
Get to the Bo�om: Causal Analysis for User Modeling
Shi Zong

�e Ohio State University
Columbus, OH, USA
zong.56@osu.edu

Branislav Kveton
Adobe Research
San Jose, CA, USA
kveton@adobe.com

Shlomo Berkovsky
CSIRO

Eveleigh, NSW, Australia
Shlomo.Berkovsky@csiro.au

Azin Ashkan∗
Google Inc.

Mountain View, CA, USA
azin@google.com

Zheng Wen
Adobe Research
San Jose, CA, USA
zwen@adobe.com

ABSTRACT
Weather a�ects our mood and behavior, and through them, many
aspects of our life. When it is sunny, people become happier and
smile, but when it rains, some get depressed. Despite this evidence
and the abundance of weather data, weather has mostly been over-
looked in the machine learning and data science research.�is
work shows how causal analysis can be applied to discover the
e�ects of weather on TV watching pa�erns and how it can be ap-
plied for user modeling. We make several contributions. First, we
show that some weather a�ributes, e.g., pressure and precipitation,
cause signi�cant changes in TV watching pa�erns. Second, we
compare the results obtained for di�erent levels of user granularity
and di�erent types of users.� is showcases that causal analysis can
be a valuable tool in user modeling. To the best of our knowledge,
this is the� rst large-scale causal study of the impact of weather on
TV watching pa�erns.
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1 INTRODUCTION
Weather a�ects our mood and, thus, human behavior. One of the
pronounced examples is the seasonal a�ective disorder – prolonged
lack of sunlight that can potentially depress people [21]. Although
indirectly, weather a�ects various aspects of our lives, including
our work and study, purchasing behavior, and more. For example,
Hirshleifer [8] and Saunders [26] found that stock returns on cloudy
days are lower than on sunny days. Similarly, Murray et al. [19]
and Parsons [20] discovered strong e�ects of sunlight on consumer
expenditure. Social research also linked weather conditions to
crime [7] and even to suicide rates [3].

In this work, we extend our early work [29] and set out to thor-
oughly examine the e�ects of weather on the TV watching activity.
∗Work done while at Technicolor Research.
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It is reasonable to assume that the overall TV watching levels are
weather dependent, e.g., people watch more TV when it rains, and
this has been partially shown by Barne� et al. [4] and Roe and
Vandebosch [23]. However, our main goal is to further assess the
e�ect of weather on the TV watching pa�erns.� at is, we are
rather interested to explore whether people watch di�erent genres
of programs in di�erent weather conditions.

We posit that this knowledge can have several important im-
plications. First, marketers may be willing to adjust the content
and ratio of the advertisements to the target audience to whom
they will be exposed [10]. Second, the technical con�guration of
the communication network, e.g., replica placement on content-
delivery network servers, may be tuned to facilitate a more e�cient
content delivery [9].� ird, TV content and video-on-demand ser-
vice providers may bene�t from this knowledge and adapt their
recommendations accordingly [28].

Several prior works incorporated weather into personalized sys-
tems [1, 2, 5]. We would like to stress three limitations of these
works. First, the weather was treated as an auxiliary contextual
dimension rather than a parameter that directly impacts user be-
havior. Second, relatively simple correlation-based methods were
applied to discover the impact of weather on user behavior.� ird,
prior works used only small-scale datasets collected exclusively
for research purposes. In fact, the largest weather-related dataset,
previously used in personalization research, contains fewer than 5k
ratings [5]. We believe that it is pivotal to thoroughly examine the
factors a�ecting user behavior, as these are likely to improve the
quality of the personalization. We also believe that causal analysis
and large-scale data are the necessary tools for such an examination;
these may uncover hidden biases in real-world problems.

To this end, we advocate in this work the use of causal analysis
for modeling the impact of weather on observable TV watching
behavior. To the best of our knowledge, this is the� rst work to
apply causal analysis to a nation-scale dataset containing more than
10M watching events of more than 0.6M users. We propose and apply
an e�cient technique for learning the causal dependencies between
weather conditions and the users’ TV watching behavior pa�erns.
We also discuss about the motivation for applying causal analysis.
Hence, the main contribution of our work lies in demonstrating
and validating the application of causal analysis for the purposes
of modeling dependencies in user behavior.
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2 MATCHING FOR CAUSALITY
�e problem of estimating causal e�ects from observational data,
such as changes due to weather conditions, is central to many dis-
ciplines [18, 22, 27]. It can be formalized as follows. Let {1, . . . ,n}
be a set of n units i , such as individuals. LetTi 2 {0, 1} indicate the
treatment of unit i .� at is, Ti = 0 if unit i is control and Ti = 1 if
the unit is treated.� en unit i has two potential outcomes, Yi (1) if
the unit is treated and Yi (0) otherwise.� e unit-level causal e�ect
of the treatment is the di�erence in potential outcomes

�i = Yi (1) � Yi (0) ,

and the average treatment e�ect on treated (ATT) is

Ei :Ti=1[�i ] = Ei :Ti=1[Yi (1)] � Ei :Ti=1[Yi (0)] ,

whereEi :Ti=1[Yi (1)] is the expected outcome of treatment on treated
units andEi :Ti=1[Yi (0)] is the expected outcome of not being treated
on treated units. Note that Ei :Ti=1[�i ] cannot be directly computed,
because Yi (0) is unobserved in treated units {i : Ti = 1}.

