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Personality detection is an important task in psychology, as different personality traits are linked to dif-

ferent behaviours and real-life outcomes. Traditionally it involves filling out lengthy questionnaires, which

is time-consuming, and may also be unreliable if respondents do not fully understand the questions or are

not willing to honestly answer them. In this article, we propose a framework for objective personality de-

tection that leverages humans’ physiological responses to external stimuli. We exemplify and evaluate the

framework in a case study, where we expose subjects to affective image and video stimuli, and capture their

physiological responses using non-invasive commercial-grade eye-tracking and skin conductivity sensors.

These responses are then processed and used to build a machine learning classifier capable of accurately

predicting a wide range of personality traits. We investigate and discuss the performance of various ma-

chine learning methods, the most and least accurately predicted traits, and also assess the importance of the

different stimuli, features, and physiological signals. Our work demonstrates that personality traits can be

accurately detected, suggesting the applicability of the proposed framework for robust personality detection

and use by psychology practitioners and researchers, as well as designers of personalised interactive systems.
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1 INTRODUCTION

Personality is an established research area in psychology. A broad definition of personality refers
to a set of individual patterns of behaviours, cognitions, and emotions that predict a human’s
behaviour and their interaction with the environment [66]. Although multiple personality theories
have been developed, most of them conceptualise these patterns into traits, which are believed to
be stable and consistent predictors of behaviour [50]. However, no single and agreed-upon model
exists within the trait-based representation of personality, so multiple models, e.g., the Five Factor
Model (known as the Big-5) [51], HEXACO [4], Temperament and Character Inventory [16], and
Interpersonal Circumplex [17], have been developed and validated.

For any personality model considered, detection of the trait values is a complex and error-prone
task. This is traditionally carried out in psychology research using validated questionnaires (or
inventories) aimed at uncovering the values of the traits [55]. However, the fixed and long nature
of the inventories often restrict practical applications. For example, the Minnesota Multiphasic
Personality Inventory (MMPI-2) consists of 567 binary questions and is expected to take approx-
imately 1.5 hours [11]. Likewise, the 300-item Adjective Checklist contains 300 adjectives, out of
which the respondents mark those that best characterise them [27]. Moreover, the inventories
often contain numerous similar questions, which limits their combined reach.

Furthermore, due to privacy considerations [5, 24] or in high-stake situations like job recruit-
ment [3, 90], people may not be willing to genuinely answer the inventories, providing rather the
desired or false answers. Faking, response distortion, and self-deception phenomena, and how to
overcome these, are hotly debated contemporary issues in psychology research [23, 91]. Although
their reliability is far from perfect, inventories remain the standard and most widely used tool for
personality detection tasks. However, the above limitations trigger an increasing interest in in-
novative methods for objective, reliable, and practical detection of personality traits [42, 49, 61],
including methods that leverage physiological signals [1, 6, 18, 72, 78].

In this work, we tackle the challenge of detecting personality traits using humans’ physiolog-
ical responses to external stimuli. Indeed, the rich modality, high accuracy, and moderate costs
of modern sensing technologies facilitate their deployment in a range of applications. We pro-
pose to use such technologies for capturing physiological responses—in this case, eye activity and
skin conductivity—of the human body in response to external stimuli. As many of these physio-
logical responses cannot be consciously controlled [15], we posit that they can be considered as
reliable and genuine indicators of the human’s reaction to the stimuli and to the emotions evoked
by the stimuli, which we attribute to human’s personality. Hence, in this work, we set out to study
whether such physiological responses to stimuli can serve as predictors of personality traits.

To this end, we propose a generic framework for objective detection of personality traits. The
main components of the framework include: (i) external stimuli that triggers physiological re-
sponses; (ii) sensing technology that captures the responses to the stimuli; (iii) data processing
component that segments the responses and extracts the features required for personality detec-
tion; and (iv) machine learning component that predicts the values of the personality traits. We
initially present the framework, discuss the roles of the above four components and possible ways
to implement them, and outline the dependencies between the components.

Then, we proceed to a specific instantiation of the framework, in which we use affective im-
age and video stimuli, and eye-tracking and skin conductance responses, to detect personality
traits. We focus on three established personality models: the Dark Triad [59], the Reinforcement
Sensitivity model (known as BIS/BAS) [14], and the HEXACO model [4] (extension of the famous
Big-5 [51]). We elaborate on the methodology for the data collection and analysis and then present
the obtained results. These demonstrate that the framework is capable of accurately predicting a
broad range of personality traits, with the combinations of image and video stimuli, as well as of
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the eye-tracking and skin conductance data, yielding higher predictive accuracy than comparable
methods.

Hence, the contributions of this work are three-fold: First, we demonstrate how off-the-shelf
sensing and machine learning methods can be combined into a generic framework for detection of

personality traits. Second, we exemplify and evaluate a specific instantiation of the framework using

affective image and video stimuli and two physiological responses. Third, our evaluation achieves
notably high predictive accuracy results, some of which are associated with well-studied factors
in human psychology. Research into personality detection using physiological responses, as em-
bodied by our framework, has a promising future for building usable and reliable trait detection
systems. Being based on objective measurements from readily available devices, our framework
could be automated to allow content personalisation and the design of user-aware interactive in-
telligent systems. It also has the potential to simplify and streamline various human modelling
tasks for researchers and practitioners.

2 RELATED WORK

Personality is an organised set of characteristics that influences the individual’s behaviours, cog-
nition, and emotions [13, 66]. Modern personality theories conceptualise these characteristics into
traits, which are believed to be relatively stable and consistent dispositions that humans possess.
Within the trait-based representation of personality, multiple personality models have been pro-
posed and studied. Influential and numerously validated models include the Big-5 Factor model
[51] and its extension referred to as the HEXACO model [4], the Reinforcement Sensitivity Model
(BIS/BAS) [14], the Dark Triad (D3) [59], and Interpersonal Circumplex [17].

One of the most widely accepted personality detection methods entails the administration of
personality inventories [55]. These are questionnaires developed and validated based on relevant
personality and psychometric theory. A self-reported questionnaire is typically used to measure
personality traits and their facets. Although being easy to administer and process, the self-reported
results can be distortion-prone, especially in high-stake situations [3, 23, 90]. This triggers an
increasing body of research seeking for alternative distortion-resistant methods of personality
detection. The popularity of social media opens the opportunity to detect personality through
analysis of network activities and content posted by users [75, 76]. For example, Big-5 traits were
linked to social network activity [26], while some traits were detected merely through the analysis
of Facebook likes [42] and linguistic features of tweets [61]. Beyond social networks, deep learning
was applied to detect the Big-5 traits from essays [49]. These methods, however, are not fully
reliable, as people can often use social media for impression-management purposes [43, 70].

Personality traits may also impact the autonomic nervous system and, in turn, bodily responses
and generated physiological signals [77]. To the best of our knowledge, the first significant at-
tempt to detect the Big-5 traits using physiological signals was in References’ [1, 18, 72, 78] lines
of research. These works collected the electroencephalogram (EEG), galvanic skin response (GSR),
face tracking, and electrocardiogram (ECG) data of subjects watching video clips. The obtained
prediction accuracy levels varied substantially, ranging from below-random to 90%. However, this
stream of research demonstrated the feasibility of personality detection using commercial-grade
sensors. Beyond the Big-5 model, the 16 Personality Factors model was predicted using facial fea-
tures and a neural network [25]. Although an improved accuracy was achieved, the method was
complex and required about three hours for training the model.

Eye movement parameters were extensively used to detect conscious and unconscious activities.
Complex features, such as gaze pattern and scan path, were found to be reliable indicators of
cognitive strategies and attention [21, 62]. Pupillary response was used as an indicator of cognitive
load [15, 84], whereas saccade amplitude and fixation durations were used for lie detection [48].
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Fig. 1. Framework for personality detection.

In the personality domain, early research established links between eye contact, gaze aversion,
and sociability [47]. With the advent of eye-tracking technologies, features derived from saccades,
eye fixations, and pupils were found to be associated with personality traits [64, 82]. Recently, eye
movement data during an everyday task was used to predict, although with relatively low levels
of accuracy, the Big-5 traits and perceptual curiosity [35].

GSR measures the conductance of human skin, which can be seen as an indication of changes
in sweat production, driven by the arousal of the sympathetic nervous system. Previous research
linked GSR variation to stress, arousal, and cognitive load [40, 71]; as a human becomes more or
less stressed, the skin conductance increases or decreases, respectively. Early work investigated
the possibility of using GSR for recognising cognitive activity [54], while more recent worked also
linked GSR to cognitive activity and stress [46] and established correlation between stress and
cognitive load [15, 52]. Little work has focussed on GSR signal for personality detection, although
links between the two were validated in References [1, 60] and recently in Reference [88].

This work addresses several limitations faced by prior research. Namely, we (i) extend the psy-
chological traits to cover the D3, BIS/BAS, and HEXACO models; (ii) propose a framework for
personality detection and exemplify it using eye-tracking and GSR data; (iii) examine two types
of affective stimuli—images and videos—carefully crafted using valence-arousal and emotion met-
rics; (iv) experiment with a range of machine learning methods to optimise predictive accuracy;
and (v) associate the obtained results to prior findings in psychology research.

3 PERSONALITY DETECTION FRAMEWORK

We start by presenting our framework for detection of personality traits using physiological sig-
nals. The framework is schematically depicted in Figure 1, where the components of the framework
are placed within the dotted box. In the following paragraphs, we elaborate on these components.

3.1 External Stimuli to Trigger Physiological Responses

The main idea underpinning the proposed framework is that not consciously controllable physio-
logical bodily responses to external stimuli can be considered as objective indicators of the subject’s
personality traits. Hence, the stimuli play an important role in triggering the desired responses.

A broad range of stimuli can be applied: from reading plain text, through watching multimedia
documents, to carrying out interactive tasks. In this context, we highlight the desired links between
the nature of the applied stimuli and the personality traits being detected. For example, when
detecting a subject’s learning style, a suitable stimulus could be a series of puzzles to solve or
a set of cognitive tasks having an increasing degree of difficulty. On the contrary, detection of
emotional stability may involve playing highly energetic songs or showing affective images with
a strong graphic content. Hence, we posit that the selection of the appropriate stimuli needs to be
tailored to the target psychological model and the target traits.
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It is also important to consider the modalities of the stimuli and their presentation interface,
as these are likely to cause different physiological responses. For example, a video recording of a
car accident is expected to trigger stronger physiological responses than the textual description
of the same accident, regardless of the phrasing of the text. Moreover, virtual reality presentation
of exactly the same accident can further amplify the responses. To this end, when designing the
stimuli, it is important to (i) trial and calibrate the impact of different modalities and stimuli;
(ii) consider the order of the stimuli and their potential carry-over effects; and (iii) introduce
cool-down periods between the presentation of the stimuli that can diminish such effects.

