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Abstract Recommender systems rely on personal information about user behavior
for the recommendation generation purposes. Thus, they inherently have the potential
to hamper user privacy and disclose sensitive information. Several works studied how
neighborhood-based recommendation methods can incorporate user privacy protec-
tion. However, privacy preserving latent factor models, in particular, those represented
by matrix factorization techniques, the state-of-the-art in recommender systems, have
received little attention. In this paper, we address the problem of privacy preserving
matrix factorization by utilizing differential privacy, a rigorous and provable approach
to privacy in statistical databases. We propose a generic framework and evaluate sev-
eral ways, in which differential privacy can be applied to matrix factorization. By
doing so, we specifically address the privacy-accuracy trade-off offered by each of the
algorithms. We show that, of all the algorithms considered, input perturbation results
in the best recommendation accuracy, while guaranteeing a solid level of privacy pro-
tection against attacks that aim to gain knowledge about either specific user ratings
or even the existence of these ratings. Our analysis additionally highlights the system
aspects that should be addressed when applying differential privacy in practice, and
when considering potential privacy preserving solutions.
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1 Introduction

In the last decade, personalization technologies and recommender systems have
become a fundamental tool in online applications and services. Recommenders are
leveraged to improve sales (e.g., by retail Web sites like Amazon or eBay), to enhance
user experience with online services, and to simplify decision making and information
access for Web sites and services, like Netflix and Last.fm (Ricci et al. 2015). Typi-
cally, recommender systems utilize user information encapsulated in the user models,
in order to recommend items that users are likely to consume, i.e., predict which
items would be preferred by users and prioritize these when a user interacts with the
system.

One of the dominant approaches in recommender systems is collaborative filtering,
which predicts user preferences by utilizing user-generated signals that were gathered
from other users of the system. Such signalsmay consist of implicit feedback, e.g., past
user behavior or browsing logs, or explicit feedback, e.g., feedback on past services
or product ratings, which reflect whether a user was interested in an item. Collabo-
rative recommendation methods can be partitioned into two families. Neighborhood
methods use the collected signals to learn correlations between items or between users
(Ning et al. 2015). Item-to-item correlations can then be used to predict that a user
will like items similar to those that the user liked in the past. Alternately, user-to-user
correlations can be used to predict that the user will be interested in items that attracted
the interest of similar users. Latent factor models offer a solid alternative to neighbor-
hood methods (Koren and Bell 2015). These approaches process the collected signals
and generate latent vectors that characterize users and items with respect to a small
number of factors.

In particular, Matrix Factorization methods (Koren et al. 2009) have become the
prominent technique to infer latent factor models: a matrix of user ratings is factorized
into two low-dimensional matrices, which capture latent factors of users and items,
respectively. Essentially, a good recommendation reflects a high degree of correspon-
dence between an item’s and a user’s latent factors. Matrix factorization techniques
have been shown to provide a higher predictive accuracy than the neighborhood meth-
ods, they are computationally cheaper, and they are easy to extend, e.g., by taking
into account temporal effects or inputs with varying confidence levels (Koren and Bell
2015). Therefore, matrix factorization techniques have become the state-of-the-art
technique in collaborative filtering recommender systems.

Since collaborative recommenders rely on personal user information to generate
recommendations to users, they inherently raise legitimate privacy concerns related to
the misuse of the collected data for the purpose of inferring users’ sensitive informa-
tion (Friedman et al. 2015; Jeckmans et al. 2013; Lam et al. 2006). The raw rating data
used by memory-based collaborative recommendation methods, even if anonymized,
poses an immediate privacy risk: it can be de-anonymized using auxiliary informa-
tion obtained from other sources, e.g., ratings provided on other sites (Narayanan and
Shmatikov 2008). In turn, this information can be used to infer personal information,
like gender, political views, or other potentially sensitive data (Netflix xxxx; Kosinski
et al. 2013; Weinsberg et al. 2012). Even without the direct access to user ratings, per-
sonal information could be inferred from the recommendations provided by the system
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to other users, public lists of relevant items, or item-to-item covariance matrix (Calan-
drino et al. 2011). Although model-based recommendation methods were shown to
be more robust than their memory-based counterparts (Bilge et al. 2014), exposure
of certain parameters of the model was used to design specific and highly-effective
attacks (Cheng and Hurley 2009). These inherent privacy risks of recommender sys-
tems have motivated an increasing research of the privacy-personalization trade-off in
general, and of privacy-preserving recommender systems in particular. However, this
body of research has primarily focused on memory-based recommendation methods
(Berkovsky et al. 2012;Machanavajjhala et al. 2011; Parameswaran and Blough 2007;
McSherry and Mironov 2009), and little prior work thoroughly investigated privacy
preserving model-based recommenders (McSherry and Mironov 2009; Nikolaenko
et al. 2013).

In this paper, we extend our earlier work (Berlioz et al. 2015), and target the prob-
lemof developing a sound privacy preservingmatrix factorizationmechanismutilizing
the concept of differential privacy (Dwork et al. 2006). Differential privacy is a rig-
orous and provable approach to privacy in statistical databases, which has already
been studied in several instances of collaborative filtering recommendation methods
(Machanavajjhala et al. 2011; McSherry and Mironov 2009). While differential pri-
vacy sets constraints on privacy preserving computations, different algorithms may
conduct the private computation in various ways that would result in different privacy-
personalization trade-offs. We propose a number of approaches to modify the matrix
factorization mechanism, so that it maintains differential privacy guarantees, under
the assumption that a user wishes to protect either the values of specific item ratings,
or the mere existence of such ratings, as both can potentially leak private information.

We study the privacy guarantees that can be achieved by the following approaches:
(i) by obfuscating the input data before applying the matrix factorization algo-
rithm; (ii) by adding noise within the stochastic gradient descent solver of the
matrix factorization problem; and (iii) by obfuscating the output of an alternating
least squares matrix factorization mechanism. For all the proposed approaches, we
both provide a theoretical analysis of the (calibrated) noise level introduced by the
algorithms, and evaluate the resulting privacy-personalization trade-offs by observ-
ing the effect of the noise on the accuracy of the generated rating predictions.
We present our approaches in a great detail and evaluate them using a number of
publicly accessible recommender systems’ datasets, which allows transparency and
reproducibility.

The contributions of our work are, therefore, as follows.We provide an analysis and
experimental evaluation of three differentially private matrix factorization mech-
anisms. Our results show that, for the MovieLens and Netflix datasets used in our
evaluation, the best performing method that results in the highest prediction accuracy
while still ensuring privacy protection, is the one that obfuscates data at the input of the
recommendation process. We further conduct an investigation of the design choices
that affect the resulting privacy-personalization trade-off, showing the impact of the
pre-processing of the data, how characteristics of the dataset (size, density, number
of inputs per user/item) affect the choice of the algorithm, and the influence of the
privacy constraints on the parameter tuning decisions. Finally, we experimentally
compare the predictive accuracy of recommendations generated by a differentially
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private matrix factorization system with that of a privacy-preserving neighborhood
based method. The obtained results demonstrate that neighborhood methods are more
resilient to the noise introduced by the privacy preserving algorithm, and are, there-
fore, more appropriate when a high level of privacy protection is required. However,
when weaker privacy levels are acceptable, privacy preserving matrix factorization
techniques can achieve higher predictive accuracy levels than those achievable with
their neighborhood methods counterparts.

The paper is organized as follows. Section 2 surveys prior work on privacy in rec-
ommender systems. Section 3 provides background onmatrix factorization techniques
and differential privacy. Then, we outline in Sect. 4 several ways to apply differential
privacy tomatrix factorization. Section 5 describes the evaluation of each implemented
method with a number of datasets. In Sect. 6, we discuss the broader implications that
the presented results have for the application of differential privacy to recommender
systems. Finally, Sect. 7 concludes our work.

2 Related work

User personalization and recommender systems inherently bring to the fore the issue
of user privacy (Kobsa 2007). Privacy hazards in recommender systems are aggravated
by the fact that generation of high-quality recommendations requires large amounts
of personal user data. For instance, the accuracy of collaborative filtering recommen-
dations was shown to correlate with both the number of users in the system and the
number of their ratings (Sarwar et al. 2000). Hence, there is a trade-off between the
accuracy of the personalization provided to users by recommenders and the degree of
user privacy.

2.1 Privacy in recommender systems

Privacy concerns have triggered an increasing research into privacy and recommender
systems. One of the first works demonstrating the difficulty of guaranteeing privacy
in rating-based transaction records common in recommender systems was conducted
by Narayanan and Shmatikov (2008). They considered an inference attack, where an
adversary knows a subset of user attributes, e.g., items that were rated by the user, rat-
ings that were assigned, or the time of the ratings. The de-anonymization algorithms
assess the similarity of the anonymized data to the available auxiliary information
and, due to the sparsity of data, can accurately uncover the original user information.
Calandrino et al. (2011) studied the privacy risks imposed by three recommenders
deployed by Hunch, Last.fm, and Amazon. The authors used background information
to construct a profile similar to that of a target user, i.e., effectively cloned the profile
with some noise. They relied on the idea that a new transaction of a user will mainly
affect the recommendations given to similar users, tracked changes in the recommen-
dations to the fake user, and used these changes to detect transactions carried out by
the target user.