Since the assignment to treatment and control groups is usually
not random, the expected outcome of not being treated on control
units, Ei :Ti=0[Yi (0)], is a poor estimate of the expected outcome of
not being treated on treated units, Ei :Ti=1[Yi (0)].� e key challenge
in causal analysis is to eliminate the resulting imbalance between
the distributions of treated and control units. A popular approach
of balancing the two distributions is the nearest-neighbor matching
(NNM) [6, 13, 16, 24]. In this work, we match each treated unit to its
nearest control unit based on its covariates, and then the response
of the matched unit serves as a counterfactual for the treated unit.
In particular, the ATT is estimated as

ATT ⇡ 1
nT

’
i :Ti=1

⇣
Yi (1) � Y� (i)(0)

⌘
, (1)

where nT =
Õn
i=1Ti is the number of treated units, Yi (1) is the

observed response of treated unit i , and Y� (i)(0) is the observed
response of the matched control unit � (i).�e covariate of unit i ,
which is essentially a d-dimensional feature vector xi 2 Rd , should
be chosen such that the potential outcomes of unit i are statistically
independent of Ti given xi . In this case, the estimate in Eq. (1)
resembles that of a randomized experiment.

3 CAUSAL EFFECTS OF WEATHER ON TV
CONTENT

In this section, we discuss how to apply the NNM framework from
Section 2 to analyze the causal e�ects of weather on TV watching.
We illustrate the methodology with an example query “does high
temperature cause watching more drama?”. In Section 3.1, we intro-
duce the notions of treatment, control, and potential outcomes. We
justify our choice of covariates in Section 3.2 and explain our NNM
method in Section 3.3.

3.1 Treatment, Control, and Outcomes
Our units (events of interest) are TV watching events i; and we are
interested in estimating the causal e�ect of weather on these events.
�e treatment Ti is an indicator of the treatment weather at event
i , such as that the temperature is high. We denote the potential
outcomes at event i under control and treatment by Yi (0) and Yi (1),

respectively.� e potential outcomes are indicators of the watched
content under control and treatment. For instance, in our example
query, the treatment and potential outcomes are

Ti = 1{temperature is high at event i} ,
Yi (0) = 1{drama watched at event i if the temperature is low} ,
Yi (1) = 1{drama watched at event i if the temperature is high} .

We discuss how to determine high and low temperatures in Sec-
tion 5.1.

We measure the e�ect of treatments by the ATT in Eq. (1). In
our domain, the ATT is the expected increase in the frequency of
watching some content due to the treatment weather, such as the
expected increase in the frequency of watching drama due to high
temperature. If the ATT is signi�cantly above zero, we claim that
high temperature increases the frequency of watching drama. If the
ATT is signi�cantly below zero, we claim that high temperature
decreases the frequency of watching drama. Finally, if the ATT is
near zero, we claim that high temperature has no e�ect on watching
drama. We provide a detailed discussion about how to measure the
signi�cance of e�ects in Section 5.2.

3.2 Covariates and Ignorability
A key step in causal analysis is to break the dependence between
potential outcomes and treatments, in order to mimic a randomized
experiment.� is can be done under the assumption of unconfound-
ness or ignorability [22, 25].� e ignorability assumption says that
the potential outcomes are statistically independent of the treat-
ment given the covariates. In particular,

(Yi (0),Yi (1))? Ti | xi

for any TV watching event i , where xi 2 Rd are the covariates
of event i . In this paper, the covariates are the pro�le of the user
at event i , the location of event i , and the time of event i .�e
pro�le is the distribution over watched TV genres of the user (see
Section 5.1), which clearly a�ects (Yi (0),Yi (1)).� e time a�ects
the availability of content. For instance, as shown in Fig. 1, the
frequency of watching TV genres can change dramatically over
time. Finally, both the time and location are good predictors of the
weather, which is the treatment.

