, specific cuisine) 43.28%
(number of ingredients, specific cuisine, broad category) 20.90%
(number of ingredients, general cuisine, broad category) 18.51%
(general cuisine, specific cuisine, broad category) 11.94%
other 5.37%

Table VI. Combinations and Dominance of Features when Four Predictive Features Exist

Predictive features (feat1, feat2, feat3, feat4) % of profiles applicable
(number of ingredients, number of steps, general cuisine, specific cuisine) 3.4%
(number of ingredients, number of steps, specific cuisine, broad category) 1.4%
(number of ingredients, number of steps, specific cuisine, broad category) 4.0%
(number of ingredients, general cuisine, specific cuisine, broad category) 91.2%

22.4% of users have three predictive features selected. When users were reasoning
on three features, the broad category was not predictive in 43.3% of cases. This sug-
gests that when users applied complex reasoning processes to provide well-thought
ratings or when their tastes were more refined, their focus was on the fine grained de-
tails of cuisine type and cooking complexity, rather than simply on the main ingredient
of the recipe. These users were likely to reason along the lines of “I like Asian dishes,
in particular Thai dishes, but only ones with a small number of ingredients.” Table V
shows the break down of the three predictive features.

Table VI shows the break down of the 17.7% of users who were found to have four
predictive features. In over 90% of cases, this was a combination of the following fea-
tures: number of ingredients, general cuisine, specific cuisine, and category. The num-
ber of ingredients was the most predictive feature for 68% of users in this category; for
a further 20.5% of users the category was the most predictive; for 10.2% the general
cuisine was the most predictive, while only 1.4% of users favoured the specific cuisine.

We examined whether the number of selected features was related to the size of a
user profile, that is, number of ratings provided. We calculated the correlation between
the density of a user’s ratings vector and the number of selected features. The cor-
relation coefficient was –0.031, showing no correlation between the number of recipe
ratings provided and the number of predictive features selected. Thus, the varying fea-
tures were primarily based on the distribution of ratings across recipes with common
characteristics.

Our analysis indicates that users answering our recipe rating survey have con-
sistent patterns with respect to the recipe characteristics. For most users, the broad
category (or the core ingredient of a recipe) affects the ratings heavily, whether alone
or coupled with additional characteristics, such as the type of cuisine or the number
of ingredients.

3.3.1. Stability of Feature Selection. This knowledge and awareness could impact many
recommendation processes, for instance, rating solicitation, recommender generation,
and confidence in user input. However, before we progress with enhancements based
on this understanding, we must examine the stability and variability of the discovered
trends and verify the accuracy of the selection algorithms. We have previously ruled
out the correlation between the number of ratings in the user profile and the number
of features on which users are deemed to reason. However, we must consider that the
features selection process may produce varying results when presented with various
subsections of user profiles. Figure 2 shows the variability of the selected set of features
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Fig. 2. Predictor stability over time.

Fig. 3. MAE of predictions made using feature selection at various k.

for the above groups of users (1, 2, 3, or 4 features selected), when subsets of ratings in
the profiles were used by the CFS algorithm. Only users having more than 100 rated
items in their profiles were considered in this analysis, and for these users the first
100 ratings were considered.

We increase the number of ratings in the profile, k, from 5 to 100 in randomly se-
lected increments of 5 ratings. For each k, we carry out the feature selection process
and compare the number of selected features to the number of features selected when
100 ratings in the profile are considered. We repeat this process 10 times and report
on the average error between the two. We compute the error separately for groups of
users reasoning on 1, 2, 3, and 4 features. Figure 2 shows the error in identifying the
correct number of predictive features in each group, for various values of k.

The highest error is obtained for users reasoning on 4 features. We observe an error
rate of 1.9 for k = 5, followed by a steady decline. The same trend is seen for users
reasoning on 3 features, although the error at k = 5 is half that of the previous group.