3.2 Sensing Technologies to Capture Physiological Responses

To capture physiological responses, the framework directly interacts with the subject as they are
exposed to the stimuli. The responses are captured by the sensing technology in place and fed back
into the framework for subsequent data processing and trait predictions.

Many options exist for the selection of the sensing technology used to capture physiological
responses. However, revisiting the main idea of objective personality detection, we highlight the
importance capturing responses that are not consciously controllable by the subject. Indeed, some
responses, e.g., breathing rate or mouse movement patterns, may be controlled, while others, e.g.,
blinking rate or heart rate, may be controlled indirectly or only to a limited extent. However,
numerous physiological responses, e.g., skin conductance, brain activity, or pupil size, cannot be
controlled at all [15]. The level of control over the captured responses a subject can exhibit drives
the objectivity level of the captured responses and, in turn, the reliability of the trait detection. We
believe that the importance of such objectivity is paramount for reliable personality detection and
highlight this as one of the main considerations affecting the selection of the sensing technology.

Another practical consideration refers to the usability and deployment of the sensors. Needless
to say, the technology should accurately and reliably capture the target physiological responses
and be able to mitigate the effect of external noises, e.g., those caused by temperature, subject’s
movements, and so forth. It is also desirable for the selected technology to be as unobtrusive and
compact as possible, not to interfere with the normal interaction of the subject with the stimuli.
Last, practical deployment aspects should also be considered. For example, the high costs and
complex operation of fMRI sensors may restrict their practical in situ application for capturing
brain responses, no matter how accurate they are.

3.3 Response Data Processing and Feature Extraction

The captured physiological responses will, for many sensing technologies, encapsulate raw signals,
e.g., skin conductance values, electric signal produced by the brain, or heart rate records. To carry
out meaningful predictions of personality traits, these signals need to be processed and features
characterising the signals need to be extracted.

This component of the framework applies statistical and signal processing methods to process
the captured physiological responses and extract predictive features, to be used by the subsequent
machine learning component. The exact data processing steps largely depend on the selected sens-
ing technology and captured responses. However, we identify three typical data processing steps:
filtering, segmentation, and normalisation [69]. First, filters are applied to the captured data to mit-
igate various types of noise, e.g., those caused by the subject’s body motion or degraded sensing
quality. Then, temporal segmentation is applied to the filtered signal to split the data according
to the desired time windows, e.g., periods when various stimuli were applied or when the subject
rested between the stimuli. Finally, the segmented data are normalised with respect to an estab-
lished baseline measure or the segment calibration data to diminish variance across individual
recordings.
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Data processing is followed by feature extraction. The features mostly depend on the selected
technology. For most physiological signals, e.g., EEG and GSR data, the extracted features can
be grouped into temporal and transform features. Temporal features represent the variability of
the signal in the amplitude and frequency domains and include features such as the minimum,
maximum, and mean signal energy, changes in frequency, and variance of the amplitude. Fourier
or wavelet transform is typically applied to the captured signal to decompose it into the low-
frequency and high-frequency components. Then, transform features characterising the signal in
each component can be extracted.

3.4 Machine Learning for Personality Detection

The last component of the framework deals with the detection (or prediction) of personality traits.
This is done using standard machine learning paradigms, where the learning component is trained
on historical labelled data, e.g., from a pool of past subjects, and predicts labels for unknown data,
i.e., traits of a new target subject, whose traits are being detected.

A broad range of supervised machine learning methods are applicable for this task. Generally,
these are trained on a set of data labelled with the correct personality trait—the extracted features
of subjects with known personality traits, where the trait values of the training data subjects serve
as the labels for the feature vectors. Then, the values of the same traits are predicted for new target
subjects, whose personality is unknown, given only the feature vectors of these subjects. Among
popular supervised machine learning methods that can be applied for this task are decision trees
(the trait value is predicted after inspecting the values of the extracted features individually and
constructing if-then rules), regression models (the trait value is represented as a weighted linear
combination of the values of the extracted features), and ensembles of classifiers that combine the
predictions of several individual models.

It is also important to mention two potential challenges that may impede the application of ma-
chine learning methods. The first one is the lack of sufficiently large training data. Due to the sensi-
tive and often complex nature of capturing physiological responses of humans, the data collection
will mostly occur in a lab environment. This limits the volumes of data that can practically be
collected and, as such, machine learning methods that can operate on limited training data may be
preferred. The second challenge refers to the multitude of extracted features. For example, an EEG
sensor may capture brain signals on 14 channels. If these are segmented and a number of features
is extracted for every segment-channel combination, the overall number of features may quickly
scale up to the thousands, which will potentially lead to overfitting. In this case, appropriate feature
selection may need to be applied to select a smaller set of informative input features [86].

4 SETTING AND METHODS

This work describes an instantiation of the above framework. Namely, we detect personality traits
using the eye-tracking (ETG) and GSR data, reflecting autonomic nervous activity elicited by phys-
iological responses to affective image and video stimuli. The following subsections outline the
personality models and traits, discuss the details of the framework application (video and image
stimuli, sensors, feature extraction and selection, and trait classifiers), and finally outline the data
collection methodology and evaluation setting.

4.1 Personality Models and Traits

We focus on three well-validated models: D3, BIS/BAS, and HEXACO. Table 1 briefly presents
these models, their traits, and the relevant facets included in each model. Altogether, we exam-
ined 16 variables capturing the traits. To establish ground truth values for the 16 variables used as
the class labels for the machine learning component, we deployed five well-validated personality
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Table 1. Summary of the Studied Personality Models and Traits

Trait Description

Dark Triad (D3)

Primary
Psychopathy

Primary psychopathy is the emotional aspect of psychopathy, characterised by a lack of
empathy and deficit in processing negative feelings. It is associated with callousness,
remorseless, and failure to accept responsibility [20].

Secondary
Psychopathy

Secondary psychopathy is the behavioural aspect of psychopathy, characterised by
antisocial acts. It is associated with instability and aggression, although it does not arise
from deficit in processing negative feelings [20].

Tactics Tactics is a component of Machiavellianism that focuses on exploitation of others.
People high in tactics tend to engage in interpersonal exploitation, willingly and
skilfully manipulating their peers in pursuit of personal goals [65].

Views Views is a component of Machiavellianism that focuses on the lack of trust. People high
in views hold a cynical view of the human nature, have a hyper-vigilance to being
manipulated, with a view that others cannot be trusted [65].

Morality Morality is a component of Machiavellianism that focuses on disbelief in the moral
norms. People high in morality (more precisely, immorality) disregard conventional
morality of the society, which would condemn their actions [65].

Narcissism Narcissism involves excessive self-love. People high in narcissism have inflated sense of
self-importance and self-admiration, with tendencies toward grandiose ideas, fantasied
talents, and defensiveness to criticism [56].

Behavioural Inhibition System and Behavioural Activation System (BIS/BAS)

BIS BIS measures the motivation to avoid aversive outcomes. BIS is responsible for the
experience of negative feelings such as fear, frustration, and sadness in anticipation for
punishment. People high in BIS are more prone to anxiety [14].

BAS Drive BAS Drive measures the motivation to persistently pursue the desired goals. People
high in BAS Drive are more eager to engage in goal-directed efforts and to pursue their
goals with perseverance [14].

BAS Fun Seeking BAS Fun Seeking measures the motivation to find novel rewards spontaneously. People
high in BAS Fun Seeking have a stronger desire for new rewards and a willingness to
approach rewarding events on the spur of the moment [14].

BAS Reward
Responsiveness

BAS Reward Responsiveness measures the sensitivity to pleasant reinforcers in the
environment. People high in BAS Responsiveness are sensitive to rewards and positive
stimuli and positively respond to the anticipation of reward [14].

HEXACO Personality Traits

Agreeableness Agreeableness concerns how people interact and maintain relationships with others.
People high in agreeableness build warm relationships, are empathetic, altruistic,
good-tempered, and less prone to conflicts [67].

Conscientiousness Conscientiousness relates to the people’s will to achieve their goals. People high in
conscientiousness are more diligent, dutiful, organised, self-disciplined, and strive for
achievements [67].

Extraversion Extraversion relates to the sociability and assertiveness of people. People high in
extraversion are sociable, gregarious, and seek excitement in interpersonal interactions
with others [67].

Honesty Honesty is associated with humility and sincerity of people. People high in honesty are
generally loyal, truthful and direct, less hypocritical, less manipulative, and less
deceitful [67].

Resiliency Resiliency (or, the inverse trait, Neuroticism) concerns the emotional stability of people.
People high in resiliency are better at emotional control, less impulsive, and less prone
to anxiety and depression [67].

Openness Openness is associated with people’s acceptance of experiences and their creativity.
People high in openness are more creative, curious, and have a stronger desire for novel
experiences and intellectual exploration [67].
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Fig. 2. The arousal-valence scores of the selected images.

inventories. For the six D3 traits, we use three inventories: (i) Levenson’s Self-report Psychopa-
thy inventory, which includes 26 items assessing psychopathy, both primary and secondary [45];
(ii) Narcissistic Personality Inventory (NPI-16), which is a short 16-item version of the full NPI-40
inventory measuring narcissism [2]; and (iii) MACH-IV, which is a trimmed 20-item inventory ex-
tracted from the full MACH inventory measuring Machiavellianism, including the tactics, morality,
and views traits [63]. The four BIS/BAS traits (BIS, BAS Drive, BAS Fun Seeking, and BAS Reward
Responsiveness) are measured using the BIS/BAS inventory containing 24 items [28], whereas the
six HEXACO traits (agreeableness, conscientiousness, extraversion, honesty, resiliency, and open-
ness) are measured using a 25-item inventory [74]. It should be highlighted that all the inventories
used in this work are well-studied and validated tools, used in personality research for a range of
personality detection tasks.

A score for the above 16 variables for each subject is discretised and used as a class label for
the recorded ETG and GSR signals to create training data for the trait classifiers. The classifiers
are trained to predict the trait values from the collected data and are then used to determine the
trait class label for a new subject. We will detail the performance evaluation metrics later in this
section.

4.2 Affective Image and Video Stimuli

In this work, we applied affective stimuli, expected to evoke the subjects’ emotional responses.
In particular, we opted for still images and short video stimuli, because we wanted to develop a
system able to provide a fast psychological profiling.