Our ignorability assumption says that what the user would have
watched under di�erent weather conditions at event i , (Yi (0),Yi (1)),
depends on the pro�le of the user at event i , the location of event i ,
and the time of event i; but does not depend on treatment Ti . For
example, the fact that the temperature is high should not corre-
late with what the user would have watched under high and low
temperatures.� e ignorability assumption is hard to validate in
practice [25], but we believe that our choice of covariates renders
it reasonable in our se�ing. Properly chosen covariates reduce, if
not entirely eliminate, the dependence between potential outcomes
and the treatment.� en the observed e�ect is likely due to the
causation through the treatment.

We illustrate our ignorability assumption on an example. Con-
sider a family where the parents like to watch drama. When the
temperature is high, the children play outside and the parents watch
drama. When the temperature is low, the children are at home and
the whole family watches family movies. In this case, the potential
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Algorithm 1 Large-scale matching of treatment and control events
using random partitioning.
1: // Random partitioning
2: Partition covariates {xi }ni=1 into k random clusters {C`}k`=1

such that n/k  |C` |  n/k + 1 for all ` 2 [k]
3:
4: // Matching
5: for all ` = 1, . . . ,k do
6: while |C` \ {i : Ti = 1}| > 0 do
7: Choose a random treated event i from
8: C` \ {i : Ti = 1}
9: Find the nearest control event j to event i in
10: C` \ {i : Ti = 0}
11: Match the events i and j, � (i) j
12: Remove the events from C` , C`  C` \ {i, j}
13: end while
14: end for

outcomes are determined solely by the pro�le of the family. In
particular, they are determined independently of whether event i is
treated or not, implying that the family subconsciously decides on
what to watch when the temperature is high or low before either
of these happens.� erefore, the potential outcomes are statisti-
cally independent of the instance of the weather at event i and our
ignorability assumption holds.

3.3 E�cient Matching via Clustering
�e number of TV watching events can be large, on the order
of millions. Naive implementations of NNM from Section 2 are
impractical in this se�ing because their running time is O(n2). In
our work, we propose a computationally-e�cient variant of NNM
based on the idea of quantization [11].

Our algorithm for NNM is presented in Algorithm 1.� e al-
gorithm has two main stages. First, we randomly partition all
covariates into k clusters {C`}k`=1. Second, we match randomly
chosen treated events in each cluster C` to their nearest control
events in that cluster, until no treated events are le�. We choose
treated events randomly to avoid biases in the matching due to a
particular order.� e clusters are also chosen randomly. When the
number of events n is large and the number of clusters is reasonably
small, we expect the distribution of the covariates in each cluster to
closely resemble that of {xi }ni=1, and therefore NNM on the clusters
should be similar to that on {xi }ni=1.

Our matching algorithm is surprisingly simple, e�ective, and its
computational cost is only O

�
k(n/k)2

�
= O

�
n2/k

�
.� e number of

clusters k can be used to trade o� the computational complexity
of NNM for its quality. When k is chosen appropriately, such as
k =

p
n, the computation cost is O

⇣
n3/2

⌘
. In our experiments,

n ⇡ 107 and we choose k = 200.� is allows us to� nd nearest
neighbors for millions of treated events in less than an hour, on
a computer with 16 GB main memory and 2.5 GHz Intel Core i7
processor. We experimented with other values of k and our causal
�ndings are not sensitive to the choice of k , only the computational
cost of the matching is. We investigate the quality of the proposed
algorithm in Section 5.

4 DATASET
In this work, we used a dataset gathered by a leading Australian
national TV broadcaster.� e broadcaster o�ers two services: live
broadcast, and a catch-up TV service available through aWeb-based
portal, which allows users to watch on-demand any program that
they may have missed. We obtained the complete Australia-wide
portal logs for a period of 26 weeks, from February to September,
2012.� e original dataset includes more than 21.4M viewing events
of about 1.3M unique users, who collectively watched more than
11k unique programs. We randomly choose 50% of these users and
conduct all experiments on this set of users.

Each viewing event is represented by the user’s IP address, view-
ing date (with no time stamp), and program ID. We use the IP
addresses of the users as their unique identi�ers, since li�le user
information is available1. In addition to the program ID, program
meta-data contains its title, duration, publication date, and a single
genre tag from 14 genres (see Table 1).� ese genre tags are labeled
by the broadcaster. No information about the watched portion of
the program is available. A more detailed description of the dataset
can be found in Xu et al. [28].

Feb Mar Apr May June July Aug Sep
Month
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1.5
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N
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#105

Comedy
News

Figure 1: Number of events for Comedy and News over
months in our dataset.

Table 1 shows the distribution of viewing events across TV gen-
res. Not surprisingly, some genres are more popular than others.
We also observe in Fig. 1 that the relative frequency of TV genres
changes over time2. In April, the number of watched Comedies is
almost the same as that of News. In June, the number of Comedies is
twice as high as that of News.� ese imbalances provide us with an
opportunity to analyze what factors lead to the changes of users’
watching behavior.