Although outside the direct data exposure context, Bilge et al. (2014) assessed
the robustness of privacy-preserving collaborative recommendation algorithms to six
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types of shilling attacks. Specifically, the authors comparedmemory- andmodel-based
algorithms in terms of their ability to recover from shilling attacks and produce rec-
ommendations similar to those produced before the attacks. The results showed that
model-based privacy-preserving algorithms were more robust to the attacks than their
memory-based counterparts. That said, attacks involving injections of fake ratings for
unpopular items, i.e., items with no solid rating evidence in the data, did affect the
generated recommendations. To the best of our knowledge, no work has directly inves-
tigated data inference attacks on model-based collaborative recommenders. However,
latent user and item vectors can be considered as a source of auxiliary information and
be leveraged for attacks similar to those studied in Narayanan and Shmatikov (2008)
and Calandrino et al. (2011).

Several works investigated privacy enhanced recommender systems. We divide
these into two broad categories: distributed recommenders and data modifica-
tion techniques. In the distributed recommenders group, user profiles are stored
across several repositories. Canny (2002) proposed a decentralized storage of user
profiles, which required the adversary to compromise multiple systems when attack-
ing a distributed recommender. Individual users controlled their data and were
grouped into communities representing a public aggregation of their ratings. The
recommendations were generated by exposing only the aggregated community
data, without exposing the ratings of individual users. Berkovsky et al. (2006)
considered a similar hierarchical setting, where the requests for collaborative rec-
ommendations and aggregated ratings of underlying users propagated, respectively,
down and up the hierarchy. However, both approaches required an a-priori for-
mation of the communities or the hierarchy, limiting the responsiveness of the
recommender to dynamic changes. Vallet et al. showed how matrix factorization
techniques can be leveraged to allow a central server to provide accurate rec-
ommendations without retaining user data, i.e., storing latent user profiles on the
client side. This work, however, did not exploit differential privacy, but rather
assumed that the user profiles were not accessed by an attacker, even if the rec-
ommender system was attacked and personal data was compromised (Vallet et al.
2014).

In contrast, data modification techniques include approaches such as encryption
(Nikolaenko et al. 2013), obfuscation (Berkovsky et al. 2012), access control (Sandhu
et al. 1996), randomization (Polat and Du 2006), anonymization (Klösgen 1995),
k-anonymization (Sweeney 2002), and differential privacy (McSherry and Mironov
2009). For example, Polat and Du (2006) proposed to add uncertainty to the stored
user ratings through randomized data perturbation techniques. There, users could sub-
stitute part of the ratings in their profiles with fake ratings resembling, to a certain
extent, the real ones. Hence, if the recommender was attacked and user data exposed
to an adversary, not the original, but partially modified ratings would leak. How-
ever, an a-priori defined data perturbation policy would not preclude the adversary
from recovering the original ratings. In the encryption space, Nikolaenko et al. (2013)
showed how secure multiparty computation could be utilized in matrix factorization
recommendations, so that the recommender learns only the item profiles, but not the
user ratings. It should be highlighted that such techniques cannot prevent the infer-
ence of user ratings from the output of the matrix factorization computation, and are
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orthogonal to the techniques studied in this paper, as they address a different threat
model.

2.2 Applying differential privacy to recommender systems

Differential privacy has recently drawn much research attention; it makes no assump-
tions about the adversary’s background knowledge and computation power, and
provides formal and provable privacy guarantees (Dwork 2008; Dwork et al. 2006).
Although differential privacy has beenwidely used for generic data and patternmining
purposes (Bhaskar et al. 2010; Friedman and Schuster 2010), to the best of our knowl-
edge, only two prior works have investigated its application to recommender systems.
Machanavajjhala et al. (2011) studied the problem of privacy-preserving social rec-
ommendations on the basis of a graph linking between users and items, e.g., products
purchased by users. A utility vector derived from the graph captures the utility of each
product for the target user, and the goal is to induce a probability distribution over the
products, such as to maximize the utility for the user, while keeping the utility vec-
tor private. The authors provided a theoretical analysis of the problem and proposed
differentially-private algorithms exploiting the Laplace noisemechanism. It was found
that good recommendations were achievable only under weak privacy parameters, or
only for a small fraction of users.

McSherry and Mironov (2009) considered the application of differential privacy
to collaborative filtering recommenders. They used the Laplace mechanism to derive
noisy counts and sums over the input rankings, and to compute a differentially-private
variant of the item-to-item covariance matrix. The noisy covariance matrix could
then be used to generate the differentially-private k-nearest neighbors and SVD rec-
ommendations. An essential component of the proposed solution was breaking the
recommendation process into a learning phase, in which the private covariance matrix
was derived, and a recommendation phase, in which private user ratings were com-
bined with the aggregate data to derive predictions for the target user. In contrast, we
consider in this work direct (privacy-preserving) derivation of the latent factor mod-
els. While this comes at a cost in prediction accuracy, this method allows to maintain
privacy guarantees also for the user vectors, and can take advantage of the flexibility
and efficiency benefits offered by matrix factorization methods.

In our own prior work, we proposed a framework for the application of differential
privacy tomatrix factorization (Berlioz et al. 2015). Therewe considered only bounded
differential privacy, i.e., we focused only on the modification of existing item ratings
and disregarded their mere presence, which may also leak some sensitive information.
For example, in case of explicit or violent video content, users may primarily want
to prevent the disclosure of the fact that such content was consumed by them, let
alone the rating assigned to the content. Here, we also consider and evaluate the
unbounded differential privacy hiding the presence of ratings or the consumption
of items. In addition, we extend our previously reported evaluation and present the
results obtained using a larger Netflix dataset, which adds validity to our experimental
evidence. Overall, the current paper substantially extends our prior work (Berlioz et al.
2015), and explores additional approaches, beyond those investigated inMcSherry and
Mironov (2009) and Machanavajjhala et al. (2011).
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3 Preliminaries

3.1 Recommendations with matrix factorization

Recent growth in the volume of online information has fueled the information overload
problem. This motivated the development of recommender systems, which provide
personalized suggestions for content and products. Recommender systems are used
successfully in numerous application domains, e.g., entertainment, eCommerce, and
eHealth, andmanyWeb sites deploy recommenders in order to enhance user experience
and increase revenues. Collaborative filtering recommenders derive their recommen-
dations based on information collected from a community of users. They identify
similarities between users, and recommend to a user items that were liked by like-
minded users (Ning et al. 2015).

Matrix factorization (MF) (Koren et al. 2009) is considered the state-of-the-art vari-
ant of collaborative filtering, due to its computational scalability, predictive accuracy,
and applicability to a range of recommendation tasks (Koren and Bell 2015). In its
basic form, MF represents both users and items as vectors of latent factors, such that
high similarity between the factors of a user and an item results in a recommendation.
The input to MF is typically a rating matrix Rn×m , containing the ratings of n users
for m items, given on a predefined scale. Each matrix element rui reflects the rating
of user u for item i . The matrix is typically very sparse, as users normally rate only a
small subset of items. The recommendation algorithm factorizes Rn×m into two latent
matrices: the user-factor matrix Pn×d and the item-factor matrix Qm×d . Each row pu
in P (and qi in Q) represents the relation between the user u (item i) and the latent
factor. The dimension of the latent matrices, d, is an external factorization parameter.

The factorization is done such that R is approximated as a product of P and Q,
i.e., each known rating rui is approximated by r̂ui = pu · qᵀ

i . To obtain P and Q, MF
minimizes the regularized squared error for all the available ratings:

min
P,Q

∑

rui∈R

[(
rui − puq

ᵀ
i

)2 + λ
(
||pu ||2 + ||qi ||2

)]
. (1)

The constant λ regularizes the learned factors and prevents overfitting. Two common
ways to solve the resulting non-convex optimization problem are stochastic gradient
descent (SGD) and alternating least squares (ALS).

In SGD, the factors are learned by iteratively evaluating the error eui = rui − puq
ᵀ
i

for each rating rui , and simultaneously updating the user and item vectors by taking a
step in the direction opposite to the gradient of the regularized loss function:

pu ← pu + γ (euiqi − λpu) ,

qi ← qi + γ (eui pu − λqi ) . (2)

The constant γ determines the rate of minimizing the error and is often referred to as
the learning rate. In ALS, the optimization problem is solved by updating the user and
item latent vectors iteratively. That is, in each iteration, one of the factor matrices (say,
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P) is fixed, resulting in a convex optimization problem, where the optimal solution
(in this case, for Q) can be found analytically. Then the other factor matrix (Q) is
fixed, and the optimization problem is solved again (this time for P). These steps are
repeated until the convergence of the latent vectors.

Both in SGD and ALS, once the factorization converges, the latent matrices P and
Q are used to predict unknown user ratings r̂ui . Namely, the resulting latent vectors pu
and qi are multiplied, r̂ui = qᵀ

i pu , which produces the predicted rating of user u for
item i . At the final step, the computed prediction are converted into recommendations,
e.g., a subset of items with the highest predicted rating is recommended to the user.