Images. We used a subset of images from the International Affective Picture System (IAPS)
dataset [44]. This is a well-studied dataset, where each image is associated with numeric scores
corresponding to different emotions. We focused on the arousal and valence scores and clustered
images into five groups: high arousal and high valence (HAHV, strongly positive emotions), low
arousal and high valence (LAHV, mildly positive emotions), low arousal and low valence (LALV,
mildly negative emotions), high arousal and low valence (HALV, strongly negative emotions), and
neutral images (neutral emotions, no specific arousal applies). A set of 50 IAPS images—10 for each
group—was selected as the image stimuli. Figure 2 shows the arousal-valence scores of the selected
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images.1 As can be seen, the selected images demonstrate low intra-cluster distance, in particular
the two groups of high-arousal images.

The images from each group were shown for 8 seconds each, in blocks of five of the same
arousal and valence, and in the same order of blocks (HAHV, LAHV, neutral, LALV, HALV) to all
the subjects. Each block was preceded by a cool-down period of 15 seconds, during which a black
cross on a white background was shown, allowing recovery from previous stimuli. The subjects
could neither pause the presentation nor skip images, so the overall duration of the image stimuli
was 9.5 minutes.

Videos. We used videos from the English version of the FilmStim dataset [68]. Video stim-
uli representing seven emotion types—fear, tenderness, anger, neutral, sadness, amusement, and
disgust—were selected based on their pre-annotated arousal-valence scores. These video stimuli
were extracted from the following movies: “Seven,” “Life is Beautiful,” “American History X,”
“Blue,” “Dangerous Mind” “A Fish Called Wanda,” and “Trainspotting.” The duration of the videos
was between 25 and 132 seconds to ensure that the emotional peak is reached while avoiding
subject fatigue.

The videos were shown in the same order to all the subjects and broken down into two blocks
to minimise carry-over effects. The first block included videos evoking fear, tenderness, and anger,
while the second included videos evoking neutral emotions, sadness, amusement, and disgust. A
cool-down period of 30 seconds was allocated after each video, during which a black cross on a
white background was displayed. The overall duration of the video stimuli was 14 minutes.

4.3 ETG and GSR Sensors

We used SMI eye-tracking glasses2—lightweight wearable glasses able to capture natural eye and
gaze behaviour through two infrared cameras focusing on each eye. A relatively wide field-of-
view angle is captured: 60◦ horizontally and 46◦ vertically. Eye data are estimated in real-time
and transmitted to a server storing the data and producing various metrics. Eventually, the sensor
captures and provides commonly used eye data, such as pupil dilation (along X and Y axes), eye
saccades and fixations, blinks, and relative gaze direction. The accuracy and availability of these
features depend on the duly controlled illumination conditions and subject movement.

We collected GSR data using a Procomp Infiniti3 integrated biometrics acquisition device. This
measures skin conductance created by micro-sweating, controlled by the sympathetic nervous
system [71, 87]. It is connected to the experiment computer via an optic fibre link and USB adapter
to prevent electromagnetic noise, and the raw data is timestamped using the computer clock with
a millisecond resolution. The GSR data are post-processed and synchronised with ETG and other
task data using synchronisation blocks at the start and end of the experiment.

Figure 3 shows the actual experiment setup with a subject wearing the ETG and GSR sensors.
We also captured EEG responses, but in this analysis below, we focus only on ETG and GSR as
sensing technologies that can be deployed unobtrusively in practical settings.

4.4 Data and Features

Features extracted from the captured ETG data relate to eye activity and can be categorised into
three measurement groups: eye blink, eye movement (saccades and fixations), and pupillary re-
sponse. Specifically, we extracted ten ETG features listed in the top part of Table 2. As for the GSR
signal, we expanded traditional GSR measurements with features reflecting the power and statis-

1Due to the terms of use of IAPS, samples of the images are not included.
2https://www.smivision.com/.
3http://thoughttechnology.com/index.php/procomp-infiniti-320.html.
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Fig. 3. Lab data collection setup.

tical characteristics of the raw signal, so we extracted nine GSR features listed in the bottom part
of Table 2. These features are in line with the features used in prior works [15, 57, 85].

The above features were populated for 17 temporal blocks. The images were shown in ten blocks,
as two sequences of five blocks corresponding to the arousal-valence groups: HAHV, LAHV, LALV,
HALV, and neutral. In addition, each video (fear, tenderness, anger, neutral, sadness, amusement,
and disgust) was considered as an individual temporal segment. Hence, the segmentation splits
the signal into ten temporal image blocks and seven video blocks. Cool-down periods between the
blocks were used as the baseline data.

For the ETG signal, we focussed on blinks, fixations, saccades, and pupil features, which exhibit
user-specific characteristics and vary over the time of day. Hence, the process started by a min-
max normalisation of the raw feature values in each temporal block with respect to the baseline
observed in the cool-down period immediately preceding the block. This was done to ensure each
block can be compared to other blocks in different conditions. Then, all features were segmented
according to each block.

For GSR, high-frequency noise is traditionally removed using a low-pass filter; hence, a 5-order
Butterworth filter was used to filter out the frequency components above 0.5 Hz. Then, the signal
mean and Hjorth parameters were calculated for each block [34] to extract time-based features.
Hjorth parameters are popular in EEG signal processing, as they extract a small set of slope-related
features from non-stationary signals with irregular or non-uniform shapes. The energy of the sig-
nal was computed using the Welch’s power spectrum density estimation [80]. We applied convex
optimisation to break the signal into the tonic and phasic components [29, 30] and we also con-
sidered the area under the decomposed phasic signal.

4.5 Feature Selection

As the stimuli were split into 17 temporal blocks, and ten ETG and nine GSR features were ex-
tracted for each block, the overall number of features was in the hundreds. The sheer number of
features also introduces the risk of overfitting, i.e., situation where the training of the trait pre-
dictors overuses subset of features that are good for the specific training data and may not scale
beyond this [41].
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Table 2. Extracted ETG and GSR Features

ETG features

Blink Rate (BR) Average number of blinks per second; blink count divided by block duration.

Saccade Rate (SR) Average number of saccades per second; saccade count divided by block duration.

Saccade Amplitude
(SA)

Average angular distance of the saccades (in ◦), over all saccades in the block.

Average Saccade
Velocity (ASV)

Average angular velocity of the saccades (◦ per second), over all saccades in the
block.

Peak Saccade Velocity
(PSV)

Average of the peak angular velocities (◦ per second) of each saccade in the block.

Fixation Rate (FR) Average number of fixations; fixation count divided by block duration.

Fixation Duration (FD) Average duration of fixations; cumulative duration of fixations divided by their
count.

Saccade-Fixation Ratio
(SFR)

Ratio between the duration of saccades (search) and fixations (processing) in the
block.

Horizontal pupil size
(PX)

Average horizontal diameter (in pixels) of the pupils over the duration of the
block.

Vertical pupil size (PY) Average vertical diameter (in pixels) of the pupils over the duration of the block.

GSR features

Signal mean (SM) Mean value of the raw skin conductance signal over the duration of the block.

Signal energy (SE) Mean energy of the raw signal estimated using Welch’s power spectral density.

Nerve activations rate
(NAR)

Average number of sudomotor nerve activations over the duration of the block.

Hjorth activity (HA) The activity parameter, representing the signal power, variance of a time function.

Hjorth mobility (HM) The mobility parameter, representing the mean frequency of the signal.

Hjorth complexity
(HC)

The complexity parameter, representing temporal changes in frequency.

Phasic peaks rate
(PPR)

Average number of phasic peaks over the duration of the block.

Phasic mean
amplitude (PMA)

Mean value of the phasic peak amplitude over the duration of the block.

Phasic area (PAR) Value of the integrated phasic component over the duration of the block.

To mitigate the risk of overfitting, we conducted feature selection using the Correlation-based
Feature Selection (CFS) algorithm [32]. The main idea underpinning CFS is that a good feature
subset should contain features that are highly correlated with the class label, i.e., very informative
for the predictions, but weakly correlated with other features, i.e., not redundant. Essentially, CFS
defines a heuristic measure based on these two criteria and uses a search algorithm to find the
feature subset that maximises this measure.

CFS was applied for predictions of each trait individually and was found to substantially reduce
the number of features used for the predictions. Table 3 summarises the number of selected features
for the ETG and GSR signals. We observe that the number of selected features was between three
and ten for ETG, and between five and nine for GSR. This accounts for a considerable feature set
reduction of over 91% for the ETG signal and over 94% for GSR, and reduces the risk of overfitting.

4.6 Trait Prediction Models

As our subjects were not recruited on psychological grounds, we assume that they were unlikely
to exhibit extremely low or high trait values and that their trait values distribute normally. Hence,
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Table 3. Sample Feature Selection Results

Signal Selected Smallest set Largest set Reduction

ETG 3–10 BAS Reward Responsiveness Openness 91.5%–97.5%
GSR 5–9 Secondary Psychopathy, BIS, BAS Reward Responsiveness, 94.1%–96.7%

Agreeableness, Honesty, Conscientiousness,
Openness Extraversion

Table 4. Parameterisation of Weka Classifiers

Classifier Weka Name Parameters

AB meta.AdaBoostM1 tree type: DT (J48), num. of iterations (trees combined): 10
DT trees.J48 confidence factor for pruning: 0.25, min. num. of instances

per leaf: 2
LR functions.Logistic ridge value: 1.0E-8
NB bayes.NaiveBayes normal distribution probability density for numeric features
RF trees.RandomForest num. of iterations (trees combined): 100, num. of randomly

selected features: int(loд2(num. of predictors)+1)
SVM functions.SMO kernel: polynomial, complexity parameter: 1, epsilon: 1.0E-12,

tolerance: 0.001
kNN lazy.IBk num. of neighbours: 3, distance: Euclidean

raw trait values obtained through the personality inventories were discretised into three classes—
low, medium, and high—for each trait, using equal-frequency binning. This introduced potential
risk of discretising subjects with similar trait values into different classes. However, this allowed
us to represent the trait prediction task as a classification problem and use the discrete class labels
for training and predictions.

To deploy the predictors, we used standard implementations of seven classifiers offered by
Weka, an open-source data mining toolbox [33]. Specifically, the following seven classifiers
were deployed: AdaBoost (AB), Decision Tree (DT), Logistic Regression (LR), Naive Bayes (NB),
Random Forest (RF), Support Vector Machine (SVM), and k-Nearest Neighbour (kNN). As we
used standard off-the-shelf implementations of established classification methods, we do not in-
clude the descriptions of these algorithms and refer the reader to Reference [33] for further
details. We used the default Weka’s parameterisation for all the classifiers, except for (i) the
number of neighbours in kNN was set to k = 3, and (ii) decision trees rather than decisions
stumps were combined in AB. The key parameters of the deployed classifiers are detailed in
Table 4.