ACM Transactions on Interactive Intelligent Systems, Vol. 3, No. 3, Article 19, Pub. date: October 2013.
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This curve levels off at 0.8 when k = 25. A consistent error curve is observed for users
reasoning on 2 features, showing that the feature selection is accurate even when a
small number of ratings is available. In contrast to the emerging trend, the error rates
are high for users reasoning on 1 feature. The error hovers around 1 until k = 40
and then steadily decreases. Note that when a user is reasoning on 1 feature, the
inaccuracies leading to errors can only be overestimations (i.e., CFS selects more than
1 feature), whereas in other cases it could over- or underpredict (when 2 features are
predictive, the system could select 1, 3, or 4 predictors yielding high errors). Thus,
the feature selection is mostly predicting that the users are reasoning on two features
rather than one for k < 40. Similarly, the inaccuracies observed for users reasoning on
4 features can only be underestimations.

Figure 3 shows the MAE of predictions made using the selected features for user
profiles of different sizes. For each value of k, feature selection was completed on 90%
of the user profiles and the selected features were used to predict the remaining 10%
of ratings. 10 runs of each were carried out and the average MAE across users in each
group is reported. Note that a similar MAE is obtained for users reasoning on two and
three features when k > 5. However, there is a pronounced difference in the accuracy
of predictions for users reasoning on one feature and four features. We will focus on
the analysis of this difference.

These groups had similar errors in the number of predictive features (see Figure 2),
but that error has affected the accuracy of the predictions in different ways. The error
in the number of selected features across users reasoning on one feature at k = 10
was around 1.2. This error was always positive and the number of selected features
was overpredicted. Similarly, at k = 10 the average error in the number of selected
features for users reasoning on four features was around 1.6, and this was always
negative, such that the number of selected features was underpredicted. In the over-
estimated cases, noise was added and irrelevant features were selected, whereas in
the underestimated cases some relevant features were not selected.

We examined the changes of merit scores when additional noisy data was added
and when some information was missing. The analysis shows a 10% reduction in
merit score when an additional feature was selected. Thus, the correlation between
the selected features and the ratings is 10% lower. However, missing information has
a weaker effect. In this case, the information loss associated with one missing feature
is only 2% and with two missing features it is 4%. Thus, it appears better to underesti-
mate the number of predictors rather than overestimate them. Hence, the MAE scores
obtained for users reasoning on 4 predictive features are lower than those obtained for
users reasoning on one predictive feature.

The accuracy of the predictions when the approach in identifying and applying the
correct features for the different groups of users, will impact on overall system perfor-
mance according to the user coverage of each group, that is, the percentage of users
who have 1, 2, 3, and 4 predictive features. In this case we have the lowest performance
for those with only 1 predictor (21% of users), followed more positively by those with
2 and 3 predictors (41.6% of users) with the best accuracy for those with 4 predictors
(17%). It seems almost logical if you consider that those for which we have information
on more features, we can serve best in terms of accuracy that those who appear to have
simple tastes, or those who put little effort into their ratings decisions.

3.3.2. Accuracy of Feature Selection. The number of correct features is only a portion of
the problem, while the accuracy of the features selected is also important. To this end,
we examined the precision, recall, and F1 of the feature selection using different profile
sizes. Precision measures the ratio of selected items among all the items relevant to the
user. Recall measures the ratio of relevant items which were selected. The F-measure
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Fig. 4. F1 of attribute predictors at various k.

metric represents their harmonic mean assigning them equal weights, as shown in
Equations (3)–(5).

precision = Nrs

Ns
(3)

recall = Nrs

Nr
(4)

F1 = 2 × precision × recall
precision + recall

. (5)

We start with a general performance indicator for each group and report the F1
scores in Figure 4. We note a difference across the groups for k < 50, but equivalent
performance for k > 50. Focusing on the smaller profiles with low k, we note an in-
verse relationship between the F1 scores and the number of predictive features in the
groups. The highest F1 score is obtained for users reasoning on 4 features followed by
the scores for those reasoning on 3 and 2 features, and finally, those reasoning on 1
feature. This shows that overall, that the CFS algorithm is more accurate when iden-
tifying a high number of reasoning features.