3.2 Differential privacy

Differential privacy (Dwork 2008) is a provable privacy model based on the principle
that the output of a computation should not allow inference about any particular record
in the input. This is achieved by requiring that the probability of any computation
outcome is insensitive to small input changes. We denote two datasets A and B as
adjacent, A ≈ B, if they are identical except for one record. More formally, there
exist a user u and an item i such that A = B\{rui } ∪ {r ′

ui }, where r ′
ui and rui are

the ratings that u assigned to i in A and B, respectively. The guaranteed level of
privacy is measured by a parameter ε. Thus, a randomized computation K maintains
ε-differential privacy if for any two datasets A ≈ B, and any subset S of possible
outcomes in Range(K ),

Pr [K (A) ∈ S] ≤ exp(ε) × Pr [K (B) ∈ S], (3)

where the probability is over the randomness of K .
Low values of ε correspond to a high degree of privacy. Setting the bounds for the

acceptable value of ε is an open question, which may be influenced, for example, by
the data owner’s threat analysis or by the users’ privacy concerns. In the literature,
privacy settings of ε = ln 2 or ε = ln 3 are considered as providing acceptable levels
of privacy, although Dwork (2008) suggested that in some cases much higher values
of ε could provide meaningful privacy guarantees.

Different variants of differential privacy can be derived from slightly different
definitions of the adjacent datasets, for which the privacy constraints should hold
(Kifer and Machanavajjhala 2011):

– A and B are adjacent if they contain the same ratings, but the value of one rating
is different. Formally, there exist a user u and an item i such that A = B\{rui } ∪
{r ′
ui }, where r ′

ui and rui are the ratings that u assigned to i in datasets A and B,
respectively. This variant is referred to in the literature as bounded differential
privacy.

– A and B are adjacent if they are the same, except for one rating that appears in one
dataset only. Formally, there exist a user u and an item i such that A\B = {rui } or
B\A = {rui }. This variant is referred to as unbounded differential privacy.

It should be highlighted that the bounded and unbounded variants are sub-
stantially different in the privacy guarantee they offer. On the one hand, any
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algorithm which is ε-unbounded differentially private is 2ε-bounded differentially
private (change of a rating could be obtained by removing and adding a record).
On the other hand, there are algorithms that maintain bounded differentially pri-
vacy but break unbounded differential privacy. For example, revealing the fact
that user u rated item i does not break bounded differential privacy if the value
of the rating is not revealed, which is not the case for unbounded differential
privacy.

From the privacy perspective, it could be argued that the main privacy risk in rec-
ommender systems stems from the disclosure of the list of items associated with
a user, regardless of their exact ratings. Knowing which items interested the user
may reveal a lot about the user’s tastes, no matter whether the user rated those
items high or low. Consequently, masking the influence of the ratings, as in the
bounded differential privacy, does not necessarily hide the fact that the user rated
those items, or did not rate other items. In contrast, unbounded differential privacy
ensures that there is no distinction between the rated and unrated items. From the
personalization perspective, hiding which items were rated by a user may be unac-
ceptable. Since the ratings matrix is typically sparse, the stronger privacy protection
of unbounded differential privacy may require more noise than masking the rated
records alone. Consequently, the recommender’s accuracy will drop, which may
be a high price to pay for hiding the information whether a user rated an item or
not.

In this work we evaluate both the bounded and unbounded variants of differential
privacy, and the different privacy-personalization trade-offs that they offer. For each
of the proposed algorithms, we first present and analyse the bounded variant, and then
discuss the changes required to address also the unbounded variant.

3.3 The Laplace mechanism

One of the common ways to obtain differential privacy is by applying random noise
to the data. The amount of noise added depends on the L1-sensitivity of the evaluated
function, i.e., the largest possible change in themeasurement given a change in a single
record in the dataset. In general, the Lk-sensitivity of a function g is given by:

Sk(g) = max
A≈B

||g(A) − g(B)||k, (4)

where || · ||k denotes the Lk-norm.
The Laplace mechanism (Dwork et al. 2006) obtains ε-differential privacy by

adding noise sampled from Laplace distribution, with a calibrated scale b. The
probability density function of Laplace distribution with mean 0 and scale b (x ∼
Laplace(b)) is fb(x) = 1

2b exp(−|x |
b ).

Theorem 1 Given a function g : D → R
d , the following computation maintains

ε-differential privacy:

K (x) = g(x) + (Laplace (S1(g)/ε))
d . (5)
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For example, the function COUNTcond(A), which counts the number of records
in dataset A that satisfy the condition cond, has sensitivity 1, because changing a
single record could affect the count by at most 1. Hence, K (A) = COUNTcond(A) +
Laplace(1/ε) maintains ε-differential privacy. The function SUM(A), where ai ∈
[0,�], has sensitivity �, which is the maximal change in the sum given a change in
one element of A. Hence, K (A) = SUM(A)+Laplace(�/ε)maintains ε-differential
privacy.

We also rely in this work on the K -norm mechanism (Hardt and Talwar 2010),
which allows to calibrate noise to the L2-sensitivity of the evaluated function:

Theorem 2 Given a function g : D → R
d , the following computation maintains

ε-differential privacy:
K (x) = g(x) + rα, (6)

where r is a d-dimensional vector uniformly sampled from a d-dimensional sphere
with radius 1, and α ∼ Γ (d, S2(g)/ε).

4 Differentially private matrix factorization

Differential privacy sets the conditions that a mechanism should maintain to pre-
serve privacy, but within these constraints it is often possible to implement different
mechanisms that would evaluate the same computation, resulting in different privacy-
accuracy trade-offs. Considering the steps comprising the recommendation generation
process of theMF algorithm, resulting in either rating predictions or items to be recom-
mended to the target user, there is a number of possible approaches to add differentially
private noise, as shown in Fig. 1.

– Input perturbation The original ratings are perturbed with a calibrated noise and
then the MF algorithm is trained using the noisy input ratings. Since input per-
turbation is performed before training the recommender, the perturbation can be
followed by any recommendation algorithm, and, in particular, by MF.

Fig. 1 Different noise application points in regards to the input, output and the solver within the matrix
factorization mechanism
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– In-process mechanisms In this approach, the algorithms used to factorize the orig-
inal rating matrix into the latent user and item factor matrices are adapted to
maintain differential privacy. In this work we consider two factorization algo-
rithms, and propose their differentially private variants:
1. Stochastic gradient perturbation (SGD) In the training process of MF with

SGD, in each iteration, the gradient of the regularized loss function determines
the direction of the update and its magnitude. In the gradient perturbation
approach the gradient is perturbed with noise in each iteration.

2. ALS with output perturbation In each step of the ALS algorithm, two convex
optimization problems are solved to update the user and item factor matrices.
These empirical risk minimization problems can be solved in a differentially-
private manner using the techniques studied by Chaudhuri et al. (2011). In
particular, we apply the output perturbation approach to obtain noisy versions
of the factor matrices.

– Output perturbation In this approach, a non-private MF algorithm is executed,
and then the resulting latent factors are perturbed to maintain differential privacy.
Unfortunately, the optimization problem inMF is non-convex, as a small change in
the input could lead to a large change in the factors. Consequently, the sensitivity
of the optimization problem would require introducing large noise, potentially
resulting in poor utility.

Hence, in this work we focus on the first three variants of differentially private MF,
and study the privacy-accuracy trade-offs that they offer: input perturbation (where
noise is added to the input ratings), SGD, and ALS with output perturbation (both
including the addition of noise within the MF solver components). We do not consider
the output perturbation approach, where noise is added directly to the latent factors
after a non-private MF algorithm processes the inputs and produces the factors, due
to its non-convex nature.

We first outline the data pre-processing steps that were taken before applying any
of these approaches, and then describe each of these approaches in detail. For the
pre-processing, we utilize the private versions of several aggregate values, based on
the training dataset (as described in detail in Sect. 5.1). These are global average
GAvg(R)—the average rating of all users to all items; item average I Avg(i)—the
average rating assigned by all users to item i ; and user averageU Avg(u)—the average
rating assigned by user u to all items; and global effects—the combination of average
user and item ratings computed by IAvg(i) + UAvg(u).

4.1 Data preprocessing and private global effects

Prior to executing any of the proposed algorithms, we preprocess the inputs following
the approach outlined in McSherry and Mironov (2009). Namely, the preprocessing
consists of three steps: evaluation of global and item averages, evaluation of user aver-
ages, and clamping of the resulting ratings. A notable difference is that we incorporate
the user averages in rating predictions, as it was found that this allows to derive more
accurate predictions when using the MF approach. Below we detail the preprocessing
steps:
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Input: R = {rui} – ratings of n users for m movies,
βm – stabilization parameter,
ε1 – global average privacy parameter,
ε2 – item average privacy parameter

Output: Item averages IAvg(i)

1: GAvg = (
∑

R rui)+Laplace(Δr/ε1)
|R|

2: for j = 1 to m do
3: Let Rj = {rui ∈ R|i = j}
4: IAvg(j) =

(
∑

Rj
rui)+βm·GAvg+Laplace(Δr/ε2)

|Rj |+βm

5: Clamp IAvg(j) to [rmin, rmax].