A separate classifier was trained for the predictions of each trait, such that we ended up with
16 classifiers. One training data point corresponds to one subject and includes the values of the
selected features and the trait label assigned based on the discretised scores for the trait. Due to the
equal-frequency binning, the classification problem was class-balanced, as the number of training
data points in every class, and for every trait, was identical. Given the block features of the training
subjects, their trait labels, and the block features of the target subject, the goal of the classifier was
to predict the trait class label for the target subject.

To evaluate the performance of the classifiers, we applied the leave-one-out methodology, the
most appropriate methodology for our data, which allows to obtain accurate performance esti-
mates even for small and sparse datasets [83]. This involves repeated runs using the data of all but
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Fig. 4. Experimental workflow: stimuli and inventories.

one subject to train the classifiers, while the data of the last target subject are used for testing. At
each run, the goal of the classifier was to predict the trait class label for the target subject. The
accuracy of the prediction was assessed against the withheld class label of the trait for this subject.
The process was repeated using another subject as a target until all subjects were tested. Finally,
the average accuracy over all 21 runs was calculated and reported.

4.7 Data Collection and Evaluation Setting

In total, 21 subjects were recruited for this experiment, under ethics clearance from a nationally
accredited committee. The subjects were either students or staff of a research organisation. All
but one subject reported good or native English proficiency. Eighteen subjects were aged 18 to 30,
whereas the other 3 were older than 30. The data were collected in a controlled laboratory setting
under fixed illumination and room temperature conditions (see Figure 3), individually for every
subject.

The workflow of the conducted data collection is shown in Figure 4. The whole procedure took,
on average, 55 minutes. At the start, the subjects were provided with an overview of the experiment
and their written consent was obtained. The eye-tracking glasses and skin conductance sensor
were then mounted and calibrated to achieve the best signal quality. The subjects were instructed
to sit down and relax, to acquire a baseline signal, and minimise artefacts related to movement.

The ground truth data, also used as the target class label for the traits, was obtained by admin-
istering the personality inventories for the 16 traits listed in Table 1. Note that the inventories
were interleaved with the image and video stimuli to avoid fatigue and provide additional cool-
down time that would further diminish carry-over effects. As shown in Figure 4, there were six
inventories (marked in green). The average cumulative completion time of these inventories was
11 minutes.

We show in Table 5 the descriptive statistics of the raw scores obtained for the 16 personality
traits. The data include the overall range of values in the inventory, the mean and standard devi-
ation obtained for the 21 subjects, and the brackets of the low, medium, and high classes within
each trait. Despite the relatively small sample size, the observed ranges generally correspond to
the established D3 and BIS/BAS norms, whereas there exists little evidence of the HEXACO norms
[38, 45, 73]. Overall, very few scores are placed at the extremities of the trait ranges4 although the
equal-frequency binning ensures uniform distribution of subjects across the classes.

The subjects were exposed to the image and video stimuli, and the ETG and GSR sensors were
used to capture the physiological responses. We processed the collected data, populated the fea-
tures for the temporal blocks, and fed them into the classifiers, which were trained to predict
the labels of the traits. We used the classification accuracy metric to evaluate the performance of
the classifiers. This is the ratio between the number of correctly predicted trait class labels (low,

4It should be noted that this could have led to a biased training data and less reliable predictive accuracy for extreme values

of the traits. We elaborate on this limitation of our work in the concluding sections of the article.
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Table 5. Descriptive Statistics of Personality Scores (the Range Column Shows

Theoretical Trait Ranges, while Low, Medium, and High Reflect Our Study Observations)

Trait Range Mean SD Low Medium High

Prim. Psychopathy [16,64] 30.05 5.21 [21,26] [28,32] [33,40]
Second. Psychopathy [10,40] 20.68 2.34 [17,19] [20,21] [22,25]
Tactics [9,45] 23.91 3.96 [19,20] [21,25] [26,32]
Views [9,45] 23.68 4.06 [17,21] [22,24] [25,32]
Morality [2,10] 5.18 1.53 [2,4] [5,5] [6,8]
Narcissism [0,100] 29.47 22.14 [0,13] [18,32] [37,82]
BIS [7,28] 20.23 3.04 [15,18] [19,20] [21,26]
BAS Drive [4,16] 11.00 1.67 [9,9] [10,11] [12,14]
BAS Fun Seeking [4,16] 11.59 1.94 [8,10] [11,12] [13,15]
BAS Reward Resp. [5,20] 15.64 1.89 [13,14] [15,15] [16,20]
Agreeableness [4,20] 13.95 2.17 [10,13] [14,14] [15,18]
Conscientiousness [4,20] 13.14 2.80 [9,11] [12,14] [15,20]
Extraversion [4,20] 14.14 2.42 [11,12] [13,14] [15,19]
Honesty [5,25] 17.91 2.91 [14,15] [16,19] [20,24]
Resiliency [4,20] 13.64 2.63 [9,12] [13,15] [16,19]
Openness [4,20] 13.82 2.86 [9,12] [13,14] [16,19]

medium, or high) and the total number of predictions made by the classifier. We also computed the
precision and recall of the predictions and combined them into the F1 score, which is the harmonic
average of precision and recall. The reported statistical significance test results were produced by
a Friedman test followed by post hoc pairwise Wilcoxon signed-rank tests, with a Bonferroni cor-
rection for the number of comparisons by using an alpha of .05 ÷ 3 = .0167 and .05 ÷ 7 = .0071
for comparison between three and seven groups, respectively. Such non-parametric tests are used
due to the non-normal data distribution. Given the limited sample size, we also used the two-tailed
exact test to best estimate the metrics.

5 RESULTS

The following questions guide our analysis:

—Q1: What machine learning methods can be used for detecting traits?
—Q2: What traits can be detected with high/low levels of accuracy?
—Q3: What type of stimuli is most informative for trait detection?
—Q4: What features are most predictive of each personality model?
—Q5: What physiological signal is most informative for trait detection?

5.1 Classifier Performance

Q1 deals with the performance of various machine learning methods applied for trait detection.
We assess every classifier through the mean accuracy and mean F1 scores, both computed across
all the traits and all the subjects. Table 6 shows the performance of the seven classifiers using both
the image and video stimuli. The best-performing method is highlighted in bold.

Considering the ETG signal, we observe that NB, the most accurate classifier, achieves acc =
0.860, and outperforms other classifiers by 9.1% or more. LR, the second-best classifier, achieves
acc = 0.789, followed by SVM and kNN, achieving acc = 0.756 and acc = 0.726, respectively. The re-
maining classifiers are substantially lower—achieving accuracy between 0.351 and 0.631. F1 scores
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Table 6. Performance of the Seven Classifiers

Signal Metric AB DT LR NB RF SVM kNN
ETG Accuracy 0.539 0.351 0.789 0.860 0.631 0.756 0.726

F1 score 0.535 0.344 0.784 0.860 0.625 0.752 0.714
GSR Accuracy 0.542 0.241 0.792 0.818 0.625 0.762 0.732

F1 score 0.539 0.234 0.787 0.819 0.618 0.758 0.727

exhibit the same trends as the accuracy: NB achieves the highest F1, which is higher than the
second-best LR by 9.7%. Then come SVM and kNN, while the other classifiers are all substantially
less accurate.

Turning to the GSR signal, we observe similar results, where NB achieves slightly lower accuracy
and F1 scores. NB still outperforms LR, the second-best classifier by 3.4% in terms of accuracy and
by 3.9% in terms of F1. Like for the ETG signal, the third-best classifier is SVM, which is marginally
inferior to LR both for accuracy and F1. These three are followed by kNN, while the remaining
classifiers all achieve accuracy and F1 scores below 0.625.

The differences in ETG accuracy and F1 score are statistically significant (Friedman p < .001
for both). The pairwise post hoc comparisons of NB against each other classifier show that the
superiority of NB is statistically significant for both accuracy and F1 score (Wilcoxon p < .0071,
Bonferroni correction for seven tests). Similarly, the differences in GSR accuracy and F1 score
are statistically significant (Friedman p < .001 for both). The pairwise post hoc comparisons for
GSR also show that the superiority of NB is statistically significant (Wilcoxon p < .0071), except
against LR (p = .141 for accuracy and p = .078 for the F1 score) and SVM (p = .027 for accuracy
and p = .056 for F1).

The results using the ETG and GSR signals clearly demonstrate that the NB classifier performs
well in combination with CFS, a correlation-based feature selection method. NB’s performance
is adversely affected by highly correlated input features, since it assumes that the features are
independent from each other within the class [32]. By applying CFS prior to the classification,
we select a subset of less correlated features, which aligns with NB’s underlying assumption and
contributes to its predictive performance. Likewise, LR achieves high classification accuracy, when
preceded by the CFS feature selection of non-correlated input features [36, 83]. The DT classifier
achieves the lowest performance. A closer examination shows that the generated trees are shallow,
examining 4–5 features only, selected based on their information gain, which is insufficient for
the target classification task. As expected, tree ensembles implemented by AB and RF improve
the performance of DT. However, their performance is still not competitive with NB and LR. The
similarity- and separation-based kNN and SVM classifiers achieve better performance than the
tree-based methods but are still inferior to NB.

Hence, revisiting Q1, we conclude that for our dataset and personality detection task, Naive

Bayes is the most appropriate machine learning method out of the seven classifiers under investi-
gation. In the following experiments, we will primarily focus on the results achieved by the NB
classifier.