To collect the required weather data, we used the IP2Location3
API to convert the IP addresses into the geographic locations of the
users: longitude, latitude, city, and state. Given the locations and
the dates of the viewing events, we used the WorldWeatherOnline4
API to obtain the weather logs for the dates of the events.

1Such identi�ers may be noisy, as multiple users (e.g., household members) may share
the same IP and one user (e.g., at home and at work) may have multiple IPs. However,
these are real data gathered by the broadcaster.
2�e drop in May is due to a technical problem that caused some data loss.
3h�p://www.ip2location.com
4h�p://www.worldweatheronline.com
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Weather conditions in Australia change quite dramatically across
di�erent geographic locations.� e weather inland is ho�er and
drier than along the coast.� e northern regions that are closer to
the equator are warmer than the southern ones. To get a be�er
idea of how the weather in Australia looks like, we anecdotally
map weather conditions in Australia to other locations all over the
world. We observe that the weather in the inner part of Australia
is comparable to Sahara and Sonora deserts.� e weather in the re-
gions near the coast is similar to Southern California, San Francisco
Bay Area, and Florida in the United States. We describe weather
conditions by weather a�ributes.� e weather a�ributes are eight
numerical features extracted from weather logs that characterize
di�erent aspects of weather, such as Temperature, Pressure, and
Humidity (see Table 1).

5 CAUSAL MODELING OF WEATHER EFFECT
Causal analysis is important for user modeling, as it can help deter-
mine factors that drive changes in user behavior. Liang et al. [17]
showed that the idea of causal analysis can be used to model user
exposure in recommender systems. In this section, we estimate the
e�ect of weather on users’ TV watching behavior by conducting
causal analysis of weather a�ributes from Section 4. In Section 5.1,
we describe our experimental setup. In Section 5.2, we analyze the
average causal e�ects on the data of the whole of Australia. In Sec-
tion 5.3, we conduct causal analysis at the level of individual users;
and in Section 5.4, we conduct causal analysis on two groups of
users. Finally, in Section 5.5, we showcase the necessity for causal
inference.

5.1 Experimental Setup
We de�ne one treatment variable for each weather a�ribute in
Table 1.� erefore, we have 8 weather-a�ribute treatments. In each
a�ribute, we treat the events in the tail of the distribution of that
a�ribute. Speci�cally, if the tail of the distribution is on the low
(high) end of the range, we consider the 20% of the events with the
lowest (highest) values of the a�ribute as the treatment group and
the rest as the control group (see Fig. 2). We denote these high-value
and low-value treatment groups by “H” and “L”, respectively.�e
position of the tail is estimated automatically from the skewness of
the distribution. We list all treatments in Table 1.

�e events in the tail of the distribution are extreme by de�nition,
and therefore they are a natural candidate for being chosen as
treatments. We choose the 20% cuto�s separately for each month,
as the boundaries of the “high” and “low” weather a�ribute values
change over time, e.g., summer vs. winter temperature.� e 20%
cuto� is chosen such that the number of treated events is reasonably
large. We experimented with cuto�s of 15% and 25%, and the results
were similar to those of the chosen 20% cuto�.

We de�ne a pair of potential outcomes (Yi (0),Yi (1)) for each
TV genre in Table 1.� erefore, we estimate 14 e�ects. In this
se�ing, the ATT in Eq. (1) is the expected change in the frequency
of watching a given TV genre due to being treated. For example,
consider the e�ect of high temperatureweather onwatchingDramas
that was discussed in Section 3.1. Note that we estimate the e�ect
on TV program genres, rather than on individual TV programs,
as many programs may not have enough treated events to allow
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Figure 2:� e treatment and control groups for weather at-
tribute Visibility.� e treated events are 20% of all events
with lowest visibility.� e control events are the remaining
80% of all events.

accurate causal analysis.� erefore, we experiment with a higher
genre-level of content granularity.

Finally, as discussed in Section 3.2, the covariates of a watching
event i are the pro�le of the user at i , the time of i , and the location
of i . In this paper, the user pro�le is a vector of the frequency
of watching TV genres.� is pro�le is a 14-dimensional vector
(mu,1/mu , . . . ,mu,14/mu ), where mu,� is the number of events
where user u watches genre � and mu =

Õ14
i=1mu,i is the total

number of events of u. Such a pro�le naturally captures high-level
preferences of the user5.

5.2 Causal Analysis on the Population of
Whole Australia

In our� rst experiment, we conduct causal analysis on the whole
population of Australia.� at is, for every treatment j and genre� in
Table 1, wematch all treated events to control events by Algorithm 1
and then estimate the ATT in Eq. (1). We denote the resulting ATT
by ATTj,� and refer to it as the empirical e�ect of treatment j on
genre �.