Algorithm 1: Evaluation of item averages

Input: R = {rui} – ratings of n users for m movies,
βu – stabilization parameter,
ε1 – global average privacy parameter,
ε2 – user average privacy parameter

Output: User averages UAvg(u)

1: Let R′ = {rui − IAvg(i)|rui ∈ R}
2: GAvg′ = (

∑
R′ r′

ui)+Laplace(Δr/ε1)
|R′|

3: for v = 1 to n do
4: Let Rv = {r′

ui ∈ R′|u = v}
5: UAvg(v) =

(
∑

Rv
r′
ui)+βu·GAvg′+Laplace(Δr/ε2)

|Rv|+βu

6: Clamp UAvg(v) to [−2, 2]

Algorithm 2: Evaluation of user averages

– Private global and item averages First, we compute the differentially-private aver-
age item ratings according to the process described in Algorithm 1. We add a
number of fictitious ratings βm with the global averageGAvg to stabilize the items
averages: this would limit the effect of noise for items with few ratings, while only
slightly affecting the average for items with many ratings. In case the added noise
causes the item average to go out of the range of input ratings [rmin, rmax], the item
average is clamped to fit this range. Differential privacy is guaranteed by adding
noise calibrated to the L1-sensitivity of the ratings given by Δr = rmax − rmin.

– Private user averages Next we follow the same technique to compute the user
average ratings, as outlined in Algorithm 2. The basis for evaluating the user
averages is the ratings after the item averages were discounted. We stabilize the
user effects with the addition of βu fictitious ratings with the newly computed
global average. The the user averages are then clamped to a bounded range (in our
experiments we used the range [−2, 2] for the user averages).

– Clamping Finally, the item and user averages are discounted from the ratingmatrix
R, and the resulting ratings are clamped.The clamping reduces the L1-sensitivity of
the computations conducted during the MF process, and therefore results in lower
magnitudes of noise being introduced to the differentially private computation.
We denote the clamping parameter by B (B = 1 in our experiments) and set it as
follows:
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rui =

⎧
⎪⎨

⎪⎩

−B if rui < −B

rui if − B ≤ rui ≤ B

B if rui > B

. (7)

The pre-processed matrix R is then passed to one of the factorization algorithms,
which derives the latent matrices P and Q in the usual non-private manner. Finally,
predicted item ratings are obtained through r̂ui = IAvg(i) + UAvg(u) + puq

ᵀ
i .

Note that it is also possible to predict a rating using only the user and item averages:
r̂ui = IAvg(i)+UAvg(u).When clean item and user averages are calculated, this tech-
nique offers the most simplistic way to generate personalised recommendations (see
comparison baselines in Sect. 5.1). We can also consider an analogous differentially-
private simplistic recommendation method using the private counterparts of user and
item averaged computed using the above three preprocessing steps. In this case, as we
do not useMF, the privacy budget is split between the three computations: global aver-
ages, item averages, and user averages. We refer to this technique as Private Global
Effects.

When introducing noise to a differentially-private computation, the privacy budget
is divided between the parts of the computation. However, differential privacy main-
tains the composability property: if each computation in a series of computations is
εi -differentially private, then the overall algorithm will be

∑
i εi = ε-differentially

private. Accordingly, in the differentially-private implementations of MF the overall
privacy budget ε is divided between the computations of global averages, item effects,
user effects, and finally the factorization process itself.

It should also be highlighted that the above process considers the bounded variant
of differential privacy, in which the number of ratings |R| is known. In the unbounded
case, the number of available ratings should be computed privately with the Laplace
mechanism, e.g., |R| + Laplace(1/ε). Again, the composability property allows the
privacy budget ε assigned to the calculations of average ratings to be split between
the noisy sum calculation and the noisy count, to ensure that the entire computation
is ε-differentially private.

4.2 Matrix factorization with private input perturbation

In the input perturbation approach, each rating is considered independently of the rest,
and is perturbed in a way that maintains differential privacy. The magnitude of noise
that is applied to the rating matrix is determined according to the Laplace Mechanism.
In particular, the range of ratings in the data dictates the global sensitivity of the ratings.
Following the data preprocessing, the ratings are in the range rui ∈ [rmin, rmax], such
that the global sensitivity of the ratings is Δr = rmax − rmin = 2B, due to clamping.
Once the global sensitivity is derived the level of noise can be determined using Eq. (5).
For bounded differential privacy, perturbing each of the ratings with noise sampled
from the distribution Laplace(Δr/ε) ensures ε-differential privacy. The noisy ratings
can then be clamped again, to limit the influence of excessive noise. Algorithm 3
summarizes this process.
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Input: R = {rui} – preprocessed ratings of n users for m movies,
d – number of factors,
λ – regularization parameter,
B – clamping parameter,
ε – privacy parameter

Output: Approximate factor matrices Pn×d and Qm×d

1: Let R′ = {rui + Laplace(Δr
ε )|rui ∈ R}

2: Clamp the ratings in R′ to the range [−B, B]
3: (P, Q) = min

P,Q

∑
R′

[(r′
u,i − puqᵀ

i )2 + λ(‖qi‖2 + ‖pu‖2)]

4: return P and Q

Algorithm 3: Matrix Factorization with Input Perturbation

Theorem 3 Algorithm 3 maintains ε-differential privacy.

Proof The global sensitivity of the input ratings is Δr = (rmax − rmin). According to
the Laplace mechanism, this algorithm maintains ε-differential privacy. 
�

Let us now consider the unbounded privacy, where we have to protect also the
existence of ratings. Following the data preprocessing, missing ratings are assigned a
default value of 0 (equivalent to a rating combining the user and itembiases). Therefore,
the sensitivity of each of the inputs is themaximal difference between a given rating and
the 0 rating, which amounts to Δr ≤ rmax = B. Consequently, we have to add noise
to each entry of the input matrix R from the distribution Laplace(B/ε), effectively
turning missing ratings into “fake ratings”. Adding so many new ratings does not only
increase computation time, but also undermines prediction accuracy. To mitigate this
effect, we apply an additional clamping step after the introduction of noise, using the
clamping parameter α:

rui =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−B if rui < −B

0 if |rui | ≤ α

rui if α < |rui | ≤ B

B if rui > B

. (8)

This clamping to 0 for ratings in the range [−α, α] removes more “fake ratings” than
actual ratings and, thus, improves the prediction accuracy. The value of α used in the
experiments was 0.6.

4.3 Private stochastic gradient perturbation

In MF with SGD, the input of the algorithm consists of user ratings, a learning rate
γ , and the regularization parameter λ. In each iteration, the training samples are used
to evaluate the prediction error resulting from the current factor matrices, and then
the matrices are modified in a direction opposite to the gradient, with magnitude pro-
portional to the learning rate γ . The private SGD perturbation approach, outlined in
Algorithm4, guarantees privacy throughout theMFprocess by introducing noise to the
gradient descent step in each iteration of the algorithm.The error calculation conducted
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Input: R = {rui} – (preprocessed) user ratings,
d – number of factors,
γ – learning rate parameter,
λ – regularization parameter,
k – number of gradient descent iterations,
emax – upper bound on per-rating error,
ε – privacy parameter

Output: Approximate factor matrices Pn×d and Qm×d

1: Initialize random factor matrices P and Q.
2: for k iterations do
3: for each rui ∈ R do
4: e′

ui = rui − puqᵀ
i + Laplace(kΔr/ε)

5: e′
ui =

⎧⎪⎨
⎪⎩

−emax if e′
ui < −emax

e′
ui if |e′

ui| ≤ emax

emax if e′
ui > emax

6: qi ← qi + γ(e′
ui · pᵀ

u − λ · qi)
7: pu ← pu + γ(e′

ui · qᵀ
i − λ · pu)

8: return final P and Q.

Algorithm 4: Matrix Factorization with bounded differentially private Stochastic Gradient
Descent

in each step is carried out with the Laplace mechanism tomaintain differential privacy,
and consequently the gradient descent step maintains differential privacy. Optionally,
the noisy error can then be clamped to constrain the effect of noise (in our experiments
we used emax = 2). The number of iterations k is known in advance, so the noise intro-
duced in each iteration can be calibrated tomaintain ε/k-differential privacy. Compos-
ability ensures that the k iterations maintain the overall bound of ε-differential privacy.

Theorem 4 Algorithm 4 maintains bounded ε-differential privacy.