5.2 Individual Trait Detection

Q2 deals with the detection of individual personality traits. Table 7 shows the accuracy and F1
scores of the NB classifier using the ETG signal when predicting each of the 16 traits individually.
For benchmarking purposes, we also show the highest accuracy achieved for the trait by any
other classifier (this best-other classifier is named in brackets). The best-performing method for
each trait is highlighted in bold. The average accuracy and F1 scores of NB for each psychological
model and across all the 16 traits are also shown.
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Table 7. Performance of NB and Best-other Classifiers Using the ETG Signal

accuracy F1 score

Trait Best-Other NB Best-Other NB

Primary Psychopathy 0.762 (kNN) 0.762 0.761 (kNN) 0.756
Secondary Psychopathy 0.810 (SVM) 0.857 0.812 (SVM) 0.856

Tactics 0.905 (SVM) 0.905 0.905 (SVM) 0.905

Views 0.905 (LR,SVM) 0.905 0.904 (SVM) 0.904

Morality 0.810 (LR) 0.905 0.798 (LR) 0.906

Narcissism 0.762 (LR) 0.810 0.760 (LR) 0.812

Mean D3 0.857 0.856

BIS 0.905 (LR) 0.905 0.904 (LR) 0.904

BAS Drive 0.857 (SVM) 0.810 0.853 (SVM) 0.819
BAS Fun Seeking 0.952 (SVM) 0.952 0.952 (SVM) 0.952

BAS Reward Responsiveness 0.905 (SVM) 0.857 0.897 (SVM) 0.850
Mean BIS/BAS 0.881 0.882

Agreeableness 0.857 (LR) 0.905 0.856 (LR) 0.905

Conscientiousness 0.714 (LR) 0.810 0.717 (LR) 0.810

Extraversion 0.714 (LR) 0.810 0.716 (LR) 0.811

Honesty 0.762 (LR) 0.810 0.762 (LR) 0.810

Resiliency 0.762 (AB,LR,RF,kNN) 0.905 0.760 (AB,RF) 0.905

Openness 0.857 (LR) 0.857 0.856 (LR) 0.858

Mean HEXACO 0.849 0.850

Mean Overall 0.860 0.860

Comparing NB with the other best-performing classifier, we observe several trends. NB yields
the highest accuracy for eight traits, for two traits SVM outperforms NB, and in six cases NB is
as good as the other best-performing classifier. The same observations are strengthened consid-
ering the F1 scores, as NB outperforms the other classifiers for nine traits. We also analyse the
performance of NB across the three psychological models. For D3, NB beats the accuracy of the
best-other classifier for Secondary Psychopathy, Morality, and Narcissism, while LR and SVM are
the dominant best-other classifiers. For BIS/BAS, SVM outperforms NB for BAS Drive and BAS Re-
ward Responsiveness. For HEXACO, NB clearly dominates other classifiers, beating them for all the
traits but Openness. Here, LR is the best-other classifier, coming second for five traits. Overall, LR is
the best-other classifier for the ETG signal. The F1 scores largely mirror the accuracy observations.
We do not test the statistical significance of these results, as NB is not compared against a specific
algorithm, but rather against the best-performing other classifier, which varies across the traits.

Table 8 presents the accuracy and F1 scores of predictions of the 16 traits individually using
the GSR signal. Considering the accuracy scores, NB is the best-performing classifier for 4 traits,
performs on par with the best-other classifier for 8 more traits, and it is outperformed for 4 traits
only. In terms of the F1 scores, NB is the best-performing classifier for 7 traits, while it is out-
performed also for 7 traits, and for two the observed performance is similar. Here, we also do not
report the significance scores, as for every trait NB is compared against a different best-performing
algorithm.

Notably, for both the GSR and ETG signals, LR is slightly better than SVM in terms of accuracy.
Inspecting the accuracy scores for the individual traits, LR is the best-other classifier for 10 traits
for both signals, whereas SVM is the best for 6 traits for ETG and 7 traits for GSR. For the ETG
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Table 8. Performance of NB and Best-other Classifiers Using the GSR Signal

accuracy F1 score

Trait Best-Other NB Best-Other NB

Primary Psychopathy 0.857 (SVM) 0.857 0.853 (SVM) 0.857

Secondary Psychopathy 0.714 (LR) 0.714 0.717 (LR) 0.727

Tactics 0.952 (LR,SVM) 0.952 0.952 (LR,SVM) 0.952

Views 0.857 (LR,SVM,kNN) 0.857 0.859 (LR) 0.853
Morality 0.810 (LR,kNN) 0.762 0.810 (LR) 0.757
Narcissism 0.714 (LR,kNN) 0.762 0.713 (kNN) 0.766

Mean D3 0.817 0.819

BIS 0.905 (LR) 0.905 0.904 (LR) 0.904

BAS Drive 0.619 (kNN) 0.667 0.616 (kNN) 0.655

BAS Fun Seeking 0.905 (SVM) 0.905 0.898 (SVM) 0.904

BAS Reward Responsiveness 0.952 (SVM) 0.905 0.953 (SVM) 0.903
Mean BIS/BAS 0.845 0.842

Agreeableness 0.857 (LR) 0.762 0.858 (LR) 0.769
Conscientiousness 1.000 (SVM) 0.952 1.000 (SVM) 0.952
Extraversion 0.667 (kNN) 0.762 0.682 (kNN) 0.770

Honesty 0.667 (LR,SVM) 0.667 0.664 (SVM) 0.656
Resiliency 0.857 (LR) 0.810 0.849 (LR) 0.811
Openness 0.810 (LR) 0.857 0.810 (LR) 0.857

Mean HEXACO 0.802 0.803

Mean Overall 0.818 0.819

signal, only SVM outperforms NB, namely, for BAS Drive and BAS Reward Responsiveness. For
the GSR signal, both LR and SVR aee able to outperform NB for some of the traits. The same trend
holds for the F1 scores, where LR is the most represented second-best classifier, closely followed
by SVM, respectively, for 8 and 6 of the ETG traits, and 7 and 6 of the GSR traits.

Combining the results in Tables 7 and 8, we re-affirm our earlier finding that NB is the most
appropriate method for personality trait predictions. For all but 1 trait predicted with ETG, NB
achieves acc = 0.810 or greater. For GSR it achieves an accuracy of at least 0.667 for all traits.
This is twice better than the accuracy of a random guess in a three-class classification. Out of the
16 studied traits, NB predicts 9 traits with acc = 0.900 or greater, and additional 7 with accuracy
between 0.800 and 0.900, considering both the ETG and GSR signals. Overall, the better performing
ETG signal achieves mean acc = 0.857 for the D3 model, acc = 0.881 for BIS/BAS and acc = 0.849
for HEXACO. Considering the best-other classifier, we conclude (in line with Table 6) that LR
is second-best for the ETG and GSR. Further refining this, we note that SVM can be a strong
alternative to NB for BIS/BAS and potentially D3 traits, for both ETG and GSR signals.

To explain these results, we resort to the very nature of the predicted traits. Established psy-
chology research classified personality traits into three broad categories: those driven by affect, by
cognitions, or by behaviours. We group the latter two into the non-affective category. Specifically,
References [79] and [37] associated Machiavellianism with the affective rather than cognitive as-
sessment. As the deployed stimuli were validated affective images and videos, they presumably
evoked emotional responses and, as a result, we observe the Tactics, Views, and Morality traits
(the former with both ETG and GSR), all being predicted with acc > 0.900. Similarly, Reference
[38] analysed the links between the BIS/BAS traits and affect and found BIS and BAS Fun Seeking
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Table 9. Performance of the Image and Video Stimuli for the ETG Signal

accuracy F1 score

Trait Image Video Both Image Video Both

Primary Psychopathy 0.667 0.619 0.762 0.664 0.624 0.756

Secondary Psychopathy 0.810 0.857 0.857 0.806 0.860 0.856
Tactics 0.810 0.667 0.905 0.804 0.649 0.905

Views 0.714 0.905 0.905 0.705 0.904 0.904

Morality 0.810 0.857 0.905 0.800 0.857 0.906

Narcissism 0.619 0.762 0.810 0.619 0.748 0.812

Mean D3 0.738 0.778 0.857 0.733 0.774 0.856

BIS 0.714 0.762 0.905 0.686 0.755 0.904

BAS Drive 0.667 0.714 0.810 0.654 0.718 0.819

BAS Fun Seeking 0.857 0.714 0.952 0.857 0.718 0.952

BAS Reward Responsiveness 0.571 0.857 0.857 0.558 0.850 0.850
Mean BIS/BAS 0.702 0.762 0.881 0.689 0.760 0.882

Agreeableness 0.857 0.762 0.905 0.855 0.766 0.905

Conscientiousness 0.619 0.762 0.810 0.603 0.765 0.810

Extraversion 0.810 0.619 0.810 0.814 0.614 0.811
Honesty 0.714 0.810 0.810 0.712 0.806 0.810

Resiliency 0.762 0.810 0.905 0.714 0.804 0.905

Openness 0.762 0.762 0.857 0.763 0.753 0.858

Mean HEXACO 0.754 0.754 0.849 0.744 0.752 0.850

Mean Overall 0.735 0.765 0.860 0.726 0.762 0.860

to be correlated with positive and negative affect, respectively. We observe that these two BIS/BAS
traits are predicted with acc > 0.900 using both ETG and GSR, which, given the affective stimuli, is
consistent with Reference [38]. Considering the HEXACO traits, Reference [92] identified Neuroti-
cism, the Big-5’s counter-part of Resiliency, to be the only trait associated with affect. Inspecting
the results in Table 7, we find Resiliency and Agreeableness being predicted with acc > 0.900, while
the predictions of other HEXACO traits are less accurate.

Hence, we summarise Q2 and conclude that the affective nature of the stimuli allows us to gen-
erate more accurate predictions for traits associated with affect, in several cases, regardless of the
applied sensing technology. Other personality traits, associated with either behaviours or cogni-
tions, are generally predicted with a lower degree of accuracy.

5.3 Image vs. Video Stimuli

Next, we turn to Q3 and assess whether image or video stimuli are more predictive of the person-
ality traits. For this, we separate the signals captured in response to the image stimuli from those
captured in response to the video stimuli and use them individually for feature extraction, classi-
fier training, and trait predictions. Table 9 shows the mean performance obtained for each trait by
the NB classifier and ETG signal, using either the image or video stimuli, and then performance
of the combined image and video stimuli (the column “Both” is identical to the “NB” column in
Table 7). The accuracy and F1 scores are shown separately, and the best-performing stimuli (or
combination of stimuli) for every trait is highlighted in bold.

Focussing on the classification accuracy, we observe that the video stimuli achieved a higher
overall mean accuracy than images, 0.765 vs. 0.735. This observation is valid for the mean scores
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obtained for the D3 (0.778 vs. 0.738) and BIS/BAS (0.762 vs. 0.702) psychological models, whereas
for the HEXACO model, images and videos exhibit the same acc = 0.754. The same observation is
valid also for the F1 scores, where the video stimuli outperformed the images for all three mod-
els and overall. The superiority of the videos over the images can potentially be explained by the
stronger affective nature of the former, which presumably evokes stronger emotional and physio-
logical responses, facilitating an easier detection of the traits [12]. Although there were statistically
significant differences between images and videos (Friedman test p < .01 for both accuracy and
F1 scores), Wilcoxon post hoc tests indicated that the differences between the two types of stimuli
were not significant, p = .424 for the accuracy and p = .323 for the F1 scores.