Note that ATTj,� is random, because the matching � computed
by Algorithm 1 is random.� us, we need to be careful when we
evaluate the estimated e�ect. Consider the following example.
Suppose that only one event is treated, where the user does not
watch drama; and that this event is randomly matched to another
event, where the user watches drama.� en it may seem that the
treatment leads to watching no drama. While this may be true, it
is unlikely because this e�ect is estimated from only one matched
pair of treated and control events. Below we propose a variant of
ATTj,� that allows us to eliminate statistically insigni�cant e�ects.

5We also experimented with another type of a user pro�le, which was estimated using
SVD from the watched TV programs.� is pro�le is inspired by the low-dimensional
representation of latent user pro�les in matrix factorization [14]. We observe similar
pa�erns to those in this paper, and therefore do not report them.
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Category Frequency Category Frequency
Drama 19.51% Pre-school 19.31%
Children 17.01% Comedy 11.37%
Docs 10.61% Lifestyle 8.06%
Panel 5.95% News 4.10%
Arts 2.69% Education 0.58%
Kids 0.50% Sport 0.24%
Indigenous 0.05% Shop 0.02%

TV genres.

Weather a�ribute Treated
Temperature High
Feels-like temperature High
Wind speed High
Cloud cover High
Pressure Low
Humidity Low
Visibility Low
Precipitation High

Weather a�ributes and their treated values.

Table 1: TV genres and weather attributes as described in Section 4.

Dra Pre Chi Com Doc Life Pan News

TV genres

Temperature (H)

Feels like temp (H)

Wind speed (H)

Cloud cover (H)

Pressure (L)

Humidity (L)

Visibility (L)

Preciptation (H)
-1

-0.5

0

0.5

1

(a) Whole of Australia data group (⇠2M treated events)

Dra Pre Chi Com Doc Life Pan News

TV genres

Temperature (H)

Feels like temp (H)

Wind speed (H)

Cloud cover (H)

Pressure (L)

Humidity (L)

Visibility (L)

Preciptation (H)
-1

-0.5

0

0.5

1

(b) Doctor Who group (⇠0.7M treated events)

Dra Pre Chi Com Doc Life Pan News

TV genres

Temperature (H)

Feels like temp (H)

Wind speed (H)

Cloud cover (H)

Pressure (L)

Humidity (L)

Visibility (L)

Preciptation (H)
-1

-0.5

0

0.5

1

(c) Peppa Pig group (⇠0.5M treated events)

Figure 3: High-probability e�ects gATTj,� in 8 most popular genres due to 8 weather-attribute treatments for: (a) whole of
Australia, (b) users who watchedDoctorWho, and (c) users who watched Peppa Pig.� e e�ects are multiplied by 100 and can be
interpreted as changes in the percentage of watching TV genres. “H” and “L” denote high and low value treatments in Table 1.

Dra Pre Chi Com Doc Life Pan News

TV genres

Temperature (H)

Feels like temp (H)

Wind speed (H)

Cloud cover (H)

Pressure (L)

Humidity (L)

Visibility (L)

Preciptation (H)
0

0.2

0.4

0.6

0.8

1

(a) Whole of Australia as a group (total e�ect: 7.767)

Dra Pre Chi Com Doc Life Pan News

TV genres

Temperature (H)

Feels like temp (H)

Wind speed (H)

Cloud cover (H)

Pressure (L)

Humidity (L)

Visibility (L)

Preciptation (H)
0

0.02

0.04

0.06

0.08

0.1

(b) Individual users as subgroups (total e�ect: 0.045)

Dra Pre Chi Com Doc Life Pan News

TV genres

Temperature (H)

Feels like temp (H)

Wind speed (H)

Cloud cover (H)

Pressure (L)

Humidity (L)

Visibility (L)

Preciptation (H)
-10

-5

0

5

10

(c) User No. 15051 (⇠200 treated events)

Figure 4: (a, b) E�ects in contextG, gATTGj,� , whenG is the whole population of Australia and individual users, respectively. (c)
High-probability e�ects gATTj,� for user No. 15051.� e e�ects are multiplied by 100 and can be interpreted as changes in the
percentage of watching TV genres.

To eliminate statistically insigni�cant e�ects, we propose high-
probability e�ect of treatment j on genre �,

gATTj,� =
(
max{ATTj,� � c · sej,� , 0} , ATTj,� > 0 ;
min{ATTj,� + c · sej,� , 0} , ATTj,� < 0 ,

(2)

where sej,� is the standard error in the estimate of ATTj,� , and
c > 0 is a tunable parameter that controls the degree of con�dence.
�is metric can be justi�ed as follows. If the estimated e�ect is

positive, ATTj,� > 0, and signi�cant in the sense that it is larger
than c times the standard error, then this e�ect should be reported asgATTj,� > 0. Similarly, if the estimated e�ect is negative, ATTj,� <
0, and signi�cant in the sense that it is smaller than c times the
standard error, then this e�ect should be reported as gATTj,� < 0.
In all other case, gATTj,� = 0 and the e�ect is not signi�cant.