Proof Algorithm 4 accesses the input ratings only when calculating the error in line
4. The error for each rating is given by eui = rui − puq

ᵀ
i . The L1-sensitivity of the

rating error is:

max
A≈B

|eui (A) − eui (B)| ≤ max | (rui − puq
ᵀ
i

) − (
r ′
ui − puq

ᵀ
i

) | ≤ Δr. (9)

According to the Laplace mechanism, line 4 preserves ε/k-differential privacy for
each of the input ratings. Because the overall number of iterations is k, composability
ensures that the whole algorithm maintains ε-differential privacy. 
�

In the unbounded differential privacy case, we have to protect the existence of a
rating in the data set. As outlined in Algorithm 4, the gradient descent is done over
all the existing ratings. A new rating rui would induce another update for the vector
pu and qi (steps 4 to 7 in Algorithm 4). In order to mask the existence of such an
operation, we can evaluate the maximum change that this operation could induce in
the user-vector pu and the item-vector qi . We note by sp (and, respectively, sq ), the
sensitivity of a user-vector qu (respectively, item-vector qi ):

sp ≤ max ||γ (
e′
ui · pᵀ

u − λ · qi
) ||2 = γ (emax · pmax + λ · qmax ) (10)

sq ≤ max ||γ (
e′
ui · qᵀ

i − λ · pu
) ||2 = γ (emax · qmax + λ · pmax ) (11)
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Input: R = {rui} – user ratings,
d – number of factors,
γ – learning rate parameter,
λ – regularization parameter,
k – number of gradient descent iterations,
emax – upper bound on per-rating error,
qmax – upper bound on the norm of an item vector qi,
pmax – upper bound on the norm of a user vector pu,
ε – privacy parameter

Output: Approximate factor matrices Pn×d and Qm×d

1: sq = γ(emax · pmax + λ · qmax)
2: sp = γ(emax · qmax + λ · pmax)
3: Initialize random factor matrices P and Q.
4: for k iterations do
5: for each rui ∈ R do
6: eui = max{rui − qᵀ

i pu, emax}
7: qi ← qi + γ(e′

ui · pᵀ
u − λ · qi)

8: pu ← pu + γ(e′
ui · qᵀ

i − λ · pu)
9: endfor
10: for each user u do
11: Sample noise vector np with pdf f(b) ∝ exp

(
− ε·‖b‖2

2k·sp

)

12: pu ← pu + np
13: if ||pu||2 > pmax then pu ← pu · pmax

||pu||2
14: for each item i do
15: Sample noise vector nq with pdf f(b) ∝ exp

(
− ε·‖b‖2

2k·sq

)

16: qi ← qi + nq
17: if ||qi||2 > qmax then qi ← qi · qmax

||qi||2
18: endfor
19: return final P and Q.

Algorithm 5: Matrix Factorization with unbounded differentially private Stochastic Gradient
Descent

where emax = rmax + pmax · qmax .
To mask the existence of a single rating of user u for item i , noise will be added to

all the vectors pu of P and to all the vectors qi of Q at the output of each SGD iteration.
Since we have evaluated the L2-norm sensitivities, the noise will be taken from the
Gamma distribution following Theorem 2. The noise to be added to a user-vector pu
will be sampled with scale (2sp · i ter)/ε. For an item-vector qi , the noise will be
sampled with scale (2sq · i ter)/ε. Algorithm 5 outlines the resulting process for the
unbounded differentially private SGD.

4.4 ALS with output perturbation

Zhou et al. (2008) have proposed solving the MF problem using the alternating-
least-squares algorithm with weighted-λ-regularization (ALS-WR). In this section,
we consider a differentially private version of that algorithm.

The essential idea of ALS is to alternately fix one of the the latent matrices P
and Q, and optimize the regularized loss function for the other non-fixed matrix.
Once one of the matrices is fixed, the optimization problem becomes convex, and it
can be solved analytically. For example, once the item-factor matrix Q is fixed, the
overall regularized loss function can be minimized by considering for each user u the
following loss function defined over the subset of ratings Ru = {rvi ∈ R|v = u}:
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JQ (pu, R) =
⎡

⎣
∑

Ru

(
rui − puq

ᵀ
i

)2
⎤

⎦ + nuλ‖pu‖2, (12)

where nu = |Ru |. Each user vector pu is then obtained by solving the riskminimization
problem

pu(R, Q) = argmin
pu

JQ (pu, R) . (13)

The problem of differentially private empirical risk minimization (ERM) was stud-
ied by Chaudhuri et al. (2011), where the authors explored how to choose in a
privacy-preserving manner a vector that minimizes a regularized empirical loss func-
tion. In this section we rely on the following definition and theorem from Chaudhuri
et al. (2011):

Definition 1 Function H(x) over x ∈ R
d is λ-strongly convex if for all α ∈ (0, 1), x1

and x2:

H(αx1 + (1 − α)x2) ≤ αH(x) + (1 − α)H(x2) − 1

2
λα(1 − α)‖x1 − x2‖22. (14)

Theorem 5 Let f (x) and g(x) be two vector-valued functions, which are continuous
and differentiable at all points. Moreover, let f (x) and f (x) + g(x) be λ-strongly
convex. If x1 = argminx f (x) and x2 = argminx f (x) + g(x), then

‖x1 − x2‖2 ≤ 1

λ
max
x

‖∇g(x)‖2. (15)


�
Chaudhuri et al. (2011) used Theorem 5 to evaluate Δ, the L2-sensitivity of the

optimization problem. Then a differentially private solution for the ERM problem
could be obtained by adding a noise vector b, sampled according to the density function
f (b) ∝ exp(− ε‖b‖2

Δ
). We follow a similar approach to obtain a differentially private

solution for the P and Q matrices in each iteration of the ALS algorithm. Since the
problem formulation in MF is slightly different from the one presented in Chaudhuri
et al. (2011), we provide below the sensitivity analysis for the user vector pu .

Theorem 6 The L2-sensitivity of the optimization problem for pu(R, Q), given in
Eq. (13), is Δpu = qmaxΔr

nuλ
, where qmax is an upper bound on the L2-norm of each row

qi in Q.

Proof Let R ≈ R′ be two adjacent data sets that are different only in one
of the ratings. According to Theorem 5, we denote f (pu) = JQ(pu, R) and
g(pu) = JQ(pu, R) − JQ(pu, R′). In addition, we set p1 = argminpu JQ(pu, R),
and p2 = argminpu JQ(pu, R′). Then the L2-sensitivity of pu(R, Q) is given by
max ‖p1 − p2‖2.

The regularizer function N (pu) = ‖pu‖2 is 2-strongly convex. Since the loss
function

∑
Ru

(rui− puq
ᵀ
i )2 for a fixed Q is convex, it follows that f (pu) = JQ(pu, R)
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and f (pu) + g(pu) = JQ(pu, R′) are 2nuλ-strongly convex. Finally, N (pu), f (pu)
and g(pu) are differentiable at all points. As all the conditions for Theorem 5 are met,
we can conclude that

‖p1 − p2‖2 ≤ 1

2nuλ
max
pu

‖∇g(pu)‖. (16)

Since g(pu) = (rui − puq
ᵀ
i )2 − (r ′

ui − puq
ᵀ
i )2, we have ∇g(pu) = 2qᵀ

i (r ′
ui − rui ).

Therefore, we can bound

max
pu

‖∇g(pu)‖ ≤ 2qmax · Δr, (17)

where qmax is an upper bound on the L2-norm of qi . The theorem then follows from
Eqs. (16) and (17). 
�

Similarly, when fixing the matrix P and optimizing the vectors in Q based on
the regularized loss function JP (qi , R) = [∑Ri (rui − puq

ᵀ
i )2] + niλ‖qi‖2, the L2-

sensitivity for the evaluation of each row qi is
pmax ·Δr

λni
. For the preprocessed ratings,

we have Δr = 2B, where B is the clamping parameter.
For unbounded differential privacy, where the difference between R and R′ is in

the inclusion of a rating that user u assigned to item i ′, we assume without loss of
generality that R′ includes the additional rating. Then:

g(pu) = (
rui ′ − puq

ᵀ
i ′
)2 + λ‖pu‖2

∇g(pu) = 2qᵀ
i ′

(
ru,i ′ − puq

ᵀ
i ′
) + 2λpu

max
pu

‖∇g(pu)‖ ≤ 2qmax · (rmax + qmax · pmax ) + 2λpmax

Table 1 summarizes the global sensitivity of the user-factor and item-factor vectors
depending on the variant of privacy required, bounded or unbounded. The noise is
calibrated according to the global sensitivity. B is the clamping parameter and we
have B = rmax = Δr/2. Since we calculated the L2-sensitivity of the user-vector pu
and of the item-vector qi , the noise to be added to these vectors will be taken from the
Gamma distribution following Theorem 2.

Following the above analysis, Algorithm 6 outlines a differentially-private ALS
algorithm for MF. The algorithm shows the bounded differentially private variant, but

Table 1 The L2-sensitivity of updates to pu and qi depending on privacy variant

Privacy variant → Bounded Unbounded

Sensitivity of pu 4qmax · B 2qmax · (B + qmax · pmax ) + 2λpmax

Sensitivity of qi 4pmax · B 2pmax · (B + qmax · pmax ) + 2λqmax
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Input: R = {rui} – (preprocessed) user ratings,
d – number of factors,
λ – regularization parameter,
k – number of ALS iterations,
ε – privacy parameter,
pmax – upper bound on ||pu||2,
qmax – upper bound on ||qi||2

Output: Approximate factor matrices Pn×d and Qm×d

1: Initialize random factor matrices P and Q.
2: for k iterations do
3: for each user u, given Q do
4: Sample noise vector b with pdf f(b) ∝ exp

(
− ε·‖b‖2

2k · nuλ
pmax·Δr

)

5: pu ← arg minpu JQ(pu, Ru) + b
6: if ||pu||2 > pmax then pu ← pu · pmax

||pu||2
7: for each item i, given P do
8: Sample noise vector b with pdf f(b) ∝ exp

(
− ε·‖b‖2

2k · niλ
qmax·Δr

)

9: qi ← arg minqi JP (qi, Ri) + b
10: if ||qi||2 > qmax then qi ← qi · qmax

||qi||2
11: return final P and Q.

Algorithm 6: ALS with Output Perturbation

a similar process applies to the unbounded case, with the exception that the noise is
calibrated according to the global sensitivity corresponding to the unbounded variant.
Similarly to the SGD approach, we calibrate the noise so that each optimization prob-
lem is ε/2k-differentially private and the overall ALS computation is ε-differentially
private due to composability.