Analysing the traits individually, we observe that the video stimuli achieve a higher accuracy
than the images for 10 traits, images outperform the videos for 5 traits, and for Openness they
achieve the same accuracy. For the F1 scores, videos are superior to the images for 10 traits, while
being inferior for 6. The better performance of the video stimuli is particularly pronounced for the
BIS/BAS model, where they outperform the images for three out of four traits, both for accuracy
and F1. Notably, the video stimuli accuracy outperform the images by more than 10% for 5 traits:
Views, Narcissism, BAS Reward Responsiveness, Conscientiousness, and Honesty. However, the
images outperform the videos by more than 10% for 4 traits: Tactics, BAS Fun Seeking, Agree-
ableness, and Extraversion. Thus, we conclude a slight better predictive performance when using
video stimuli.

We also consider the combination of the image and video stimuli, shown in the “Both” columns.
We highlight in bold the traits where the combined stimuli yielded accuracy or F1 scores superior
to the best-performing individual type of stimuli, be it images or videos. When both types of stimuli
are used, we observe acc = 0.860, which is 12.5% higher than for videos only and 17.0% higher than
for images only. Also for the F1 scores, the combined F1 = 0.860 is 12.9% higher than for videos
and 18.5% higher than for images only. In this case, the Wilcoxon post hoc tests showed that the
combined image and video stimuli is significantly superior to both the image alone (p < .001 for
accuracy and F1) and video alone (p < .001 for accuracy and F1). Hence, for the ETG signal, the
performance of the video and image stimuli in combination is consistently higher than those of
the individual types of stimuli for all three psychological models.

Analysing the individual traits, we observe that the accuracy of the combined stimuli outper-
forms the image and video stimuli individually for 11 traits and the F1 of the combined stimuli—for
12 traits. The accuracy of the combined stimuli is higher than the best-performing individual stim-
uli by more than 10% for 7 traits (Primary Psychopathy, Tactics, BIS, BAS Drive, BAS Fun Seeking,
Resiliency, and Openness) and it is never inferior to the individual stimuli. For F1 scores, we ob-
serve comparable findings, with the combined stimuli being inferior to the best individual by 0.5%
or less only for Secondary Psychopathy and Extraversion. The improvement in accuracy of the
combined stimuli for D3, BIS/BAS, and HEXACO is 10.2%, 15.6%, and 12.6%, respectively, while for
F1 it stands at 10.7%, 15.9%, and 13.1%, respectively.

In Table 10, we show the results of a similar comparison of image vs. video stimuli, but this time
using the GSR signal. We observe that, like in Table 9, the video stimuli achieve a higher overall
accuracy than images, 0.753 vs. 0.673. This result is observed consistently for the mean scores
of the three psychological models: D3 (0.754 vs. 0.643), BIS/BAS (0.738 vs. 0.690), and HEXACO
(0.762 vs. 0.690). This observation is also supported by the F1 scores, where the video stimuli
steadily outperform the images for all three models and overall (0.752 vs 0.670). The Friedman test
indicates there are statistically significant differences between the images and videos (p < .01 for
both accuracy and F1 scores), but again the follow-up with the Wilcoxon post hoc tests (with p <
.0167, Bonferroni correction for three tests) show no statistically significant difference between
videos and images (p = 0.037 for accuracy and p = 0.051 for F1).
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Table 10. Performance of the Image and Video Stimuli for the GSR Signal

accuracy F1 score

Trait Image Video Both Image Video Both

Primary Psychopathy 0.571 0.810 0.857 0.559 0.815 0.857

Secondary Psychopathy 0.667 0.571 0.714 0.677 0.572 0.727

Tactics 0.762 0.857 0.952 0.758 0.856 0.952

Views 0.667 0.810 0.857 0.660 0.807 0.853

Morality 0.762 0.667 0.762 0.769 0.676 0.757
Narcissism 0.429 0.810 0.762 0.417 0.810 0.766
Mean D3 0.643 0.754 0.817 0.640 0.756 0.819

BIS 0.810 0.714 0.905 0.810 0.711 0.904

BAS Drive 0.619 0.571 0.667 0.626 0.552 0.655

BAS Fun Seeking 0.524 0.762 0.905 0.510 0.762 0.904

BAS Reward Responsiveness 0.810 0.905 0.905 0.800 0.909 0.903
Mean BIS/BAS 0.690 0.738 0.845 0.687 0.733 0.842

Agreeableness 0.667 0.762 0.762 0.668 0.769 0.769

Conscientiousness 0.762 0.810 0.952 0.752 0.803 0.952

Extraversion 0.714 0.714 0.762 0.716 0.716 0.770

Honesty 0.714 0.810 0.667 0.716 0.804 0.656
Resiliency 0.667 0.667 0.810 0.668 0.664 0.811

Openness 0.619 0.810 0.857 0.612 0.811 0.857

Mean HEXACO 0.690 0.762 0.802 0.689 0.761 0.803

Mean Overall 0.673 0.753 0.818 0.670 0.752 0.819

Breaking the model performance into individual traits, the accuracy of the video stimuli outper-
forms the images for 10 traits, the images are superior for 4 traits, and the accuracy for Extraversion
and Resiliency is identical. A similar observation holds for F1, where the videos are superior for 10
traits, images—for 5 traits, and the same F1 is obtained for Extraversion. Notably, the video stim-
uli outperform the images for 4 out of the 6 D3 traits and for 4 out of the 6 HEXACO traits. The
difference between the stimuli for the GSR signal is more pronounced than for ETG; for example,
for GSR the accuracy of videos outperforms the images by 17.3% for D3 and 10.3% for HEXACO,
compared to 5.4% difference and equal performance for the same models observed for the ETG
signal. This explains the significant differences between the videos and images obtained for the
GSR signal.

Considering the combination of the image and video stimuli, we obtain overall acc = 0.818,
which is 8.7% higher than the best-performing video stimuli and 21.7% higher than the images.
Similarly, the combined F1 = 0.819 of images and videos is 8.8% higher than F1 of the videos only,
and 22.2% higher than the F1 of the images.This finding is statistically significant: the combined
image and video stimuli is significantly superior to the video stimuli alone (p = .014 for accuracy
and p = .010 for F1 scores) as well as to the image stimuli alone (p < .001 for both accuracy and F1
scores). These results reaffirm the ETG findings regarding the superiority of the combined video
and image stimuli over either type of stimuli applied individually.

Analysing the individual traits, we observe that the accuracy of the combined stimuli outper-
forms the best-performing stimuli for 11 traits, while the combined accuracy actually drops only
for 2 traits: Narcissism and Honesty. The dominance of the combined stimuli is comparable for the
F1 scores, where it outperforms the individual stimuli for 11 traits. The combined outperforms the
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Fig. 5. Relative importance of features for each model and ETG signal.

Fig. 6. Relative importance of features for each model and GSR signal.

best individual stimuli by more than 10% for 5 traits (Tactics, BIS, BAS Fun Seeking, Conscientious-
ness, and Resiliency) and this finding holds for both accuracy and F1. The improvement in accuracy
of the combined stimuli for D3, BIS/BAS, and HEXACO is 8.4%, 14.5%, and 5.2%, respectively, while
for F1 it is 8.3%, 14.8%, and 5.4%.

Hence, with respect to Q3 formulated at the outset of this section, we conclude that the videos
are generally better stimuli than images, although the difference between the two depends on the
signal being sensed and analysed. However, for both the ETG and GSR signals the combined image

and video stimuli yield better predictions than either type of stimuli considered individually.

5.4 Predictive Stimuli and Features

We turn to Q4, which deals with the predictive value of the extracted features. For this, we calculate
the normalised selection frequency for each extracted feature for the three personality models (D3,
BIS/BAS, and HEXACO) separately. The rationale is that the more frequently selected features have
more important predictive value; thus, the higher the value, the more important the feature is.
Specifically, we counted how many times a feature was selected in a feature subset for a trait from
each personality model and normalised this value per model. The results are shown in Figures 5
and 6 for the ETG and GSR signals, respectively.

Referring to the ETG data in Figure 5 and considering the detection of D3’s traits, we note
the dominance of the saccade rate (SR), which is supported by previous research that discovered
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links between reduced saccade movements and facets of psychopathy [8]. Fixation duration
(FD) and blink rate (BR) are the second most used features, which may be linked to the reduced
saccade movements. This supports the work of Reference [58], which found that those with
psychopathic traits tended to display unusual blink responses. The least selected feature is vertical
pupil size (PY), in line with the findings of Reference [10], which showed no relations between
the subjects’ psychopathy scores and pupil diameter changes in response to affective stimuli.
However, the trend is not supported by PX. No links to other D3 components were found in prior
literature.

Looking into the BIS/BAS predictions, we highlight the importance of the BR feature. This aligns
with the findings of Reference [31], which found significant correlations between the BAS scores
and eye blink responses. In addition, we found that fixations (FR) are predictive of BIS/BAS traits,
which is supported by previous research that linked the number and duration of fixations to BAS
Drive and BAS Fun Seeking [64]. Vertical pupil dilation (PY) is also an important feature, as ex-
plained by the strong association between pupillary reactivity and both fear and anxiety [81],
components of BIS.

Predictions of the HEXACO traits are dominated by the Saccade-Fixation Ratio (SFR), in line
with Reference [64], which associated fixations with Extraversion, Agreeableness, and Neuroticism
(inverse to Resiliency), although the individual FR and SR features are not selected often. Pupil
size contributes to the second most selected features (both PY and PX), which is aligned with
early works that studied traits such as Extraversion and Neuroticism (in this case, Resiliency)
[22]. Summarising feature importance analysis for the ETG signal across the three psychological
models, we note that the number of blinks and pupil size are the most important features.

Figure 6 shows the relative importance of the features for the three personality models using
the GSR signal. We observe that the predictions of the D3 traits are strongly dominated by HA
and HC, Hjorth’s activity and complexity parameters. Hjorth’s parameters were recently used in
several works detecting stress and emotion [19, 53]. However, these used the EEG signal rather
than GSR, such that this finding is important and novel. The other influential feature is PAR, which
corresponds to the phasic area.

For the prediction of the HEXACO traits, the most important feature is again HA, followed by
NAR. Again, to the best of our knowledge, no prior research links personality traits to Hjorth’s
parameters of the GSR signal, such that the dominance of the activity parameter is novel. How-
ever, NAR, which represents the number of sudomotor nerve activations, is a rather established
factor for HEXACO traits. For example, skin conductance levels were found to correlate with Ex-
traversion and Neuroticism (Big-5’s counter-part of Resiliency) in Reference [9], while links to
Agreeableness and Conscientiousness were established in Reference [7].