Investigating further, we calculated the precision and recall scores for each group,
as presented in Figures 5–8. Again, we observed different patterns for different groups
of users. Starting with the performance of CFS for users reasoning on 1 feature, recall
of 0.9 is obtained with k = 20 ratings and 1 with k = 50, while precision increases
steadily until reaching 1 only for 100 ratings. Thus, for users with simple patterns
of reasoning, the algorithm correctly identifies the predictive feature, although it ap-
pears to also identify another incorrect feature, resulting in the lower precision. For
users with 2 predictive features, we note an improvement in precision as fewer incor-
rect features are identified, but also a decrease in recall. The correct 2 features are
identified less often than in the previous group. We note precision and recall values
close to 0.5 when k = 5 ratings are provided, with a steady increase in both as k in-
creases, reaching recall of 0.8 with 35 ratings and precision of 0.8 with 60 ratings.

For users reasoning on 3 features, we note that the level of precision observed outper-
forms that of recall for the first time. We observe high and steadily growing precision
scores of over 0.7 for very low k, whereas recall starts at 0.5. This is even more exag-
gerated in the last precision/recall graph of users reasoning on 4 features, as shown
Figure 8. We observe very high precision scores as the algorithm correctly identifies
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Fig. 5. Precision and Recall of 1 predictor users.

Fig. 6. Precision and Recall of 2 predictor users.

Fig. 7. Precision and Recall of 3 predictor users.

relevant features; precision of over 0.95 is obtained with only k = 5 ratings. However,
the recall scores are lower, as not all of the features are identified, such that recall
reaches the 0.8 mark only when k = 85 ratings are available.

These results show that even with a small number of available ratings, the CFS
algorithm performs with high accuracy, although the accuracy varies according to
the number of predictive features. When a user is reasoning on 1 feature, this fea-
ture is correctly identified when only 15 ratings are provided, but the algorithm can
also return additional incorrect features. When users exhibit more complex reasoning
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Fig. 8. Precision and Recall of 4 predictor users.

patterns, the CFS algorithm correctly identifies most of the predictive features. How-
ever, when only a low number of ratings is available, some predictive features may not
be identified. These results correlate with the absolute error in predicting the number
of features, which was discussed previously.

To summarise, this section has shown that patterns of reasoning exist, and that
users can be grouped according to their reasoning patterns. We have further shown
that the accuracy of a recommender system – in this case the M5P algorithm – varies
depending on the user group receiving the recommendations. Those who reason
on 4 features and, thus, provide a high level of detail, receive the most accurate
recommendations, while those who reason on one feature receive the least accurate
recommendations.

4. PERSONALIZED ACTIVE LEARNING BASED ON REASONING PREFERENCES

In the presented analyses we used a new dataset of recipe ratings to analyse the rea-
soning patterns of users. These patterns consider different domain features and char-
acteristics of the recipes; these vary not only in terms of the features themselves, but
also in terms of the number of considered features. The CFS algorithm has success-
fully selected the most predictive features in most cases, even for sparse user profiles
containing a small number of ratings. This included both the number of features (i.e.,
on how many levels a user is reasoning) and the set of features (i.e., what features are
important for each user). The number of ratings required for accurate feature selection
fluctuates across the groups of users, as more evidence is needed to accurately select
features for users applying complex reasoning processes when rating recipes.

The knowledge about users apparent reasoning processes, whether deliberate or im-
plied from their actions, is a valuable asset for a personalized system. The understand-
ing of what is important to a user allows systems to provide accurate personalized
services. There are many opportunities where this knowledge could be applied, for
instance, to identify collaborative filtering neighbours, to resolve conflicts in group rec-
ommendations, or to gather high-value user information. In what follows, we present
an investigation into one application that exploits user reasoning patterns to build an
adaptive ratings acquisition engine (or active learner), which considers user reasoning
processes to request ratings that allow it to build rich user profiles. We include a de-
tailed discussion on the implications of this knowledge in the concluding section of the
article.