In our experiment, we choose c = 4. From the central limit
theorem, ATTj,� is close to normally distributed when the number
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Figure 5: Comparison of the expected errors in matching in
each covariate and the standard deviation of that covariate.

of treated events is large, at least 30 [15]. In this case, ATTj,� � 4 ·
sej,� can be viewed as a high-probability lower bound on the true
e�ect if this e�ect is positive, and ATTj,� + 4 · sej,� can be viewed
as a high-probability upper bound on the true e�ect if this e�ect is
negative.� ese upper and lower bounds hold with probability of at
least 1�10�4. When the number of treated events is small, less than
30, we set gATTj,� = 0. In this case, it is unreliable to substitute the
unknown standard deviation of ATTj,� with its empirical estimate
sej,� and guarantees cannot be provided in general [15], unless we
make strong assumptions on the distribution of Yi (1) � Y� (i)(0) in
Eq. (1).

We report gATTj,� for all treatments j and genres � in Fig. 3(a).
Note that at this granularity level, there are around 2M treated
events for each weather a�ribute. We observe some insightful
trends. For example, there is around 1% decrease in watching
Dramaswhen the pressure is low and precipitation is high. A reason
for this may be that rainy days tend to make people sad and they
prefer not to watch dramas, which are unlikely to cheer them up.
Although a 1% decrease may seem small, considering the fact that
Dramas account for about 20% of all watching events, this is about a
5% relative decrease in this genre.� is decrease observed on rainy
days comes at the account of the more entertaining Panel programs,
which increase by about 0.6%. Considering that Panel only account
for 6% of the watching events, their relative increase is as high as
10%. We were not able to validate these intuitive explanations.
Nevertheless, they suggest that our weather a�ributes may be
indicative of complex human behavior pa�erns, which would be
di�cult to uncover otherwise.

All matching methods should be followed by an assessment of
their quality (Section 2). In Fig. 5, we report the quality of our
matching in each covariate. In particular, we report the expected
error in matching in each covariate and compare it to the standard
deviation of that covariate. We observe two trends. First, all ex-
pected errors are close to 0, which means that we do not introduce
systematic biases in any covariate. Second, standard deviations of
all errors are consistently smaller than that of the corresponding
covariate.� is shows that we match accurately in all covariates.
Hence, our estimated e�ects are likely to be causal.
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Figure 6: Treated covariates of user No. 15051 with the co-
variates of their matched events.

5.3 Causal Analysis on Individual Users
One of the goals of user modeling is to inform personalization. In
this subsection, we partition our dataset into individual users and
conduct causal analysis of these users. From the technical point of
view, the causal analysis of a single user is no di�erent from that
in Section 5.2.� e only di�erence is that the set of treated events
in the estimate of ATT in Eq. (1) includes only the events of that
user. We denote the resulting high-probability e�ect in Eq. (2) by
gATTkj,� and refer to it as the high-probability e�ect of treatment j
on genre � of user k .

We note that several users in our dataset have very signi�cant
and di�erent e�ects from that in Fig. 3(a), which reports high-
probability e�ects for whole of Australia. In Fig. 4(c), we report
the high-probability e�ects on an individual with more than 2, 000
watching events. Even for this user, there are only around 200
treated events for each weather a�ribute. Unfortunately, most
users in our dataset have much less watching events than 2, 000.
�e number of users with more than 2, 000 events is only 41, among
578, 308 users. If the user does not have enough treated events, the
high-probability e�ect in Eq. (2) is likely to be zero, based on the
discussion in Section 5.2. In Fig. 3(a), we do not observe signi�cant
e�ects for Pre-school genre when weather changes. However, in
Fig. 4(c), high cloud cover, high wind speed, and low humidity
all have large a�ects on the user’s preference towards Pre-school
TV programs.� is indicates that conducting causal analysis on
individual users can help reveal more complicated TV watching
pa�erns.

As the counterfactuals are unobserved, there is no ground truth
for causal analysis in general. To validate our causal� ndings, we
need to validate the quality of matching on this user. In Fig. 6,
we visualize the covariates of treated events from this user along
with the covariates of matched events. In each plot, each column
represents a covariate (Section 3.2), which is the pro�le of the user,
the time of the event, and the location of the event. Each row repre-
sents an event. A quick visual inspection reveals that the plots look
similar.� e correlation coe�cient between the entries of these two
plots is 0.998, which indicates that they are almost identical.�is
shows that our matching can balance systematic biases between
treated and control groups well, even on an individual user level.