With respect to the BIS/BAS predictions, the three most frequently selected features are SE, HM,
and PPR. Notably, SE communicates the energy of the GSR signal, whereas HM is the Hjorth’s
mobility frequency parameters, and PPR the phasic peaks rate. Hence, these three features collec-
tively characterise the statistical properties of the GSR signal. To the best of our knowledge, no
prior works looked at the links between BIS/BAS traits and measurement of GSR responses. Sum-
marising the GSR analysis, we note the dominance of Hjorth’s parameters, particularly activity
that is the main predictor for both D3 and HEXACO.

Revisiting Q4, we conclude that different features informed the predictions of different personality

models. For example, for the ETG signal, the saccade rate was most predictive of D3, blink rate, and
pupil size—of BIS/BAS, and saccade-fixation rate—of HEXACO traits. Likewise, for GSR, Hjorth’s
activity was most predictive of D3 and HEXACO, while the signal energy, Hjorth’s mobility, and
the phasic peaks rates were most predictive of BIS/BAS. Overall, blinks and pupil size were found
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Table 11. Performance of Classifiers Using the Combined Signal

Signal Metric AB DT LR NB RF SVM kNN
ETG or GSR Accuracy 0.542 0.351 0.792 0.860 0.631 0.762 0.732
individually F1 score 0.539 0.344 0.787 0.860 0.625 0.758 0.727

(GSR) (ETG) (GSR) (ETG) (ETG) (GSR) (GSR)
ETG+GSR Accuracy 0.539 0.313 0.872 0.899 0.673 0.830 0.830

F1 score 0.535 0.308 0.871 0.898 0.668 0.828 0.827

to be the most predictive ETG features, while Hjorth’s parameters were among the most predictive
features for GSR.

5.5 Combining ETG and GSR

Having elaborately studied the performance of the ETG and GSR signals individually, we finally
turn to Q5, which deals with the identification of the most accurate signal. For this analysis, we
also consider a combination of the two signals. At the data collection stage, we were able to syn-
chronise in time the signals captured by SMI glasses and Procomp Infiniti. As the temporal blocks
referred to the same stimuli, we could use the combined set of ETG and GSR features for person-
ality trait predictions. We re-run feature selection for the combined ETG+GSR feature set, re-train
the classifiers, and conduct again the analyses presented in Sections 5.1–5.4.

We first revisit Q1 to validate the dominance of NB for the combined signal. Table 11 shows
the accuracy and F1 of the seven classifiers using the ETG+GSR signals and compares them with
the best-performing classifier using either of the two signals individually (extracted from Table 6
and the name of the classifier is given). It can be observed that the combined ETG+GSR signal is
superior to the best-performing individual signal for most classifiers, both for the accuracy and
F1 scores. For example, considering the accuracy of the three top-performing classifiers (NB, LR,
and SVM), we note that ETG+GSR beats the best-performing individual signal, by 4.5%, 10.2%, and
9.0%, respectively. A similar dominance of the combined ETG+GSR signal is obtained also for F1.

More importantly, NB outperforms all other classifiers also for the combined signal. Namely, NB
outperforms the second-best LR classifier by 3.1% for accuracy and by 3.2% for F1, and the third-
best SVM by 8.2% and 8.5%, respectively. The superiority of NB is statistically significant compared
to all other classifiers for accuracy and F1 scores (both Friedman p < .001). The post hoc Wilcoxon
tests show NB is statistically superior to all other classifiers (p < .0071, Bonferroni correction for
seven tests) except for LR (p = .124 for accuracy and p = .068 for F1 score). Hence, these results
re-affirm our earlier finding that NB is the most appropriate machine learning method out of the
seven studied classifiers, so in the following analyses, we focus again only on NB.

Q3 clearly demonstrated that the combination of image and video stimuli is superior to either
type of stimuli applied in isolation. To this end, we now revisit Q2 addressing the individual per-
sonality traits for the combined ETG+GSR signal using both types of stimuli. To this end, Table 12
shows the accuracy and F1 scores obtained for every trait by the ETG and GSR signals and by the
combined ETG+GSR signal. We highlight in bold again the best-performing individual signal as
well as the cases when ETG+GSR is superior to the best individual signal.

Comparing the accuracy scores obtained by the ETG and GSR signals, we note the superiority of
the former. Specifically, ETG obtains a higher accuracy for 10 traits, GSR—for 4 traits, and for BIS
and Openness their accuracy is identical. The superiority of ETG over GSR comes through more
clearly considering the mean accuracy scores across the three psychological models. Here, ETG
achieves a higher accuracy for all the models and is better than GSR by 4.9% for D3 traits, by 4.2%
for BIS/BAS traits, and by 5.9% for HEXACO traits. Naturally, ETG also achieves a higher overall
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Table 12. Performance of the ETG, GSR, and ETG+GSR Signals for the 16 Traits

accuracy F1 score

Trait ETG GSR ETG+GSR ETG GSR ETG+GSR

Primary Psychopathy 0.762 0.857 0.905 0.756 0.857 0.901

Secondary Psychopathy 0.857 0.714 0.857 0.856 0.727 0.856

Tactics 0.905 0.952 0.952 0.905 0.952 0.952

Views 0.905 0.857 0.952 0.904 0.853 0.953

Morality 0.905 0.762 0.905 0.906 0.757 0.906

Narcissism 0.810 0.762 0.857 0.812 0.766 0.861

Mean D3 0.857 0.817 0.905 0.856 0.819 0.905

BIS 0.905 0.905 0.952 0.904 0.904 0.952

BAS Drive 0.810 0.667 0.905 0.819 0.655 0.904

BAS Fun Seeking 0.952 0.905 0.952 0.952 0.904 0.952

BAS Reward Responsiveness 0.857 0.905 0.952 0.850 0.903 0.953

Mean BIS/BAS 0.881 0.845 0.940 0.882 0.842 0.940

Agreeableness 0.905 0.762 0.667 0.905 0.769 0.656
Conscientiousness 0.810 0.952 0.857 0.810 0.952 0.860
Extraversion 0.810 0.762 0.857 0.811 0.770 0.858

Honesty 0.810 0.667 0.905 0.810 0.656 0.901

Resiliency 0.905 0.810 1.000 0.905 0.811 1.000

Openness 0.857 0.857 0.905 0.858 0.857 0.905

Mean HEXACO 0.849 0.802 0.865 0.850 0.803 0.863

Mean Overall 0.860 0.818 0.899 0.860 0.819 0.898

accuracy than GSR, 0.860 vs. 0.818, which amounts to a 5.1% improvement. There is a significant
difference in accuracy between ETG, GSR, and ETG+GSR (Friedman p = .001). All pair differences
are statistically significant except the ETG’s superiority over GSR (post hoc Wilcoxon p = .104).

The F1 scores generally exhibit the same trends as accuracy. Namely, ETG achieves higher F1
scores than GSR for 11 traits, for 4 traits GSR is better, and for BIS the 2 are similar. The overall
F1 of ETG is again 5.1% better than that of GSR and also all three model-specific mean F1 scores
of ETG are higher: by 4.6% for D3, by 4.7% for BIS/BAS, and by 5.9% for HEXACO. Similarly, there
is a significant difference in F1 scores between ETG, GSR, and ETG+GSR (Friedman p = .001), but
the post hoc Wilcoxon signed-rank test shows no significant difference in F1 scores between ETG
and GSR when considered individually (p = .117). These results contrast previous conclusions of
References [89] and [39], where GSR was found to outperform ETG. We posit that the differences
should be attributed to the features being extracted and the nature of the driving-related tasks used
in those works, which differ substantially from personality trait detection and affective image and
video stimuli deployed in our work.

Turning to the performance of ETG+GSR versus the individual signals, we note that the com-
bined signal outperforms its individual components. Specifically, ETG+GSR achieves accuracy
scores higher than the best of the two signals individually for 10 traits out of the 16. The com-
bined signal is particularly dominant for the D3 and BIS/BAS models, where it outperforms or
equals individual signals for all traits. Interestingly, only for Agreeableness and Conscientious-
ness ETG+GSR is beaten. ETG+GSR outperforms the better-performing ETG signal by 5.6% for
D3 predictions, 6.8% for BIS/BAS, and 1.9% for HEXACO. Overall, ETG+GSR achieves acc = 0.899,
which is 4.5% better than ETG and 9.8% better than GSR individually. The dominance in accuracy
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Fig. 7. Relative importance of features for each model and ETG+GSR signal.

of ETG+GSR over its individual components is statistically significant for GSR (post hoc Wilcoxon
p = .009) and borderline for ETG (p = .017).

These findings are also supported by the F1 scores achieved by the combined signal. ETG+GSR
achieves F1 = 0.898, which is 4.4% higher than F1 = 0.860 of the ETG signal and 9.7% higher
than F1 = 0.819 of GSR considered individually. This is also evident for the three psychological
models, where ETG+GSR is consistently better than the best-performing ETG signal (by 5.7%,
6.7%, and 1.6%, respectively). The dominance of ETG+GSR is also clearly evident when analysing
individual traits. It is the best-performing signal for four out of the six D3 traits, for three out
of the four BIS/BAS traits, and for four out of the six HEXACO traits. Again, it is inferior to the
individual signals for two HEXACO traits of Agreeableness and Conscientiousness. The F1 scores
of ETG+GSR and ETG are similar to the best-performing individual signal in all other cases. The
F1 trend of ETG+GSR outperforming the individual stimuli is statistically significant for both GSR
(p = .012) and ETG (p = .010).

Finally, we turn to the analysis of most important features in the combined ETG+GSR feature set.
Figure 7 shows the relative importance of the features for predictions of the three models. Overall,
we observe a comparable contribution of the two signals. For example, in the list of top five features
there are three GSR features and two ETG features, while in top twelve each signal contributes
six features. Note that there are some fluctuations in the ranking of features. For example, BR,
top-performing ETG features ranked only sixth in the combined list, while HA, the top-two GSR
feature, retains its position in the combined list. Similarly, the second most important GSR feature,
SE, stays in the top three for combined features. We posit that these fluctuations are explained
by dependencies between the features across the two signals that are picked by the CFS feature
selection.