One of the challenges of recommender systems is the “cold start problem,” where the
amount of available user information is insufficient to generate accurate recommen-
dations. One way of combating this is to gather ratings that are seen to attract highly
varied ratings (some love and others hate, rather than items that most users like).
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Since our analysis has shown that user reasoning processes can be estimated and the
important characteristics of recipes can be identified, we suggest to assess each recipe
in terms of the contribution that a rating on the recipe can make to the construction of
a rich user profile. We refer to this as active profile learning. Thus, the aim of the active
learner is to prioritise the collection of high-value information over low-value informa-
tion, with the aim of generating more accurate recommendations, thus, increasing user
satisfaction and engagement.

4.1. Active Learning for Recipe Preference Acquisition

Our approach is motivated by ideas incorporated into ensemble based active learning,
where the model applied to the data and the data points that serve as input into the
model are personalized to each user [Rubens et al. 2011]. This approach recognises
that different models are applicable to different users, and that different data points
are useful to different models. Since we can identify the predictive features of each
user, the active learner can determine areas of data sparsity within a user’s profile
and suggest the most valuable recipes on which to seek ratings.

For example, consider a user who has provided the system with 5 ratings and has
been identified as reasoning on 1 feature, the recipe category. If the user provides con-
sistent ratings for recipes of varying values within this category, for instance, high
ratings for beef recipes and low ratings for fish recipes, the recommendation algo-
rithm can compute accurate predictions for these categories. However, it is unlikely to
accurately predict ratings for recipes that belong to unrated categories, for instance,
chicken or lamb. Our active learner identifies values for the selected predictive fea-
tures that the system is unaware of, and ranks these by the volume of information
gained by acquiring ratings for these values.

To test our hypothesis we developed a feature based active learning approach for
recipe rating acquisition. The active learner examines the seed set of recipes Rseed, for
which user ratings are available, and selects a set of yet unrated recipes RAL, for which
ratings will be gathered. Firstly, the CFS algorithm analyses the seed set to identify
the features on which the user is basing their ratings, as described in Section 3. Once
the set of predictive features is known, the algorithm identifies the set of possible
values for these features. This allows to identify feature values that are relevant to
the user’s rating bias, but the model has no information about these values. This is
equivalent to discovering the reasoning tree and identifying the nodes for which we
currently have no ratings.

The information gain associated with obtaining ratings for the identified feature
values is determined by the number of recipes associated with this feature or fea-
ture combination. The more recipes associated with the feature-value combination,
the more information will be added to the model by obtaining user ratings. Thus, the
learner ranks the identified feature-values according to the number of recipes asso-
ciated with the value. RAL is generated by looping through the ranked features and
randomly selecting recipes that match the feature selection criteria. In our case, 5
recipes are added to RAL at each stage, with the process of feature selection, feature
ranking, and recipe selecting being completed after every 5 ratings. Thus, the steps
involved are as follows.

(1) Run the CFS algorithm on Rseed to identify predictive features F1,..., Fn.
(2) Determine all feature-value combinations for the predictive features F1,..., Fn.
(3) Filter out feature-value combinations already included in Rseed.
(4) Rank feature-value combinations according to the number of recipes represented

by the combination.
(5) Add one random recipe per feature-value combination until RAL contains 5 recipes.
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(6) Present RAL to user for rating.
(7) Update Rseed.
(8) Repeat (1)–(7).

4.2. Evaluation

The methodology employed to evaluate the active learning component mirrors the pre-
viously detailed analysis, which identified the predictive features and used these to
predict recipe ratings. The analysis simulated the process typically seen at sign up or
registration to a recommender system, where ratings are sought on batches of items to
inform the user profile. In this analysis, we are particularly interested in the prediction
accuracy of the M5P recommendation algorithm in early stages of user membership,
when Rseed is small and a few user ratings are available. We focus again on the 349
users, who provided in excess of 100 recipe ratings.