To determine which level of granularity is most appropriate
for user modeling, we have to summarize the e�ects on all users,
similarly to Fig. 4(a). However, we cannot simply sum up the e�ects
on individual users, as they may cancel each other. Consider the
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following example.� e whole population of users consists of two
users with the same number of events. For user 1, the treatment
increases the probability of watching Drama by 10%. For user 2,
the treatment decreases the probability of watching Drama by 10%.
On average, the e�ect of the treatment on watching Drama is zero.
However, when the e�ect is viewed in the context of individual
users, the treatment appears to be e�ective. Below we propose a
metric that re�ects this intuition.

Let G = {Gk }Kk=1 be a partitioning of all events into K groups

Gk , such as that each user is assigned to a single group. Let gATTkj,�
be the high-probability e�ect of treatment j on genre � in group k .
�en we de�ne the gain of conditioning on groups in G as

gATTGj,� =
K’
k=1

|Gk \ {i : Ti = 1}|ÕK
`=1 |G` \ {i : Ti = 1}|

��� gATTkj,�
��� , (3)

and refer to it as the e�ect of treatment j on genre� in contextG .�is
is a convex combination of the absolute high-probability e�ects
in each group, weighted proportionally to the number of treated
events in each group.� e larger the number of treated events in
the group, the higher the con�dence on the corresponding ATT,
and the higher the contribution of this group to gATTGj,� .

We also de�ne total e�ect in context G as

gATTG =’
j

’
�

gATTGj,� , (4)

which summarizes the signi�cance of all e�ects, for every pair of
the treatment and outcomes, given G.� is is a strong indicator of
how good the granularity of context G is for causal e�ects.

In Fig. 4(a), we report gATTGj,� when G is a single group, all the
users in the dataset. Note that these are simply absolute e�ects
from Fig. 3(a). In Fig. 4(b), we report gATTGj,� when each group inG
is an individual user. For many genres in Fig. 4(a), the e�ects are
signi�cant, for instance for Drama, Panel and News. Di�erences
between these two plots also reveal some trends. We observe that
if we further consider smaller subgroups, such as individual users,
then there are nearly no causal e�ects on average.� e reason is
that we do not have su�cient data for most users if considered
individually. In our dataset, most users have less than 200 watching
events, which means they have even less treated events. When
the number of watching events is limited, we observe large ATTs
but they also come with large standard errors.� erefore, most
high-probability e�ects in Eq. (2) are zero, and so is their convex
combination in Eq. (3).

We conclude by making the following remarks. On one hand,
we can observe signi�cant e�ects when the groups are su�ciently
large, such as the data of the whole of Australia. Although we have
higher con�dence in our estimated e�ects on these large groups,
they only show overall trends for a large population, which can
hardly be valuable for user-level personalization. On the other hand,
if we have enough treated events for an individual user, we can
observe even stronger e�ects. However, most of our users do not
have that many watching events.� us, there is a tradeo� between
the size of the subgroups and the con�dence of our estimators. In
the following subsection, we show that there are other levels of
granularity of context that allow us to estimate signi�cant e�ects.

5.4 Causal Analysis on a Group of Users
In this subsection, we choose the most popular TV programs and
conduct causal analysis of groups of people with di�erent watching
preferences. In our dataset, Doctor Who is the most popular TV
program in Drama and Peppa Pig is the most popular in Pre-school.
We use these two programs as the grouping criteria and build up
two groups by selecting users who watched Doctor Who and Peppa
Pig at least once, respectively.� ere are 85, 252 users in the Doctor
Who group and 25, 731 users in the Peppa Pig group. Only 3, 606
users watched both programs, so that the sets of users in these two
groups are substantially di�erent.

We repeat the causal analysis of Section 5.2 and Section 5.3
in these two groups.� e obtained results in terms of the high-
probability e�ect gATTj,� in Eq. (2) for all treatments j and genres �
are summarized in Fig. 3(b) and Fig. 3(c). Note that for each weather
a�ribute, we have around 0.7M and 0.5M treated events in these
two groups, respectively. Fig. 3 reveals some insightful trends. First,
the three groups of users (i.e., the whole population in Australia,
users who watched Doctor Who, and users who watched Peppa
Pig) show di�erent TV watching pa�erns. For example, we observe
signi�cant decrease for Dramawhen temperature is high in Fig. 3(a)
but do not observe them in Fig. 3(b) and Fig. 3(c). However, there
are also some consistent results observed across these groups. For
example, we observe signi�cant decrease in Drama when pressure
is low and precipitation is high. As another example, there is no
signi�cant e�ect on Pre-school programs when weather a�ributes
change.� ese� ndings con�rm our claims in Section 5.2 and Sec-
tion 5.3 that weather a�ributes may be indicative of pa�erns in user
TV watching behavior, which can be revealed through causal anal-
yses. Second, we observe more signi�cant e�ects when grouping
users rather than treating them individually. Comparing Fig. 3(b)
to Fig. 4(b) validates our claim that a su�cient number of treated
events is needed to estimate signi�cant e�ects.