Focussing on the three psychological models, we highlight the strong dominance of PY and
other ETG features in the predictions of BIS/BAS traits; PY also being the second most important
feature across all the models. While HA is one of the lowest performing for BIS/BAS, it is clearly
the best predictive feature for both D3 and HEXACO. D3 is then well predicted by FD and ASV
while PY is a strong second predictor for HEXACO. It is difficult to position these findings in the
context of prior research, as no previous work looked at combination of these two signals and also
extracted the same feature set.

Hence, summarising Q5 outlined at the beginning of the session, we conclude that the ETG
signal allows generating slightly more accurate trait predictions than GSR, although the difference
between the two is not significant. However, a combination of ETG and GSR further improves the
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predictions over either of the two signals considered individually, and features from both signals
inform the trait predictions.

6 DISCUSSION

In this work, we developed a framework for predicting human personality traits using physiolog-
ical responses to external stimuli. We found that the Naive Bayes algorithm, in conjunction with
feature selection, substantially outperformed other machine learning algorithms. Overall, seven
traits were predicted with the ETG signal and five traits with the GSR signal, all with accuracy
levels greater than 0.9. Comparing the image and video stimuli, we found that the latter were
more predictive than the former for both the signals, while the combined use of images and videos
resulted in the most accurate predictions. Predictive models using ETG were slightly more accurate
than those using GSR. However, the combination of the ETG and GSR signals achieved the best
result: an overall mean accuracy of 0.899 and mean F1-score of 0.898 across the 16 traits, which is
a notably high result, considering the intricate nature of predicting human personality traits.

It is important to highlight that the evaluated instantiation of the proposed framework did not
involve any custom-made components. That is, the deployed eye-tracking and skin conductivity
sensors were commercial-grade, the psychological tools were established and well-studied models
and inventories, and all the image and video stimuli were pre-existing. Furthermore, the feature ex-
traction and classification algorithms are widely used machine learning tools that have previously
been deployed in numerous applications and are not specific to physiological signal processing or
personality detection.

6.1 Comparison

We would like to analytically compare our results to the closest line of research on personality
detection using physiological signals [1, 18, 72, 78]. Our findings largely align with the main obser-
vations made in those papers. However, our work additionally shows several notable advantages
of a significant practical benefit:

—Personality traits. Previous works focused on the predictions of the Big-5 traits only. In our
work, not only do we use the more recent HEXACO model that introduces an additional
trait of Honesty to the Big-5, but we also complement this with traits from the D3 and
BIS/BAS models. Altogether, our method is capable of predicting more than three times
the number of traits predicted in References [1, 18, 72, 78]. These offer an encompassing
perspective on human personality and may be useful in practical scenarios, like hiring de-
cisions, particularly for the jobs that would require screening out people scoring high or
low on a particular trait.

—Classification accuracy. Compared to previous research, our method achieves substantially
higher classification accuracy and F1 scores. Specifically, References [1, 18, 72, 78] conducted
a two-class classification, whereas our work addresses a three-class classification. Thus, our
random-guess baselines of 33% compared to the 50% baseline of previous works. The F1-
scores reported in References [1, 18, 72, 78] generally hover between the 0.5 and 0.8 marks,
while our results achieve accuracy levels as high as 1.0, with the mean accuracy of 0.899
and mean F1 of 0.898 across the 16 traits being predicted. Hence, previous work achieved a
30%–40% improvement, while we achieve 170% improvement over the random baseline.

—Duration of stimuli. Previous works [1, 18, 72, 78] required the subjects to be exposed to
the stimuli for substantially longer periods of time. For example, References [78] and [72]
used 36 video clips, on average 80 seconds long each, which brought the overall duration
of the video stimuli to 48 minutes. In the more recent work, they used four longer videos
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that summed up to 85 minutes [72]. In our experimental setting, the image and video
stimuli required 9.5 and 14 minutes, respectively, which keeps the combined duration of
the stimuli under 25 minutes—much shorter than the above times. Also, reasonably high
levels of classification accuracy were achieved with one type of stimuli only (either images
or videos), which would require even less time.

—Deployed sensors. In our work, we deployed the ETG and GSR sensors, while previous works
[1, 18, 72, 78] used a substantially larger range of sensing technologies. Specifically, in all
four papers, the authors used the EEG, GSR sensors, ECG (heart rate), as well as video-
based face feature trackers. These sensing technologies are usually more complex, some-
times more expensive, usually more obtrusive than the ones we focused on with the present
framework. The high performance we achieved indicates that, in practice, fewer sensors
coupled with an advanced feature extraction and state-of-the-art classifiers may be suffi-
cient. While ETG+GSR produces sensibly better results than individual sensors, these latter
could still be used in isolation and produce reasonably high accuracy. This should allow
practitioners or interactive system designers to address practical constraints by using a sin-
gle sensor, yet obtain reliable enough classification performance.

6.2 Limitations

While our results are promising, there are several limitations that require attention and need to be
addressed in follow-up works.

—The first limitation refers to the reasonably small sample size. Although the leave-one-out
validation with 21 subjects produced solid results, more subjects should be recruited to
better understand the results, validate our findings, and replicate them for other sensors
and traits.

—The second limitation refers to the subject recruitment, not based on any psychological
or clinical criteria. Thus, we were unlikely to have subjects on the extreme ends of the
scales for some traits, especially the D3 traits, also evident from the range of personality
scores in Table 5. Due to the equal-frequency discretisation of subjects, our results are likely
to demonstrate reliable predictive accuracy for a population of normative subjects with
medium trait values, while a targeted recruitment would be required for validation in the
extreme ranges of the traits.

—The third limitation is the use of the equal-frequency binning of the subjects, not based on
norms or psychological theories. Given the second limitation, replication on a larger sample,
using norms, whenever these are available, is needed to determine the generalisability of
our findings. Future research should also employ a full spread of scores on psychological
traits of interest to increase the authenticity of results within predictive models.

—The last limitation refers to the “off-the-shelf” nature of the stimuli, sensors, feature extrac-
tion, and classifiers. While this can be interpreted as a limitation, e.g., with regards to the
signal quality and predictive accuracy, it is also a door-opener for future improvements and
a strength. Although we managed to accurately detect personality with these off-the-shelf
components, we posit that accuracy can be substantially improved by tailoring the compo-
nents of the framework to the trait prediction task, e.g., by tuning the classifier parameters.

7 CONCLUSIONS AND FUTURE WORK

In this article, we consider the task of objective detection of personality traits using physiologi-
cal responses to external stimuli. Specifically, we propose a framework, which combines external
stimuli that trigger physiological responses, sensing technologies that capture these responses,
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and machine learning methods that detect the personality traits based on the responses. To ob-
tain the class labels and train the machine learning classifiers, we deploy personality inventories.
The trained classifiers can then accurately detect personality traits for new subjects. We evaluate
a specific instantiation of the framework, which uses affective image and video stimuli and two
types of physiological responses to these stimuli: eye activity and skin conductance. Our work
demonstrates that personality traits can be accurately detected, suggesting possible use in practi-
cal applications to supplement the traditional forms of assessment or to provide a practical alter-
native for tailored human-computer interaction through content personalisation or the design of
user-aware interactive intelligent systems.

Revisiting the research questions, we established that: (i) Naive Bayes was the most accurate
classification method; (ii) traits associated with affect were predicted more accurately than traits
associated with behaviour and cognition for both signals; (iii) video stimuli were more predictive
than the images, while the best predictions were obtained by combining the two types of stimuli;
(iv) predictive features differed across the models, consistently with previous psychology research;
and (v) the use of the ETG signal resulted in slightly more accurate prediction models than GSR,
while the combination of the two signals achieved the highest accuracy. Our findings enhanced
prior research by considering a broader range of traits and models, and improving the trait pre-
diction accuracy, while deploying only commercial-grade sensing technologies and reducing the
data acquisition times.

Future research should address the identified limitations, including experimenting with a larger
cohort of participants and in different scenarios, such as gaming, driving, and more. For psychol-
ogy practitioners and clinicians, it will be important to validate our method with populations
having an established pathology [8]. In addition to the eye-tracking and skin conductance signals,
other physiological signals such as EEG should be investigated and may further improve the re-
sults. Decisions on the sensors to deploy in practice should be based on the level of obtrusiveness,
cost, complexity to setup and calibration, and desired accuracy. The individual components of our
method (stimuli, sensors, feature extraction, classifiers) may also be refined in the future. While we
managed to establish high levels of accuracy using off-the-shelf components, the performance may
be further improved by tailoring the components of the framework to the specific trait prediction
task.

Another stream of work that may potentially improve the accuracy and reliability of the de-
tected personality traits refers to the use of behavioural and interaction data. While physiological
responses to stimuli were shown to achieve accurate predictions, the availability of accurate and
affordable sensing technologies is still reasonably limited, which may hinder wide deployment of
the proposed framework. On the contrary, behavioural data (e.g., web browsing or multimedia
consumption logs) and interaction data (e.g., voice conversations with a smart assistant) are sub-
stantially easier to capture and more abundant. This brings to the fore the question of establishing
personality traits using such data, which has been studied on social media [42, 61] and in written
essays [49]. We posit that enriching physiological responses with easily obtainable behavioural
and interaction data has the potential to further improve the accuracy of the predictions.

The presented feature importance analysis concentrated on the predictive power of various fea-
tures for various personality models. However, the granularity level of such an analysis can be
improved on both dimensions being analysed. Considering the extracted feature, the analysis can
potentially focus on the features extracted for specific stimuli, be it images or videos at large, or
even the tenderness clip or the disgust clip. Likewise, on the personality dimension the analy-
sis can drill down into individual traits being predicted and surface the importance of low-level
stimuli-specific features for predictions of particular traits. Beyond the mere feature importance in-
formation, this fine-grained analysis can uncover valuable information on the stimuli and sensing
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technologies needed for detection of individual personality traits. For example, it can yield specific
guidelines regarding the shortest set of stimuli and cheapest sensing technologies that will allow
detection of a target trait with the desired level of accuracy.

An additional important area calling for future research is the thorough investigation of how
each scenario and type of stimuli influences personality detection, as certain scenarios and
stimuli can be linked to certain traits stronger than to others. Hence, it is important to deploy
the right stimuli to evoke responses that are predictive of the target trait. Also, the contribution
of various physiological features to personality detection should be further studied. In this way,
the neuro-psychological association between features and personality can be investigated and
better understood. Finally, we would like to study physiological responses beyond personality
detection tasks, e.g., for gauging the effect of social media on users. These exciting veins of
future work may evolve into broader cross-disciplinary research initiatives combining capabilities
from human-computer interaction, psychology, sensing technologies, signal processing, machine
learning, and physiology.
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