5 Evaluation

In this section, we evaluate the proposed differentially private MF approaches.
Section 5.1 describes the datasets used in the evaluation and outlines the experi-
mental setting. The analysis of the bounded and unbounded differentially-private MF
approaches is presented in Sects. 5.2 and 5.3, respectively. The former also includes
two sensitivity analyses. Finally, Sect. 5.4 compares the differentially private MF with
other differentially private collaborative filtering baselines.

5.1 Experimental setting

We use in the evaluation four datasets: the 100K, 1M and 10M MovieLens datasets
collected by the Grouplens group1 and the Netflix Prize Competition dataset.2 Table 2
summarizes selected statistical properties of the datasets. It includes the number of
users, number of items (in this case, movies), overall number of ratings, density of
the dataset, average and variance of ratings in the dataset, average number of movies
rated by a user, and average number of ratings assigned to a movie.

It should be noted that all three MovieLens datasets were collected by Grou-
pLens through their experimental MovieLens system (Harper and Konstan 2016).

1 http://grouplens.org/datasets/movielens/.
2 http://www.netflixprize.com/.
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Table 2 Statistical properties of the datasets

ML-100K ML-1M ML-10M Netflix

Users 943 6040 71,567 480,189

Movies 1682 3952 65,133 17,770

Ratings 100K 1M 10M 100M

Density 6.3% 4.19% 0.21% 0.21%

Average rating 3.5299 3.5816 3.5124 3.6043

Variance of ratings 1.2671 1.2479 1.1245 1.1777

Avg. ratings per user 106 165.6 139.7 37.9

Avg. ratings per item 59.4 253 153.5 5654

They contain the ratings assigned by the users of MovieLens to movies, all given on
a 1-to-5 star scale. Although collected through the same system, the overlap of the
datasets is limited. Specifically, the smallest MovieLens-100K dataset contains rat-
ings assigned during the 7-month period, between September 1997 and April 1998.
MovieLens-1M contains only the ratings of users, who joined MovieLens in 2000,
but the dataset was created in early 2003, leading to ratings assigned by the users
in 2001 and 2002. Hence, MovieLens-100K and MovieLens-1M do not overlap at
all. The largest MovieLens-10M dataset contains the ratings of random users across
the entire history of MovieLens. As such, there is some overlap between MovieLens-
1M and MovieLens-10M, although MovieLens-10M is an order of magnitude larger
than MovieLens-1M. Additional user and movie data provided in various Movie-
Lens datasets, e.g., demographic information, movie metadata, rating timestamps,
and movie tags, was not used in this work.

We split the available rating data into the training and test sets. For the Movielens
datasets, we use tenfold cross validation to train and evaluate the recommender sys-
tem.3 For the Netflix dataset, we train the recommender system on the qualifying set
and evaluate it on the test set released for the Netflix Challenge. In the experiments
reported in the rest of this section, we focus on the predictive accuracy of the recom-
mendations. Hence, we use the Root Mean Square Error (RMSE) metric to measure
the accuracy of the predicted ratings. RMSE is computed by

RMSE =
√∑

R

(
rui − r̂ui

)2 /
|R|, (18)

where rui and r̂ui is, respectively, the real and predicted rating assigned by user u to
movie i , and R denotes the test set of ratings being predicted. Due to the possible
discrepancies in the noise introduction, the reported RMSE scores are averaged across
5 runs for the MovieLens-100K and MovieLens-1M datasets, and across 10 runs for
the larger MovieLens-10M and Netflix datasets.

3 We used Matlab and, specifically, crossvalind, to split the data.
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We compare the performance of the proposed privacy-preserving MF algorithms
to the following baselines:

– Global average (GA) The average rating is computed over the entire training set,
and used as the prediction for all the items in the test set, i.e., r̂ui = GAvg(R).
We treat the global average RMSE as the upper bound for error.

– Item average (IA) The average rating for each item is computed over all the avail-
able item ratings, and used as the prediction for all the ratings for that item in
the test set, i.e., r̂ui = I Avg(i). This baseline reflects the RMSE score attainable
without personalization.

– Global effects (GE) The average ratings IAvg(i) for each item and UAvg(u) for
each user are computed over the entire training set. The item and user biases are
combined when predicting the test set ratings, i.e., r̂ui = IAvg(i) +UAvg(u). We
treat this baseline as the most simplistic way to obtain personalization, and we
consider RMSE scores below this baseline to represent effective personalization.

– Clean MF The ALS algorithm is executed to solve the MF problem without any
privacy constraints. The RMSE scores of the clean MF reflect the lower bound for
error attainable by the recommender without any privacy constraints in place.

We use the IA and GE baselines to compare the privacy-personalization trade-offs
offered by the private algorithms. To this end, wemeasure the values of ε for which the
RMSE scores attained by each differentially-private algorithm cross the two baseline
RMSE scores: IA and GE. It should be highlighted that low values of ε are desirable
for the baseline crossing, as they indicate that the algorithm can provide the same level
of accuracy as the baseline with a low cost in privacy. On the contrary, higher values
of ε for which a baseline crossing is observed mean that the desired levels of accuracy
can be achieved only with low privacy guarantees.

That said, setting specific limits for the acceptable value of privacy parame-
ter ε is an open question, which may be influenced, for example, by the data
owner’s threat analysis or by the users’ privacy concerns. In the research litera-
ture, privacy settings of ε = ln 2 or ε = ln 3 are typically considered as those
providing acceptable levels of privacy (Dwork 2008). Despite that, Dwork et al.
(2011) argued that in some cases, e.g., the AOL privacy breach, even values as high
as ε = 12 could provide meaningful guarantees. In the evaluation, we focus on
the observed privacy-personalization trade-offs offered by each of the algorithms,
rather than evaluate the performance of the algorithms for certain values of ε.
Also, we touch upon several factors and considerations that may affect the system
performance.

5.2 Bounded differential privacy

In each experiment, given the overall ε-differential privacy constraint, we allocated
0.3ε for data preprocessing. Out of this, 0.02ε was used to compute the global aver-
ages, where the MovieLens item averages and user averages were computed with
0.14ε each and the Netflix item averages and user averages were computed with 0.06ε
and 0.22ε, respectively. The remaining privacy budget of 0.7ε was allocated to the
actual factorization of the rating matrix. This allocation of the privacy budget is based
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Table 3 Summary of the experimental settings and baseline RMSE

100K 1M 10M Netflix

Parameter settings

Number of factors 3 5 7 20

Regularizer 0.06 0.045 0.03 0.05

Number of iterations 10 10 5 5

Baselines

Global average (GA) 1.1256 1.1171 1.0604 1.1310

Item average (IA) 1.0278 0.9795 0.9436 1.0537

Global effects (GE) 0.9571 0.9161 0.8738 0.9874

Clean MF—ALS 0.9198 0.8604 0.8013 0.9235

on an offline optimization carried out for the datasets. It is in line with the budget
allocations schema of McSherry and Mironov (2009), which allocated a small portion
of the budget to the average computations and a larger portion to the recommenda-
tion task (specifically, user-to-user covariance matrix). Such a fixed allocation of the
privacy budget is not unusual in differential privacy research and has been exploited
beyond recommender system applications (Bhaskar et al. 2010; Erlingsson et al. 2014;
Friedman and Schuster 2010).

Where applicable, we bounded the L2-norm of the user vectors to pmax = 0.4, and
the L2-norm of the item vectors to qmax = 0.5. In both the SGD and the ALS with
output perturbation experiments, we set the number of iterations to k = 5. Finally, the
number of iterations for input perturbation was set to k = 20. The upper part of Table 3
details several other dataset specific factorization parameters. The optimization of
these parameters was also done offline; some details of the parameterisation process
can be found in “Appendix”. We note that the selected number of factors and the
number of iterations were lower than those usually used in recommender systems
implementations ofMF, in order to limit the amount of noise introduced by differential
privacy. In addition to the parameter values, the bottom part of Table 3 shows the
baselines RMSE scores measured for each of the evaluation datasets.

The results of the unbounded differential privacy experiments are summarized in
Table 4 and in Fig. 2. Table 4 shows the the values of ε, for which each of the algo-
rithms crossed the IA andGEbaselines. Figure 2a–c shows the privacy-personalization
trade-offs for all the algorithms for the MovieLens-1M, MovieLens-10M and Netflix
datasets respectively.4 In addition to the above-mentioned baselines, the figures show
the results of the private global effects approach, where all the privacy budget is used
to evaluate the item and user averages; the Input Perturbation approach followed by
a non-private Stochastic Gradient Descent algorithm (ISGD); the Private Stochastic
Gradient Descent approach (PSGD); and the Private ALS approach (PALS).