For each user, 20 recipe ratings were randomly selected as test items Rtest, on which
the accuracy of the algorithms was assessed. In addition, 5 ratings were randomly
selected as the seed set Rseed for the learner. The user profile was gradually increased
in batches of 5 ratings (determined by the appropriate active learner algorithms), and
the accuracy of the predicted ratings for recipes in Rtest was recorded based on the user
profile being built. Three active learning algorithms were evaluated. The first is the
personalized active learner detailed in this section. In this instantiation, a batch of 5
recipes RAL was identified by the active learner, with 1 randomly selected recipe from
each of the top ranked feature-values being added to RAL. The second is a standard
entropy based learner, which ranked each recipe according to the variation of ratings
obtained across the entire set of users, prioritising those with the highest variability
of ratings. Finally, a random algorithm selected 5 random recipes to be added to the
user profile. For the sake of simplicity, in all cases the recipes selected for addition
to the profile were limited to those for which we a real rating was available. As in
the previous analyses, we evaluated the accuracy of the M5P prediction generation
algorithm [Freyne et al. 2011b].

4.3. Results

Overall, the impact of the personalized active learner was low. While we observed more
accurate results, similar accuracy was obtained by using the nonpersonalized entropy
based approach, as can be seen in Figure 9, where for clarity we concentrate on pro-
files smaller than 50 ratings. We note that the performance of both nonrandom active
learners, which identify high-value ratings on which to solicit information, surpasses
the performance of the random recipe selection. We note that the most pronounce dif-
ferences are observed when the number of available ratings k is low, but the perfor-
mance of the algorithms gets closer once the user profile contains more ratings. We
also note the highly similar performance of the personalized active learner and the
entropy based algorithm. Overall, altering the order of recipe ratings allows to build
richer user profiles and improve the accuracy of the generated predictions.

Delving deeper, we examined the performance of the active learner for various
groups of users. Figures 10–13 show the performance of the three learners for each
group. Figure 10 focuses on the group of users reasoning on 1 predictive features shows
that similar MAE values are obtained for k > 25, but clear differences between the two
intelligent and the random learner are observed for low values of k, which is where we
are most likely to see the impact of the active learner. The MAE of the random profile
additions is high and it even increases as the user profile grows from 5 to 15 ratings. On
the contrary, the intelligent learners provide the prediction algorithm with ratings that
reduce MAE and improve accuracy, with the addition of each batch of recipe ratings.
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Fig. 9. MAE of active learner strategies.

Fig. 10. MAE of 1 predictor users.

In Figures 11 and 12, which correspond to groups of users reasoning on 2 and 3
features, respectively, we observe the improvement in the accuracy of the predictions
for small values of k. Both the personalized and entropy based learner outperforms
the random learner for k < 35, with the differences being more clearly pronounced
for k < 30 in Figure 11 and k < 25 in 12. Again, the random learner provides very
little information when growing the profiles from 5 to 10 ratings, whereas the intel-
ligent learners both provide valuable information that improves the accuracy of the
predictions. In Figure 13, the impact is less clear and we observe all three algorithms
obtaining similar MAE scores. We suggest that the decision tree constructed by the
M5P algorithm is sufficiently broad that there are too many feature-value combina-
tions providing valuable information to the algorithm, such that a random selection
will in most cases provide a similar information as the one that can be provided by an
intelligent learner.

These results show that the intelligent selection of recipes on which to solicit ratings
has a profound impact on the accuracy of the generated predictions when limited user
information is available. We have shown that in the early stages of user membership it
is advantageous to use either a personalized active learner or an entropy based learner
over the random addition of recipes. We had intended to use the entropy based learner
as a second baseline, but the benefits of this approach were comparable to those of
the personalized active learner. Requesting ratings for recipes with high entropy was
found to be as informative as ratings for recipes covering a variety of feature-values
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Fig. 11. MAE of 2 predictor users.

Fig. 12. MAE of 3 predictor users.