Fig. 3 and Fig. 4 also provide insights on how to model user
behavior. As discussed in Section 5.3, it is a challenge to balance
the group size and the con�dence of the estimators. In our work,
we observe that we do not obtain signi�cant e�ects for most of the
individual users, as the watching records of a single user are limited.
At the same time, the results obtained from the whole population
cannot inform user-level personalization. In this subsection, we
demonstrate that one way to bene�t from the two worlds is to
group users with similar watching preferences in order to model
their TV watching pa�erns.

5.5 Why Causal Analysis?
In earlier sections, we showed that causal inference is a useful tool
for user modeling. In this subsection, we show the necessity for
causal analysis. Causal analysis and matching on covariates can
correct systematic biases in data. We illustrate this by comparing
two matching methods.� e� rst method matches treated events
based on covariates (see Section 3).� e second method matches
treated events randomly.

Let us consider the following example. We randomly choose 20%
of events from the city of Brisbane as treated events and use the
ATT in Eq. (1) to estimate causal e�ects. Note that the treatment
is random, and therefore the true e�ects are zero. First, we choose
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(a) Both treated and control events are from Brisbane.� e con�dence radii are
the same as in Eq. (2).� e e�ects are multiplied by 100 and can be interpreted as
changes in the percentage of watching TV genres.
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(b) Treated events are from Brisbane and control events are from the whole
Australia.� e con�dence radii are the same as in Eq. (2).� e e�ects are multiplied
by 100 and can be interpreted as changes in the percentage of watching TV genres.

Figure 7: Comparisons of two matching methods.

control events from Brisbane and report the ATT in Fig. 7(a). We ob-
serve that both matching methods predict near-zero causal e�ects,
which is correct.� e reason is that the distributions of covariates,
conditioned on the treatment and control, are the same.� is shows
that if the treated and control events are balanced, both matching
methods work well.

Now we choose control events from the whole Australia and re-
peat the above experiment. Fig. 7(b) shows our results. We observe
that random matching predicts higher absolute values of the ATT
than matching on covariates. For instance, it estimates more than
1% increase in Drama and this is statistically signi�cant. We know
that this is incorrect because the true e�ects are zero.� e reason
is that random matching matches treatment events from Brisbane
to control events from the whole Australia. Since the covariates
in Australia are distributed di�erently from those in Brisbane, we
get biases.� us, the statistically signi�cant increase in watching
Drama is due to the fact that people in Australia watch less Drama
on average (19.51%) than in Brisbane (20.89%).� e distributions of
covariates, conditioned on the treatment and control, are typically
di�erent in practice, because treatments are not assigned randomly,
but rather conditionally randomly. We claim that our proposed

method can correctly balance this imbalance, and therefore it should
be preferred in practice for user modeling tasks.

6 CONCLUSIONS
In this paper, we study whether and how weather a�ects users’ TV
watching behavior. We conducted causal analyses using nation-
scale Australian dataset and discovered interpretable causal relation-
ships between weather conditions and users’ watching behavior.
We repeated the causal analysis at the granularity of individual
users, but in most cases individual data turned out to be insu�cient
for obtaining reliable results.� is has driven further sensitivity
analyses of our approach that discovered substantial di�erences
across subgroups of users. To the best of our knowledge, this is the
�rst causal analysis of a large-scale dataset looking at the interplay
between weather and TV watching.

Our work also raises several questions. First, in our work, our
treatment variable was binary; we set hard thresholds for the “high”
and “low” groups of each a�ribute. However, there exist works deal-
ing with continuous treatment [12] and we posit that our dataset
is rich enough for weather a�ributes to uncover more accurate
watching pa�erns if these methods were used. Second, we only
focused on the causal analysis and its sensitivity and did not evalu-
ate how the learned weather dependencies can be exploited. We
strongly believe these weather a�ributes can be incorporated into
more sophisticated weather-aware recommender systems [1], and
improve the quality of the generated recommendations.

It is also worth noting that the work was done in a domain-
agnostic way and did not involve any meteorologists. Certain
weather a�ributes, such as temperature and feels-like temperature
or humidity and precipitation, are clearly correlated. We believe
that some domain knowledge of these correlations could help us
to identify the set of most in�uential a�ributes and dramatically
improve our results. We also leave this work for the future.
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