4 Results obtained for the MovieLens-100K dataset exhibit a similar trend and are not shown, but only
summarized in Table 4.
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Table 4 Summary of the results
for bounded differential privacy

100K 1M 10M Netflix

Private global effects

IA crossing 0.5 0.2 0.18 0.18

Input perturbation

IA crossing 2 0.9 0.7 0.7

GE crossing 5 2.7 2.1 1.8

Stochastic gradient perturbation

IA crossing 2 0.8 0.6 0.6

GE crossing 20 8 5.5 3.5

ALS with output perturbation

IA crossing 2 0.8 0.6 0.6

GE crossing 19 8 6 5.5
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Fig. 2 Bounded differentially-private matrix factorization. aMovieLens-1M. bMovieLens-10M. cNetflix

In general, the performance of all the algorithms improves as the size of the datasets
increases. For example, the ISGD approach crosses the IA baseline for MovieLens-
100K, MovieLens-1M, and MovieLens-10M at ε = 2, ε = 0.9, and ε = 0.7,
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respectively. This result is not surprising; the larger the dataset, the more resilient
it is to the noise introduced through differential privacy. Since the noise is calibrated
to mask the effect of a single rating, larger datasets provide a higher signal-to-noise
ratio, thereby allowing better performance with respect to the baseline for any partic-
ular value of ε.

We observe, however, that this trend does not apply to theNetflix dataset, despite the
fact that it is an order of magnitude larger than the MovieLens-10M dataset and has a
similar density of ratings.We attribute this to the lower number of user ratings observed
in the Netflix dataset. For example, in the PALS algorithm, the output perturbation
noise added to the user vectors is proportional to exp(−ε · nu). While a different
distribution of the privacy budget between the computation of P and Q allows a slight
improvement in RMSE, it is not sufficient to compensate for the lower values of nu
prevalent in the Netflix dataset.

As expected, crossing of the IA baseline is observed for lower values of ε than
crossing of the GE baseline. This observation is explained by the lower degree of
personalization offered by IA, which is achievable with higher levels of noise and,
thus, a higher degree of privacy. For all the datasets, the IA crossing ε values of the
algorithms are similar, but there is a substantial difference between the GE crossing ε

values. Specifically, the IA crossing ε of PSGD and PALS are very close, and both are
slightly lower than that of the ISGD approach. However, the GE crossing ε of ISGD
is much lower than the ε of both PSGD and PALS.

For example, consider the MovieLens-10M dataset. The PSGD and PALS
approaches cross the IA baseline at ε = 0.6, whereas ISGD crosses this baseline
at ε = 0.7. This stems from the fact that the matrices P and Q in PALS and PSGD
are bounded with L2-norm bounds pmax and qmax . Bounding the L2-norm of the
matrices provides a small improvement to low values of ε and gives PALS and PSGD
this slightly earlier crossing. However, for higher ε, ISGD achieves a better perfor-
mance, i.e., it crosses the GE baseline at ε = 2.1, whereas PSGD and PALS cross
it at ε = 5.5 and ε = 6, respectively. Similar trade-offs are observed also in the
experiments involving the other datasets.

5.2.1 Impact of data preprocessing

We briefly demonstrate the observed effect of preprocessing on the performance of the
algorithms. Figure 3a shows two variants of the Private Stochastic Gradient Descent
(PSGD) algorithm, both evaluated using theMovieLens-1M dataset. The figure shows
the RMSE curve of the PSGD algorithm extracted from Fig. 2a and the same PSGD
algorithm with the same parameters, but applied without the data preprocessing step.
As can be clearly seen, data preprocessing has a significant effect on the RMSE, as it
reduces the sensitivity of the introduced noise, in particular for low values of ε, when
the IA baseline crossing is considered. Similar results were obtained for the PALS
and ISGD algorithms and for other datasets. These results highlight the importance of
data preprocessing and resemble earlier results obtained for the non-private variants
of MF (Koren and Bell 2015).
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Fig. 3 Impact of preprocessing and bounding. a The impact of data preprocessing. b The impact of factor
vector L2-norm bounds

5.2.2 Impact of factor vector L2-norm bounds

We also demonstrate the profound effect of bounding qmax in the PSGD algorithm.
Specifically, we set pmax to 80% of the qmax value, while the regularizer and the
number of factors are fixed to the baseline value, i.e., λ = 0.03 and d = 7. We repeat
the experiment using three values of qmax : qmax = 0.5, qmax = 1, and qmax = 2.
Figure 3b shows the results obtained for the MovieLens-10M dataset. While the value
of qmax does not substantially influence the IA baseline crossing, it does change both
the GE crossing ε value and the accuracy achieved for higher values of ε. In PSGD,
the L2-norm bounds do not affect the value of noise added to the matrices P and Q
and are used only to control the L2-norm of the latent user and item vectors. For low
values of ε, more noise is added and a small bound, e.g., qmax = 0.5, is preferable
over greater bounds, since it eliminates the impact of the noisy elements. However, for
higher values of ε, using a small bound prevents the factorization from fully realizing
the potential of the chosen number of factors, and, therefore, a higher bound allows
to achieve a better prediction accuracy when less noise is added.

5.3 Unbounded differential privacy

In this section we evaluate the unbounded variant of the differentially-private MF
algorithms. As explained in Sect. 3.2, unbounded differential privacy offers stronger
privacy guarantees than the bounded variant, since it protects not only the value of
rating but also their existence. For the algorithms to respect the unbounded privacy
variant, the preprocessing step has to be performed in a differentially-private manner
that will protect the existence of ratings. Then, we can apply theMF algorithms, taking
into account the global sensitivity of the computations under the unbounded privacy
guarantees, as explained in previous sections.

For the unbounded experiments we set the algorithm parameters (privacy budget,
factors, regularizer, and others) to the same values as in the bounded case. The exact
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Table 5 Summary of the results
for unbounded differential
privacy

100K 1M 10M Netflix

Private global effects

IA crossing 1.4 0.55 0.4 0.35

Input perturbation

IA crossing 4.8 2 – –

GE crossing 12.5 5.3 – –

Stochastic gradient perturbation

IA crossing 5.5 2 1.5 1.2

GE crossing 60 7 5 7.5

ALS with output perturbation

IA crossing 5.7 2 1.5 1.2

GE crossing 20 8 6 6.5
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Fig. 4 Unbounded differentially-private matrix factorization. a MovieLens-1M. b MovieLens-10M.
c Netflix

details of the parametrization can be found in Table 3. The input perturbation clamping
parameterwas set in this experiment toα = 0.6.Table 5 summarizes the baseline cross-
ing ε values in the unbounded differential privacy experiments and Fig. 4a–c shows the
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performance of the algorithms observed using the MovieLens-1M, MovieLens-10M,
and Netflix datasets.5 The results generally resemble those obtained in the bounded
experiments reported in Sect. 5.2: the baseline crossing ε decrease as the datasets get
larger; the IA baseline crossing ε are comparable; and the GE crossing of ISGD is
lower than that of PALS and PSGD, both of which obtain very similar ε.

Contrasting the results of unbounded differential privacy shown in Table 5 with the
bounded case reported in Table 4, we observe a notable difference in all the baseline
crossing ε values. Namely, in the unbounded privacy setting, the achieved IA and GE
crossing ε values are higher than in the bounded case. For example, for theMovieLens-
1M dataset, the ISGD algorithm crosses the IA and GE baselines in the unbounded
case at ε = 5.3 and ε = 2, respectively, while in the bounded case the crossing of these
baselines was observed at ε = 2.7 and ε = 0.9. Likewise, the IA crossing of both
the PSGD and PALS algorithms is ε = 2 in the unbounded case, compared to only
ε = 0.8 observed for both in the bounded case. These results are not unexpected and
can be explained by considering the fact that the privacy guarantees of the unbounded
variant are stronger than those of the bounded variant, since the existence of the ratings
is also masked. This increases the amount of noise that needs to be applied in order to
maintain the privacy guarantees and deteriorates the accuracy of the recommendations,
such that the baseline RMSE scores are attainable only for higher values of ε.

5.4 Comparison to other collaborative filtering approaches

In this section we compare the results of the privacy-preserving MF approach to
two other privacy preserving recommendation approaches: private version of the GE
baseline and private k-nearest neighbors (kNN) recommendation algorithm (Ning et al.
2015).

For the private GE algorithm, we used the following allocation for the privacy bud-
get: 0.02ε for the computation of global averages, 0.54ε (0.19ε for Netflix) for the
item effects and 0.44ε (0.79ε for Netflix) for the user effects. For the private kNN
recommendation algorithm, we followed the approach described by McSherry and
Mironov in McSherry and Mironov (2009).6 We used a different budget allocation.
0.9ε was allocated for data preprocessing, out of which 0.02ε was used to compute the
global averages, and the item averages and user averages were computed with 0.44ε
each (0.19ε for item averaged and 0.69ε for user averages for the Netflix dataset).
The remaining privacy budget of 0.1ε was allocated to the identification of k-nearest
neighbors. It should be highlighted that, unlike in the MF algorithm, the kNN algo-
rithm combines the differentially private movie-to-movie covariance matrix with the
private user ratings, giving it an advantage over the presented differentially privacy
MF algorithms.