Fig. 13. MAE of 4 predictor users.

for the active learner. Overall, as k increased beyond the point where the personalized
active learner is showing enhancements over the random learner (around k = 30), the
entropy based learner could still facilitate additional increases in the accuracy of the
predictions.

5. DISCUSSION

The work presented in this article points to varying reasoning patterns employed
by users when providing ratings and preference information in an online system. It
assumes that users apply different reasoning patterns for decision making and that
these differences are apparent in the captured profile information and extractable us-
ing feature selection algorithms.

We have illustrated the user reasoning mining processes in the domain of food,
but can this knowledge and learned lessons be transferred beyond this dataset and
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domain? We posit that one of the key factors in using this technique in other domains
is in the possible dominance of features in the predictive feature set. In our dataset,
there were several features that we would describe as core features and fundamental
component of a recipe, for instance, the category and the cuisine type, and there also
were rather peripheral features, for instance, the cooking complexity. In the food do-
main people tend to reason base their reasoning on the core features, along the lines
of “I love Thai food” or “I dislike seafood”. This is reflected in our feature selection,
such that a large variety and subtle combinations of these features exist across our
users.

Other domains such as fashion or design, where the intricacies and linkages of items
that make up an outfit or look are balanced and highly interconnected, are not as likely
to benefit from obtaining user reasoning knowledge. If the features of the items in
question are imbalanced in terms of their impact on user feedback, then it is likely that
the selected features will dominated the reasoning process. This trend is expected in
datasets such as TV or movie watching, where the genre of programs is likely to be the
sole most informative feature for the majority of users. Features like the country where
a program was recorded or the cinematographer, are not expected to be as influential,
resulting in a prominent dominance of a single feature, and reducing the value of
uncovering predictive features.

If in the food and similar domains, where the ratings correctly reflect user reasoning
processes, then this knowledge could be exploited by a recommender system. Unlike
many domains, where consumption of recommendations is a single-shot event, the
context of the sequencing of recommendations is important in meal planning. A recipe
recommender must be responsive to a user’s preferences in order to identify recipes
that they will enjoy, but also to the user’s preferences for consumption frequencies of
ingredients and recipes. However, it may take a long time to learn these trends. An un-
derstanding of user preferences may allow us to group recipes by predictive features
as a proxy of the consumption frequency. In a similar vein, recipe similarity computa-
tion could incorporate the predictive features of each user, in order to suggest diverse
meal plans. When planning for groups, the knowledge of the predictive features for
each group member may be taken into account when resolving conflicts. For exam-
ple, it would be interesting to assess whether the recommendations can be influenced
not only by the preferences of users and their social roles, but also by their predictive
features, such that each user is satisfied by the features of the recommended items.

It is also important to highlight the speculative nature of the ratings in our dataset.
In most recommender system datasets, users rate items that they consumed or expe-
rienced in the past. For example, they rate movies that they watched, books that they
read, or hotels in which they stayed. This is probably not the case for the Total Wellbe-
ing Diet recipes. The recipes included in the diet are high-protein and peculiar to the
Australian cuisine, whereas most Mechanical Turk respondents were from Asia. Thus,
it is quite likely that most of them have never eaten the rated recipes and provided rat-
ings based on their expected appreciation of the meal, rather than based on their past
experience. In this sense, the nature of the gathered recipe ratings based on the ex-
pected utility may apparently differ from the other recommender datasets based on
recollected utility of past experiences. How does the different nature affect the uncov-
ered reasoning processes? Would similar patterns be uncovered for recollected ratings?

Another question of suitable merit that requires discussion here is whether the user
reasoning patterns and the selected predictive features could be affected by the way
the users were asked and the information was gathered. As discussed previously, there
are many factors that are seen to influence the information given by a user to a sys-
tem: social pressure, visibility of contributions, layout and prompts, return on effort,
task complexity, system reputation, and others [Cosley et al. 2003; Jameson 2012].
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Our analysis has shown that within a single system with identical rewards, task com-
plexity, and visibility, a variety of apparent reasoning or human decision processes
are identifiable in the resulting dataset. What we do not know yet is whether the in-
put from users is the “ground truth” or whether different ratings would have been
provided had we paid more, provided personalized meal recommendations in return
for ratings, or asked for ratings in a different manner. We know from our dataset that
users are reasoning differently, but we cannot tell if their reasoning would be impacted
by the context of the experiment.