5 Due to technical limitations (computational time and memory requirements), the experiments with the
input perturbation approach could not be conducted on theMovieLens-10M andNetflix datasets. Therefore,
ISGD results are not shown in Table 5 and ISGD curves are missing from Fig. 4b, c.
6 We approached the authors, but unfortunately differentially private implementation of the kNN algorithm
outlined inMcSherry andMironov (2009)was not publicly available, such thatwewere not able to reproduce
the exact results reported therein.
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Fig. 5 Private matrix factorization and kNN comparisons. a Private kNN on MovieLens-1M. b Private
kNN on Netflix

Figure 5a, b shows the results for the MovieLens-1M and Netflix datasets respec-
tively.7 For low values of ε, computing only the private GE turned out to produce
results superior to those of the MF approaches. For the MovieLens-1M dataset both
private kNN and private GE cross the IA baseline at ε = 0.18, since they make a
smaller number of computations than MF and, therefore, introduce the least amount
of noise into the computation. For the Netflix dataset, private kNN crossed the IA
baseline at a lower ε value than private GE, and both were lower than the IA crossing
ε of the privateMF approaches. However, private GE converged to the non-private one
for higher values of ε and, therefore, could not take advantage of the weaker privacy
constraints, when these were available.

While latent factors models like MF were typically found to outperform neigh-
borhood based approaches like kNN in terms of their predictive accuracy (Koren
et al. 2009; Ning et al. 2015; Ricci et al. 2015), our results indicate that this sur-
prisingly is not the case in the presence of privacy constraints. For lower values of
ε, the improved accuracy offered by MF in the non-private settings does not com-
pensate for the higher noise required to meet the privacy guarantees. However, for
a higher ε and weaker privacy guarantees, the predictive accuracy advantage of MF
becomes apparent, and it outperforms the private kNNalgorithm.While it is not impos-
sible that there exist other differentially-private MF approaches that outperform the
ones presented in this paper, we posit that neighborhood based approaches are inher-
ently more resilient to the noise introduced by differential privacy than latent factors
models.

As apparent in the statistical properties of the databases presented in Tables 2 and 4,
we observe that each factor relies, on average, on a few dozens of ratings. Hence,
applying even moderate noise deteriorates the signal-to-noise ratio and affects the
predictions. In contrast, the private item-to-item covariance matrix relies on thousands
of ratings, and is, therefore, more resilient to noise. Our experiments indicate that for
lower values of ε, the improved accuracy offered by MF in the non-private settings,

7 Due to memory limitations, kNN implementation for the MovieLens-10M dataset was not feasible.
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does not compensate for the higher noise required to meet the privacy guarantees.
Due to this, kNN outperforms MF for lower values of ε, when the privacy constraints
are more stringent. However, for higher values of ε and more lenient privacy, the
predictive accuracy superiority of the MF algorithms becomes apparent, and they
outperform their differentially private kNN counterpart.

6 Discussion

Following our evaluation, we identified the following design choices that should be
considered when applying differential privacy in practice to recommender systems.

6.1 Bounded versus unbounded differential privacy

In Sect. 5, we evaluated the privacy/accuracy trade-offs offered by two variants of
differential privacy. Masking the influence of a known rating (the bounded variant)
is easier than masking the mere existence of a rating in the data (the unbounded
variant) (Kifer and Machanavajjhala 2011). This explains the findings that for any
value of ε, all the algorithms supporting the bounded variant demonstrated a better
utility than those supporting the unbounded variant, making them more suitable for
accurate recommendations. However, the improved performance comes at a cost, as
the bounded variant provides a notably weaker privacy protection. Since the existence
of certain ratings could be sufficient for de-anonymization of a user or for mining their
private information, the unbounded model may be more adequate from the privacy
point of view.

6.2 Data and context considerations

The conducted performance evaluation of the algorithms on the Movielens and the
Netflix datasets, has demonstrated that differentially private MF is better suited to
datasets in which the average number of ratings per user and per item is large. We
posit that this density related property of the datasets may actually be more important
than the overall size of the dataset. In general, data (size, density, distribution of ratings
among the users and items) and context (temporal, spatial, social) characteristics may
affect the obtained privacy/personalization trade-off exhibited by the algorithms (Said
et al. 2011). It should be noted that beyond these trade-offs, additional considerations
may affect the design choices. For example, the scalability and flexibility of the latent
model-based approaches may outweigh the advantage of neighborhood methods in
terms of privacy protection, making privacy-preservingMF algorithms a viable option
despite their weaker performance. Finally, methods such as input perturbation may be
more amenable for data processing in a dynamic setting, since each new rating can be
perturbed independently of the others, whereas for the other approaches further work
is required to adapt incremental learning models to the privacy preservation setting
(Li and Unger 2012).
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6.3 Mind your parameters

Typically, MF parameters, such as the number of factors, the regularizer and the
learning rate, are tuned to increase the predictive accuracy, while preventing overfitting
and ensuring convergence. In the differentially-private setting, these considerations
should be augmented to include also the impact of these parameters on the introduced
noise (Hay et al. 2016). For example, increasing the number of factors typically results
in larger L2-norms of the factor vectors, and, therefore, requires larger magnitudes
of noise applied to obtain the same level of privacy. In turn, this noise abolishes
the increased accuracy that might have resulted from the additional factors, and an
optimal setting of the parameters should balance these effects. We also found that data
preprocessing has a significant impact on the performance of the proposed algorithms.
In some cases, the impact of effective preprocessing might be much more important
than the choice of the algorithm that obfuscates the data later on.

7 Conclusions

Privacy concerns constitute a growing impediment to the adoption and use of per-
sonalized online services. To address such concerns in the context of recommender
systems, we investigated in this work the application of differential privacy to MF,
the state-of-the-art approach in recommender systems. Differential privacy does not
dictate a specific way to conduct a computation, but is rather a property that should
be maintained by the system. Therefore, it is possible to design different implemen-
tations of algorithms that carry out the same computational task in a differentially
private manner, and with a different level of effectiveness. Here, we proposed four
differentially-private approaches to MF and evaluated three of them: in input pertur-
bation, the data was protected by introducing noise prior to the data analysis, while in
two other investigated approaches, differentially private variants of ALS and gradient
descent were employed to guarantee privacy.

The evaluation of the proposed private MF approaches showed that input pertur-
bation performed better than the other two approaches. Unlike the ALS and SGD
approaches, in which the privacy budget should be divided and allocated separately to
each iteration, the input perturbation approach could perform much better when the
privacy parameter ε increased. We also compared private MF to other privacy pre-
serving recommendation approaches, namely private GE and kNN. When privacy is a
priority (lower ε is required), these approaches were found to outperform MF. While
our experiments show this only for the proposed implementations of differentially-
private MF, we believe this advantage is inherent to recommendations based on sparse
datasets, as these approaches are less sensitive to noise than MF. On the other hand,
when weaker privacy guarantees are acceptable, MF could prove to be a better alter-
native. In this case, the prediction accuracy of the private algorithms gets closer to
that of the respective non-private variants, where MF was shown to outperform other
recommendation approaches.

In summary, the application of any privacy enhancing technology to a practical
recommender application requires a system designer to balance and integrate a suite
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of considerations ranging beyond the theoretical guarantees offered by each approach.
The designer’s choices may vary depending on which aspect of the algorithm should
take precedence in a particular setting (i.e., emphasis on privacy or personalization)
and the properties of the data to be processed. One possible direction of future work
includes the evaluation of other approaches to differentially-private MF recommen-
dations, beyond those evaluated in this work but still conforming to the differential
privacy constraints.

For example, we single out the potential of batch gradient descent, where the gradi-
ent is evaluated over the overall error of the ratings for a particular user or item, rather
than for each individual rating (Sun et al. 2010). Also, in the privateALS algorithm, the
output perturbation approach could be replaced with objective perturbation proposed
in Chaudhuri et al. (2011), in which a noisy risk function is optimized (rather then
adding noise after optimization). Finally, in output perturbation, the latent factors are
perturbed after the non-private MF algorithm is executed, although the non-convex
optimization problem would require introducing large amounts of noise, potentially
resulting in poor utility. Various combinations of these MF variants with other ways
to apply differential privacy can potentially bridge the apparently conflicting goals of
privacy and utility in recommender systems.

Appendix: Parameterisation

Here we briefly describe the parameterization of the differentially private algorithms.
We detail the results obtained for the MovieLens-100K dataset and bounded differen-
tial privacy case; however, the same methodology was also applied to other datasets.

The goal of the parameterization was to set the most appropriate values of the MF
and privacy parameters. To start with, the value of the learning rate parameterwas set to
γ = 0.01, as in otherMF implementations (Koren and Bell 2015). Next, we optimized
the regularization parameter λ and the number of latent factors d. For this, we defined
a fixed test set of ratings and repeated the MF predictions for various combinations of
values of λ and d. These combinations included the exhaustive set of pairs within the
ranges λ ∈ [0.01, 0.15] and d ∈ [1, 25]. For each value of the parameters, the RMSE
of the predictions for the same test set was computed. Since a 3D plot of the RMSE
is hard to corroborate, Fig. 6a, b shows the 2D projections of the plot obtained for the
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fixed values of λ and d. The best performing combination of λ = 0.08 and d = 3 was
used in the unbounded experiments with the MovieLens-100K dataset.

Having set the parameters λ and d, we turned to the number of SGD/ALS iterations,
k. For this, we gradually increased the number of iterations from k = 1 to k = 15, and
for each value of k computed the RMSE obtained for the fixed test set. The results of
this experiment are shown in Fig. 6c. As expected, the RMSE values stabilise starting
from a certain value of k. For example, in this case RMSE is reasonably stable after
k = 7, such that we parameterize the number of iterations to k = 10.
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