Recent work in the area of persuasive technologies [Berkovsky et al. 2012; Kaptein
et al. 2012], has shown that users can be persuaded by different forms of persuasion
(e.g., authority, peer pressure, conformity to normd). This highlights the need to un-
derstand the target user and to personalise the persuasive features being applied for
maximum impact. We believe that this theory is likely to apply to the influence that a
system has on the quality of information provided by the users. Some people will care
and potentially change their input if this is seen by others. Similarly, some users may
be affected by “social influence,” conform to the behaviour of others and only like things
approved by their friends. In the same vein, some users are likely to want the highest
quality recommendations in a movie recommender system (movie buffs), whereas oth-
ers may be satisfied with good recommendations (movie fans with some time to spare).
In the case of crowd-sourced information, some people may have a better work ethics
than others and put more effort into providing ratings regardless of the level of pay-
ment. Although our work did not address these intricacies, the question of determining
the individual impact of the conditions and data collection rewards on the quality of
the gathered data remains open.

The variability in data quality and accuracy is well documented in crowd-sourcing
services like Mechanical Turk. Crowd-sourcing is popular and trusted in the domains
of machine translation, text mining, and image analysis, where human judgment is
necessary for metadata gathering and training of learning algorithms. We predict an
increased usage of crowd-sourced data to supplement the generation of recommenda-
tions for emerging domains, like wellbeing and lifestyle. The drive to generate valuable
rather than only accurate recommendations in these domains dictates moving beyond
the tried and tested datasets centred around movies, books, and music. We predict
that many research and industry parties may turn to crowd-sourcing, in order to ac-
quire data, investigate algorithms, bootstrap new systems, and conduct online user
studies. Best crowd-sourcing practices suggest the implementation of simple quality
controls like time thresholds and consistency checks to identify bogus users. Beyond
the exclusion of obvious noise, can we tell anything about the effort invested in the
data provision or the quality of data? If so, how can this information by leveraged by
recommendation algorithms?

6. CONCLUSION

In this work, we have investigated the applicability of recommender techniques to gen-
erate recipe recommendations and identified the performance enhancements achieved
by machine learning techniques. Analyses of the results have shown that users appear
to reason on various levels when rating recipes and that various combinations of meta-
data are seen to have different predictive qualities for different users. This information
has assisted us in understanding how users provide recipe ratings and suggests oppor-
tunities for ways, in which this knowledge could be used to benefit the performance
and acceptance of recommender systems.

We have shown one example of the exploitation of this information by an active
learning algorithm, which identified high-value items in order to maximise the ac-
curacy of the recommendations in early stages. We developed a personalized active
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learner, which exploits a user’s apparent decision making patterns to rank items in
the repository in terms of their importance to the identified reasoning process and
their coverage of the repository. By asking users to rate highly informative items,
in contrary to random items, we have shown an increase in the predictive accuracy
of the M5P rating prediction algorithm for user profiles containing a low number of
ratings.

Recommending food and recipes is a complex domain, with multiple factors im-
pacting a user’s decision to take up a recommendation. As a reflective step, we aim
to revisit the metadata included on our recipe dataset, to ensure that the included
metadata are sufficiently broad to capture a user’s motivation, paying particular at-
tention to cooking times, ingredient costs, and product availability. Moving forward,
we aim to consider other opportunities for the exploitation of user reasoning within a
food recommender system, in order to increase the accuracy and enhance the quality of
the recommendations provided to users. In particular, we foresee three opportunities
beyond the data acquisition process evaluated here: in the sequencing and diversifica-
tion of recommendations, and in group recommendations.
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